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Abstract
Mathematical models and their modeling frameworks developed to advance knowl-
edge in one discipline are sometimes sourced to answer questions or solve problems 
in another discipline. Studying this aspect of cross-disciplinary transfer of knowledge 
objects, philosophers of science have weighed in on the question of whether knowl-
edge about how a mathematical model is previously applied in one discipline is neces-
sary for the success of reapplying said model in a different discipline. However, not 
much has been said about whether the answer to that epistemological question applies 
to the reapplication of a modeling framework. More generally, regarding the nature 
of the production of knowledge in science, a metaphysical question remains to be 
explored whether historical contingencies associated with a mathematical construct 
have a genuine impact on the nature—as opposed to sociological practices or indi-
vidual psychology—of advancing scientific knowledge with said construct. Focusing 
on this metaphysical question, this paper analyzes the use of mathematical logic in the 
development of the Chomsky hierarchy and subsequent reapplications of said hierar-
chy; with these examples, this paper develops the notion of “spillovers” as a way to 
detect cross-disciplinary justifications for better understanding the relations between 
reapplications of the same mathematical construct across disciplines.

Keywords  Knowledge transfer · Formal templates · Model templates · The 
Chomsky hierarchy · Cross-disciplinary reapplications · Modeling frameworks

1  Introduction

Mathematical models and their modeling frameworks which were originally developed 
to advance knowledge in one scientific discipline are sometimes sourced to answer 
questions or solve problems in another discipline. Philosophers of science who study 
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how knowledge transfers across disciplines have contemplated whether knowledge 
about how a mathematical model is previously applied in one discipline is necessary for 
the successful applications of that model in a different discipline (Bradley & Thébault, 
2019; Herfeld & Lisciandra, 2019; Humphreys, 2019). However, not much has been 
said about whether the answer to that epistemological question applies to the reapplica-
tion of a modeling framework. In terms of the production of knowledge in science, a 
metaphysical question remains as to whether historical contingencies associated with a 
mathematical construct have a genuine impact on the nature—as opposed to sociologi-
cal practices or individual psychology—of advancing scientific knowledge with said 
construct. Focusing on this metaphysical question and using modeling frameworks as 
examples, this paper develops the notion of “spillovers” to better understand the rela-
tions between reapplications of the same mathematical construct across disciplines. 
Responses in the literature to the epistemological question, especially how they relate 
to the metaphysical question, will be discussed. The recent literature on model transfer 
includes a prominent trend to analyze the cross-disciplinary use of mathematical mod-
els either as the transfer of a modeling framework (Knuuttila & Loettgers, 2014, 2016) 
or as the constructing and adjusting of a “template” in a given discipline (Humphreys, 
2002, 2004, 2019). Relatedly, philosophers of science in the field of knowledge transfer 
ask how knowledge, including “objects of knowledge” (i.e., mathematical models or 
theories), transfer across the sciences to solve problems or answer questions for which 
that they were not originally developed for (Humphreys, 2019; Houkes & Zwart, 2019; 
Zuchowski, 2019; Price, 2019; see Herfeld & Lisciandra, 2019 for a review).1 In both 
literatures, various notions of templates that characterize different aspects of scientific 
modeling have generated many insights. However, because the discussion has primar-
ily focused on models such as differential equations, it remains unclear how the same 
notions may be applied to study models in different formats, such as game-theoretic 
models (Grüne-Yanoff, 2011) or modeling frameworks, and whether relevant insights 
will hold in these differing formats. As a point of departure, this paper discusses Hum-
phreys’ (2002, 2004, 2019) template-based analysis of model transfer, relating it to his 
argument in a current debate about the epistemology of knowledge transfer between 
the Kuhnian approaches, which emphasize the role of learning from exemplars, and his 
(2019) approach, which suggests learning through explicitly building templates. This 
paper shows how Humphreys’ template-based analysis may indeed be productively 
applied to study the reapplication of a modeling framework across disciplines, while 
also arguing that some but not all insights from Humphreys’ approach apply to mod-
eling frameworks.

Emerging from my analysis of Humphreys’ argument is a conjecture that histori-
cal contingencies are irrelevant to justifying a new knowledge-claim as the epistemic 
output of reapplying a single mathematical construct across domains or disciplines. 
This ahistoricist conjecture has an epistemological consequence; if it holds, then 
knowledge about how a mathematical construct is previously applied is helpful but 
not necessary for successfully reapplying it in one’s present context. Conversely, as 
opponents of Humphreys’ ahistoricist conjecture may argue, if it can be shown that 
knowledge from a mathematical construct’s previous application in one discipline 

1  In this paper, “knowledge transfer” refers to applying objects of knowledge in this sense.
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is necessary for successfully reapplying said construct in another discipline (hereaf-
ter called “cross-disciplinary knowledge”), then we may have a reason to reconsider 
the conjecture and, consequently, Humphreys’ epistemology of knowledge trans-
fer. Typical candidates for cross-disciplinary knowledge include knowledge about 
the modeling practice in the discipline from which the model is sourced, which 
some argue is required for the users in a different discipline to first identify the ide-
alizing assumptions embedded in the mathematical construct, and then determine 
whether they are appropriate idealizations to be made in their reapplication (Bradley 
& Thébault, 2019). Similarly, others contend that cross-disciplinary knowledge is 
needed for interpreting said construct or understanding its epistemic potential so as 
to replicate it in another (Knuuttila & Morgan, 2019; Herfeld & Doehne, 2019).

In contrast to current approaches, which tend to analyze cross-disciplinary knowledge 
as input to a successful reapplication, this paper analyzes cross-disciplinary knowledge 
from its output, showing that in some cases, advancing knowledge by reapplying a cross-
disciplinarily sourced mathematical construct may require a knowledge-claim produced 
by a former (re)application of the same construct. This paper introduces the notion of 
“spillovers” to capture the justificatory role certain cross-disciplinary knowledge plays 
in knowledge transfer. A spillover is a knowledge-claim that is indispensable to the justi-
fication of another knowledge-claim whereby 1) both knowledge-claims are products of 
applying the same mathematical construct, and 2) the two knowledge-claims originate 
in different disciplinary contexts. With this notion in mind, the relations between two 
cross-disciplinary applications of a single mathematical construct may be analyzed as 
either truth-functional or non-truth-functional, a distinction that is necessary to address 
the metaphysical question regarding knowledge transfer.

This paper proceeds with the following five sections. Section 2 elaborates on how 
the ahistoricist conjecture from Humphreys’ epistemology of knowledge transfer lends 
support to Humphreys’ response—which I call the self-sufficient view—to epistemo-
logical debates in the knowledge transfer literature. Section 3 argues that the self-suffi-
cient view should be understood as a description of how an ideal scientist may learn to 
reapply a mathematical construct; it follows that the current accounts of how reappli-
cations actually take place may not pose effective challenges to the self-sufficient view. 
Section  4 examines two contrasting examples: 1) the development of the Chomsky 
hierarchy in linguistics, which is consistent with Humphreys’ self-sufficient view, and 
2) subsequent reapplications of the Chomsky hierarchy in theoretical computer science 
and cognitive biology, which illustrate the presence of a spillover. Section 5 analyzes 
how the presence of spillovers—by exposing truth-functional dependency between 
episodes of knowledge transfer—addresses the metaphysical question of knowledge 
transfer. In the final section, I conclude that the self-sufficient view is unnecessarily 
strict in directing practicing scientists to intentionally avoid spillovers.

2 � Humphreys’ template‑based analysis and the self‑sufficient view

In his paper “Knowledge Transfer Across Scientific Disciplines” (2019, 112), Hum-
phreys asks ‘how can a single formal representation be successfully applied to mul-
tiple scientific domains that prima facie have very different subject matters?’ and 
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proceeds to show how such reapplication can in some cases be achieved without 
knowledge about the source domain. Pivotal to Humphreys’ analysis is his notion of 
formal templates and the processes of constructing and evaluating such templates. 
A formal template is a scheme of variables, stripped of empirical content from its 
former application, and detached from the phenomenon of interest in the source 
domain. Void of empirical content, what remains is ‘a purely mathematical object 
… that can be carried over wholesale from domain to domain’ (Humphreys, 2019, 
117). With the notion of formal templates, Humphreys suggests that ‘[t]he practi-
tioners of the field to which the template is currently applied do not need to know 
the details of how it is applied in other domains and the application does not require 
a relation of analogy between systems in different fields’ (ibid.).

Humphreys’ template-based approach to knowledge transfer contrasts with other 
approaches that cite perceived similarities, analogical reasoning, or tacit knowledge 
to account for the reapplication of mathematical models across different domains 
(e.g., Hesse, 1964, 1966; Kuhn, 1970; see also Knuuttila & Loettgers, 2020 for a 
recent discussion). For instance, consider Kuhn’s (1974) account of how certain 
equations, such as f = ma in Newton’s Second Law of Motion, function ‘like sche-
matic forms’ (Kuhn, 1974, 465, as quoted in Humphreys, 2019). When applying 
what Kuhn calls a “symbolic generalization” (i.e. a general equation) to specific sce-
narios, either side of the equation will be substituted with more detailed expressions. 
In solving problems of free fall or simple pendulum motion, for example, f = ma 
becomes mg = md2s/dt2 and sinh = md2s/dt2, respectively; the disparity between 
f = ma and its actual form is yet greater in ‘more interesting mechanical problems’ 
such as ‘the motion of a gyroscope’ as Kuhn (1974, 465) observes. According to 
Humphreys (2019, 113), Kuhn approached this aspect of scientific practice from the 
perspective of learning. In particular, there are ‘two types of learning: [first] acquir-
ing the initial knowledge of how to apply a given symbolic generalization,’ which 
students learn by studying the use of exemplars, ‘and [second] subsequently devel-
oping the skills to know that the particular symbolic generalization can be applied 
to other systems’. Yet, for Humphreys, what is missing in Kuhn’s account is ‘an 
analysis of how the second kind of skill, that of knowledge transfer, is learned and 
employed beyond an appeal to resemblance and similarity relations’ (2019, 113, 
emphasis mine). Humphrey’s template-based analysis is meant to address this gap. 
Instead of addressing reapplications of a general equation within physics as Kuhn 
did, Humphreys extends the discussion to cross-disciplinary reapplications. The 
goal of his approach is to show that, regardless of intra- or cross-disciplinary reap-
plication, ‘the process of applying templates can in some cases be made explicit ... 
we do not need to rely on similarity relations and tacit knowledge’ (Humphreys, 
2019, 112).

Rooted in Humphreys’ method of addressing the epistemological issue of knowl-
edge transfer, I argue, is a will to the truth of the ahistoricist conjecture. Specifi-
cally, while historical contingencies may influence scientists’ psychology or norms 
of scientific practice, they do not have a genuine impact on the nature of the produc-
tion of scientific knowledge. To illustrate, consider an array of contexts. Each con-
text consists of a subject matter, a phenomenon of interest, and a set of methods for 
approaching the phenomenon of interest within a particular subject matter. Consider 
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also that owing to historical contingencies, this array has a temporal order such 
that one context is the first instance where said mathematical structure was initially 
constructed. Moreover, in this initial instance, as well as in all subsequent contexts, 
one finds a mathematical construct implemented in one way or another for solving 
problems or answering questions about one aspect of the world with some empiri-
cal success. Furthermore, because these contexts share neither their subject matter 
nor their phenomenon of interest (perhaps not even the totality of their methods), 
the fact that all these instances share a mathematical construct in problem-solving 
practice is quite spectacular. About such an array, one may ask: Does its temporal 
order impose epistemological constraints such that advancing knowledge in a future 
context would be impossible without at least one prior successful occurrence?

Humphreys’ stance in favor for the ahistoricist conjecture can be observed in 
his characterization of knowledge transfer. ‘[H]istorically, some successful models 
[may] have been introduced … as unanalyzed representations and that subsequent 
applications can be and are made by analogical reasoning from previous applica-
tions’ (Humphreys, 2019, 114). However, the point Humphreys stresses is that, ulti-
mately, ‘the empirical justification’ for the application ‘rests on the satisfaction of 
the construction assumptions in the new domain’ (ibid., 114-5, emphasis added).

One consequence of Humphreys’ ahistoricist conjecture is what I call the self-
sufficient view. This view is, to rephrase Humphrey’s own words, about how a sci-
entist can reapply ‘a single formal representation’ to ‘multiple scientific domains 
that prima facie have very different subject matters’ without cross-disciplinary 
knowledge (Humphreys, 2019, 112). In my interpretation of Humphreys’ position, 
the self-sufficient knowledge transfer occurs when scientists who source a piece of 
mathematical construct from a different discipline ‘do not need to know the details 
of how it is applied in other domains’ (2019, 117). To clarify this argument, con-
sider the self-sufficient view as founded on two premises:

•	 Premise 1: reapplying a mathematical object of knowledge can be conceived of 
as independent template building events in different contexts, whereas

•	 Premise 2: the success of such reapplication is assessed based on the contribu-
tion of its end-product (e.g., a model) to the new context.

Premise 1 is essentially Humphreys’ ahistoricist conjecture, the main idea of 
which is that advancing knowledge through the reapplication of mathematical 
objects can be conceived of as independent events of template building; hence, one 
needs only to consider the components of the construct rather than the complex spe-
cificities of its origination.

To unpack Humphreys’ (2019, 113) epistemology of knowledge transfer, one 
needs to begin with his (2004) account of computational models. According to 
Humphreys, a computational model can be expressed through six components: 
<Template, Construction Assumptions, Interpretation, Initial Justification, Correc-
tion Set, Output Representation> (Humphreys, 2004, 103). Analyzing these com-
ponents substantiates Premises 1 and 2, thereby lending support for the self-suffi-
cient view. Although Humphreys speaks of the components of a model, his analysis 
offers a framework for studying modeling practice, such as what one does with these 
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components. Essentially, this conceptual framework offers a useful way to study the 
reapplications of a given modeling framework – a point I shall return to in Section 4. 
Let’s first take a closer look at each component of Humphrey’s account.

Best understood in pairs, the first two components in Humphreys’ account, “Tem-
plate” and “Construction Assumptions,” refer to, obviously, a template and all the 
assumptions needed for building said template. A template in this sense is a mathe-
matical scheme of variables whose syntax determines how variables, including coef-
ficients, relate to one another. Similarly, the assumptions that go into constructing 
the template are concerned with formulating a phenomenon of interest into a math-
ematically treatable target system. For instance, ontological assumptions specify 
which of the properties or entities of the phenomenon of interest will be targeted 
for representation in the template. Idealizing assumptions are decisions about how 
certain properties or entities in the phenomenon will be represented but in a dis-
torted manner. Other assumptions include abstraction, approximation, and physical 
constraints known to apply to the phenomenon in question. The goal of compiling 
these assumptions is to describe the phenomenon with a suitable ontology so that a 
question regarding the target system can be formulated in a mathematically tractable 
way. Humphreys (2004, 76) calls this assortment of assumptions the “construction 
assumptions” and the process of integrating them the ‘process of construction.’

The third and fourth components, “Initial Justification” and “Interpretation,” refer 
to the fact that all of the assumptions surrounding an ontology of the phenomenon 
of interest enable an initial justification for using the template. Conversely, this ini-
tial justification is bound, to some extent, by said ontological interpretation. For this 
reason, using the same template in different contexts with a radically different ontol-
ogy (i.e., a radically different empirical mapping) may seem problematic (Bradley & 
Thébault, 2019), but this is not necessarily the case. We will come back to this point 
in Section 3.

The final two components, “Correction Set” and “Output Representation,” refer 
to adjustments made to the template based on relevant empirical data and the tem-
plate’s output at the end of an inquiry. Having rendered a phenomenon of interest 
into a target system with a mathematically tractable template is a good start, but 
this rendering alone is insufficient for completing an inquiry; it must also speak to 
the available and relevant empirical data. When incongruence exists between data 
and the resulting template, adjustments are made, for instance, to relax or refine the 
construction assumptions, or to mildly revise the ontological assumptions if neces-
sary. Humphreys (2004, 76) calls this step the ‘process of adjustment.’ The goal of 
this process is to provide an accurate representation of the phenomenon, or at least 
one that is superior to other approaches in the same context.

Together, the process of construction and the process of adjustment constitute the 
foundation of modeling as template building. Something needs to be said about the 
claim in Premise 1 that template building occurs independently: it amounts to saying 
that the content that is necessary for completing the building processes is fully con-
tained within the construction assumptions and the correction set. To Humphreys, 
practicing scientists may have looked into a model’s prior success for inspirations. 
But this does not interfere with the epistemology of knowledge transfer since in his 
view template-building activities are logically independent from one another. The 
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argument for this ahistoricist claim is that everything a template builder needs for 
the building processes is contained within knowledge specific to her field of spe-
cialty and general mathematical competence.

Moreover, regarding Premise 2, the success of repurposing a mathematical con-
struct is determined by the construct’s ability to meet the objectives of tractability 
and improved empirical accuracy in the new domain. Note that both tractability and 
empirical accuracy are sensitive only to one context, i.e., the subject matter, its asso-
ciated phenomenon of interest, and the methodology (e.g., data collection, experi-
ment) that is relevant to them. Thus, tractability and empirical accuracy do not seem 
to require content from contexts outside of the context at hand. Consequently, the 
success of reapplying a mathematical construct is assessed based on the contribution 
of its end-product in the new context. Hence, we have arrived at the self-sufficient 
view: Context-specific knowledge and general mathematical competence are suffi-
cient for successfully repurposing a mathematical construct in a new context.

One may ask: How does the independency of template building explain the fact 
that some constructs have applications across multiple contexts that may or may not 
be related but clearly involve analogical reasoning? Humphreys’ answer to this ques-
tion is twofold. On the one hand, as in some cases, the same template can be (or 
could have been) constructed with different sets of construction assumptions con-
cerning different phenomena of interest (see Humphreys, 2004, 73-76). On the other 
hand, as in other cases, a popular template can be (or could have been) constructed 
with mathematical content alone and thus has no interpretation beyond mathemati-
cal interpretation (as he discussed in 2019, 116). Humphreys refers to these cases, 
respectively, as theoretical templates and formal templates.

According to him, a theoretical template contains at least one schematic prop-
erty variable which can be substituted by different predicates such that the template 
functions as a general representational device. Humphreys’ (2004, 60) paradigmatic 
example is, again, the equation in Newton’s Second Law: it ‘describes a very general 
constraint on the relationship between any force, mass, and acceleration,’ and when 
‘all of the schematic variables have been substituted for,’ the equation ‘can be suc-
cessfully used to represent a variety of different phenomena within the domain of 
the theory’ where the template occurs (2019, 114).

In contrast, a formal template contains only mathematical interpretation, and all 
of its construction assumptions are mathematical in nature. By mathematical, Hum-
phreys (2019, 114 footnote 9) includes ‘representations from mathematical logic and 
some programming languages.’ This point concerning mathematical logic opens the 
possibility of analyzing a modeling framework as a template, which I will explore in 
Section 4. All that said, in either case, achieving tractability and improving empiri-
cal accuracy in one context only requires general mathematical competence and 
knowledge specific to said context.

For instance, consider the case in which a template user builds a template from 
scratch. Recall that the template builder is in charge of conjuring assumptions that 
are directly relevant to the subject matter during the processes of construction and 
adjustment. This step requires the builder’s command of mathematics to identify 
appropriate mathematical operators  with which to render a phenomenon  of inter-
est mathematically tractable. Moreover, Humphreys (2004) suggests that the builder, 
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having gone through the process of construction, would know which assumptions 
to adjust and how to adjust them when needed. Everything in the correction set is 
supposedly available in the context from which she drew her construction assump-
tions. That is, the knowledge about how to relax, refine, and revise the assumptions 
about the phenomenon with regard to a particular subject matter originates from the 
context that she is working in. Therefore, the template’s prior success (i.e., through a 
modeling effort in a different context) is irrelevant to completing her inquiry.

Needless to say, not all template users are template builders. How do we account 
for the scenario in which the user does not build the template from scratch? This 
is where general mathematical competence and Humphreys’ notion of formal tem-
plates become crucial to maintaining the self-sufficient view. Because the same tem-
plate can be constructed with only mathematical content, it can be conceived of as 
having no interpretation beyond mathematical interpretation. Using such a template 
requires the user to go through the process of adjustment as usual but not the regu-
lar process of construction. Instead, she would first identify the mathematical con-
struction assumptions and then assign the template with a new ontology. Secondly, 
she would check whether any adjustments are needed such that her modeling efforts 
produce an empirically accurate representation. This way, regardless of whether the 
user built the template from scratch or repurposed it, the self-sufficient view’s con-
clusion is not affected.

3 � An ideal scientist and practicing scientist’ ideals

In the previous section, I unpacked Humphreys’ response to the epistemological 
debate in the knowledge transfer literature in terms of the self-sufficient view. In this 
section, I discuss how scholars have responded to the epistemological question and 
make a claim on how Humphreys’ position should be critically assessed. I argue that 
what Humphreys offers is a description of how an ideal scientist may learn to reap-
ply mathematical constructs, which he extends into a prescriptive claim. I follow 
Burgess (1992) who makes a distinction between a prescription and a description of 
idealized scenarios. According to Burgess (1992, 12), a description of idealized sce-
narios is not meant to be an accurate description of how events took place, yet ‘its 
results can serve as minor premises in arguments with prescriptive major premises 
leading to prescriptive conclusions.’

Burgess’ (1992) observation fits nicely with what Humphreys aims to achieve 
with the self-sufficient view, i.e., to aspire toward better knowledge transfer prac-
tices. As mentioned at the beginning of this section, Humphreys’ point is to show 
that ‘the process of coming to know that a particular model applies to a system’ need 
not rely on ‘similarity relations and tacit knowledge’ (2019, 112-3). Humphreys 
contends that ‘it is reasonable to prefer explicit criteria over implicit judgments of 
resemblance’ (115, emphasis added) such that the process of knowledge transfer 
may be made explicit. In particular, by identifying formal templates in knowledge 
transfer, Humphreys shows that one does not need to leave the process of ‘coming to 
know that a particular model applies to a system overly psychological’ (2019, 113). 
While a combination of analogical reasoning and statistical goodness-of-fit criteria 
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applied to the output of the model may be playing a heuristic role in real scenarios, 
in Humphreys’ (2019, 114) words, this possibility is ‘neither the only nor the best 
mode of introduction and application.’ Thus, the scientist in the self-sufficient view 
is not meant to describe practicing scientists such as those in Kuhnian accounts of 
knowledge transfer. Instead, Humphreys’ account is more suitably understood as 
how an ideal scientist would carry out the process of knowledge transfer and conse-
quently why practicing scientists should aspire to the practices of this ideal scientist.

In the context of knowledge transfer, an ideal scientist is competent in mathemat-
ics and native to the subject matter of her study. When implementing an existing for-
mal template, she could employ implicit strategies at will but she would not have to. 
Using her general mathematical competence and knowledge specific to her field of 
specialty, she could reconstruct the template and provide justification on demand. In 
other words, when it comes to transferring a formal representational device, an ideal 
scientist is self-reliant. No cross-disciplinary knowledge is required.

Correctly identifying the nature of the self-sufficient view is of utmost impor-
tance when it comes to appropriately assessing it. Critics charge that Humphreys’ 
(2019) account is either incomplete or unrealistic (more on this below). My assess-
ment of Humphreys’ position is that while the self-sufficient view is possible in 
practice, what Humphreys thinks to be an ideal scientist may turn out to be not so 
ideal because it does not take spillovers into account. Supporting evidence for this 
claim is discussed in Sections 4.2 and 5. In this section, I discuss one way an ideal 
scientist can fall short that is germane to presence of a spillover in scientific practice.

Following the self-sufficient view, an ideal scientist is self-reliant only if 1) she 
deliberately avoids tackling problems that require cross-disciplinary knowledge 
including those that may become part of construction assumptions and hence inte-
gral to justifying the final output of the inquiry or 2) all problems or questions in 
science can eventually be solved or answered without cross-disciplinary justifica-
tions. Perhaps 2) could be the case, which might be an article of faith but which 
would render 1) a defensible position if we disregard any sense of urgency to have a 
solution or an answer before eventuality. I shall not discuss whether it is reasonable 
to presuppose this eventuality but to stress one point: if all scientists avoided tap-
ping into cross-disciplinary justification, as the self-sufficient would advise, certain 
problems or questions could be left in suspense indefinitely. Indeed, Humphreys is 
correct in urging for an explicit method over relying on tacit knowledge, but if hav-
ing any answer at all in the first place is necessary for being able to make explicit the 
justification, be it within or across disciplinary contexts, then it is not clear that stay-
ing away from cross-disciplinary justification is a wise advice to make. That said, 
many scholars of knowledge transfer seem to share the independency position of the 
self-sufficient view, including some opponents of the notion of formal templates. In 
what follows, I turn to discuss these nuances among views related to Humphreys’ 
position.

Many authors in the current debate hold a collective position which takes the 
self-sufficient view to be unrealistic or incomplete, arguing that cross-disciplinary 
knowledge of one sort or another is at least advisable for reapplying a mathematical 
construct in one’s present context. Moreover, some of these authors tend to focus on 
the sociological dimensions of knowledge transfer (e.g., Herfeld & Doehne, 2019, 
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and to some extent Bradley & Thébault, 2019), yet because such dimensions are 
entirely absent from Humphreys’ view, sociological criticism may inadvertently dis-
regard certain nuanced contrasts between Humphreys’ original position and his crit-
ics. As a remedy, I shall analyze these differences according to, on the one hand, 
their acceptance or rejection of the two premises in the self-sufficient view (Sec-
tion 2) and on the other hand, how they relate to its key implication, i.e., the call 
to be like an ideal scientist engaged in knowledge transfer. In particular, I demon-
strate that this collective position seems to accept the ideal scientist implication, 
reject Premise 2, yet either presupposes Premise 1 or leaves it unquestioned. Indeed, 
except for Knuuttila and Loettgers’ (2014, 2016, 2020) work on model templates, 
Premise 1 seems to be implicitly held by many philosophers of knowledge transfer. 
In Section  5, I shall discuss how the presence of spillovers in science challenges 
Premise 1. Overall, criticisms converge on the complications of “re-situating” (Mor-
gan, 2014) a mathematical construct in actual scenarios. These scenarios involve, 
among other things, a new disciplinary context, a new scientific community, or a 
new target system, or any combinations of the three. For critics, these complications 
of knowledge transfer in practice suggest that successfully reapplying cross-discipli-
narily sourced mathematical constructs requires variable kinds of cross-disciplinary 
knowledge.

One implication of the self-sufficient view is that practicing scientists should pre-
fer explicit approaches over tacit strategies.2 Learning from exemplars or implicit 
judgments of resemblance relations are not the best mode of reapplying an existing 
equation form when one ‘can check directly whether the assumptions are satisfied 
for the system at hand’ (Humphreys, 2019, 115). For Humphreys, in some cases, 
every scientist can perform knowledge transfer as an ideal scientist. For instance, 
general equation forms, such as Laplace’s equation, the diffusion equation, Pois-
son’s equation, or several statistical distributions ‘transcend specific theories and 
their subject matter’ (Humphreys, 2019, 115). Their construction assumptions can 
be found in ‘the better kind of Methods textbooks, … the conditions for application 
are laid out explicitly’ (ibid., 115 emphasis original). Humphreys (2004, 154) could 
be arguing that because it is ‘possible in practice’ to reapply a general equation form 
like an ideal scientist, one should opt into doing so in practice. This argument is 
consistent with Bradley and Thébault (2019), whose work offers instructions for car-
rying it out in practice.

Bradley and Thébault (2019) point out that when reapplying a model with a radi-
cally different ontology than its new target domain, the idealizing assumptions the 
model inherited from its previous context need to be explicitly justified, a process 
they call “re-sanctioning.” The reason for re-sanctioning is the uncertainty over 
whether the justification of those idealization assumptions in the previous context 
applies in the present context. It is uncertain because justification in a prior context 
does not automatically migrate to the next context. Moreover, according to them, 
re-sanctioning requires the user to first isolate the original idealizing assumptions 

2  Another implication may be that philosophers of science should prefer analyzing knowledge transfer as 
such, but Humphreys’ (2019) text does not decisively exclude either interpretation.
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and then justify their counterpart in the present context. In one of their case studies, 
for example, well-known models developed in the context of statistical mechanics 
are repurposed to describe wealth distribution. In physics, these models describe the 
exchange of kinetic energy in a gas through the basis of assuming binary dynami-
cal interactions between the molecules through scattering processes. Although these 
assumptions are highly idealized, experimental data suggest that they are reasonable 
assumptions to be made about gases. In this sense, those assumptions about the mol-
ecules passed the “sanction” in that particular context. However, in the context of an 
economic theory of exchange between economic agents, it is not obvious how the 
same assumptions apply. Note that this is not to say that re-sanctions would certainly 
fail; instead, one would need to go through the assumptions explicitly, ideally in an 
itemized manner.

For the most part, Bradley and Thébault’s (2019) view coincides with Hum-
phreys’ analysis. Humphreys considers idealizing assumptions to be part of the con-
structing assumptions. Hence, both sides emphasize the importance of satisfying the 
constructing assumptions and advocate for justifying constructing assumptions in an 
explicit manner for successful reapplication. Both sides also draw a clear bound-
ary between contexts with regard to justifying the construction assumptions, which 
can be seen as presupposing Premise 1. However, Bradley and Thébault (2019, 82) 
arrive at the opposite of the self-sufficient view; for them, re-sanctioning requires 
‘awareness of modeling practices from both the old and new contexts’ to effectively 
isolate idealizing assumptions in the old context and to appropriately justify their 
counterpart in the present context. With regard to knowledge diffusion, for prac-
titioners in the new context to appreciate the newly demonstrated mathematical 
tractability of a repurposed template, the user of said template needs to convince 
them that the idealizing assumptions have been properly re-sanctioned. Bradley and 
Thébault (2019, 90) thus advise concerted cross-disciplinary efforts as one of the 
norms for successful model transfer. This particular aspect—being responsive to not 
only the epistemic norms but also the institutional norms in the new context—is 
entirely absent in Humphreys’ position.

Concerning knowledge diffusion but from another sociological perspective, Her-
feld and Doehne (2019) find that before the epistemic potential of a mathematical 
construct can bear fruit in a new context, it needs to be explored and elaborated 
upon based on the theoretical and conceptual backdrop of each context. For instance, 
some effort is required for showing how a repurposed construct, in their case rational 
choice theories, can be used in solving problems across different sciences. This pre-
condition includes translating related concepts between contexts. By “translation,” 
Herfeld and Doehne (2019, 65) refer to publications which align a ‘scientific inno-
vation with previous research traditions’ in a way that reveals the innovative idea’s 
‘potential for [solving] particular disciplinary problems and establishes the basis for 
its application in specialist research.’ Using a bibliometric method, they find that the 
role of a translator is crucial for the epistemic potential of repurposed mathematical 
constructs to spread within and across scientific communities.

Similar to re-sanctioning, the notion of translation is compatible with the part of 
Humphreys’ position that recommends explicit over tacit strategies. According to 
him, converting tacit strategies into explicit constructing assumptions is better than 
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leaving them implicit. Note that Humphreys does not assume that every practicing 
scientist is an ideal scientist—the idea is for practicing scientists to become one. 
Thus, so long as there is one ideal scientist in a research community, others can take 
up the role of a translator that helps with diffusing newly produced knowledge. In 
other words, the need for translating concepts does not directly challenge Premise 1 
in the self-sufficient view.

Unlike the aforementioned philosophers who demand the template user be knowl-
edgeable beyond the context of their field of specialty, Knuuttila and Morgan (2019) 
attack the very notion of formal templates. According to them, (2019, 651) relaxing 
the idealizations that came with ‘formal templates is problematic almost by defi-
nition.’ It may be true that tractability makes templates attractive. But to advance 
knowledge, as they argue and Humphreys agrees, the template needs to be tested 
against, and adjusted for, relevant empirical data. When incongruences arise, as 
Humphreys anticipates, one needs to adjust the assumptions, which among other 
things, include adding back factors that were assumed absent yet may or may not 
be causally influential. Going through those factors, which Knuuttila and Morgan 
(2019) call “recomposing,” entails many practical difficulties. For instance, the 
number of omitted factors could be very large, ‘not able to be fully specified, or 
dependent in complex ways on one another’ (ibid., 647). Indeed, Humphreys seems 
to have made the process of adjustment all too effortless for the notion of formal 
templates to fruitfully describe the adoption of templates in action. That said, Knu-
uttila and Morgan’s (2019) position does not directly challenge either Premise 1 or 
2, nor does it counter Humphreys’ prescriptive point; if the process of adjustment is 
justified, both sides would agree that justifying it explicitly is not only possible but 
also preferred.

Finally, unlike all others, the notion of model templates proposed by Knuuttila 
and Loettgers (2014, 2016) can be interpreted as questioning Premise 1. A model 
template, in their words (2014, 280), ‘is an abstract conceptual idea associated with 
particular mathematical forms and computational methods.’ In their view, model 
templates manifest as ‘a conceptual framework which renders certain kinds of pat-
terns as instances of’ phenomena of a particular type (ibid., 283). For instance, they 
discuss the mathematical and computational methods developed alongside the Ising 
model, which was initially built to investigate the phenomenon of ferro-magnetism 
in physics. A mathematical form resembling the Ising model appears in chemistry, 
biology and economics for investigating a variety of phenomena. According to them 
(2014, 295), the Ising model is not a mere syntactic structure. Instead, it ‘consists 
of such notions as cooperative phenomena, phase transitions, and long-term order 
embodied into the equations describing the interactions between the components of 
the system, the energy, and the order parameters.’ Thus, on the one hand, what moti-
vated reapplications of the Ising model is its rich conceptual framework for interdis-
ciplinary modeling practice, what Knuuttila and Loettgers call ‘a general mechanism 
that is potentially applicable to any subject or field displaying particular patterns 
of interaction’ (ibid., 295). On the other hand, the mathematical form of the Ising 
model may not be seen as detached from this conceptual framework. Instead, the 
Ising model, and potentially other mathematical constructs, is a mathematical struc-
ture that should be thought of as ‘coupled with a general conceptual idea’ ... ‘an 
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integrated toolbox’ ... ‘capable of taking on various kinds of interpretations in view 
of empirically observed patterns in materially different systems (2016, 396, original 
emphasis; 2014, 295).

This notion of model templates, interpreted strongly, questions Premise 1. Recall 
that Premise 1 is about the independence of template building. Thus, if by “embod-
ied,” “coupled,” and “integrated,” what Knuuttila and Loettgers mean to convey is 
“cannot be disembodied, decoupled, or disintegrated even in principle,” then there 
is something more than just the formal template that defines the array of contexts. 
For this reason, their notion of model template comes closest to rejecting Hum-
phreys’ ahistoricist conjecture. As Humphreys may ask: Should the known first use 
of the Ising model have not occurred as it did in history, would other scientists in 
different contexts not be able to build a similar mathematical structure, coupled 
with the same set of concepts as Knuuttila and Loettgers so aptly analyzed? Or, to 
put it more generally, recall the metaphysical question regarding knowledge trans-
fer. Does the temporal order of the array of contexts impose some epistemological 
constraint such that advancing knowledge in a later context would not be possible 
had at least one prior successful instance not occurred? I will come back to this 
point in Section 5.

On the whole, the current literature on knowledge transfer has generated many 
insights for studying the reapplication of a formal representational device in mul-
tiple systems. One such insight is to view reapplying a representational device 
as an analyzable skill in terms of template building (Humphreys, 2019), which 
offers an opportunity for the reapplication of a modeling framework to be stud-
ied accordingly. Surely, a model is traditionally understood as a representation of 
some aspect of a real-world system, and for this reason, a model is importantly 
different from what may be a modeling framework. However, any account that 
analyzes a model beyond its written symbols and is open to multiple representa-
tional functions of those symbols requires a broader elaborating framework, one 
to which the model’s symbols belong and one that can be employed to model 
real-world systems in different domains. In other words, the template building 
view interprets a mathematical expression as not merely standing in for the one 
aspect of a real-world system that it is supposed to represent, but rather as a 
framework for representing materially very different real-world systems. Knuut-
tila and Loettgers’ (2016) analysis of the Ising model is a salient advocate of this 
approach. The mathematical structure of the Ising model, which has been applied 
to study the physical phenomenon of phase transition as well as socio-economic 
phenomena such as segregation or opinion formation, cannot be accounted for by 
the traditional representational approach alone. Knuuttila and Loettgers’ (2016, 
396) suggest that the Ising model provides a model template; in it, there are both 
mathematical structures and a general idea ‘of the kind of structure or interaction 
that the model exhibits.’ I shall come back to the notion of model templates at 
the end of Section 5. For now, let me simply note that Knuuttila and Loettgers’ 
(2020) epistemology of knowledge transfer prominently stresses analogical rea-
soning. For this reason,  their view differs significantly from Humphreys’ (2019) 
account which, as I discussed in Section 2, aims to reduce psychological factors 
from the epistemology of knowledge transfer. Nonetheless, both approaches pave 
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the way for applying the analyses of templates to study modeling frameworks in 
general, a point to which I now turn.

4 � The cross‑disciplinary reapplications of modeling frameworks

In this section, I examine two contrasting examples of knowledge transfer. In Sec-
tion  4.1, I first examine features of Chomsky’s selective reapplication of math-
ematical logic in linguistics with the aim of showing that it is possible in practice 
to reapply a modeling framework as an ideal scientist. The way Chomsky modi-
fied his derivation system–which he repurposed from mathematical logic to study 
a different subject matter in linguistics all the while without introducing context-
specific content from mathematical logic–demonstrates this aspect of the self-suf-
ficient view. This episode also shows how the template-based approach applies to 
the study of modeling framework reapplication. Although Humphreys intended 
for the notion of templates to be an account of what a computational model is, his 
analysis of what can be done to a template to produce scientific knowledge (i.e., 
the construction and adjustment processes of a template elaborated in Section 2) 
applies just as well to the study of modeling frameworks.

In Section  4.2, I examine an experimental reapplication of Chomsky’s mod-
eling framework in cognitive biology with a specific focus on the presence of a 
spillover that occurs in the process of knowledge transfer. I shall argue in Sec-
tion 5 in what sense this spillover defies the ahistoricist conjecture.

Before delving into the particulars, a few words about the spillovers are 
in order. Because the contrast I attempt to make in this section is between the 
absence and the presence of a spillover, it is worth giving the notion of spillovers 
a more precise definition: A spillover is a knowledge-claim that occurs when

	 i.	 a mathematical construct, F, contributes to answering questions or solving prob-
lems in multiple contexts, A and B,

	 ii.	 knowledge-claims KA and KB are both epistemic output of applying F in A and 
B, respectively,

	 iii.	 the discovery of KA precedes the discovery of KB, and
	 iv.	 the justification of KB requires KA.

In this definition, “context” refers to the combination of a subject matter, 
a phenomenon of interest, and a set of methods for approaching the phenom-
enon of interest within a particular subject matter which yields the knowledge-
claim in question. Thus, given that KA precedes KB, Context A is presumed 
to precede Context B even though Context B may belong to a discipline that 
has a longer history than the discipline to which Context A belongs. In other 
words, the institutional history of a discipline is minimized in this definition 
of a spillover such that logical dependence in cross-disciplinary justification is 
foregrounded.
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4.1 � Building the Chomsky hierarchy without a spillover

The Chomsky hierarchy is a scheme for classifying all formal languages into four 
families based on the form of the rules in the grammar that generates them. While 
it is typically visualized with four concentric circles (see e.g., Tecumseh Fitch et al., 
2012, 1936), the Chomsky hierarchy can be expressed as a theorem (Moll et  al., 
1988, 26): Let L be a formal language, and L(G) be the language’s grammar.3 Then.

L
3
⊊ L

2
⊊ L

1
⊊ L

0
 where Li = {L ⊂ X∗|L = L(G) for some Type i grammar G} , 

X is a nonempty finite set of symbols, and X* is the set of all finite length strings 
over X.

To show that the building of the Chomsky hierarchy was a result of selectively 
reapplying mathematical constructs from mathematical logic without introducing a 
spillover, two points need to be made.

The first point to be demonstrated is that there is one mathematical construct used 
in two different contexts. I elaborate this point in Section  4.1.1 by showing how 
Chomsky (1956, 1959) constructed what he calls phrase structure grammars (PSGs) 
by reapplying the derivation system from mathematical logic.

The second point to be demonstrated is that supporting Chomsky’s discovery 
does not require context-specific content from mathematical logic. I discuss this 
point in Section 4.1.2, starting with the correction set which Chomsky introduced 
to adjust his PSGs into a hierarchy of four families of formal grammars with differ-
ential expressive powers. Moreover, using this framework, Chomsky (1956) argues 
that the least powerful family of PSGs would not suffice for modeling the syntactic 
regularities of human language. Such was the subject matter in Chomsky’s modeling 
attempt. It will become clear in the section to come that although the method in 
mathematical logic and the method in early Chomskyan linguistics can both be said 
to be formalizations, there remains a significant difference between the theoretical 
consequence of such derivation.4

4.1.1 � The formal machinery of a derivation system in the construction of a phrase 
structure grammar

Regarding the demonstration that there is one mathematical construct used in two 
different contexts, the mathematical construct in question is the derivation system 
which logicians build within an axiomatic system to model logical properties. In 
mathematical logic, the subject matter is valid reasoning, and the phenomenon of 
interest encompasses logical properties, such as logical truth and logical conse-
quences (Sider, 2010). In Chomskyan linguistics, the subject matter is syntactic 
regularities in natural languages and the phenomenon of interest includes linguis-
tic properties, such as ambiguity and long distance dependency. Method-wise, both 
logicians and Chomskyan linguists build an axiomatic system to study their subject 

3  In formal language theory, a formal language is defined as a set of strings, whereas a grammar of a for-
mal language is the set of rules that describe the language.
4  By Chomskyan linguistics, I refer to his early work in the 1950s.
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matter. However, derivations have a substantively different theoretical consequence 
in linguistics than in mathematical logic. I shall elaborate these in detail in the 
remainder of this section (see also Table 1 for a summary).

An axiomatic system in mathematical logic, such as propositional logic, typically 
consists of a syntax, a semantics, and a derivation system. A syntax contains a set of 
symbols, typically called an alphabet or vocabulary, and a definition for determin-
ing the well-formed formulas (WFFs) of the language. A semantics determines the 
assignments of truth values to the WFFs of the language. Finally, a derivation sys-
tem specifies the “rules of inference” which allow WFFs to follow from one another 
in a truth-preserving, step-wise manner. A proper derivation system thus contains 
rules that determine what can be lawfully produced from either a set of axioms or 
previously derived theorems. A logician stipulates the rules of inference such that 
the system, together with appropriately chosen axioms, can derive all and only their 
logical consequences. This comprehensive feature is the signature property of a der-
ivation system, which we will see again in Chomsky’s reapplication of the deriva-
tion system in linguistics.

Many readers may be familiar with propositional logic and its derivation system, 
but an illustration can be helpful here especially because we will be comparing it 
with Chomsky’s formal system shortly. Consider a formal language LP composed 
of WFFs. The vocabulary of LP consists of capital letters, P, Q, R as sentential var-
iables, and the special symbols →, ∨ , ∽ , ↔ , ∧ are logical constants, where (,) is 
used for grouping purposes. Given a proper definition, the formulas (P → Q) and 
(∽Q →  ∽ P) can be WFFs of LP . Then, given a proper set of rules of inference, the 
WFF (∽Q →  ∽ P) can be derived from (i.e., to appear at the end of a sequence that 
begins with) the WFF (P → Q), and vice versa, each step following one rule of infer-
ence. Metalogically speaking, the sequence in which any WFF, ϕ, is shown to “fol-
low” from a set of formulas, Γ, in this rule-following manner is a derivation of the 
form Γ ⟹ ϕ. Moreover, in any such a derivation, ϕ will be a logical consequence 
of Γ if the rules of inference in LP capture good reasoning (cf. Sider, 2010). In the 
case of mathematical reasoning, for instance, a derivation is the proof of a theo-
rem ϕ from Γ. Note that in this sense, two different proofs of the same theorem are 
largely theoretically inconsequential, albeit one may be more aesthetically appealing 
than the other. In linguistics, however, different derivations of the same string can be 
explanatory.

For an illustration of how Chomsky reapplies the derivation system in linguistics, 
consider LEnglish as the set of all sentences in English. Let LEnglish(G) be the grammar 
of English. Chomsky shows that one can express the semantic ambiguity in certain 
English sentences using a PSG. A phrase structure grammar G is expressed as the 
quadruplet (VT, VN, S, P) where the union of VT and VN makes up an alphabet, S 
indicates the start of a derivation, and P denotes a set of rules for said derivation 
(cf. Moll et al., 1988). A derivation in this context is a sequence of rewrites. It starts 
from the symbol S and ends at a string, or more generally, v ⟹ w where v and w are 
strings of symbols (Moll et al., 1988, p.2).

On the alphabet, the members of VT refer to words or morphemes which are 
part of the final output of a derivation. In contrast, the members of VN are cat-
egorical symbols (e.g., NP, VP, Verb) standing-in for the linguistic constituents 
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(such as noun phrase, verb phrase, verb) in a derivation. Non-terminal elements 
are thus called because they are designed to never appear at the end of a deri-
vation. The rules of derivation in P, which in linguistics are called the rewrite 
rules or productions, are expressed in the form of 𝛂 → 𝛃 where both 𝛂 and 
𝛃 stand for any sequence of elements (terminal or non-terminal; more on this 
below) and the arrow refers to the direction of rewriting. When all the symbols 
are terminal elements, the derivation comes to an end. Thus, just as in first-order 
logic, only lawful, in this case grammatical, strings (i.e., sentences) may appear 
at the end of a derivation.

Now consider how the sentence “they are flying planes” has two distinct 
semantic interpretations. Chomsky shows that each interpretation can be repre-
sented by a distinctive derivation of a PSG that contains the seven production 
rules as shown in (1). In the first reading, one could take the third-person plu-
ral pronoun, “they,” to be referring to the same objects referred to by the word 
‘planes’, as in “they - are - flying planes.” In the second reading, one could under-
stand the pronoun “they” as referring to some pilots who are flying planes, as in 
“they - are flying - planes.” According to Chomsky, this semantic ambiguity can 
be expressed in terms of two different derivations.

(1)

1.	 S → NP VP
2.	 VP → Verb NP VP
3.	 Verb → are flying
4.	 Verb → are
5.	 NP → they
6.	 NP → planes
7.	 NP → flying planes

In (1), S indicates the start of a derivation. NP is a variable which represents a 
noun phrase, VP a verb phrase, and Verb a verb—all four, including S, are nonter-
minal elements. The sign ‘→’ indicates that the structure on the left-hand side 
can be rewritten into the structure on the right-hand side. Thus, to derive the first 
interpretation “they - are - flying planes,” one applies the rules in the order as 
shown in (2) below:

(2)

Table 1   The derivation system in two contexts

Contexts Mathematical Logic Chomskyan Linguistics

Subject Mat-
ters

Valid reasoning The grammar of natural languages

Phenomena of 
Interest

Logical properties such as logical 
truth, logical consequence

Properties of natural languages such as ambigu-
ity

Distinctive 
Features in 
Method

In first-order logic, two different 
derivations in the form Γ ⟹ ϕ with 
the same Γ and ϕ are theoretically 
inconsequential.

In phrase structure grammar, two different 
derivations in the form v ⟹ w with the 
same v and w may be explanatory and in turn 
theoretically consequential.
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1.	 Rule 1.1 to start from S to obtain NP and VP,
2.	 Rule 1.5 to rewrite NP into they,
3.	 Rule 1.2 to rewrite VP into Verb and NP,
4.	 Rule 1.4 to rewrite Verb in are, and finally
5.	 Rule 1.7 to rewrite NP into flying planes.

In contrast, to derive the second interpretation “they - are flying – planes,” the 
sequence would be decidedly different from what is shown in (2). For instance, 
such a derivation would replace Rule 1.4 with Rule 1.3, and Rule 1.7 with Rule 
1.6. The two interpretations of the same string of words are thus represented by 
two different derivations. Moreover, both derivations, despite their different pro-
cesses, terminate at the same string “they are flying planes.” With this expres-
sive power, the  PSG is shown to  be capable of accounting  for some  semantic 
ambiguity in English. Thus, due to this explanatory power, Chomsky argues that 
LEnglish(G) must contain the production rules like those shown in (1).

The above illustration shows how Chomsky repurposes the derivation system 
to investigate the grammar of a natural language, which to him consists of the 
production rules that can generate all syntactically acceptable strings in a natu-
ral language. Chomsky modified the vocabulary of PSGs to express linguistics 
properties. His modifications suggest a clear shift in subject matter, as the sub-
ject-specific ingredients from the context of mathematical logic (such as notions 
of logical truth, consequence, or constants) do not appear in the new context of 
linguistics. However, despite these changes, the rule-following behavior of the 
derivation system in mathematical logic is replicated, and in doing so, Chom-
sky did not introduce a knowledge-claim from mathematical logic to justify his 
discovery.

As mentioned at the beginning of this section, Chomsky refined his PSG 
modeling framework to build what eventually became the Chomsky hierar-
chy. This section focused on the construction process; it showed that Chomsky 
replicated the formal machinery of the derivation system from mathematical 
logic, using what was meant to demonstrate logical consequences to instead 
reveal syntactic regularities in natural languages. Indeed, he was explicit about 
having borrowed the idea of a proof from mathematical logic. Chomsky (1956, 
116) wrote, ‘[a] derivation is thus roughly analogous to a proof,’ with the set 
of initial strings ‘taken as the axiom system and’ the rewrite rules ‘as the rules 
of inference.’

In the next section, we will see a “correction set” (Humphreys, 2004) being intro-
duced to adjust a PSG. These limiting conditions were devised to refine a given PSG 
for narrowing down the research space; the outcome of that adjustment became the 
basis of the Chomsky hierarchy. Both processes jointly complete my demonstration 
of how Humphreys’ template-based approach applies to studying the reapplication 
of a modeling framework.
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4.1.2 � Adding constraints as a correction set to adjust phrase structure grammars

Chomsky introduced three increasingly limiting conditions to the form of the 
rules as in set P follows.5 First limiting condition: For every production 𝛂 → 𝛃 in 
P, |𝛂| ≤ |𝛃|, i.e., the number of symbols on the left-hand side of the production is 
smaller than or equal to the number of the symbols on the right-hand side of the 
production. That is, the resulting string 𝛃 will always be longer or equal to the length 
of the string 𝛂 before the rewrite. Thus, applying the productions of this PSG would 
not result in a decrease of the string length. Second limiting condition: For every 
production 𝛂 → 𝛃 in P, (1) 𝛂 consists of only one non-terminal symbol and (2) 𝛃 
cannot be an empty string, e.g., S →  aSb, S →  ab. Third limiting condition: For 
every production 𝛂 → 𝛃 in P, (1) |𝛂| = 1, 𝛂 ∈ VN, and (2) 𝛃 has the form 𝜞 or 𝜞 𝚿, 
where 𝜞 ∈ VT, 𝚿 ∈ VN, and |𝜞| =  |𝚿| = 1, e.g., S  a, S aS.

Some words need to be said about the extent to which these limiting condi-
tions act as a correction set. While those limiting conditions may seem arbitrary, 
the restrictions effectively allow for differential expressive powers between PSGs, 
which is what Chomsky needed to model English. In particular, designed in this 
way, the expressive power of the least restrictive PSGs will be equivalent to that of 
the universal Turing machine (Turing, 1936), whereas the most restrictive PSGs will 
be as powerful as finite state machines (Shannon, 1948 as Chomsky cites in 1956 
but referring to it as the finite Markov procedure). To get a bit ahead of the story, 
according to Chomsky, the former is unnecessarily powerful for modeling Eng-
lish, whereas the latter lacks sufficient power. On the one hand, a Turing machine 
(Turing, 1936) consists of a finite list of instructions and a memory store that is 
infinite in length. The instructions specify a finite number of “states” and the condi-
tions by which the machine transitions from one state to another. A universal Turing 
machine is one that can compute any function that can be computed by any Turing 
machine (see Shagrir, 2016 for a philosophical account of the Turing machines). 
Turing (1936) constructed this type of abstract computer to explore the limitations of 
computation. And, because describing a formal language entails computing a char-
acteristic function (i.e., by giving a “yes” or “no” output based on whether any input 
string belongs to it), a universal Turing machine is defined as capable of describing 
all computable formal languages. On the other hand, at the time of Chomsky’s work, 
there was another kind of abstract machine called finite state machines. Like Turing 
machines, a finite state machine consists of a finite list of instructions that speci-
fies a finite number of “states” and the conditions for transitioning from one state 
to another. However, unlike Turing machines, finite state machines do not have an 
explicit memory store. It has been proven that finite state machines describe only a 
subset of computable formal languages, which were called regular languages at the 
time (Kleene, 1951, 1956).

The Chomsky hierarchy came about by adjusting PSGs into a refined space of 
expressive powers so that Chomsky could place any natural language, e.g., English, 
in the right family of the hierarchy. Recall the Chomsky hierarchy expressed in a 
theorem:

5  This review is based on Levelt (2008, 10); c.f., Partee, Meulen, and Wall (1990).



	 European Journal for Philosophy of Science            (2022) 12:6 

1 3

    6   Page 20 of 30

L
3
⊊ L

2
⊊ L

1
⊊ L

0
 where Li = {L ⊂ X∗|L = L(G) for some Type i grammar G} , 

X is a nonempty finite set of symbols, and X* is the set of all finite length strings 
over X.

When a PSG is free from any restrictions (i.e., no limiting condition applies 
to its rules), it is called a Type 0 non-restricted grammar. Type 0 PSGs are 
designed to  describe L

0
,  which includes  all Turing-computable languages 

because they are meant to be as expressive as a universal Turing machine.6 In con-
trast, when a PSG meets all three limiting conditions, it is called a Type 3 regular 
grammar. Type 3 regular grammars are designed to be expressive enough to describe 
regular languages (Chomsky, 1959; Chomsky & Miller, 1958),  i.e., the L

3
 in the 

hierarchy. Between the outermost and the innermost classes are two new grammar 
families. When a PSG meets the first limiting condition, Chomsky calls it a Type 1 
context-sensitive grammar, whereas when a PSG meets both the first and the second 
limiting conditions, it is called a Type 2 context-free grammar. These Types describe 
the formal languages L

1
 and L

2
 in the hierarchy which are called context-sensitive 

languages and context-free languages, respectively. We will encounter Type 2 and 
Type 3 grammars in Section 4.2.

The need to refine the space of expressive power was due to the fact that, accord-
ing to Chomsky (1956), finite state machines lack the necessary power to describe 
English. This aspect of Chomsky’s argument warrants closer analysis because 
in defending his finding with the hierarchy, Chomsky again did not introduce a 
spillover.

Long distance dependency and open-endedness in English were especially prob-
lematic for finite state machines; for any finite state machine to describe English, it 
needs to accommodate these two features. For instance, consider the sentence pat-
tern (3) as follows:

(3)
a. If S1, then S2.
b. Either S3, or S4.
Long distance dependency refers to the linguistic phenomenon in which if one 

replaces “if” in 3.a by “either,” it requires a corresponding replacement of “then” 
by “or,” as in 3.b, lest the resulting string not be an English sentence and vice 
versa. Moreover, as the argument goes, there is no upper limit to the lengths of S1 
and S3 which respectively refer to a sentence clause. Thus, any abstract computer 
candidate for describing English needs to be able to handle indefinite lengths of 
symbols between “if” and “then” or “either” and “or.” To handle both features, a 
finite state machine needs either a flexible number of states or an explicit mem-
ory store. However, by definition, a finite state machine has a fixed number of 
states and lacks an explicit memory store. Thus, Chomsky concludes, the features 
of long distance dependency and open-endedness in English will result in sen-
tences that are admissible by native English speakers but indescribable by finite 
state machines; no finite state machine could describe English. As Type 3 regular 
grammars are designed to be as powerful as finite state machines, to describe 

6  Unlike in computer science, in linguistics the process time required for producing such an answer was 
not an issue.
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English, one needs a grammar with more expressive power than a Type 3 regular 
grammar.

I now turn to four takeaways lending support to the claim that it is possible 
in practice to carry out knowledge transfer as an ideal scientist, the second and 
fourth of which demonstrate how Humphreys’ template-based analysis applies 
to modeling frameworks. First, what Chomsky took from mathematical logic is 
the rule-following formal feature of the derivation system; all the ingredients 
that went into constructing and adjusting PSGs are from within the context of 
linguistics. Second, the signature feature of a derivation system is preserved 
through the constructing process. Given a set of initial strings and a set of rules, 
the system derives all and only lawful strings. Third, however, the derivations 
differ in their representational function. In mathematical logic, a derivation 
represents a valid sequence of reasoning, where in linguistics, it represents the 
generation of an admissible sentence in a natural language. Moreover, while 
any step within a logical derivation yields a WFF, a linguistic derivation only 
arrives at an admissible string at the end of the derivation. This is due to how 
Chomsky built PSGs with linguistic entities such as verb phrases, noun phrases, 
etc., an ontology that is local to the context of linguistics. Fourth, and finally, 
Chomsky tested PSGs against the linguistic properties of English. This effort 
to refine PSGs was achieved by imposing increasingly strict conditions to the 
rules in a given PSG. At the end of the process of adjustment came the basis 
of the Chomsky hierarchy: a nesting hierarchy of four families of formal gram-
mars, together with the four families of formal languages they describe, and the 
abstract machines that have matching expressive power to Type 0 and Type 3 
grammars, respectively.

4.2 � Reapplying the Chomsky hierarchy

The Chomsky hierarchy that refined the space between the universal Turing 
machines and finite-state machines made room for other abstract machines to be 
introduced. The context-free grammars were paired with a then new-found abstract 
machine family called pushdown automata. These new developments, which did 
not concern natural languages (Greibach, 1981), became key to the development 
of early theoretical computer science, making the Chomsky hierarchy a success-
ful template. In Section 4.2.1, we will see the success of the Chomsky hierarchy in 
computer science giving rise to a knowledge-claim and, in Section 4.2.2, how that 
knowledge-claim contributes to experimental scientists’ reapplication of the Chom-
sky hierarchy.

4.2.1 � The success of the Chomsky hierarchy in computer science

During the formative years of what eventually became “computer science,” translation 
between formal languages was a constant problem. The challenges involved translating 
between the machine language that is comprised of binary digits of ones and zeros and 
other programming languages. Turing machines were powerful, but in practice, both 
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processing time and memory store were scarce resources. It was crucial to find the most 
efficient algorithm to solve the translation problem. The Chomsky hierarchy’s success 
in meeting these challenges established its theoretical status in computer science.

For instance, before a hardware computer executes a code written in a program-
ming language, say, C++, two preliminary tasks must be completed. First the com-
puter must check whether that code belongs to C++, i.e., whether every string in 
the input is a sentence. If the answer is “yes,” the computer must then translate the 
code from the language of C++ to the machine language of the CPU. A compiler is 
a program that carries out these two preliminary tasks. A software engineer needs to 
make sure that the compiler will always reject code that violates the rules of the pro-
gramming language (i.e., the syntactically incorrect programs) while always accept-
ing the syntactically correct ones. This part of a compiler is called a “parser” (e.g., 
see Parkes, 2002).

Key breakthroughs in early computer science were due to Chomsky’s notion of 
Type 2 context-free grammars. First, a new programming language ALGOL (Backus 
et  al., 1960) was demonstrated to generate only Type 2 context-free languages 
(Ginsburg & Rice, 1962, see Hyman, 2010 for a historical account). As Chomsky’s 
(1956) work in linguistics suggests, finite state machines cannot describe Type 2 
context-free languages; they cannot parse ALGOL code. Meanwhile, a new type 
of state machine at the time called a pushdown automaton was introduced. Unlike 
the Turing machines, which have unlimited memory store, and unlike finite state 
machines, which have no explicit memory store, a pushdown automaton comes with 
a linear memory store that, figuratively speaking, pushes items down the stack and 
pops the latest one out before an earlier item may be retrieved. Second, the expres-
sive power of Type 2 context free grammars was found to be equivalent with that of 
the pushdown automata (Chomsky & Schützenberger, 1963; Evey, 1963; cited in 
Greibach, 1981). Thus, combined with the finding that ALGOL generates only Type 
2 context free languages, to program a compiler that can parse ALGOL code, one 
knew to implement at least a pushdown stack in the compiler.

The success with ALGOL rendered the Chomsky hierarchy an important object 
of knowledge for compiler designers. The formal machinery of the hierarchy, despite 
being built to study natural languages, applies to dealing with programming lan-
guages; programmers are better off knowing that to parse a Type 2 language, they 
need to implement at least a pushdown stack in the compiler. The repeated success 
of reapplying the Chomsky hierarchy in computer science gave rise to a knowledge-
claim: parsing input of a Type n language requires an implementation of at least a 
Type n automaton. Next, we shall see this claim “spilling over” into the context of 
cognitive biology where the parsing powers of biological organisms are subject to 
experimental detection.

4.2.2 � Using the Chomsky hierarchy experimentally in cognitive biology

Cognitive biologists study cognition as a collection of biological functions. One 
strand of cognitive biology aims to understand the evolution of and the neu-
ral substrate for human linguistic capacity. To study this subject matter, several 
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prerequisites need to be met. For instance, to understand the neural basis of human 
linguistic capacity, biologists need to first isolate those bases from the neural bases 
of cognitive capacities common between human and nonhuman animals (Bowling, 
2014). Thus, approaching the question about species differences scientifically (Fitch, 
2014) requires an experimental procedure and stimuli that are applicable across spe-
cies such that testing results may be meaningfully compared.

Fitch and Hauser’s (2004) solution to the species difference problem is to use 
context-free and regular grammars to differentiate the parsing powers of biologi-
cal organisms. Fitch and Hauser (2004) argue that humans are endowed with a 
computational capacity beyond the class of finite state machines, and this capac-
ity, which is at least equivalent to the pushdown stack in Type 2 automata, is 
not available to their cotton-top tamarin monkey (Saguinus Oedipus) testing 
subjects.

Germane to the focus of the present paper is whether advancing knowledge 
using the Chomsky hierarchy in cognitive biology requires a spillover. I argue 
that it does. For instance, consider the reconstruction of Fitch and Hauser’s argu-
ment (2004).

(4)

1.	 If an organism recognizes a context-free language, it possesses computational 
resources equivalent to (at least) a pushdown automaton; if it recognizes a regular 
language but not a context-free language, it possesses computational resources 
equivalent to a finite-state automaton.

2.	 Tamarin monkey subjects recognize a regular language but not a (crucially similar) 
context-free language, whereas human subjects recognize both of these languages.

3.	 Therefore, tamarin monkeys lack the computational resources equivalent to a 
pushdown store that humans have.

The soundness of the argument in (4) depends on the truth of the empirical claim 
in (4.2), as well as the acceptance of premise (4.1). Let’s consider these two in turn.

The truth of (4.2) must be adjudicated by analyzing the procedure in Fitch 
and Hauser’s experiment, where they modified a standard experimental proto-
col called artificial grammar learning (AGL). Both the context-free language and 
the regular language in AGL were replaced with “local ingredients.” Thus, no 
inter-context knowledge is required for accepting the claim in (4.2). Psycholo-
gists have been reporting results of infants as young as 7 months old using AGL 
(Saffran et  al., 1996), but Fitch and Hauser (2004) were the first to bring the 
Chomsky hierarchy into this line of work (see Levelt, 2019 for discussion of the 
methodology).

In contrast, accepting (4.1) entails three additional assumptions, one of which comes 
from computer science. First, the ontological assumption that the cognitive infrastruc-
ture in different biological organisms are equivalent to the parsing powers of pre-pro-
grammed automaton; second, the methodological assumption that the parsing power of 
pre-programmed automata are determined based on the type of input they can recognize; 
and finally, third, that parsing input of a Type n language requires an implementation of 
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at least a Type n automaton—i.e. a spillover. Jointly, all three assumptions made AGL 
a valid empirical detector for differentiating the parsing powers of biological organisms. 
The knowledge-claim from computer science is an indispensable part of its justification.

5 � Spillovers and truth‑functional dependency in knowledge transfer

The presence of spillovers in knowledge transfer challenges the self-sufficient view 
as it indicates that its ahistoricist conjecture fails to generalize. In this section, I 
elaborate this point further, address potential objections to the example in cognitive 
biology, and then discuss the contribution of the notion of spillovers to the knowl-
edge transfer literature.

Regarding the self-sufficient view’s ahistoricist conjecture, recall the array of dif-
ferent contexts that share neither subject matter nor the entirety of their methods, 
and not even the phenomenon of interest. See Table 2 for a partial array of such a 
sequence of contexts featuring the applications the Chomsky hierarchy as discussed 
in Section 4. If the ahistoricist conjecture is categorically true, then knowledge pro-
duction in each context is logically independent from one another. Yet, the existence 
of a spillover as we saw in Section 4 indicates a certain kind of logical dependency 
between these contexts. Because this dependency manifests in the justification in 
a subsequent context, the nature of such dependency can be said to be truth-func-
tional. In this sense, the Chomsky hierarchy’s reapplication in cognitive biology can 
be said to be truth-functionally dependent on the epistemic output from its earlier 
reapplication in computer science. Hence, if my analysis is sound, the self-sufficient 
view as an epistemology of knowledge transfer warrants reconsideration.

Those seeking to defend the ahistoricist conjecture may propose to integrate the 
contexts of cognitive biology and computer science into one general entity, say a 
domain of intelligent systems be they artificial or biological. This way, the reap-
plications of the Chomsky hierarchy may be analyzed as different specifications of a 
single theoretical template. It follows that what I analyze to be a counterexample to 
the ahistoricist conjecture was but the idiosyncrasy of a special science. A full treat-
ment to this objection will take us far afield. However, it is likely that this approach 
shows at best that integration between contexts can be subject to ahistorical analysis. 
Much like Humphreys’ template-based analysis, an ahistorical analysis cannot prove 
nor disapprove the ahistoricist conjecture.

One may try to defend the self-sufficient view by arguing that the spillover in 
the enhanced AGL example can be derived from general mathematical compe-
tence. This approach amounts to removing the predicates in “pre-programmed” 
automata and treating biological organisms simply as mathematically defined 
automata. There may be a branch of pure mathematics to be discovered that would 
allow for pairing Turing machines with differential parsing powers. But in essence, 
this strategy assumes that theoretical knowledge of an applied mathematics, such 
as computer science, can be reduced to pure mathematics. While a sharp bound-
ary between applied mathematics and pure mathematics may be hard to come by, it 
is implausible that the differential “parsing powers” in biological organisms can be 
mapped onto mathematically defined automata—i.e., Humphreys’ notion of formal 
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templates—without predicates such as being “previously engineered” or “evolution-
arily programmed.” Alternatively, taking the route of building a theoretical template 
from scratch instead, a well-trained biologist with a perfect command of mathemat-
ics could construct a system that differentiates parsing powers in biological organ-
isms. Yet, for the same reason that context-free grammars (see Section 4.2.1) might 
not have come to dominate computer science if it was not for historical contingency 
(Ginsburg, 1980), the hypothetical AGL protocol would unlikely be Chomskyan 
without Chomsky’s work in precedent.

More generally, one may interpret the ahistoricist conjecture as well as the self-
sufficient view as prescribing independency rather than describing scientific knowl-
edge production in practice. Under this interpretation, only when a given transfer 
of knowledge is “spillover free” does one gain genuine scientific knowledge. How-
ever, it is not immediately clear why genuine scientific knowledge needs to be free 
of spillover in its production. In contrast, as I argued in Section  2, Humphreys’ 
epistemology of knowledge transfer is more appropriately understood in terms of 
a description of an ideal scientist in practice. Under this interpretation, the self-
sufficient view advocates replacing tacit knowledge in reapplying a mathematical 
construct (i.e. perceived similarities, analogy, etc.) with a template-building anal-
ysis and is thus a position consistent with the approach undertaken in this paper. 
What I beg to differ from Humphreys’ view is that, for him, the template-building 
approach could eliminate the need for cross-disciplinary knowledge, whereas for me 
this remains an open question. Surely, the presence of a spillover in a reapplica-
tion does not guarantee truth-preservation because it entails at least one assumption 
that is not “locally” justifiable. Nonetheless, failing to acknowledge spillovers makes 
the self-sufficient view unnecessarily strict. Should practicing scientists intentionally 
steering away from spillovers, certain research questions may otherwise be pending 
indefinitely for a tangible solution.

Finally, the notion of spillovers contributes to the knowledge transfer literature by 
allowing for a logical dependency between reapplications of a single mathematical 
construct to be articulated and detected in a way that can address the metaphysical 

Table 2   The Chomsky hierarchy in three contexts

Chomskyan Linguistics Computer Science Cognitive Biology

Subject Matters The grammar of natural 
languages

Efficient algorithms 
to translate between 
formal languages

The difference in cognitive 
infrastructures between spe-
cies

Phenomena of 
interest

Properties of natural 
languages such as long 
distance dependency

The memory store 
required for pars-
ing programming 
languages

Responses to artificial grammars 
among different species

Distinctive 
Features in 
Method

The Chomsky hierarchy 
is used to rule out 
models and modeling 
frameworks with 
inadequate expressive 
power to describe a 
natural language.

The Chomsky hierarchy 
is used to determine 
which type of memory 
store to implement for 
a given task.

The Chomsky hierarchy is used 
to determine which type of 
parsing power is pre-pro-
grammed in different species.
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question regarding knowledge transfer. As discussed in Section 3, many scholars of 
knowledge transfer contend that cross-disciplinary or inter-field knowledge of some 
sort is at least advisable, if not necessary, to successfully reapplying an object of 
knowledge across disciplines. Yet among these scholars, only Knuuttila and Loett-
gers’ (2014, 2016, 2020) notion of model templates comes closest to challenging the 
ahistoricist conjecture. Consequently, the existence of a spillover and that of a model 
template can be said to entail a dependency between applications of a single math-
ematical construct. However, these two notions differ significantly in at least three 
important ways. First, being a knowledge-claim, a spillover is an assertion, which 
makes it qualitatively different from being a conceptual framework which does not 
always, if at all, have a truth value. Second, in reapplying a knowledge object, the 
role of a spillover is to provide cross-context justification, whereas the role of a 
model template is to offer ‘a general conceptual core’ that motivates the reapplica-
tion (Knuuttila & Loettgers, 2020, 137). Third, and relatedly, the notion of spillo-
vers captures truth-functional dependency in knowledge transfer, whereas the notion 
of model templates emphasizes a conceptual dependency between applications of a 
mathematical formula. It thus remains to be seen whether conceptual dependencies 
comprise of logical dependencies.

6 � Conclusion

This paper has demonstrated that Humphreys’ template-based analysis can be pro-
ductively applied to study reapplications of modeling frameworks even though not 
all insights from his epistemology of knowledge transfer follow. I have articulated 
Humphreys’ (2019) position on knowledge transfer as the self-sufficient view, 
which wagers that advancing knowledge with a repurposed mathematical construct 
can be conceived of as independent template-building endeavors. According to my 
analysis, embedded in Humphreys’ (2019) response to the epistemological debates 
surrounding knowledge transfer is a conjecture that historical contingencies are 
irrelevant to the nature of knowledge production. Calling this ahistoricist conjec-
ture into question, I developed the notion of spillovers and showed that a reapplica-
tion of a mathematical construct can be determined as either truth-functionally or 
non-truth-functionally dependent on a prior application of the same mathematical 
construct.

The conclusion is not that the self-sufficient view is false but that it is unnec-
essarily strict in directing practicing scientists to steer away from spillovers. 
Using the development of the Chomsky hierarchy and its cross-disciplinary 
reapplications as an illustration, I argued that it is possible in practice to reap-
ply a cross-disciplinarily sourced mathematical construct in the way Humphreys 
advocates, i.e., without introducing cross-disciplinary knowledge to the tem-
plate-building process. However, what the self-sufficient view fails to consider 
are the problems and questions in science whose solution require scientists to 
not only repurpose a mathematical construct but also to incorporate the con-
struct’s prior epistemic output into their reapplication. My analysis did not show 
whether problems or questions of this sort are prevalent in science; nevertheless, 



1 3

European Journal for Philosophy of Science            (2022) 12:6 	 Page 27 of 30      6 

when they do exist, following Humphreys’ suggestion their solution or answers 
may never ascertain.

My analysis also showed that in addition to this present paper, Knuuttila and 
Loettgers’ (2014, 2016, 2020) work on model templates have the potential to 
challenge the ahistoricist conjecture in Humphreys’ position. I argued that while 
model templates may entail a conceptual dependency in knowledge transfer, 
future work is needed to determine whether such dependency may address the 
metaphysical question regarding knowledge transfer. Nonetheless, owing to their 
differences, the notions of spillovers and model templates may function comple-
mentarily to investigate the ways different scientific domains are related with one 
another to advance scientific knowledge. For instance, despite not being the kind 
of mathematical formula typically discussed in the literature on model templates, 
the Chomsky hierarchy does seem to offer an integrated set of both conceptual 
and mathematical tools for modeling a variety of materially different systems.7 
The notion of model templates identifies the conceptual dependency in these 
reapplications, thereby revealing the extent to which analogical reasoning is prev-
alent in scientific modeling. In the meantime, the notion of spillovers, through 
logical reconstruction, picks out the truth-functional dependency within a subset 
of these reapplications, thus highlighting potential intertheoretical connections 
made through knowledge transfer. Moreover, because spillovers are by definition 
not native to the importing discipline, their presence may seem unintuitive, or 
even problematic, to some practicing scientists. For this reason, how a scientific 
community responds to spillovers (and the knowledge-claims they help enable) 
would be a complementary research topic that intersects with the philosophical 
investigation of knowledge transfer.

The presence of spillovers has an effect on the production of knowledge; one 
place to look for such effects are problems in science whose solution require a cross-
disciplinarily sourced object of knowledge. The acceptance of spillovers sheds light 
on the diffusion of knowledge. Jointly, not only do historical contingencies have a 
genuine impact on template-based knowledge transfer, they also shape the image of 
scientific knowledge production as a whole. The notion of spillover thus contributes 
toward a unified conceptual framework for both practice-oriented philosophers of 
science and historiographers of mathematical models.
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