

Absorption of Transverse Spin Current in Ferromagnetic NiCu: Dominance of Bulk Dephasing over Spin-Flip Scattering

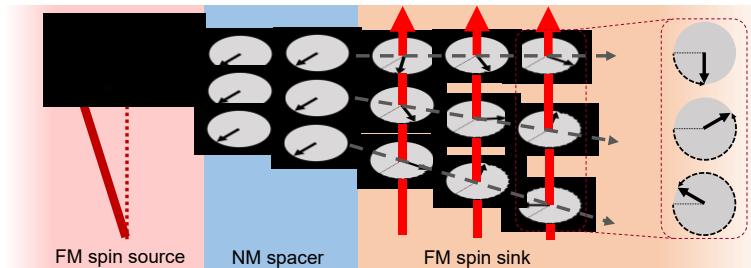
Youngmin Lim^{1,(a)}, Shuang Wu^{1,(b)}, David A. Smith^{1,(c)}, Christoph Klewe², Padraic Shafer², Satoru Emori^{1,*}

1. Department of Physics, Virginia Tech, Blacksburg, Virginia 24060

2. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

(a) current affiliation: Micron Technology, Boise, Idaho 83716

(b) current affiliation: Western Digital Corporation, San Jose, California 95119

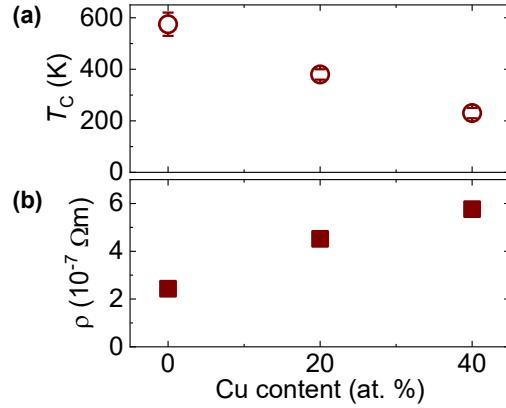

(c) current affiliation: HRL Laboratories, Malibu, California 90265

* email: semori@vt.edu

In ferromagnetic metals, transverse spin currents are thought to be absorbed via dephasing – i.e., destructive interference of spins precessing about the strong exchange field. Yet, due to the ultrashort coherence length of ≈ 1 nm in typical ferromagnetic thin films, it is difficult to distinguish dephasing in the bulk from spin-flip scattering at the interface. Here, to assess which mechanism dominates, we examine transverse spin-current absorption in ferromagnetic NiCu alloy films with reduced exchange fields. We observe that the coherence length increases with decreasing Curie temperature, as weaker dephasing in the film bulk slows down spin absorption. Moreover, nonmagnetic Cu impurities do not diminish the efficiency of spin-transfer torque from the absorbed spin current. Our findings affirm that transverse spin current is predominantly absorbed by dephasing inside the nanometer-thick ferromagnetic metals, even with high impurity contents.

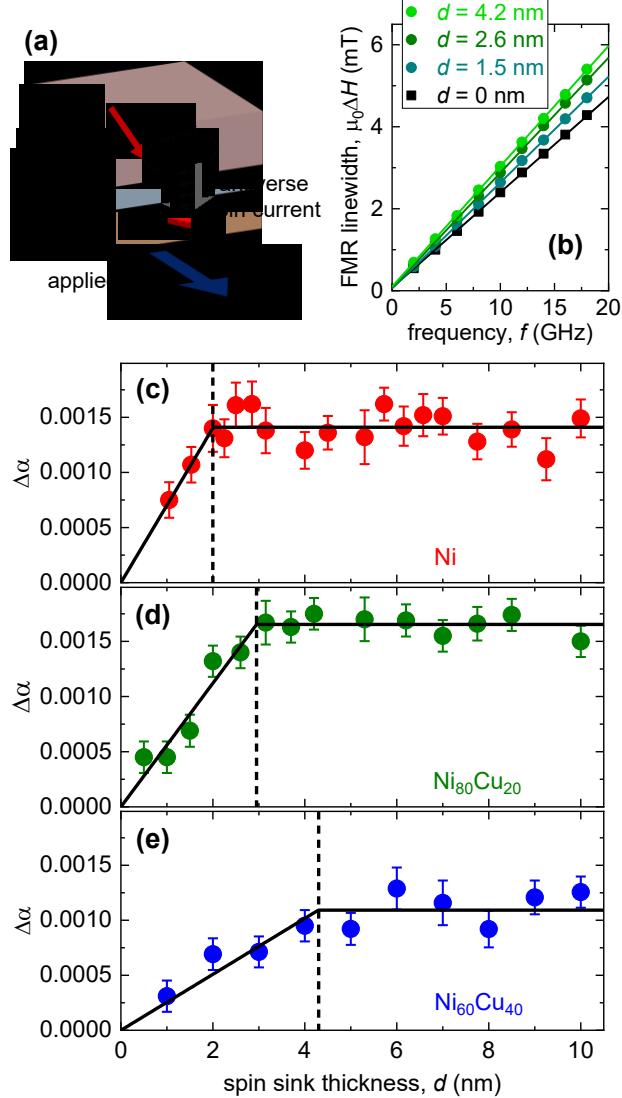
25 Spin currents underpin a variety of fundamental condensed-matter phenomena and
26 technological applications [1–3], especially those based on magnetic materials. Of particular
27 interest is coherent *transverse* spin current, where the flowing spins are uniformly polarized
28 transverse to the magnetization. This spin current generates a spin-transfer torque that can switch
29 a nanomagnetic memory or drive a GHz-range oscillator [4–6]. While spins may be carried by
30 magnons [7] and phonons [8], they are often primarily carried by electrons in practical metallic
31 multilayers incorporating ferromagnetic thin films. It is therefore crucial to understand the
32 nanoscale transport of electron-mediated transverse spin current in ferromagnetic metals.

33 A spin current in any material ultimately becomes absorbed (loses coherence) within a finite
34 length scale [1]. In ferromagnetic metals, transverse spin-current absorption can occur via
35 *dephasing* [9–11], i.e., destructive interference of coherent spins that precess about the magnetic
36 exchange field. The dephasing mechanism is illustrated in Fig. 1: The transverse electronic spins
37 enter the ferromagnetic metal with a wide distribution of incident wavevectors; these spins
38 traverse and precess about the magnetic exchange field at different rates, thereby averaging out
39 the net transverse polarization (destroying the phase coherence) of the spin current within a finite
40 length scale. Another possible mechanism of spin-current absorption is diffusive *spin-flip*
41 *scattering* [12]. When electrons carrying the spin current are scattered, e.g., by impurities or an
42 interface, the orientation of the propagating spins may be flipped to various orientations.



43
44 FIG. 1. Dephasing of a transverse spin current generated by FMR in the ferromagnetic (FM) spin source.
45 The propagating spins are coherent in the normal metal (NM) spacer – as illustrated by the aligned black
46 arrows – but they enter the spin sink with different incident wavevectors. In the FM spin sink, the spins
47 precess about the ferromagnetic exchange field (red vertical arrows) by different amounts, thereby losing
48 phase coherence.

49 Prior experiments [13] have quantified the absorption length scale – i.e., coherence length λ_c – of
50 transverse spin current through ferromagnetic resonance (FMR) spin pumping [14]. These
51 experiments indicate $\lambda_c \approx 1$ nm from the ferromagnetic film thickness where the measured spin
52 absorption saturates. This ultrashort λ_c is presumably due to rapid dephasing [9–11] from the
53 strong ferromagnetic exchange field of $\gg 100$ T [15]. Hence, the conventional wisdom is that
54 transverse spin current is absorbed via dephasing, rather than spin-flip scattering. However, $\lambda_c \approx$
55 1 nm corresponds to a nominal film thickness of a few lattice parameters, likely just at the
56 threshold of forming a continuous film layer. Spin-flip scattering at the “interface” could be


57 significant for such ultrathin ferromagnets. Thus, a plausible alternative explanation for $\lambda_c \approx 1$
 58 nm is that interfacial spin-flip scattering saturates at the ferromagnetic thickness of ≈ 1 nm. Spin-
 59 flip scattering by impurities in the ferromagnet bulk may also contribute to the short λ_c . Therefore,
 60 it generally remains a challenge to distinguish spin-flip scattering from spin dephasing.

61 In this Letter, we experimentally address the following fundamental question: Which mechanism
 62 – spin dephasing or spin-flip scattering – is responsible for the ultrashort coherence length λ_c of
 63 transverse spin current in ferromagnetic metals? By employing the FMR spin pumping protocol
 64 similar to Ref. [13], we quantify λ_c for ferromagnetic Ni films alloyed with nonmagnetic Cu that
 65 reduces the ferromagnetic exchange strength. Our hypothesis is that λ_c must increase with
 66 increasing nonmagnetic Cu impurity content, if dephasing in the bulk is dominant. On the other
 67 hand, if spin-flip scattering at the interface is dominant, λ_c is expected to remain mostly
 68 unchanged – or become shorter as the Cu impurities may enhance interfacial scattering. Similarly,
 69 λ_c should shorten if spin-flip scattering by the impurities in the bulk dominates. Thus, testing the
 70 above hypothesis permits us to confirm – or refute – the long-held notion that dephasing in the
 71 ferromagnet’s bulk drives transverse spin-current absorption. It is also timely to examine basic
 72 spin transport in NiCu alloys, which have attracted attention for their reportedly sizable spin-
 73 orbit effects [16–18] that may hold promise for spintronic devices.

74
 75 FIG. 2. Compositional dependence of (a) the Curie temperature T_c and (b) the electrical resistivity ρ of 10-
 76 nm-thick Ni(Cu) films.

77 Ni and Cu readily form homogeneous solid solutions, permitting continuous tuning of
 78 ferromagnetic exchange while maintaining the same face-centered cubic structure in NiCu alloys.
 79 Figure 2 summarizes the Curie temperatures T_c (the metric for the ferromagnetic exchange
 80 strength) and electrical resistivities ρ (the metric for the electronic scattering rate) of 10-nm-thick
 81 Ni, Ni₈₀Cu₂₀, and Ni₆₀Cu₄₀ films. We limit the maximum Cu content to 40 at.% to attain
 82 ferromagnetism close to room temperature, where our FMR spin pumping measurements were
 83 performed. The monotonic drop in T_c seen in Fig. 2(a) is consistent with prior reports [19,20] and
 84 verifies that the Cu impurities dilute the ferromagnetic exchange. The monotonic increase in ρ
 85 (Fig. 2(b)) confirms enhanced electronic scattering by the Cu impurities in the film bulk.

86

87 FIG. 3. (a) Illustration of FMR spin pumping with the NiFe spin source and the Ni(Cu) spin sink. (b)
88 Frequency dependence of the FMR linewidth for different $\text{Ni}_{80}\text{Cu}_{20}$ spin sink thicknesses d . (c-e) Nonlocal
89 damping enhancement $\Delta\alpha$ as a function of d , where the spin sink is (c) Ni, (d) $\text{Ni}_{80}\text{Cu}_{20}$, and (e) $\text{Ni}_{60}\text{Cu}_{40}$.
90 The solid black lines indicate the fits with Eq. 1. The vertical dashed lines indicate the coherence length λ_c
91 extracted from the fits.

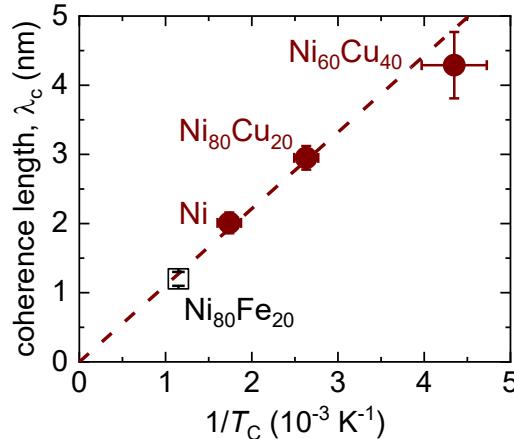
92 To derive λ_c , we conducted FMR spin pumping measurements on film stacks Si-
93 SiO_2 (substrate)/Ti(3)/Cu(3)/ $\text{Ni}_{80}\text{Fe}_{20}$ (10)/Ag(5)/Ni(Cu)(0-10)/Ti(3), where Ni(Cu) denotes the Ni,
94 $\text{Ni}_{80}\text{Cu}_{20}$, or $\text{Ni}_{60}\text{Cu}_{40}$ “spin sink.” The Ti/Cu seed bilayer promotes narrow FMR linewidths
95 (minimizing two-magnon scattering [21]) in the NiFe “spin source,” crucial for straightforward
96 spin pumping measurements. The Ag spacer suppresses direct magnetic coupling between the
97 NiFe source and Ni(Cu) sink, such that spin transport from the source to the sink is mediated
98 solely by electrons without complications from magnon interactions [22]. Ag is selected as the
99 spacer, instead of the oft-used Cu, to reduce atomic intermixing at the spacer/Ni(Cu) interface.

100 In the spin pumping scheme (Fig. 3(a)), a microwave field from a coplanar waveguide excites
101 FMR in the NiFe source, such that the magnetization oscillates about the in-plane applied bias
102 magnetic field. FMR generates a coherent ac spin current polarized transverse to the oscillation
103 axis. This spin current is pumped through the nonmagnetic Ag spacer and into the Ni(Cu) sink.
104 Since the thickness of Ag here is much smaller than the spin diffusion length of ~ 100 nm [12,23],
105 the coherent spin current propagates with negligible absorption in the spacer [14,24]. The
106 polarization of the spin current is transverse to the magnetization of the Ni(Cu) sink, which is set
107 by the applied field. The FMR condition of the Ni(Cu) layer is sufficiently far from that of the
108 NiFe source, so Ni(Cu) serves as a passive sink that receives the spin current from the NiFe source.

109 Any spin-current absorption in the Ni(Cu) sink constitutes an additional loss of spin angular
110 momentum, which manifests in an enhancement of Gilbert damping $\Delta\alpha$ in the NiFe
111 source [14,25]. As shown in Fig. 3(b), the total measured Gilbert damping parameter α is obtained
112 from the linear slope of the FMR linewidth ΔH plotted against the microwave frequency f ,
113 $\mu_0\Delta H = \mu_0\Delta H_0 + \frac{2\pi}{\gamma}\alpha f$, where $\mu_0\Delta H_0 < 0.1$ mT is the inhomogeneous linewidth broadening and
114 $\frac{\gamma}{2\pi} = 29.8$ GHz/T is the gyromagnetic ratio for NiFe. By averaging samples from seven deposition
115 runs, the baseline Gilbert damping parameter of NiFe/Ag without a Ni(Cu) sink is found to be
116 $\alpha_0 = 0.00693 \pm 0.00014$, similar to other reports on NiFe thin films [26,27]. Figure 3(b) shows an
117 increased slope of ΔH vs f with finite Ni(Cu) sink thickness. This observation signifies a nonlocal
118 damping contribution, $\Delta\alpha = \alpha - \alpha_0$, due to spin absorption in the sink. Figure 3(c-e) summarizes
119 the dependence of spin absorption, captured by $\Delta\alpha$, on spin-sink thickness d . For each d , an
120 averaged α was obtained by measuring at least three separate sample pieces. The error bars for
121 $\Delta\alpha$ are primarily from the scatter in α_0 .

122 For each Ni(Cu) sink composition, $\Delta\alpha$ rises at small d and then saturates (Fig. 3(c-e)). This
123 behavior is consistent with spin-current absorption within a finite depth in the sink, such that
124 there is essentially no additional absorption at $d \gtrsim \lambda_c$. We quantify λ_c by fitting our experimental
125 data of $\Delta\alpha$ vs d . One possible approach is to employ a modified drift-diffusion model [28–30], but
126 this involves multiple free parameters (e.g., complex transmitted spin-mixing
127 conductance [11,31]) that could produce overdetermined fits. Instead, we employ a simpler
128 empirical fitting function employed by Bailey *et al.* [13,32,33] with only two parameters, i.e., λ_c
129 and $\Delta\alpha_{\text{sat}}$:

$$130 \quad \Delta\alpha = \frac{\Delta\alpha_{\text{sat}}}{\lambda_c} (1 - H(d - \lambda_c))d + \Delta\alpha_{\text{sat}} H(d - \lambda_c), \quad (1)$$


131 where $H(d - \lambda_c)$ is the Heaviside step function centered at $d = \lambda_c$. From the resulting fits in Fig.
132 3(c-e), we note that $\Delta\alpha_{\text{sat}}$ is slightly higher for the Ni₈₀Cu₂₀ sink whereas it is lower for Ni₆₀Cu₄₀.
133 We attribute this variation in $\Delta\alpha_{\text{sat}}$ to the different spin-mixing conductances that depend on the
134 effective spin susceptibilities in these magnetic spin sinks [34–37]. We emphasize, however, that
135 our focus here is on the length scale of transverse spin-current absorption, λ_c .

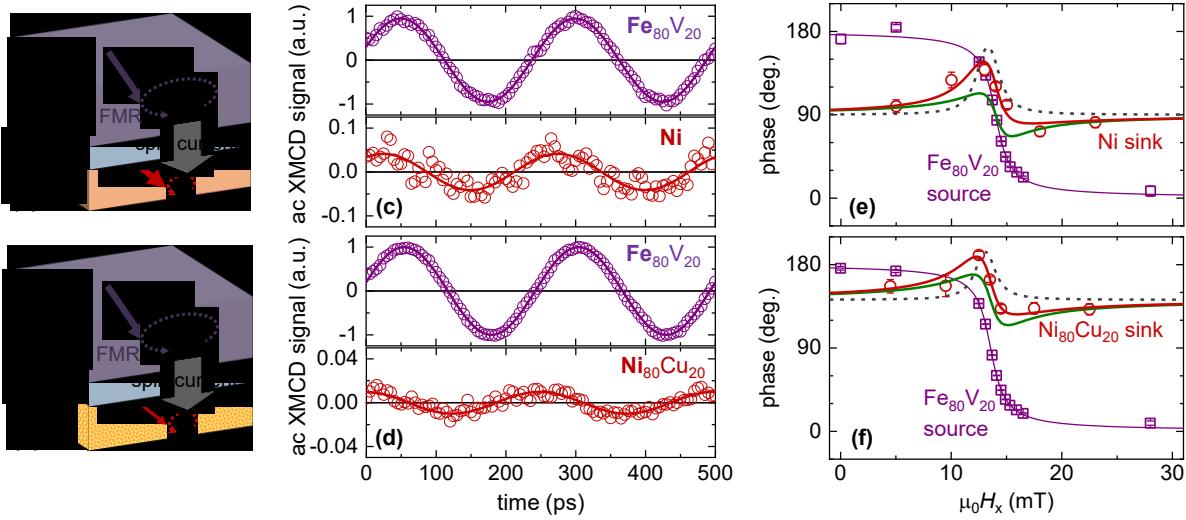
136 The values of λ_c from the fits with Eq. 1 are well over $\lambda_c = 1.2 \pm 0.1$ nm of Ni₈₀Fe₂₀ alloy from
137 Ref. [13]. Specifically, we obtain $\lambda_c = 2.0 \pm 0.2$ nm for Ni, 3.0 ± 0.2 nm for Ni₈₀Cu₂₀, and 4.3 ± 0.5
138 nm for Ni₆₀Cu₄₀. These values exceed several atomic monolayers, strongly pointing to spin
139 absorption in the *bulk* of the sink layer rather than at its interface.

140 We now consider which absorption mechanism in the bulk of Ni(Cu) is most consistent with the
141 observation of longer λ_c with increasing Cu content. (i) *Dephasing due to the ferromagnetic exchange*
142 *field* – A higher content of nonmagnetic Cu dilutes the ferromagnetic exchange field, hence
143 slowing down the dephasing of the spin current. If dephasing dominates transverse spin
144 absorption, λ_c should become longer with more Cu impurities. This scenario is indeed consistent
145 with our observation. (ii) *Spin-flip scattering due to impurities* – A higher Cu impurity content
146 enhances the momentum scattering of electrons (e.g., as evidenced by the increasing resistivity in
147 Fig. 2(b) and a shorter mean free path [38]), which in turn increases the rate of spin-flips. The
148 dominance of such spin-flip scattering (i.e., Elliott-Yafet spin relaxation expected in
149 centrosymmetric metals at room temperature [1,39,40]) would yield *shorter* λ_c with more Cu
150 impurities. This spin-flip-dominant scenario is contrary to our observation. We therefore deduce
151 that dephasing, rather than spin-flip scattering, dominates the absorption of transverse spin
152 current in Ni(Cu) examined here.

153 It is worth noting that the Dyakonov-Perel spin-relaxation mechanism can also result in longer
154 λ_c with increasing scattering [1,41]. Yet, Dyakonov-Perel spin relaxation is another manifestation
155 of dephasing, particularly from spins precessing about a spin-orbit field. Moreover, the
156 dominance of Dyakonov-Perel spin relaxation would be surprising in centrosymmetric,
157 polycrystalline Ni(Cu) at room temperature [39,40]. We therefore posit that the dephasing is
158 primarily driven by the ferromagnetic exchange field.

159 To gain further insight into how λ_c scales with the diluted ferromagnetic exchange (i.e.,
160 decreasing T_c), we plot λ_c against the inverse of T_c for the Ni(Cu) compositions investigated in
161 our work, along with Ni₈₀Fe₂₀ from Ref. [13]. Figure 4 illustrates the central finding of this study:
162 λ_c scales inversely with the ferromagnetic exchange strength (represented by T_c). Again, the
163 consistent explanation is that decreasing exchange – hence weaker dephasing – from the
164 nonmagnetic Cu impurities enables the transverse spin current to remain coherent over a distance
165 well above ≈ 1 nm. Our finding indicates that in these Ni-based systems, spin dephasing in the
166 bulk remains dominant over interfacial or impurity-induced spin-flip scattering.

167


168 FIG. 4. Transverse spin-current coherence length λ_c plotted against the inverse of the Curie temperature T_C .
169 The data point for $Ni_{80}Fe_{20}$ is from Ref. [13].

170 The bulk nature of dephasing in these ferromagnets is distinct from prior reports on proximity-
171 magnetized Pd and Pt films, in which the induced magnetic order is confined to a few monolayers
172 at the interface [33,42,43]. It is also noteworthy that $Ni_{60}Cu_{40}$ in our study is essentially on the
173 trend line in Fig. 4, even though its T_C is somewhat below room temperature (see Fig. 2) where
174 the FMR spin pumping measurements were performed. This result suggests that spin-current
175 dephasing may occur even in the bulk of a metal that is “almost” ferromagnetic with fluctuating
176 magnetic order [44]. Alternatively, the fact that λ_c for $Ni_{60}Cu_{40}$ is slightly below the trend line in
177 Fig. 4 may signify that the spin-flip length scale in $Ni_{60}Cu_{40}$ is ≈ 4 nm, comparable to the dephasing
178 length scale. Though beyond the scope of our present work, the evolution of λ_c for Cu content
179 beyond 40 at.% would be an interesting subject for future experiments.

180 The above-described measurements of $\Delta\alpha$ (Fig. 3) detect spin absorption in the sink, but they
181 provide no direct insight into what the spin current does inside the sink. We therefore examine
182 the byproduct of the transverse spin current interacting with the magnetization: spin-transfer
183 torque. To this end, we employed the synchrotron-based x-ray ferromagnetic resonance (XFMR)
184 technique [24,45–47] at the Advanced Light Source Beamline 4.0.2 [48], which leverages the
185 element-specificity of x-ray magnetic circular dichroism (XMCD). This XFMR technique can
186 directly detect the magnetization dynamics of a *specific* layer. Moreover, the out-of-plane spin
187 transport here does not involve in-plane net charge transport, hence eliminating ambiguities from
188 coexisting charge-to-spin conversion processes that plague standard electrical spin-torque
189 measurements [49–51].

190 We conducted XFMR measurements on samples with stack structure
191 MgO (substrate)/ $Ti(3)/Cu(3)/Fe_{80}V_{20}(10)/Ag(5)/Ni(Cu)(5.3)/Ti(3)$. The (001)-oriented MgO crystal
192 substrate permits high XMCD signals from luminescence yield [48]. As illustrated in Fig. 5(a,b),
193 $Fe_{80}V_{20}$ (instead of $Ni_{80}Fe_{20}$) is the soft low-damping spin source [52,53] for detecting
194 magnetization dynamics via XMCD at the Fe L_3 edge – separately from the Ni L_3 edge for the

195 Ni(Cu) sink (i.e., Ni or Ni₈₀Cu₂₀). The thickness of the Ni(Cu) sink is greater than λ_c to ensure
 196 complete spin absorption. Our measurements were performed at a microwave excitation
 197 frequency of 4 GHz, using a protocol similar to Ref. [54]. We detected the magnetic oscillations
 198 transverse to the in-plane applied field by acquiring the XMCD response vs time. Examples of
 199 such time-resolved traces, obtained separately for the FeV source and the Ni(Cu) sink, are shown
 200 in Fig. 5(c,d).

201
 202 FIG. 5. (a,b) Stack structure for XFMR spin pumping, where the FeV spin source pumps a spin current into
 203 the (a) Ni or (b) Ni₈₀Cu₂₀ spin sink. (c,d) XMCD response as a function of microwave delay time at the Fe
 204 and Ni L_3 edges for the sample with the (c) Ni or (d) Ni₈₀Cu₂₀ spin sink. The applied field here is $\mu_0 H_x \approx 14$
 205 mT. (e,f) Field (H_x) dependence of the oscillation phase for the FeV spin source and the (e) Ni or (f) Ni₈₀Cu₂₀
 206 spin sink. The solid red curve represents the fit modeling the total torque in the spin sink; the dashed gray
 207 curve represents the contribution from the dipolar field torque (with $\beta_{ST} = 0$ in Eq. 2), and the solid green
 208 curve represents the contribution from the spin-transfer torque (with $\beta_{dip} = 0$ in Eq. 2).

209 Figure 5(e,f) summarizes the oscillation phase at several values of in-plane applied field H_x . The
 210 FMR of the FeV source is seen as a 180-degree shift in the phase, $\phi^{src} = \text{atan}(\Delta H / (H_x - H_{FMR}^{src}))$,
 211 centered at the resonance field $\mu_0 H_{FMR}^{src} \approx 14$ mT with linewidth $\mu_0 \Delta H \approx 0.95$ mT. For the Ni(Cu)
 212 sink, we observe a qualitatively distinct shift in the phase ϕ^{snk} around $H_x \approx H_{FMR}^{src}$. We fit ϕ^{snk} vs
 213 H_x with the following function [45,55],

$$214 \phi^{snk} - \phi_0^{snk} = \text{atan} \left(\frac{\beta_{dip} \sin^2 \phi^{src} - \beta_{ST} \sin \phi^{src} \cos \phi^{src}}{1 + \beta_{dip} \sin \phi^{src} \cos \phi^{src} + \beta_{ST} \sin^2 \phi^{src}} \right), \quad (2)$$

215 where ϕ_0^{snk} is the baseline phase that depends on the saturation magnetization of the spin sink.
 216 The unitless coefficient β_{dip} represents the dipolar field torque (e.g., from the interlayer orange-
 217 peel coupling [56] with the precessing source magnetization) normalized by the off-resonant
 218 microwave field torque. Similarly, β_{ST} represents the spin-transfer torque (driven by the pumped
 219 spin current [24]) normalized by the off-resonant torque. Since the off-resonant torque scales with

220 the magnetization, β_{ST} is also proportional to the efficiency of spin-transfer torque per unit
221 magnetization in the Ni(Cu) sink.

222 The parameters derived from the fitting with Eq. 2 are summarized in Table I. The comparable
223 values of β_{dip} for the Ni and Ni₈₀Cu₂₀ sinks are reasonable because the dipolar- and microwave-
224 field torques scale similarly with the saturation magnetization of the sink. More importantly, β_{ST}
225 also remains the same within experimental uncertainty between Ni and Ni₈₀Cu₂₀. We emphasize
226 that β_{ST} is an efficiency metric for the spin-transfer torque *per unit magnetization*. Evidently, the
227 Cu impurities do not diminish this spin-transfer torque efficiency. Our finding confirms that a
228 sizable spin-transfer torque emerges from spin dephasing even in an alloy with a high
229 nonmagnetic impurity content. It also implies that spin-transfer torque can be remarkably robust
230 against electronic momentum scattering by impurities.

	ϕ_0^{snk} (deg.)	β_{dip}	β_{ST}
Ni sink	90 ± 6	1.5 ± 0.5	1.3 ± 0.5
Ni ₈₀ Cu ₂₀ sink	142 ± 3	1.0 ± 0.2	1.7 ± 0.3

231 Table I. Parameters for the fit curves of the total torque for the Ni and Ni₈₀Cu₂₀ sinks. ϕ_0^{snk} is the baseline
232 phase; β_{dip} and β_{ST} are coefficients proportional to the dipolar field torque and spin-transfer torque,
233 respectively, normalized by the off-resonant microwave field torque

234 In summary, we have experimentally investigated the mechanism behind the ultrashort
235 coherence length λ_c of transverse spin current in ferromagnetic Ni-based thin films. We find that
236 λ_c scales inversely with the exchange strength in the ferromagnets examined here, even those
237 with rather high Cu impurity contents. This central result strongly indicates that dephasing – not
238 scattering – dominates transverse spin-current absorption in these nanometer-thick
239 ferromagnetic metals. This result also highlights the ability to tune λ_c by engineering the
240 magnetic exchange. While such tuning was previously explored for *ferrimagnets* and
241 antiferromagnets [30,57,58], our study demonstrates that λ_c can be extended in *ferromagnets* as
242 well by diluting the magnetic order. We further find that the efficiency of spin-transfer torque in
243 a ferromagnet can remain invariant with its impurity content. Our findings provide crucial
244 insights into transverse spin transport in the “bulk” of nanometer-thick ferromagnets, which may
245 help enhance the performance of spin-torque devices by optimizing the length scale of spin
246 dephasing [29].

247

248 **Supplementary Material**

249 See supplementary material for additional information on film growth, the estimation of the
250 Curie temperature, and the electrical resistivity of Ni(Cu).

251

252 **Acknowledgments**

253 Y.L. and S.E. were supported by the Air Force Office of Scientific Research (AFOSR) under Grant
254 No. FA9550-21-1-0365. D.A.S. was supported by the National Science Foundation (NSF) under
255 Grant No. DMR-2003914. This work was made possible by the use of Virginia Tech's Materials
256 Characterization Facility, which is supported by the Institute for Critical Technology and Applied
257 Science, the Macromolecules Innovation Institute, and the Office of the Vice President for
258 Research and Innovation. This research used resources of the Advanced Light Source, a U.S. DOE
259 Office of Science User Facility under Contract No. DE-AC02-05CH11231. S.E. thanks Xin Fan for
260 helpful feedback.

261

262 **Data Availability**

263 The data that support the findings of this study are available from the corresponding author upon
264 reasonable request.

265

266 **References**

- 267 1. I. Žutić, J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," *Rev.*
268 *Mod. Phys.* **76**, 323–410 (2004).
- 269 2. W. Han, S. Maekawa, and X.-C. Xie, "Spin current as a probe of quantum materials," *Nat.*
270 *Mater.* 1–14 (2019).
- 271 3. Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y.
272 Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Akerman, K. Roy, J.-P. Wang, S.-H.
273 Yang, K. Garello, and W. Zhang, "Roadmap of spin-orbit torques," *IEEE Trans. Magn.* 1–
274 1 (2021).
- 275 4. D. C. Ralph and M. D. Stiles, "Spin transfer torques," *J. Magn. Magn. Mater.* **320**, 1190–
276 1216 (2008).
- 277 5. A. Brataas, A. D. Kent, and H. Ohno, "Current-induced torques in magnetic materials,"
278 *Nat. Mater.* **11**, 372–81 (2012).
- 279 6. N. Locatelli, V. Cros, and J. Grollier, "Spin-torque building blocks," *Nat. Mater.* **13**, 11–20
280 (2014).

281 7. A. V. Chumak, A. A. Serga, M. B. Jungfleisch, R. Neb, D. A. Bozhko, V. S. Tiberkevich,
282 and B. Hillebrands, "Direct detection of magnon spin transport by the inverse spin Hall
283 effect," *Appl. Phys. Lett.* **100**, 82405 (2012).

284 8. K. An, A. N. Litvinenko, R. Kohno, A. A. Fuad, V. V. Naletov, L. Vila, U. Ebels, G. De
285 Loubens, H. Hurdequin, N. Beaulieu, J. Ben Youssef, N. Vukadinovic, G. E. W. Bauer, A.
286 N. Slavin, V. S. Tiberkevich, and O. Klein, "Coherent long-range transfer of angular
287 momentum between magnon Kittel modes by phonons," *Phys. Rev. B* **101**, 60407 (2020).

288 9. M. D. Stiles and A. Zangwill, "Anatomy of spin-transfer torque," *Phys. Rev. B* **66**, 14407
289 (2002).

290 10. M. D. Stiles and J. Miltat, "Spin-Transfer Torque and Dynamics," in *Spin Dynamics in
291 Confined Magnetic Structures III* (Springer Berlin Heidelberg, 2006), pp. 225–308.

292 11. M. Zwierzycki, Y. Tserkovnyak, P. J. Kelly, A. Brataas, and G. E. W. Bauer, "First-
293 principles study of magnetization relaxation enhancement and spin transfer in thin
294 magnetic films," *Phys. Rev. B* **71**, 64420 (2005).

295 12. J. Bass and W. P. Pratt, "Spin-diffusion lengths in metals and alloys, and spin-flipping at
296 metal/metal interfaces: an experimentalist's critical review," *J. Phys. Condens. Matter* **19**,
297 183201 (2007).

298 13. A. Ghosh, S. Auffret, U. Ebels, and W. E. Bailey, "Penetration Depth of Transverse Spin
299 Current in Ultrathin Ferromagnets," *Phys. Rev. Lett.* **109**, 127202 (2012).

300 14. Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, "Nonlocal magnetization
301 dynamics in ferromagnetic heterostructures," *Rev. Mod. Phys.* **77**, 1375–1421 (2005).

302 15. S. Blundell, "Ferromagnetism," in *Magnetism in Condensed Matter* (2001), pp. 85–92.

303 16. M. W. Keller, K. S. Gerace, M. Arora, E. K. Delczeg-Czirjak, J. M. Shaw, and T. J. Silva,
304 "Near-unity spin Hall ratio in Ni \times Cu 1 – x alloys," *Phys. Rev. B* **99**, 214411 (2019).

305 17. S. Varotto, M. Cosset-Cheneau, C. Grezes, Y. Fu, P. Warin, A. Brenac, J. F. Jacquot, S.
306 Gambarelli, C. Rinaldi, V. Baltz, J. P. Attane, L. Vila, and P. Noel, "Independence of the
307 Inverse Spin Hall Effect with the Magnetic Phase in Thin NiCu Films," *Phys. Rev. Lett.*
308 **125**, 267204 (2020).

309 18. P.-H. Wu, D. Qu, Y.-C. Tu, Y.-Z. Lin, C. L. Chien, and S.-Y. Huang, "Exploiting Spin
310 Fluctuations for Enhanced Pure Spin Current," *Phys. Rev. Lett.* **128**, 227203 (2022).

311 19. H. M. Ahmad and D. Greig, "The Electrical Resistivity and Thermopower of Nickel-
312 Copper Alloys," *Le J. Phys. Colloq.* **35**, C4-223 (1974).

313 20. R. M. Bozorth, "Temperature and the Curie Point," in *Ferromagnetism* (IEEE, 1978), pp.
314 713–728.

315 21. S. Wu, D. A. Smith, P. Nakarmi, A. Rai, M. Clavel, M. K. Hudait, J. Zhao, F. M. Michel, C.
316 Mewes, T. Mewes, and S. Emori, "Room-temperature intrinsic and extrinsic damping in

317 polycrystalline Fe thin films," *Phys. Rev. B* **105**, 174408 (2022).

318 22. J. Beik Mohammadi, J. M. Jones, S. Paul, B. Khodadadi, C. K. A. Mewes, T. Mewes, and C.
319 Kaiser, "Broadband ferromagnetic resonance characterization of anisotropies and
320 relaxation in exchange-biased IrMn/CoFe bilayers," *Phys. Rev. B* **95**, 64414 (2017).

321 23. H. J. Zhang, S. Yamamoto, B. Gu, H. Li, M. Maekawa, Y. Fukaya, and A. Kawasuso,
322 "Charge-to-Spin Conversion and Spin Diffusion in Bi/Ag Bilayers Observed by Spin-
323 Polarized Positron Beam," *Phys. Rev. Lett.* **114**, 166602 (2015).

324 24. J. Li, L. R. Shelford, P. Shafer, A. Tan, J. X. Deng, P. S. Keatley, C. Hwang, E. Arenholz, G.
325 van der Laan, R. J. Hicken, and Z. Q. Qiu, "Direct Detection of Pure ac Spin Current by X-
326 Ray Pump-Probe Measurements," *Phys. Rev. Lett.* **117**, 76602 (2016).

327 25. S. Mizukami, Y. Ando, and T. Miyazaki, "Ferromagnetic resonance linewidth for
328 NM/80NiFe/NM films (NM=Cu, Ta, Pd and Pt)," *J. Magn. Magn. Mater.* **226–230**, 1640–
329 1642 (2001).

330 26. S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva,
331 and J. P. Nibarger, "Ferromagnetic resonance linewidth in metallic thin films:
332 Comparison of measurement methods," *J. Appl. Phys.* **99**, 93909 (2006).

333 27. M. A. W. Schoen, J. Lucassen, H. T. Nembach, T. J. Silva, B. Koopmans, C. H. Back, and J.
334 M. Shaw, "Magnetic properties in ultrathin 3d transition-metal binary alloys. II.
335 Experimental verification of quantitative theories of damping and spin pumping," *Phys.
336 Rev. B* **95**, 134411 (2017).

337 28. T. Taniguchi, S. Yakata, H. Imamura, and Y. Ando, "Penetration Depth of Transverse
338 Spin Current in Ferromagnetic Metals," *IEEE Trans. Magn.* **44**, 2636–2639 (2008).

339 29. K.-W. Kim, "Spin transparency for the interface of an ultrathin magnet within the spin
340 dephasing length," *Phys. Rev. B* **99**, 224415 (2019).

341 30. Y. Lim, B. Khodadadi, J.-F. Li, D. Viehland, A. Manchon, and S. Emori, "Dephasing of
342 transverse spin current in ferrimagnetic alloys," *Phys. Rev. B* **103**, 244443 (2021).

343 31. X. Qiu, W. Legrand, P. He, Y. Wu, J. Yu, R. Ramaswamy, A. Manchon, and H. Yang,
344 "Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption," *Phys. Rev.
345 Lett.* **117**, 217206 (2016).

346 32. P. Merodio, A. Ghosh, C. Lemonias, E. Gautier, U. Ebels, M. Chshiev, H. Béa, V. Baltz,
347 and W. E. Bailey, "Penetration depth and absorption mechanisms of spin currents in Ir 20
348 Mn 80 and Fe 50 Mn 50 polycrystalline films by ferromagnetic resonance and spin
349 pumping," *Appl. Phys. Lett.* **104**, 32406 (2014).

350 33. M. Caminale, A. Ghosh, S. Auffret, U. Ebels, K. Ollefs, F. Wilhelm, A. Rogalev, and W. E.
351 Bailey, "Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink
352 layers," *Phys. Rev. B* **94**, 144414 (2016).

353 34. E. Šimánek and B. Heinrich, "Gilbert damping in magnetic multilayers," Phys. Rev. B **67**,
354 144418 (2003).

355 35. Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa, "Enhanced dc spin pumping into a
356 fluctuating ferromagnet near T C," Phys. Rev. B **89**, 174417 (2014).

357 36. B. Khodadadi, J. B. Mohammadi, C. Mewes, T. Mewes, M. Manno, C. Leighton, and C. W.
358 Miller, "Enhanced spin pumping near a magnetic ordering transition," Phys. Rev. B **96**,
359 54436 (2017).

360 37. O. Gladil, L. Frangou, G. Forestier, R. L. Seeger, S. Auffret, M. Rubio-Roy, R. Weil, A.
361 Mougin, C. Gomez, W. Jahjah, J.-P. Jay, D. Dekadjevi, D. Spenato, S. Gambarelli, and V.
362 Baltz, "Spin pumping as a generic probe for linear spin fluctuations: demonstration with
363 ferromagnetic and antiferromagnetic orders, metallic and insulating electrical states,"
364 Appl. Phys. Express **12**, 23001 (2019).

365 38. S. Andersson and V. Korenivski, "Exchange coupling and magnetoresistance in
366 CoFe/NiCu/CoFe spin valves near the Curie point of the spacer," J. Appl. Phys. **107**,
367 09D711 (2010).

368 39. J. Ryu, M. Kohda, and J. Nitta, "Observation of the D'yakonov-Perel' Spin Relaxation in
369 Single-Crystalline Pt Thin Films," Phys. Rev. Lett. **116**, 256802 (2016).

370 40. R. Freeman, A. Zholud, Z. Dun, H. Zhou, and S. Urazhdin, "Evidence for Dyakonov-
371 Perel'-like Spin Relaxation in Pt," Phys. Rev. Lett. **120**, 67204 (2018).

372 41. C. T. Boone, J. M. Shaw, H. T. Nembach, and T. J. Silva, "Spin-scattering rates in metallic
373 thin films measured by ferromagnetic resonance damping enhanced by spin-pumping," J.
374 Appl. Phys. **117**, 223910 (2015).

375 42. P. Omelchenko, E. Girt, and B. Heinrich, "Test of spin pumping into proximity-polarized
376 Pt by in-phase and out-of-phase pumping in Py/Pt/Py," Phys. Rev. B **100**, 144418 (2019).

377 43. C. Swindells, H. Głowiński, Y. Choi, D. Haskel, P. P. Michałowski, T. Hase, P. Kuświk,
378 and D. Atkinson, "Proximity-induced magnetism and the enhancement of damping in
379 ferromagnetic/heavy metal systems," Appl. Phys. Lett. **119**, 152401 (2021).

380 44. E. Montoya, B. Heinrich, and E. Girt, "Quantum Well State Induced Oscillation of Pure
381 Spin Currents in Fe / Au / Pd (001) Systems," Phys. Rev. Lett. **113**, 136601 (2014).

382 45. Q. Li, M. Yang, C. Klewe, P. Shafer, A. T. N'Diaye, D. Hou, T. Y. Wang, N. Gao, E. Saitoh,
383 C. Hwang, R. J. Hicken, J. Li, E. Arenholz, and Z. Q. Qiu, "Coherent ac spin current
384 transmission across an antiferromagnetic CoO insulator," Nat. Commun. **10**, 5265 (2019).

385 46. D. A. Arena, E. Vescovo, C.-C. Kao, Y. Guan, and W. E. Bailey, "Combined time-resolved
386 x-ray magnetic circular dichroism and ferromagnetic resonance studies of magnetic
387 alloys and multilayers (invited)," J. Appl. Phys. **101**, 09C109 (2007).

388 47. G. van der Laan, "Time-resolved X-ray detected ferromagnetic resonance of spin

389 currents," *J. Electron Spectros. Relat. Phenomena* **220**, 137–146 (2017).

390 48. C. Klewe, Q. Li, M. Yang, A. T. N'Diaye, D. M. Burn, T. Hesjedal, A. I. Figueroa, C.
391 Hwang, J. Li, R. J. Hicken, P. Shafer, E. Arenholz, G. van der Laan, and Z. Qiu, "Element-
392 and Time-Resolved Measurements of Spin Dynamics Using X-ray Detected
393 Ferromagnetic Resonance," *Synchrotron Radiat. News* **33**, 12–19 (2020).

394 49. A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, and
395 P. Gambardella, "Current-induced spin-orbit torques in ferromagnetic and
396 antiferromagnetic systems," *Rev. Mod. Phys.* **91**, 35004 (2019).

397 50. A. Davidson, V. P. Amin, W. S. Aljuaid, P. M. Haney, and X. Fan, "Perspectives of
398 electrically generated spin currents in ferromagnetic materials," *Phys. Lett. A* **384**, 126228
399 (2020).

400 51. D. Go, D. Jo, H. W. Lee, M. Kläui, and Y. Mokrousov, "Orbitronics: Orbital currents in
401 solids," *Europhys. Lett.* **135**, 37001 (2021).

402 52. M. Arora, E. K. Delczeg-Czirjak, G. Riley, T. J. Silva, H. T. Nembach, O. Eriksson, and J.
403 M. Shaw, "Magnetic Damping in Polycrystalline Thin-Film Fe – V Alloys," *Phys. Rev.
404 Appl.* **15**, 54031 (2021).

405 53. D. A. Smith, A. Rai, Y. Lim, T. Q. Hartnett, A. Sapkota, A. Srivastava, C. Mewes, Z. Jiang,
406 M. Clavel, M. K. Hudait, D. D. Viehland, J. J. Heremans, P. V. Balachandran, T. Mewes,
407 and S. Emori, "Magnetic Damping in Epitaxial Iron Alloyed with Vanadium and
408 Aluminum," *Phys. Rev. Appl.* **14**, 34042 (2020).

409 54. S. Emori, C. Klewe, J. M. Schmalhorst, J. Krieft, P. Shafer, Y. Lim, D. A. Smith, A. Sapkota,
410 A. Srivastava, C. Mewes, Z. Jiang, B. Khodadadi, H. Elmkharram, J. J. Heremans, E.
411 Arenholz, G. Reiss, and T. Mewes, "Element-Specific Detection of Sub-Nanosecond Spin-
412 Transfer Torque in a Nanomagnet Ensemble," *Nano Lett.* **20**, 7828–7834 (2020).

413 55. A. A. Baker, A. I. Figueroa, C. J. Love, S. A. Cavill, T. Hesjedal, and G. van der Laan,
414 "Anisotropic Absorption of Pure Spin Currents," *Phys. Rev. Lett.* **116**, 47201 (2016).

415 56. D. A. Arena, E. Vescovo, C.-C. Kao, Y. Guan, and W. E. Bailey, "Weakly coupled motion
416 of individual layers in ferromagnetic resonance," *Phys. Rev. B* **74**, 64409 (2006).

417 57. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak,
418 "Antiferromagnetic spintronics," *Rev. Mod. Phys.* **90**, 15005 (2018).

419 58. J. Yu, D. Bang, R. Mishra, R. Ramaswamy, J. H. Oh, H.-J. Park, Y. Jeong, P. Van Thach, D.-
420 K. Lee, G. Go, S.-W. Lee, Y. Wang, S. Shi, X. Qiu, H. Awano, K.-J. Lee, and H. Yang,
421 "Long spin coherence length and bulk-like spin-orbit torque in ferrimagnetic
422 multilayers," *Nat. Mater.* **18**, 29–34 (2019).

423