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ABSTRACT

Multi-label classification is a challenging structured prediction task in which a set
of output class labels are predicted for each input. Real-world datasets often have
taxonomic relationships between labels which can be explicit, implicit, or partially
observed. Most existing multi-label classification methods either ignore the label
taxonomy or require the complete specification of the taxonomy at training and
inference time to enforce coherence in their predictions. In this work we intro-
duce the multi-label box model (MBM), a multi-label classification method that
combines the encoding power of neural networks with the inductive bias of proba-
bilistic box embeddings (Vilnis et al., 2018), which can be understood as trainable
Venn-diagrams based on hyper-rectangles. By representing labels as boxes, MBM
is able to capture taxonomic relations among labels without them being provided
explicitly. Furthermore, since MBM learns the label-label relationships from data
and represents them as calibrated conditional probabilities, it provides a high de-
gree of interpretability. This interpretability also facilitates the injection of partial
information about label-label relationships into model training, to further improve
its consistency. We provide theoretical grounding for our method and show ex-
perimentally the model’s ability to learn the true latent taxonomic structure from
data. Through extensive empirical evaluations on twelve multi-label classification
datasets, we show that MBM can significantly improve taxonomic consistency
while maintaining the state-of-the-art predictive performance.1

1 INTRODUCTION

Multi-label classification is a machine learning task in which an input is associated with multiple
categories. Many real-world multi-label classification datasets in modalities such as text categoriza-
tion (Lewis et al., 2004), image classification (Lin et al., 2015; Krishna et al., 2016), entity typing
(Murty et al., 2018; Onoe et al., 2021), functional genomics (Barutcuoglu et al., 2006; Clare, 2003),
and so on, have a rich inter-dependent label structure that can be expressed using a taxonomy graph
or a hierarchy. To be useful in practice, a model should produce predictions that are coherent with
respect to the label taxonomy. For example, if a book is classified as drama, it should also be clas-
sified as fiction according to the label taxonomy of book genres in the left-hand side of Figure 1.
More formally, we are given a label taxonomy in the form of a directed acyclic graph G = (L, T ),
where (a, b) ∈ T if and only if a is a parent of b in the taxonomy. A model will assign scores sℓ(x)
for each label ℓ ∈ L. We say the scores are coherent with respect to the taxonomy if, for all edges
(a, b) ∈ T , sa(x) ≥ sb(x), and the model is consistent if this is the case for all inputs x. In the
case of the book genre classification example, this implies that sfiction must be greater than or equal
to sdrama, regardless of the input.

The problem of producing coherent predictions for multi-label classification has garnered a lot of
attention in the machine learning literature (Wehrmann et al., 2018a; Giunchiglia & Lukasiewicz,
2020; Murty et al., 2018; Cerri et al., 2014). Most methods proposed to improve the coherence in
predictions require the complete label taxonomy at inference time, and occasionally at training time

1The code and implementation details are available at https://github.com/iesl/box-mlc-
iclr-2022
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Figure 1: Left: A label taxonomy represented as a DAG. Center: A 2-dimensional box embedding
of this taxonomy. Right: Scores assigned by the box embedding model to each label for two inputs.

as well, making these models hard to scale to large label spaces (Giunchiglia & Lukasiewicz, 2020;
Wehrmann et al., 2018b). This brings forth a question: Can we utilize representation learning to
model the label-label relationships implicitly in the embedding space?

Vilnis et al. (2018) introduced probabilistic box embeddings, which represent concepts as high di-
mensional hyper-rectangles, and demonstrated that they can embed DAGs efficiently using explicit
information about the edges. Box embeddings represent edges by box-box containment as shown
in Figure 1b. Representing the input and output labels in the same geometric space of boxes allows
the multi-label taxonomy to be learned without an explicit taxonomic training signal. Moreover,
there exists a large space of possible configurations that represent the same taxonomy, and if the
label embeddings in the model gets close to any such configuration, then the model will always pro-
duce classifications that are coherent w.r.t the taxonomy, regardless of the input. We show through
empirical evidence this is the case, and provide a formal proof for latter.

In this work, we propose the multi-label box model (MBM) that utilizes the geometry and proba-
bilistic semantics of box embeddings to model label-label interactions in multi-label classification.
MBM represents labels as boxes using free parameters and uses a deep neural network to embed
the inputs in the same space. We perform coherence analysis of the model using two measures and
show that MBM not only achieves state-of-the-art predictive performance but it also significantly
improves the coherence of predicted scores w.r.t latent label taxonomy. Our analysis further shows
that it is possible to retrieve the latent label-label relationships solely by analysing the learnt label
representations inside the MBM, endowing the model with high degree of interpretability. Finally,
we also present a way to utilize the interpretability of MBM to inject partial information about
label-label relationships into the model thereby improving the coherence even further.

2 RELATED WORK

Multi-label classification tasks that exhibit strong label space structure in the form of explicit label
taxonomy are termed hierarchical multi-label classification (HMLC) in machine learning literature.
Most approaches for such tasks make use of the complete hierarchy at training time. These ap-
proaches can be categorized into two buckets (Silla & Freitas, 2010): (1) Local approaches that
focus on local information for each label or clusters of labels in the hierarchy and classify them in-
dependently (Cerri et al., 2014; Huang et al., 2019), and (2) Global approaches that treat the problem
as a structured classification task and take global interactions into account (Belanger & McCallum,
2016). In the most general setting, however, both local and global interactions between labels exist.
The recent advances in deep learning (Wehrmann et al., 2018a) propose a specialized neural network
architecture called Hierarchical Multi-Label Classification Network (HMCN-R and HMCN-F) that
takes into account both local and global interactions by creating an ensemble of classifiers that can
be trained using end-to-end gradient based training. However, HMCN does not try to enforce coher-
ence strongly, focusing solely on predictive performance. In order to improve prediction coherence,
recent works employ special loss functions on top of a neural network classifier to enforce coherence
w.r.t the label taxonomy (Murty et al., 2018; Giunchiglia & Lukasiewicz, 2020). While effective,
these approaches still use the label taxonomy explicitly, making them difficult to scale to very large
label spaces.
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Recent advances in representation learning provide various methods to embed large graphs and tax-
onomies parsimoniously in non-euclidean spaces. The most prominent of these embedding methods
include hyperbolic embeddings (Nickel & Kiela, 2017; Ganea et al., 2018a;b) and box embedding
(Vilnis et al., 2018; Dasgupta et al., 2021a). The use of representations other than Euclidean vec-
tors for improving the coherence of multi-label classification has been limited to specific domains
like text (Chatterjee et al., 2021) or specific tasks like entity typing (Onoe et al., 2021). Moreover,
while both hyperbolic and box embedding can model hierarchical relationships, it has been shown
that the box embedding can also model more general graphs like DAGs much more efficiently than
hyperbolic embeddings (Patel et al., 2020; Boratko et al., 2021; Dasgupta et al., 2021b). Hence, we
propose a model that uses box embedding to capture general label-label relationships without the
explicit use of label taxonomy to improve the coherence of model predictions.

3 OVERVIEW OF BOX EMBEDDINGS

Notations: In the problem of multi-label classification, we are given a set of labels L where
L = |L|, and an instance can be labeled with an element s ∈ {0, 1}L, where projection to the
ith coordinate πi(s) = 1 means that the ith label is true. We call the set of all such labelings S, and
the associated probability space (S,P(S), PS). We use I to denote the set of all finite closed inter-
vals [µ−, µ+] in Ω ⊂ R plus the empty set, i.e. I := {[µ−, µ+] ⊂ Ω |µ+ ≥ µ−} ∪ ∅. We denote the
smallest σ-algebra containing I as σ(I) and, given a valid finite measure ν, we consider the measure
space (Ω, σ(I), ν). As a high dimensional generalization, Id will denote a d-dimensional Cartesian
product of I.
Definition 1 (Box Embedding (Vilnis et al., 2018)). Let B : Id → S be a measurable function such
that B−1 ◦ π−1

i (1) =
∏d
i [µ

−
i , µ

+
i ] ∈ Id. A box embedding is defined as the function Box : L → Id

which maps a label ℓ ∈ L to B−1 ◦ π−1
ℓ ({1}) ∈ Id.

The definition of box embeddings induces a push-forward measure Q on S such that for any R ⊆ S,
Q(S) = ν ◦ B−1(R). The complete joint probability distribution over the labels can be modeled
using Q as defined above; however, computing B−1(R) requires the use of inclusion-exclusion
principle and hence is intractable for a general R.

In order to avoid local identifiability issues in training, Dasgupta et al. (2020) interpret µ−
i (resp.

µ+
i ) as the location parameters of random variables M−

i (resp. M+
i ) that are distributed according

to GumbelMax (resp. GumbelMin) distributions, leading to a meta-probabilistic generalization of
box embedding which they call Gumbel Box Process. Since GumbelMax (resp. GumbelMin) is
a max (resp. min) stable distribution, it enables the computation of the location parameters of the
intersection box as given in the following definition.

Definition 2 (Intersection Box (Dasgupta et al., 2020)). Let A =
∏d
i=1[a

−
i , a

+
i ] and B =∏d

i=1[b
−
i , b

+
i ] be two gumbel boxes expressed using their location parameters, then the location

parameters of the intersection of these two gumbel boxes are given as

A∩̃B =
d∏
i=1

[
β lse

(
a−i
β
,
b−i
β

)
, − β lse

(
−a

+
i

β
,−b

+
i

β

)]
, (1)

where lse(x, y) = log(exp(x) + exp(y)).

The expected volume of Gumbel boxes involves the Bessel Function of the Second Kind, however,
as shown in Dasgupta et al. (2020), this integral can be reasonably approximated using softplus
function leading to the following definition for approximate bessel volume.
Definition 3 (Approximate Bessel Volume (Dasgupta et al., 2020)). For a gumbel box B =∏d
i=1[b

−
i , b

+
i ] we define the approximate Bessel volume λ : Id → R+ as

λ(B) :=
d∏
i=1

β log

(
1 + exp

(
b+i − b−i

β
− 2γ

))
.

In the next section, we formally demonstrate the suitability of box embeddings for capturing taxo-
nomic label relationships, and for that we first state a couple of useful facts regarding the Gumbel
intersection and Bessel approximate volume.
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Proposition 1. Approximate bessel volume is monotonic with respect to set containment. That is
for two Gumbel boxes A,B,

a−i ≥ b−i and a+i ≤ b+i , ∀i ∈ {1, . . . , d} ⇐⇒ λ(A) ≤ λ(B). (2)

Proof. Follows from the monotonicity of log(1 + exp(.)).

Proposition 2. For any two Gumbel boxes A,B, λ(A∩̃B) ≤ λ(B).

Proof. The fact that max(x, y) ≤ lse(x, y), and the statement of proposition 1 together imply the
desired result.

Since λ is neither normalized nor additive, it cannot be used as a probability measure on (Ω, σ(Id)).
However, we can use proposition 1 and 2 to define a conditional probability model as follows.

Corollary 1. For two gumbel boxes A,B, let PBox(A |B) = λ(A∩̃B)
λ(B) , then

(i) For any two gumbel boxes A,B, we have 0 ≤ PBox(A |B) ≤ 1.

(ii) PBox(A |C) ≤ PBox(B |C) for any three gumbel boxesA,B,C, with a−i ≥ b−i , a
+
i ≤ b+i .

4 MULTI-LABEL BOX MODEL

In order to perform the task of multi-label classification we need to model the conditional probabil-
ities P (Y |X) where Y ∈ S and X is the input. Using definition 1, we define label box embeddings
Boxψ : L → Id as

Boxψ(ℓi) :=
d∏
j=1

[ψ−
i,j , ψ

−
i,j + log(1 + expψ+

i,j)],

where ψ−, ψ+ ∈ RL×d are trainable parameters. The input instance X is encoded as a fixed-width
element of Id using a parametric instance box embedding Boxθ = Id ◦ Fθ : X → Id, where
Fθ : X → Rd is a neural network with parameters θ and Id : Rd → Id defined as

Id(x) :=
d∏
i=1

[xi − δ, xi + δ],

where δ = 10−5. The conditional probability for Y ∈ S given input X is computed using condi-
tional probability under the Gumbel box model as

PMBM(Y |X;ψ, θ) =

L∏
i=1

PMBM(Yi|X,ψ, θ) :=
L∏
i=1

PBox(B
−1 ◦ π−1

i ({Y }) |Boxθ(X))

Using the definition of PBox as stated through corollary 1, we get the following expression for the
conditional probability of Yi under the model, where the intersection ∩̃ is the Gumbel Intersection
and measure λ is Approximate Bessel Volume.

PMBM(Yi = 1|X;ψ, θ) =
λ (Boxψ(ℓi) ∩̃ Boxθ(X))

λ(Boxθ(X))

4.1 MODELING LABEL-SPACE INTERACTIONS

In Section 1, we alluded to the fact that the inductive bias of the MBM allows it to efficiently model
partially specified first-order label interactions. Now we make this remark more concrete. If the
partial specification of label interaction is defined using a taxonomy that can be represented as a
directed acyclic graph (DAG), the following proposition shows that MBM has a strong inductive
bias towards maintaining coherence in its scores.
Proposition 3. LetG = (L, T ) denote a DAG defined over the labels where L is the set of all labels
and T = {(ℓi, ℓj) | ℓi, ℓj ∈ L, PD(yi = 1 | yj = 1) = 1} is the set of edges. Then there exists some
ψ such that P(ψ,θ)(yi = 1 |x) ≥ P(ψ,θ)(yj = 1 |x), for all x, θ.

Proof. For all (ℓi, ℓj) ∈ T , let ψ be such that Boxψ(ℓj) ⊆ Boxψ(ℓi). Note that such ψ exists
since for each i ∈ {1, . . . , L}, Boxψ(ℓi) is defined using only ψi. It follows from corollary 1 that
PBox(Boxψ(ℓi) |Boxθ(X)) ≥ PBox(Boxψ(ℓj) |Boxθ(X)) for any X, θ.
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4.2 LEARNING

The entire MBM is specified using parameters (ψ, θ) where ψ ∈ R2d×L are the label embed-
ding parameters and θ are the parameters of the instance encoder neural network Fθ. Given data
D = {(x(1), y(1)), . . . , (x(N), y(N))}, the model parameters are learnt by minimizing negative log-
likelihood loss

Lnll(ψ, θ;D) = −
D∑
i=1

L∑
j=1

logP (y
(i)
j |x(i);ψ, θ), (3)

using the ADAM optimizer (Kingma & Ba, 2017). In order to empirically verify the intuition behind
proposition 3, we also propose the use of label interaction loss

LG(ψ) = −
∑

(ℓi,ℓj)∈T

s(ℓi, ℓj) +
∑

(ℓi,ℓj)̸∈T

s(ℓi, ℓj) (4)

that utilizes the geometry of box embeddings to inject partial information about label interactions
specified using a label taxonomy G = (L, T ). When label interaction loss is applied (MBM-T), the
total loss is LT = Lnll + νLG, where ν is a hyperparameter. For the Box model, label interaction
score for a pair of labels is defined as

sMBM(ℓi, ℓj) := logPBox(Boxψ(ℓi) |Boxψ(ℓj)). (5)

5 BASELINES

Our choice of baselines reflects the focus of this work, i.e., introducing coherence in prediction us-
ing suitable representation spaces. To this end, our baselines consist of a high-performing neural
network that only uses Euclidean vector representations (MVM), and another that uses hyperbolic
representations (MHM). In order to test the importance of the probabilistic semantics used to formu-
late MBM, we also include as baseline, a non-probabilistic box model as defined in Abboud et al.
(2020). The base input encoder architecture Fθ in all these baselines is same as the one used in
MBM.

Multi-label Vector Model (MVM) An input encoder neural network Fθ : X → Rd is used to
encode the inputs and a label embedding matrix ψ is used to represent the labels. The conditional
probability of labels given the input and label interaction scores are given as

PMVM(yl = 1 |x;ψ, θ) := σ(Fθ(X)TMθ ψl), and sMVM(li, lj) := σ(ψTliMθ ψlj ),

respectively, where σ is the logistic sigmoid function, and Gθ ∈ Rd×d is a matrix of trainable
parameters. The parameters (θ, ψ) are learnt through LT (Eq. 3,4). Note that, when label interaction
is not being explicitly modeled i.e., ν = 0, M is fixed as the identity matrix and MVM reduces to a
special case of multi-layer perceptron.

Multi-label Hyperbolic Model (MHM) As discussed in Chatterjee et al. (2021), the isometry be-
tween the Lorentz model and Poincare disk model for hyperbolic geometry can be used produce the
retraction formula used to project d-dimensional euclidean vectors to d-dimensional Poincaré ball
Bd =

{
x ∈ Rd | ∥x∥ < 1

}
. Here the projection operator Π : Rd → Bd and the distance

d : Bd × Bd → R+ in the hyperbolic space are given as:

Π(x) :=
x

1 +
√
1 + ∥x∥22

, d(u, v) := arcosh

(
1 + 2

∥u− v∥
(1− ∥u∥22)(1− ∥v∥22)

)
.

Specifically, the input is first encoded using Fθ and then projected into Bd. The unnormalized score
for each label is computed as the negative of the distance between the hyperbolic projections of
encoded input and label representation. Since the hyperbolic distance function consists of arcosh,
the negative distance is interpreted as log-probability score. Hence, the conditional log-probability
of the labels and the label interaction score is given, respectively, by the following expressions,
which are then used to learn the parameters (ψ, θ) in the same way as MVM and MBM.

logPMHM(yl = 1 |x) = −d(Π(Fθ(x)),Π(ψl)) and sMHM(li, lj) := −d(Π(ψli),Π(ψlj )),
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Non-probabilistic box model (BoxE): In order to test the importance of the probabilistic semantics
used to formulate the MBM, we also include as baseline, a box model that does not use probabilistic
semantics. For this, we replace the PMBM with the non-probabilistic score defined in Abboud et al.
(2020) and replace the log-likelihood loss (Lnll) with a margin based loss Lmargin. 1

6 EVALUATION AND RESULTS

We evaluate the performance of MBM using 12 real-world multi-label classification datasets (Dim-
itrovski et al., 2011; Clare, 2003) spanning across three domains: text (Enron), images (Imclef07a,
Imclef07d, Diatoms), and functional genomics (Expr, Cellcycle, Derisi, Spo) . These datasets are
the ideal test bed as they provide explicit label taxonomies with different connectivity: trees, forests,
and more general DAGs. Moreover, all the labels of all training and test instances respect the la-
bel taxonomy. The datasets include both categorical and continuous input features. We convert the
categorical features into one-hot feature vectors and standardize all continuous features. The in-
put encoder Fθ uses a common architecture for all models consisting of an MLP with a maximum
of 3 layers. We perform a grid search over number of MLP layers, activation function, hidden di-
mensions, dropout, learning rate and use the best parameters for each model.2 The Mean Average
Precision (MAP), that is the mean over the average precision values across instances in the test set,
is used to evaluate the predictive performance of the models. Table 1 reports average metric values
across 10 runs with different random seeds (the standard error intervals are small and are omitted for
the sake of readability). As seen in Table 1, the predictive performance (MAP) of MBM is better
than all other embedding based methods on at least 11 out of 12 datasets. To check the statistical
significance of our results, following Demšar (2006), we first perform the Friedman test and obtain a
p-value of 2× 10−9. The critical diagram of the post-hoc Nemenyi test (Figure 2a) performed after
the Friedman test allows us to conclude that difference in predictive performance between MBM
and all other embedding based models is statistically significant. Furthermore, from these results,
one can conclude with confidence that MBM with its probabilistic formulation preforms signifi-
cantly better than BoxE, which is the non-probabilistic variant of box embeddings. In the following
section, we discuss another important aspect of performance, that is, the coherence of predictions.

6.1 COHERENCE ANALYSIS

MAP is a good metric for predictive performance, however it does not take into account the in-
consistencies in the predicted scores w.r.t. the label taxonomy. For instance, recalling the earlier
example in Figure 1, a consistent model would always assign higher score to fiction when compared
to drama, since a book classified as drama should also be classified as fiction. Since MAP is inca-
pable of capturing such coherence conditions, we perform further analysis to check the coherence
of the predicted scores. This is done by considering two opposite perspectives towards coherence
evaluation. The first one is a punitive approach, where we count the number of instances that are
given inconsistent scores w.r.t the taxonomy. In the second one, a more constructive approach, we
try to check the amenability of the model, by applying post-hoc corrections to the predicted scores to
enforce coherence. The results of these two approaches are presented by using Constraint Violation
(CV) and Mean Average Precision post Coherence correction (CMAP), which are described below.
Note that we do not recommend the use of either CV or CMAP as the sole metrics to evaluate the
model, we present these as measures to analyse the coherence of the model predictions.

Constraint violation is a punitive measure that quantifies the extent to which the label scores gen-
erated by the model violate the partial ordering of the latent label taxonomy regardless of true labels
for the instances. Hence, lower value of CV implies higher taxonomic coherence in the predictions.

CV(s) =
1

|D||T |

|D|∑
k=1

∑
(li,lj)∈T

1
(
s
(k)
i − s

(k)
j < 0

)
. (6)

Mean Average Precision post Coherence correction (CMAP): Given a complete or partial tax-
onomy G = (L, T ) for the labels, coherence can be imposed post-hoc by applying a modification
function δ : RL → RL to the label-scores produced by the model such that δ(si) − δ(sj) < 0 for

2Please see the Reproducibility Statement after Section 8, for further details on the implementation of the
baselines and the experiments.
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Table 1: Performance comparison of MBM models with the baselines for the 12 multi-label classi-
fication datasets. The left section compares the models that do not require explicit taxonomy, i.e.,
BoxE, MVM, MHM and MBM. In the left section, the models with the best performance w.r.t. MAP
are highlighted. The right section shows the performance when we include taxonomy information
in training through LG (MVM-T, MHM-T and MBM-T), where the highlighted cells indicate an
improvement in performance (MAP and CV) w.r.t. the respective non-T model. All metrics reported
are averaged across five runs with different seeds.

Dataset Metric BoxE MVM MHM MBM MVM-T MHM-T MBM-T C-HMCNN

MAP↑ 37.30 38.37 31.91 38.45 37.94 31.90 38.42 38.41
CMAP↑ 37.92 37.66 32.05 38.72 37.41 32.02 38.67 38.41ExprFUN
CV↓ 4.79 1.99 1.94 2.55 1.97 1.92 1.87 0

MAP↑ 31.96 31.68 28.76 34.20 31.61 28.74 34.61 34.35
CMAP↑ 32.70 31.34 28.92 34.39 31.33 28.89 34.78 34.35CellcycleFUN
CV↓ 4.02 3.42 1.78 1.77 3.45 1.78 1.35 0

MAP↑ 26.66 23.70 26.87 28.69 24.16 24.40 28.71 28.19
CMAP↑ 26.96 24.13 26.98 28.86 24.35 24.52 28.88 28.19DerisiFUN
CV↓ 2.27 4.79 0.95 1.67 4.01 0.85 1.43 0

MAP↑ 27.97 25.18 26.58 30.10 24.21 26.57 29.62 29.18
CMAP↑ 28.38 25.38 26.79 30.27 24.55 26.79 29.78 29.18SpoFUN
CV↓ 2.75 4.23 1.68 1.75 4.73 1.69 1.53 0

MAP↑ 46.75 44.92 40.53 48.45 44.97 40.52 48.45 48.61
CMAP↑ 47.28 41.78 40.71 48.56 41.84 40.70 48.56 48.61ExprGO
CV↓ 5.74 7.05 5.12 2.46 7.05 5.19 1.91 0

MAP↑ 43.08 44.25 39.77 44.28 44.19 39.74 44.93 45.61
CMAP↑ 43.79 41.09 39.90 44.23 41.02 39.76 45.01 45.61CellcycleGO
CV↓ 5.06 3.07 2.35 2.84 3.03 2.49 2.16 0

MAP↑ 40.44 41.22 40.16 42.03 41.13 40.10 42.02 42.24
CMAP↑ 40.73 38.21 40.28 42.14 38.21 40.20 42.12 42.24DerisiGO
CV↓ 3.16 3.43 1.98 2.37 3.46 2.02 1.13 0

MAP↑ 40.88 42.19 39.81 42.22 42.20 39.70 41.74 42.77
CMAP↑ 41.27 38.96 39.89 42.31 39.04 39.77 41.54 42.77SpoGO
CV↓ 3.89 2.81 1.93 2.68 2.77 1.90 1.80 0

MAP↑ 80.44 73.68 75.95 79.95 73.68 75.62 80.06 80.04
CMAP↑ 80.46 66.87 76 79.94 66.87 75.68 80.05 80.04Enron
CV↓ 0.20 2.53 0.29 0.04 2.53 0.36 0.03 0

MAP↑ 43.71 73.06 56.97 79.14 72.65 56.86 79.14 76.23
CMAP↑ 45.16 72.44 56.14 79.30 72.18 56.07 79.23 76.23Diatoms
CV↓ 6.39 18.97 5.59 3.46 19.20 5.55 0.34 0

MAP↑ 83.71 77.14 65.29 91.45 78.22 65.30 69.26 90.26
CMAP↑ 84.73 76.56 66.01 91.73 77.46 66.01 69.48 90.26Imclef07a
CV↓ 12.73 23.02 4.75 5.65 22.86 4.75 2.40 0

MAP↑ 87.95 88.49 75.72 89.49 88.59 75.69 89.56 89.22
CMAP↑ 88.93 86.89 76.98 89.99 86.87 76.95 90.07 89.22Imclef07d
CV↓ 11.93 10.72 7.52 7.16 11.02 7.56 5.66 0

MAP 4.92 5.29 6.42 2.08 5.38 7.33 2.42 2.17
CMAP 4.08 6.08 6.17 1.96 6.25 6.92 2.29 2.25Avg. Rank ↓
CV 6.67 7 3.83 4.33 7 4 2.17 1

all (li, lj) ∈ T . This can be achieved by modifying the score si for each label li to be either the
maximum (δMG ) of the scores of any of its descendants or the minimum of the scores of its ancestors
(δmG ) in the taxonomy G. Concretely, given the scores s ∈ RL produced by a model, for an input,
the two modification functions are given as

δmG (s)i = min
lj∈AncG(li)∪{li}

sj , δMG (s)i = max
lj∈DesG(li)∪{li}

sj ,

where AncG(l) and DesG(l) is the set of ancestors and descendants, respectively, of l in the graph
G. In practice, if one is given a partial label taxonomy, one would select whichever post-hoc modifi-
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cation performs better, and we refer to the maximum MAP obtained after applying one of the mod-
ification functions δmG , δMG to the scores as CMAP.3 Intuitively, a CMAP value close to MAP value
implies that the model is more perceptive of the latent hierarchy in the label space. As seen from
the critical diagram of the Nemenyi test (Figure 2b), when coherence is considered along with the
predictive performance (CMAP), MBM outperforms MVM and MHM (with statistical significance)
indicating that MBM is much more perceptive of the latent taxonomy compared to other embedding
based models (MVM and MHM). In conclusion, while on one extreme there is MVM, which ex-
hibits reasonable good predictive performance but fails to maintain coherence w.r.t the taxonomy, on
the other extreme we have MHM that exhibits lowest constraint violations but gives inadequate pre-
dictive performance. MBM, however, demonstrates good characteristics on both fronts–predictive
performance as well as coherence.

Comparison with the state-of-the-art: C-HMCNN (Giunchiglia & Lukasiewicz, 2020), is the cur-
rent state-of-the-art method for hierarchical MLC, and includes the modification function δMG (called
MCM in their work) in their model directly, applying it to scores produced by a multi-layer percep-
tron at training as well as inference time.4 At training time, this modification is accompanied by a
clever modification of BCE loss to form a novel MCLoss which works well with the modification
function during training. There are two key differences between C-HMCNN and MBM that one
needs to keep in mind when comparing their performance. First, C-HMCNN does not attempt to
use the label representations themselves to increase coherence—an idea central to MBM and this
work. Second, unlike MBM, C-HMCNN requires the complete label taxonomy at training and infer-
ence time to enforce the coherence. Owing to the use of complete label taxonomy at inference time,
C-HMCNN always has 0 constraint violations. However, as seen from the Table 1 and the Figure
2, MBM, which does not require the label taxonomy at all, performs comparably to C-HMCNN in
terms of MAP (p-value of 0.677 in two sided Wilcoxon test between MBM and C-HMCNN shows
that there is no statistical difference between their performances).

Figure 2: Critical diagrams of the post-hoc Nemenyi test across all 12 datasets.

7 ANALYSIS OF LEARNED LABEL EMBEDDINGS

In this section, we analyze the geometry of the learned label embeddings, finding that the simple
geometry of box embeddings endows the MBM model with high degree of interpretability. In order
to verify that label box embeddings are producing consistent scores by using inclusion in the box
space, we inject into the model the taxonomy information through the additional loss term (Eq.
4). As seen from the right section in Table 1, injecting explicit taxonomic information into the
label embeddings further reduces the constrain violation for MBM on all twelve datasets. However,
the same does not aid the MVM model and even drops its predictive performance significantly.
This underscores the importance of embedding geometry for inducing taxonomic coherence, and
validates our intuition about the arrangement of label embeddings in MBM.

To determine the extent to which the label embeddings capture the latent label taxonomy with-
out it being explicitly provided, we perform ancestor-descendant classification solely using the
learned label embeddings. Each pair of labels (li, lj) get a score β(i, j) that is determined using
their corresponding label embeddings ψi, ψj . Since MVM and MBM have different geometri-
cal interpretations, we use different scoring for each. Specifically, βMVM(i, j) = ψi · ψj/‖ψj‖,
βMBM(i, j) = sMBM(li, lj). These scores are then compared to true ancestor-descendant relations
in the taxonomy to obtain respective ROC curves as shown in Figure 3. As seen in Table 3, MBM
captures the true label taxonomy the best (AUC ≥ 0.87) for all datasets.

3We find that δmG produces lesser change in the scores predicted by all the models (MBM, MVM and MHM),
and hence is used as the modification function for this analysis (see Appendix E for further discussion on this)

4Comparision with another competitive baseline HMCN is provided in Appendix D.
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Dataset BoxE MVM MHM MBM

ExprFUN 0.59 0.61 0.40 0.89
CellcycleFUN 0.71 0.59 0.40 0.93
DerisiFUN 0.64 0.61 0.41 0.87
SpoFUN 0.65 0.61 0.39 0.87
Enron 0.77 0.66 0.49 0.92
Diatoms 0.67 0.68 0.44 0.96
Imclef07a 0.58 0.63 0.45 0.87

Figure 3: The figure on the left shows the envelope of the ROC curves for the ancestor-descendant
relationship classification in the label space for different embedding based models across the datasets
and the table on the right is the area under the ROC curves. As seen, MBM implicitly captures the
label taxonomy well compared to all other models.

Table 2: Spearman rank correlation between the number of
descendants in the label taxonomy with each of the follow-
ing: embedding magnitude for MVM, negative embedding
magnitude for MHM and box embedding volume for MBM.

Model Expr
FUN

Cellcycle
FUN

Derisi
FUN

Spo
FUN Enron Diatoms Imclef07a

MHM -0.37 0.38 0.40 0.38 0.19 0.31 0.32
MVM -0.06 -0.11 -0.01 0.06 -0.11 0.04 -0.02
MBM 0.47 0.49 0.50 0.48 0.47 0.23 0.43

Furthermore, for hyperberbolic
space, it is suggested that the magni-
tude of embeddings relate to the level
of generality in taxonomy (Nickel
& Kiela, 2017). We show that
the same observation holds for
box embeddings, with the vector
embedding magnitude replaced by
box embedding volume. To see
this, we compute the Spearman rank
correlation between the number of
descendants of a node in the true taxonomy and the embedding magnitude, negative embedding
magnitude, and embedding volume for MVM, MHM, and MBM, respectively. The correlation
values reported in Table 2 confirm our intuition regarding box embeddings stated above.5 It is
interesting to note that as shown by the correlation between the vector magnitude and level of the
label node as well as low constraint violations, the MHM model does capture the depth of the label
nodes in the taxonomy. However, as shown by the ROC curves in Figure 3, unlike MBM, it fails to
capture the exact connectivity of the nodes at different depths in the taxonomy.

8 CONCLUSION

In this work, we demonstrate that box embeddings with its probabilistic formulation can effectively
capture taxonomic relations present between labels in multi-label classification without requiring
explicit access to the taxonomy. The proposed model achieves a fine balance between predictive
performance and coherence. Furthermore, we find that the taxonomic relationships between labels
can be easily injected via extra supervision during training, increasing the coherence of the predic-
tions further. Since the model has the same computational complexity as a simple neural network
model, and unlike C-HMCNN it does not require the label taxonomy, the proposed model can be
scaled to work with extremely large label spaces. Moreover, due to the flexibility of using any neural
network encoder this model can be easily extended to different input modalities, such as raw text,
images, etc. We wish to pursue these two directions in our future work.

REPRODUCIBILITY STATEMENT

In this section, we provide pointers to information necessary to reproduce the results mentioned
in this paper. The description of the datasets with various statistics, links to download them, and
instructions to pre-process them are provided in Appendix B. The BoxE baseline is further described

5Refer to Appendix H for scatter plots of box embedding volume vs. the number of children in the label
taxonomy.
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with expressions for distance and the margin based loss function in Appendix A.1. The hyper-
parameter settings for each model-dataset combination (all 96 settings) used to produce the reported
results are provided in 3. We also include a discussion on computational complexity of the models
in Appendix A.2. Finally, the code for all the models (including the baselines) used in this paper is
available at https://github.com/iesl/box-mlc-iclr-2022.
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Jônatas Wehrmann, Ricardo Cerri, and Rodrigo C Barros. Hierarchical Multi-Label Classification
Networks. Technical report, 2018b.

12

https://www.aclweb.org/anthology/P18-1010
http://arxiv.org/abs/1705.08039
http://arxiv.org/abs/1705.08039
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=J246NSqR_l
https://people.cs.umass.edu/~luke/box-lattices.pdf http://arxiv.org/abs/1805.06627
https://people.cs.umass.edu/~luke/box-lattices.pdf http://arxiv.org/abs/1805.06627


Published as a conference paper at ICLR 2022

A IMPLEMENTATION DETAILS

In this section, we describe the implementation details: training procedure and hyper-parameter
search.

Frameworks used: We implement all the models described in this work using PyTorch (Paszke
et al., 2019). We also make use of NLP specific abstractions over PyTorch provided by AllenNLP
(Gardner et al., 2017). We also make use of the abstractions provided in the Box Embedding library
Chheda et al. (2021) in our implementation of MBM. For the extensive hyper-parameter search, we
use the academic version of Weights & Biases library (Biewald, 2020).

Data pre-processing: The datasets were pre-processed in the exact same manner as in Giunchiglia
& Lukasiewicz (2020), i.e., the categorical features were converted to one-hot feature vectors and
the continuous input features were standardized. Also, following the Giunchiglia & Lukasiewicz
(2020); Wehrmann et al. (2018a), the labels corresponding to the root nodes were removed from
training and evaluation. Further details of the original datasets is provided in B.

Training: We used ADAM (Kingma & Ba, 2017) with a batch size of 4 to learn the model param-
eters for all the models. Since the naive implementation of the label interaction loss described in
Eq. 4 is too expensive to compute at each mini-batch step, we approximate it by randomly sampling
(without replacement), at each mini-batch step, a subset of edges T̃ ∼ T . The size of the sampled
set is a hyper-parameter (last column in Table 3).

Hyper-parameter search: The following hyper-parameters were searched using the performance
on the validation set: optimizer learning rate, hidden dimensions of the MLP, number of hidden
layers (maximum of 3), activation functions, dropout probabilities, weight decay and sampling per-
centage for the labels for computing the label interaction loss(LG) for the MHM-T, MBM-T and
MVM-T models. After an initial investigation, we identified that the softplus activation performed
the best for all models and hence, the activation was fixed to softplus for the final grid search. Also
note that in order to be comparable to the previous work that uses these datasets, we had to divide our
experiments into two kinds of runs—the search runs and the final runs. First, in the search runs, we
use a validation set to obtain the best hyper-parameters for each model-dataset combination. After
identifying the best set of hyper-parameters the training and validation sets were combined. We call
the models trained on this combined dataset as the final runs. Since one cannot use early stopping
without a validation set, the number of epochs to train the models in the final runs was also obtained
as a hyper-parameter and was set to the best epoch for the corresponding search run. All the results
are reported using the metrics obtained in the final runs (10 runs with different random seeds for
each dataset-model pair with best hyper-parameters obtained from the corresponding search runs).
Table 3 summarizes the search ranges used and Table 4 presents the final hyper-parameters obtained.

Table 3: Summary of the hyper-parameter search ranges for each dataset and model. The best hyper-
parameters for each model and dataset combination were picked using grid search using MAP on
the validation set. Note that ν and label sample percent are only applicable to the MBM-T, MVM-T
and MHM-T models.
Datasets batch size lr hidden dim layers activation dropout LG weight (ν) label sample percent

all 4 1e-4, 5e-4, 1e-3, 1e-2 250, 500, 1000, 1750 1,2,3 sigmoid, relu, softplus 0.0, 0.1, 0.3, 0.5 1e-3, 1e-6, 1e-7, 1e-9 10,20,30

Table 4: Best hyper-parameters obtained through grid search for each dataset-model combination.
It should be noted that the activation function chosen for all model configurations was softplus.

Dataset Model learning rate hidden dim layers dropout % label sample ν

CellcycleFUN BoxE 0.001 500 3 0.3 - -
CellcycleFUN C-HMCNN 0.001 500 3 0.3 100 -
CellcycleFUN MBM 0.0001 1750 3 0 - -
CellcycleFUN MBM-T 0.0001 500 3 0 30 1e-07
CellcycleFUN MHM 0.0001 1000 3 0 - -
CellcycleFUN MHM-T 0.0001 1000 3 0 30 1e-07
CellcycleFUN MVM 0.001 1750 2 0 - -
CellcycleFUN MVM-T 0.001 1750 2 0 30 1e-07
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Table 4 continued from previous page
Dataset Model learning rate hidden dim layers dropout % label sample ν

CellcycleGO BoxE 0.001 500 3 0.3 - -
CellcycleGO C-HMCNN 0.001 500 2 0.5 100 -
CellcycleGO MBM 0.0001 1750 3 0 - -
CellcycleGO MBM-T 0.0001 1750 3 0 10 1e-07
CellcycleGO MHM 0.001 1750 3 0.3 - -
CellcycleGO MHM-T 0.001 1750 3 0.3 30 1e-07
CellcycleGO MVM 0.001 500 2 0.5 - -
CellcycleGO MVM-T 0.001 500 2 0.5 30 1e-07

DerisiFUN BoxE 0.001 500 3 0.3 - -
DerisiFUN C-HMCNN 0.0001 1000 3 0.3 100 -
DerisiFUN MBM 0.0001 500 3 0 - -
DerisiFUN MBM-T 0.0001 500 3 0 30 1e-07
DerisiFUN MHM 0.001 500 3 0.1 - -
DerisiFUN MHM-T 0.001 500 3 0.1 30 1e-07
DerisiFUN MVM 0.001 1750 3 0 - -
DerisiFUN MVM-T 0.001 1750 3 0 30 1e-07

DerisiGO BoxE 0.001 500 3 0.3 - -
DerisiGO C-HMCNN 0.001 1000 3 0.3 100 -
DerisiGO MBM 0.0001 500 3 0 - -
DerisiGO MBM-T 0.0001 500 3 0 20 1e-07
DerisiGO MHM 0.001 500 3 0 - -
DerisiGO MHM-T 0.001 500 3 0 30 1e-07
DerisiGO MVM 0.001 500 2 0.3 - -
DerisiGO MVM-T 0.001 500 2 0.3 30 1e-07

Diatoms BoxE 0.001 1750 3 0.3 - -
Diatoms C-HMCNN 0.0001 500 3 0.1 100 -
Diatoms MBM 0.0001 1750 3 0 - -
Diatoms MBM-T 0.0001 1750 3 0 30 1e-07
Diatoms MHM 0.0001 1750 3 0 - -
Diatoms MHM-T 0.0001 1750 3 0 30 1e-07
Diatoms MVM 0.0001 1000 3 0 - -
Diatoms MVM-T 0.0001 1000 3 0 30 1e-07

Enron BoxE 0.001 500 2 0.3 - -
Enron C-HMCNN 0.0001 500 2 0.3 100 -
Enron MBM 0.0001 1750 2 0 - -
Enron MBM-T 0.0001 1750 2 0 30 1e-07
Enron MHM 0.0001 1750 2 0.1 - -
Enron MHM-T 0.0001 1750 2 0.1 30 1e-07
Enron MVM 0.0005 500 3 0 - -
Enron MVM-T 0.0005 500 3 0 30 1e-07

ExprFUN BoxE 0.001 500 3 0.3 - -
ExprFUN C-HMCNN 0.0001 1000 3 0.3 100 -
ExprFUN MBM 0.0005 1000 3 0 - -
ExprFUN MBM-T 0.0005 1000 3 0 30 1e-07
ExprFUN MHM 0.0001 1750 3 0 - -
ExprFUN MHM-T 0.0001 1750 3 0 30 1e-07
ExprFUN MVM 0.0005 500 3 0.5 - -
ExprFUN MVM-T 0.0005 500 3 0.5 30 1e-07

ExprGO BoxE 0.0001 1750 3 0.3 - -
ExprGO C-HMCNN 0.001 500 2 0.5 100 -
ExprGO MBM 0.0001 1000 2 0 - -
ExprGO MBM-T 0.0001 1000 2 0 5 1e-07
ExprGO MHM 0.0001 1750 3 0 - -
ExprGO MHM-T 0.0001 1750 3 0 30 1e-07
ExprGO MVM 0.0001 1750 3 0.1 - -
ExprGO MVM-T 0.0001 1750 3 0.1 30 1e-07

Imclef07a BoxE 0.001 1000 3 0.1 - -
imclef07a C-HMCNN 0.001 1000 2 0 100 -
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Table 4 continued from previous page
Dataset Model learning rate hidden dim layers dropout % label sample ν

Imclef07a MBM 0.0001 1750 3 0 - -
Imclef07a MBM-T 0.0005 1750 3 0.25 30 1e-07
Imclef07a MHM 0.001 1000 2 0 - -
Imclef07a MHM-T 0.001 1000 2 0 30 1e-07
Imclef07a MVM 0.001 1000 3 0 - -
Imclef07a MVM-T 0.001 1000 3 0 30 1e-07

Imclef07d BoxE 0.001 1750 2 0.3 - -
Imclef07d C-HMCNN 0.001 500 2 0.1 100 -
Imclef07d MBM 0.0005 1750 3 0 - -
Imclef07d MBM-T 0.0005 1750 3 0 30 1e-09
Imclef07d MHM 0.001 1750 2 0 - -
Imclef07d MHM-T 0.001 1750 2 0 30 1e-07
Imclef07d MVM 0.001 1000 2 0 - -
Imclef07d MVM-T 0.001 1000 2 0 30 1e-07

SpoFUN BoxE 0.001 500 3 0.3 - -
SpoFUN C-HMCNN 0.001 500 3 0.5 100 -
SpoFUN MBM 0.0001 1000 3 0 - -
SpoFUN MBM-T 0.0005 500 3 0 30 1e-09
SpoFUN MHM 0.0001 1000 3 0 - -
SpoFUN MHM-T 0.0001 1000 3 0 30 1e-07
SpoFUN MVM 0.001 1750 3 0 - -
SpoFUN MVM-T 0.001 1750 3 0 30 1e-07

SpoGO BoxE 0.001 500 3 0.3 - -
SpoGO C-HMCNN 0.001 1000 3 0.3 100 -
SpoGO MBM 0.0001 1000 3 0 - -
SpoGO MBM-T 0.0001 1000 3 0 10 1e-07
SpoGO MHM 0.001 500 3 0 - -
SpoGO MHM-T 0.001 500 3 0 30 1e-07
SpoGO MVM 0.001 500 2 0.5 - -
SpoGO MVM-T 0.001 500 2 0.5 30 1e-07

A.1 FURTHER DETAILS FOR THE BASELINES

BoxE: Let p ∈ Rd be a point and z, Z ∈ Rd with zi < Zi be the lower left and upper right
coordinates of a non-probabilistic label box. Then a non-probabilistic compatibility score between
the point and the box can be defined as shown in Abboud et al. (2020). Concretely, Abboud et al.
(2020) define per-dimension distance as

dist(pi, zi, Zi) :=

{
|pi−ci|
wi+1 , if zi ≤ pi ≤ Zi
|pi−ci|
wi+1 − κ, otherwise,

(7)

where ci = (Zi − zi)/2, wi = Zi − zi are the center and width of the projection of the box
(i.e., an interval) in dimension i, and κ = 0.5 ∗ wi ∗ (wi + 1 − 1

wi+1 ) is the width dependent
factor. The score function that measures the compatibility of the point p and box (z, Z) is defined
as sBoxE(p, z, Z) = −∥v∥2, where vi = dist(pi, zi, Zi). Given the trainable parameters ψ−, ψ+ ∈
RL×d for representing the labels, the lower left and the upper right coordinates of a non-probabilistic
box for label li are taken to be zi = ψ−

i,∗ and Zi = ψ−
i,∗ + log(1+ expψ+

i,∗), respectively. The input
x is encoded as a point p ∈ Rd using a multi-layer perceptron Fθ, just like MVM. However, since
the score is negative distance, the parameters are learnt using margin based loss given as:

Lmargin(ψ, θ;D) =
D∑
i=1

∑
p∈Pi,n∈Ni

max (0, 1− (sBoxE(Fθ(x), zp, Zp)− sBoxE(Fθ(x), zn, Zn))
|Pi|+ |Ni|

,

where Pi and Ni are the positive and negative labels for i-th data instance, respectively.
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A.2 COMPUTATIONAL COMPLEXITY

The computational complexity of the MBM can be divided into two parts–the computation of the
instance box Boxθ(X), and the computation of probability score P (Y | X) given the encoding
of the instance and label box parameters. Computing Boxθ(X) amounts to splitting the output of a
feed-forward network ϕ(x) into min and max parameters ϕ(x)−, ϕ(x)+, and thus has the same com-
plexity as that of the MVM. Assuming that the operations

∑
,
∏

, log and exp have unit complexity,
computing P (Y | X) also has equivalent complexity. The computation of conditional probability
for a single label yk using the MVM model involves computing σ(ϕ(x) · yk), an O(dL) operation.
Now, with same assumptions for the MBM, computing λ(Boxθ(x) ∩ Boxψ(yk)) involves d invo-
cations of log(exp(·) + exp(·)) followed by d subtractions and d invocations of log(1 + exp(.)),
resulting in O(d) operations. The computation of λ(Boxθ(x)) omits the intersection calculation, but
otherwise is the same, and thus is also O(d). Hence, calculating λ(Box(x)∩Box(yk))

λ(Box(x)) is O(d), resulting
in overall complexity of O(dL), which is equal to that of MVM. We note that the complexity of our
model is not dependent on the depth of the hierarchy, as in C-HMCNN, and thus can reasonably
scale to arbitrarily deep hierarchies as might be present in extreme multi-label classification. These
theoretical statements are supported by Table 5, which provides average epoch duration in seconds
for MVM, MBM, MBM-T, and C-HMCNN with the same hidden size. Hence, we can conclude that
the computational complexity of MVM ≈ MBM < MBM-T.

Table 5: Average epoch duration in seconds for MVM, MBM, MBM-T and CHMCNN with the
same hidden size

Model ExprFUN CellcycleFUN SpoFUN DerisiFUN

MVM 17.2 15.4 15.8 15.5
MBM 18.4 16.9 16.3 15.2
MBM-T 20.1 26.7 24.1 27.1
C-HMCNN 17.8 17.0 15.9 15.4
BoxE 18.9 16.6 15.9 16.1

Computational resources used: For datasets with number of labels less than 500, i.e., the 4 FUN-
CAT datasets, Imclef07a, Imclef07d, Diatoms and Enron, all the models were trained on TitanX
GPU (memory=12GB). For the 4 GO datasets that have number of labels greater than 4000, all the
models are trained on M40 GPU (memory=24GB).

A.3 CODE

Executable python code with detailed instructions to reproduce the results reported in 1 is provided
using at https://github.com/iesl/box-mlc-iclr-2022. We also include instructions
for obtaining the pre-processed datasets, training a new model from scratch (MBM or any baseline),
evaluating a pre-trained model on test set, directly downloading the pre-trained models for datasets.

B DATASETS

The 12 datasets used in this work wary greatly in terms of domain, number of labels, number of
instances, and the connectivity of label taxonomy. The characteristics of each dataset w.r.t these
properties is summarized in 6. These datasets do not require a licence and are available for public
usage. The links to the sources for all the datasets are provided in Table 7 below. The continuous
features are standardized by removing mean and scaling to unit variance, and the categorical features
are encoded as one-hot vectors.
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Table 6: Summary of the datasets used in experiments. The feature based multi-label datasets span
across 3 domains: functional genomics, image and text.

Dataset Domain Input/Feature
Type

Label
Taxonomy #Labels #Instances

Train Val Test

Expr FUN Genomics Continuous Forest 500 1636 849 1288
Cellcycle FUN Genomics Continuous Forest 500 1628 848 1281
Derisi FUN Genomics Continuous Forest 500 1608 842 1275
Spo FUN Genomics Continuous Forest 500 1600 837 1266
Expr GO Genomics Continuous DAG 4132 1636 849 1288
Cellcycle GO Genomics Continuous DAG 4126 1625 848 1278
Derisi GO Genomics Continuous DAG 4120 1605 842 1272
Spo GO Genomics Continuous DAG 4120 1597 837 1263
Diatoms Image Continuous Tree 399 1500 565 1054
Imclef07a Image Continuous Tree 97 7000 3000 1006
Imclef07d Image Continuous Tree 47 7000 3000 1006
Enron Text Binary Tree 57 650 338 600

Table 7: The table provides the links to download the data from original source.
Dataset(s) Download Links

Imclef07a, Imclef07d, Enron, Diatoms http://kt.ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification
Expr, Spo, Derisi, Cellcycle (FUN/GO) https://dtai.cs.kuleuven.be/clus/hmcdatasets/

C SIGNIFICANCE TESTING

In section 6, we provide the results for Friedman test followed by post-hoc Nemenyi test, and also
the result of pairwise Wilcoxon test where the former are not sufficient, i.e. for the case of MBM vs
C-HMCNN w.r.t MAP. For the sake of completeness, table 8 provides results of pairwise Wilcoxon
test comparing all models with MBM and MBM-T w.r.t all three metrics.

Table 8: The table presents the results of the Wilcoxon signed-rank test. Each cell shows the p-
value for the null hypothesis that two related paired samples, here MBM/MBM-T and the other
model (column), come from the same distribution, with the alternative hypothesis that MBM/MBM-
T models are better in performance compared to the other model.

Metric BoxE MVM MHM MBM MVM-T MHM-T MBM-T C-HMCNN

MAP MBM 0.0005 0.0002 0.0002 - 0.0002 0.0002 0.4392 0.3386
MBM-T 0.0171 0.0261 0.0002 0.5608 0.0212 0.0002 - 0.4849

CMAP MBM 0.0007 0.0002 0.0002 - 0.0002 0.0002 0.3611 0.1506
MBM-T 0.0212 0.0134 0.0002 0.6389 0.0134 0.0002 - 0.3667

CV MBM 0.0002 0.0012 0.7407 - 0.0012 0.6890 1.0 1.0
MBM-T 0.0002 0.0002 0.0046 0.0002 0.0002 0.0046 - 1.0

D COMPARISON TO C-HMCNN AND HMCN IN TERMS OF AU(PRC)

Due to our focus on coherence and predictive performance at the same time, we use mean average
precision as the metric to evaluate predictive performance. One could, however, also use AU(PRC)
as the metric for predictive performance. For the sake of completeness, in Table 9, we present
the AU(PRC) values for the final models obtained in our experiments, and compare it with those
provided in Giunchiglia & Lukasiewicz (2020) and Wehrmann et al. (2018a). We believe that the
difference between the AU(PRC) reported for C-HMCNN in Giunchiglia & Lukasiewicz (2020) and
our work is due to the difference in the hyper-parameter search strategy. Specifically, we use MAP as
the reference metric to identify the best hyper-parameters while Giunchiglia & Lukasiewicz (2020)
uses AU(PRC) itself.
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Table 9: The table presents the area under the precision-recall curve (AU(PRC)) for the models
presented in this paper and HMCN-F (Wehrmann et al., 2018a). Here, the columns with * are taken
from their respective papers, and C-HMCNN is our implementation of the corresponding model for
which the best hyper-parameters are also obtained, like other models in our implementation, using
MAP on validation set.

Dataset C-HMCNN* HCMN-F* C-HMCNN BoxE MVM MHM MBM
ExprFUN 30.2 30.1 28.17 16.23 28.5 19.6 25.62
CellcycleFUN 25.5 25.2 24.46 12.25 21.19 18.19 21.57
DerisiFUN 19.5 19.3 17.61 10.19 14.45 17.42 18.74
SpoFUN 21.5 21.1 20.72 13.69 16.19 17.16 19.57

ExprGO 44.7 45.2 41.92 21.74 40.5 28.91 40.89
CellcycleGO 41.3 40 40.25 25.86 39.39 33.77 38.19
DerisiGO 37 36.9 36.35 16.22 34.63 34.59 36.42
SpoGO 38.2 37.6 37.09 23.4 36.54 34.37 36.38

Enron 75.6 72.4 75.18 72.67 69 24.76 74.53
Diatoms 75.8 53 70.39 1.86 68.3 38.29 78.21
Imclef07a 95.6 95 92.81 5.43 80.57 58.06 94.61
Imclef07d 92.7 92 89.29 7.96 89.73 64.33 90.48

E MAP AND CMAP

In MCL problems, where predictions consistent with a taxonomy are necessary, the model designer
might be ready to sacrifice some absolute predictive performance for increased coherence, where
the predictive performance can be measure using Mean Average Precision (MAP). First recall that
Average Precision (AP) for an instance is the weighted mean of precisions achieved at each thresh-
old, with the increase in recall from the previous threshold used as the weight, and Mean Average
Precision (MAP) is the mean of AP across instances. Given data D, let s(k)i = P (yi = 1|x(k))
denote the score generated by the model for label i given the input x(k). Then MAP is computed as

MAP(s) =
1

|D|

|D|∑
k=1

AP
(
s(k), y(k)

)
.

As described in Section 6.1, given the scores s ∈ RL produced by a model, for an input, the two
post-hoc modification functions that can be applied to make these score coherent are given as

δmG (s)i = min
lj∈AncG(li)∪{li}

sj , δMG (s)i = max
lj∈DesG(li)∪{li}

sj , (8)

where AncG(l) and DesG(l) is the set of ancestors and descendants, respectively, of l in the graph
G.

One can compute MAP after applying either one of the two modification functions. If a human were
to make consistent score corrections based on the complete hierarchy, they would either pick the
score of a label to be the minimum of its ancestors or maximum of its descendants. Once picked, the
same approach has to be applied to all the labels. We argue that in terms of correlation with human
judgment, both these methods are equivalent. Hence, one can pick the modification function based
on empirical performance of the post-hoc correction algorithm. We observe that δmG , i.e., “min of
ancestors” approach, produced higher MAP with both MVM and MBM models compared to δMG . as
can be seen in table 10. We believe that ”min of ancestors” works better because it promotes sparsity
in predictions, which is essential for the task of MLC.
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Table 10: CMAP represents post-hoc correction of scores by taking the ”minimum of ancestors”,
CMAP’ represents post-hoc correction of scores by taking ”maximum of descendants”. As seen,
CMAP produces better results for both MBM and MVM compared to CMAP’.

Dataset MVM MBM
CMAP CMAP’ MAP CMAP CMAP’ MAP

ExprFUN 37.66 14.83 38.37 38.72 1.78 38.45
CellcycleFUN 31.34 10.62 31.68 34.39 1.79 34.2
DerisiFUN 24.13 6.28 23.7 28.86 1.79 28.69
SpoFUN 25.38 7.4 25.18 30.27 1.79 30.1
ExprGO 41.78 26.15 44.92 48.56 0.8 48.45
CellcycleGO 41.09 21.64 44.25 44.23 0.8 44.28
DerisiGO 38.21 19.68 41.22 42.14 0.8 42.03
SpoGO 38.96 19.79 42.19 42.31 0.8 42.22
Enron 66.87 55.48 73.68 79.94 9.96 79.95
Diatoms 72.44 58.36 73.06 79.3 0.49 79.14
Imclef07a 76.56 69.66 77.14 91.73 3.12 91.45
Imclef07d 86.89 81.32 88.49 89.99 6.52 89.49

F PERFORMANCE ON LONG TAIL OF LABELS

Since MVM and MBM both are embedding based models, we expect the performance of the MBM
model to wary with the label frequency in the same manner as MVM. This hypothesis is corroborated
by the following table which shows the spearman rank correlation between the label frequency and
the mean average precision (MAP) for that label. The high positive correlation for all the models
suggests that the performance of both MVM and MBM often degrades as the frequency of the labels
drop. However, as shown by the table 11, both the models perform reasonably well for extremely low
frequency labels. Here, tail MAP is the mean average precision for labels with frequency 0.001%
or lower.

Table 11: Comparing the performance of long tails of labels for MBM, MBM-T and MVM. Here,
correlation is the spearman rank correlation between label frequency and MAP of the label and
tail MAP is the MAP for labels with frequency 0.001% or lower.

Dataset MBM MBM-T MVM
Correlation tail MAP Correlation tail MAP Correlation tail MAP

ExprFUN 0.72 48.91 0.73 48.68 0.75 49.45
CellcycleFUN 0.74 46.11 0.75 46.17 0.82 44.02
DerisiFUN 0.79 41.86 0.82 41.62 0.79 41.78
SpoFUN 0.8 42.67 0.77 42.75 0.79 42.15
Enron 0.84 79.19 0.83 74.97 0.91 67.63
Diatoms 0.29 86.3 0.29 85.46 0.28 82.2
Imclef07a 0.73 59.59 0.74 60.2 0.82 58.78

G EFFECT OF EMBEDDING DIMENSION

To study the effect of embedding dimensions on the performance, we plot the MAP and CV vs the
hidden dimension size for a subset of the datasets. As shown in figure 4, at extremely low dimen-
sions, the MBM model consistently outperforms the the most competitive embedding based model
MVM, demonstrating the usefulness of the favorable inductive bias of the box space in inducing
parsimonious representations.
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Figure 4: Above figure shows the variation of performance w.r.t the embedding dimensions for
model MBM and MVM on FUNCAT datasets. Note that the training and evaluation performed for
this analysis includes the root node.
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H EFFECT OF HIERARCHY ON THE MARGINAL SCORE
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(b) Cellcycle FUN
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(c) Derisi FUN
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(d) Spo FUN

0 2
1

2
2

2
3

2
4

2
5

2
6

2
7

number of children

347.5

350.0

352.5

355.0

357.5

360.0

362.5

365.0

367.5

m
ar

gi
na

l s
co

re

(e) Enron
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(f) Diatoms

Figure 5: As discussed in Section 7, the scatter plots further show that the magnitude of box em-
beddings(box volume) relate to the level of generality in taxonomy.In the figure, the marginal score
refers to box volume of a label and the number of children in the label space taxonomy refers to the
level of generality.Note that the training and evaluation performed for this analysis includes the root
node.
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