Artifact: SmartSPEC: Customizable Smart Space
Datasets via Event-driven Simulations

Andrew Chio*, Daokun Jiang*, Peeyush Gupta®, Georgios Bouloukakis**,
Roberto Yus', Sharad Mehrotra*, Nalini Venkatasubramanian®
*Dept. of Computer Science, University of California, Irvine, {achio,daokunj,peeyushg,sharad,nalini} @uci.edu
“*Dept. of Computer Science, Télécom SudParis, IP Paris, georgios.bouloukakis@telecom-sudparis.eu
"Dept. of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, ryus@umbc.edu

I. INTRODUCTION

This artifact abstract is a guideline for SmartSPEC [1], a
simulator for generating customizable smart space datasets
using semantic models of spaces, people, events and sensors.
SmartSPEC is based on two main components: (i) Scenario
Learning which produces metamodels of events and people
using input seed data; and (ii) Scenario Generation which uses
SmartSPEC data to generate a realistic smart space dataset.
SmartSPEC provides three modes of operation to generate
synthetic data varying in the level of user involvement/automa-
tion (see Fig. 1). The steps to use our system are as follows:
o Define the simulated space and its embedded sensors).
o Define MetaPeople and MetaEvents manually (@) or
automatically (€).
o Define specific people and events based on the previous
metamodels manually (@) or automatically ().
o Configure simulation/generate the synthetic dataset (@)).

“l Define Spaces, Sensors |

7 D 2
@lDefine MetaPeople, MetaEventsl |Insert Seed Data |

E|Configure Scenario Learningl:

- |Configure Scenario Generationl:

| Run Scenario Generation |

Fig. 1: SmartSPEC workflow.

II. USING SMARTSPEC

We describe the steps required to generate a synthetic dataset
following the flow @ — @ — D — @ in Fig. 1. For details
on other modes of operation and model parameters, please
refer to the guide in the SmartSPEC GitHub repository [2].

Installation & Dependencies

The SmartSPEC code and the full list of dependencies are
publicly available in [2]. We recommend using an Anaconda
environment to run the Scenario Learning component (written
with Python 3.8) and using a C++ editor/Linux environment to
run the Scenario Generation component (written with C++17).

[{"id": 1, [{"id": 3,
"description": "lobby", "description": "AP-2081"
"coordinates": [30,50,10], "mobility": "static",
"capacity": 30, "coverage": [1,3],
"neighbors": [2,3] }, ...] "interval": 60 }, ...]
(@ (b)

Fig. 2: Sample definition files: space (a) and sensor (b).

@ - Defining Spaces & Sensors

After installation, we first define Spaces.json, which contains
the logical representation of the smart space (i.e., rooms,
regions). Each element of the file is a JSON object uniquely
identified by a nonzero integer id! that contains: a 3-tuple of
XYZ coordinates to represent its centroid, a maximum
capacity (i.e., number of people allowed in space), and a
list of neighbors (i.e., accessible, adjacent spaces). Fig. 2a
shows a definition for the lobby of a smart building.

In addition, we generate a Sensors.json file to define sensors
deployed in the above space as in Fig. 2b. Each sensor is
a JSON object uniquely identified by id that contains: its
mobility (“static” or “mobile”), its coverage (i.e., set of
spaces it can cover), and observation production interval.

We recommend defining Spaces.json and Sensors.json in
a subdirectory of scenario-learning/data. In [2]
we provide sample space and sensor files in the directory
scenario-learning/data/demo.

@ - Scenario Learning: Generating MetaModels

Next, we define metamodels for events (i.e., MetaEvents) and
people (i.e., MetaPeople) characterizing types of events/people
in the smart space. SmartSPEC can extract such metamodels
automatically based on seed connectivity data (e.g., set of WiFi
probe requests, @), or manually using the definitions in [2]
(i.e., @). For @, we start with seed data as in Fig. 3a and
populate a MySQL database as created in Fig. 3b. Each field
represents a client device client_id that connects to access
point wifi_ap at time cnx_time.

Then, we define a configuration file using the learn-
ing parameters in Fig. 4. The list of parameters to spec-
ify include: start and end to denote start/end dates;
unit to denote intervals (number of minutes) to group
elements from the seed data; validity to denote time
periods (number of minutes) for which a client is assumed

IThe space with 1d=0 represents “outside of simulated space”.

wifi_ap,cnx_time,client_id
1,2017-01-01 07:30:31,81
9,2017-01-01 10:39:13,72
8,2017-01-01 10:40:08,72

CREATE TABLE
simulation_seed.connectivity (
wifi_ap VARCHAR(32) NULL,

cnx_time DATETIME NULL,
client_id VARCHAR (64) NULL);

(@) (b)
Fig. 3: Seed connectivity (a); Setting up database (b).

to remain near the access point after connecting to it;
smooth/window to denote a smoothening function to ap-
ply with specified window size; time-thresh to denote
the minimum number of minutes to realize an event; and
occ—thresh to denote the minimum number of people
to realize an event. The paths of the previously defined
spaces/sensors should also be listed under the filepaths section.
See scenario-learning/data/demo/config.txt
in [2] for a full sample configuration file.

[learners]

start = 2017-04-01
end = 2017-05-01
unit =5

validity = 10

smooth = EMA
window = 10
time-thresh = 30

occ-thresh

[filepaths]

spaces = data/demo/Spaces. json
sensors = data/demo/Sensors. json
metaevents = data/demo/MetaEvents. json
metapeople = data/demo/MetaPeople. json

Fig. 4: Sample Scenario Learning configuration file.

To execute the Scenario Learning component, run python
main.py <config> fromthe scenario-learning di-
rectory, where <config> is the configuration file path. This
step produces MetaEvents.json and MetaPeople.json in the
provided path, which serves as input for Scenario Generation.
Note that these files can be modified if desired. For the
Scenario Learning component, we provide mock connectivity
data and a corresponding configuration file. However, this
mock data is randomly generated, resulting in randomly
learned metamodels. Under normal operation, the user should
copy the generated MetaEvents.json and MetaPeople.json into
a desired subdirectory of scenario-generation/data.
For demonstration purposes, we provide a separate set of
metamodels in [2] for the Scenario Generation component,
located at scenario—-generation/data/demo.

& - Scenario Generation: Generating Entities

Using the generated metamodels from the previous step, we
initialize a set of events and people to use in the Scenario Gen-
eration component. Similar to the generation of metamodels,
this can be done automatically by running the Entity Generator
module (i.e., @), or manually using the definitions provided
in [2] (i.e., step @). A configuration file such as the one in
Fig. 5 is needed for the entity generator. Here, the important
parameters include: number and generation for each of
the sections people and events; number refers to the
number of entities to simulate and generation refers to the

manner in which new entities (if any) should be added. For
example, for people, if generation=none, then number
is ignored and the people specified in £ilepaths/people
will be used. If generation=diff, then one of each meta-
person will first be generated (up to number), then additional
people will be added (up to number). If generation=all,
then number people will be generated using metapeople.

The entity generator should be compiled with make
entitygen and run with entitygen <config>, where
<config> is a scenario generation configuration file. See
scenario—generation/data/demo/config.txt
in [2] for a full sample configuration file.

[people]
number = 500
generation = all

[events]
number = 5000
generation = diff

[synthetic-data—-generator]
start = 2018-01-08
end = 2018-01-29

[filepaths]

metapeople = data/demo/MetaPeople. json
metaevents = data/demo/MetaEvents.json
spaces = data/demo/Spaces. json
sensors = data/demo/Sensors. json
people = data/demo/People. json
events = data/demo/Events. json
output = data/demo/output/

Fig. 5: Sample Scenario Generation configuration file.

O - Scenario Generation: Generating Synthetic Data

After generating people/event files, the synthetic data gen-
erator produces a smart space dataset. To run this module,
compile it with make datagen and run with datagen
<config>, where <config> is a scenario generation con-
figuration file as specified in Fig. 5. We note the start
and end options in the synthetic-data—-generator
section, which denote the start and end dates of the simulation.
The output of this step includes two files in the output direc-
tory. First, output/trajectory.csv contains the seman-
tic trajectories of individuals (i.e., semantic location at a given
point of time). Second, output /observations.csv con-
tains sensor observations which represent that a specific sensor
“observed” phenomena caused/influenced by the presence of
a person in its coverage area.

III. CONCLUSION

The realistic synthetic smart space dataset generated by Smart-
SPEC can be used for different tasks including, but not limited
to, testing and validating approaches for sensor placement,
location-based technologies, and sensor data management.

REFERENCES

[1] A. Chio, D. Jiang, P. Gupta, G. Bouloukakis, R. Yus, S. Mehrotra, and
N. Venkatasubramanian, “Smartspec: Customizable smart space datasets
via event-driven simulations,” in 20th Int. Conf. on Pervasive Computing
and Communications (PerCom), 2022.

[2] “SmartSPEC,” https://github.com/andrewgchio/SmartSPEC, 2022.

