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A B S T R A C T   

Productivity demands, time pressure, and cognitively demanding construction tasks increase workers’ arousal 
and stress; however, it is not clear how these factors may worsen risk compensation effects and lead to unan
ticipated hazards. This paper examined the extent to which limited time and increased mental load amplify the 
risk compensatory behavior of workers. Using an immersive mixed-reality environment to simulate an electrical 
construction task, this paper applied a promising neuroimaging approach (functional near-infrared spectroscopy- 
fNIRS) to study changes in individuals’ cognitive responses and decision dynamics under normal and stressful 
conditions. The results showed that workers failed to process surrounding information due to limited cognitive 
resources, and misperceived potential risks under time pressure and increased mental demand. These cognitive 
failures then led to increased overreliance on safety protections and at-risk decisions, and decreased safety 
performance. This paper offers valuable insights into the potential neural mechanism driving risk-taking and risk 
compensatory behaviors and the importance of counteracting risk compensation bias in the construction 
industry.   

1. Introduction 

While the construction industry employs only 5.3% of the U.S 
workforce, this hazard-rich industry accounted for >19% of fatal 
occupational injuries in 2019 alone [1]. Within the electrical sector, 166 
fatal electrical injuries and 1900 nonfatal injuries were reported in 
2019, representing a 3.75% increase over recent years [2]. Problemat
ically, workers’ unsafe behaviors and errors have been identified as the 
main cause for >49% of incidents on job sites [3], a fact prompting the 
enforcement of many safety protections and regulations to increase job 
site safety and reduce human error. While these rules were imposed to 
protect workers, previous studies argued a lower-than-expected return 
for workers’ safety due to the risk compensation effect, wherein added 
safety protections decrease workers’ risk perception, leading to 
increased at-risk decision-making [4,5]. 

Compounding this problem is the reality that while safety is un
doubtedly a priority within the industry, the highly competitive nature 
of the construction industry has driven conversations about increasing 
productivity [6]. Previous studies indicate that the productivity demand 
(e.g., being pressed to work faster) negatively impacts worker safety 
performance [7,8], causing workers to work out of sequence and cut 

corners regarding safety to meet schedule and production demands [9]. 
Furthermore, construction tasks are cognitively demanding tasks that 
also require adequate attention to remain situationally aware of po
tential safety hazards [10]. The excessive mental workload negatively 
influences worker safety behaviors, likely triggering more risky behav
iors [11,12]. 

While several studies have demonstrated that productivity demand 
(time pressure) and mental demand cause workers to deviate from safety 
best-practices and overlook hazards to complete their tasks faster [7–9], 
it is not clear how these external factors may impact workers’ risk 
compensatory behaviors (i.e., suggesting that many safety interventions 
and technologies may not be as effective as intended because people 
willingly take risks due to the false sense of security they receive when 
safety interventions are in place). To fill this gap in knowledge, this 
study used a high-level risk-case scenario simulating an electrical ac
tivity with adequate safety protections in place to empirically examine 
the changes in subjects’ decision dynamics— an interdependent 
decision-making process that takes place in dynamic environments and 
is illustrated by brain activations—under time pressure and increased 
mental demands. This research offers valuable insights into increased 
risk compensatory behaviors resulting from excessive productivity and 
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mental demands on constriction job sites. 
Since this study contains several abbreviations, a list of them is 

provided for the reader’s sake: Virtual Reality (VR), Mixed Reality (MR), 
fNIRS (functional near-infrared spectroscopy), Prefrontal Cortex (PFC), 
and Dorsolateral Prefrontal Cortex (DLPFC), General Linear Model 
(GLM). 

2. Background 

2.1. Wilde’s risk compensation theory and risk decision-making 

Gerald J.S. Wilde’s Theory of Risk Homeostasis suggests people are 
inclined to trade some of their safety and health to obtain potential gains 
by taking risks [4]. Based on this psychological theory of human 
behavior, individuals alter their risk-taking behavior proportional to the 
amount of risk they perceive and find acceptable (i.e., risk tolerance or 
target level of risk) [4,13]. These behavioral choices can change based 
on individuals’ characteristics, previous experience, lifestyle, personal
ity, etc. [4]. In particular, four factors influence individuals’ target level 
of risk, including 1) the expected gains of the risky behaviors, 2) the 
expected losses of the risky behaviors, 3) the expected gains of the safe 
behaviors, and 4) the expected losses of the safe behaviors [4]. In the 
context of construction safety, these factors suggest that the benefits of 
adding safety interventions to reduce the risk of injury will decrease due 
to workers’ increased risk-taking behaviors (i.e., engaging in activities 
or procedures that may lead to injuries), since the target level of risk may 
result in a recalibration between the losses and gains of risky and safe 
behaviors. 

Few research studies have investigated risk compensatory behaviors 
in the construction safety domain. For example, Feng and his colleagues 
developed a self-reported questionnaire to identify factors contributing 
to worker behavior in terms of risk compensation through various sce
narios [14,15]. These studies argued that more safety protections do not 
necessarily result in better safety performance. Furthermore, in an 
empirical study, Hasanzadeh et al. (2020) documented changes in risk- 
taking behaviors and the risk perception of subjects while performing a 
roofing task in a simulated mixed-reality environment under differing 
levels of fall risk. They concluded that more protection lowers workers’ 
risk perception and can lead to a false sense of security that motivates 
these workers to take more risks, such as leaning over edges. Their study 
also classified the types of safety interventions that affect the levels of 
risk compensation; for example, injury-preventing interventions—such 
as guardrails—trigger a greater sense of invulnerability than injury- 
reducing protections, such as fall arrest systems [16]. In addition, 
their study identified demographic and psychological factors that 
considerably impact workers’ risk compensatory and risk-taking be
haviors [5]. To this end, subjects with high-risk tolerance were distin
guished as risk-prone (sensation seekers) who are more likely to engage 
in risk compensatory behaviors. These studies proved the significant 
adverse effects of safety interventions on workers’ safety behaviors 
resulting from the cognitive bias of risk compensation. While the im
pacts of individual characteristics on the risk compensatory behavior of 
workers have been studied, the compounding effects of such external 
factors as time pressure/productivity demand and mental demand on 
workers’ risk compensation remain unexplored. 

2.2. Impact of time pressure and productivity demand on safety-related 
behaviors 

Time pressure is defined as a lack of time to accomplish work ac
tivities and is considered a quantitative workload factor [17–19]. One is 
under time pressure when attempting to process more than the usual 
amount of information to make a proper decision in a limited amount of 
time. The decision-making process often includes several phases: signal 
detection, signal interpretation or integration, hypothesis generation or 
selection, and action selection [20]. Insufficient time negatively affects 

each of these phases to some degree [20]. 
Related studies stated time pressure may lead to a perceptual nar

rowing that leads to less situational awareness and reduced utilization of 
potential information [21]. Moreover, since it is challenging for an in
dividual to obtain all essential information in a limited time, s/he will 
try to employ various strategies such as increasing the information 
processing rate, choosing among the choice alternatives randomly, and 
focusing on parts of the data subjectively [22]. Therefore, time pressure 
weakens information processing by stimulating extensive considerations 
of gains before losses. 

The effects of time pressure on safety behaviors have been widely 
discussed in different arenas, such as driving [23,24] and the con
struction industry [8,9,25]. In the driving arena, Dogan and his col
leagues illustrated that time pressure directly affects the drivers’ goal 
preferences and decision-making [23]. They observed that drivers 
overlooked safety principles and fuel-saving under time pressure and 
only focused on completing the journey earlier. In addition, several 
driving-related studies identified time pressure as a leading factor in 
such at-risk behaviors as dangerous overtaking, over-speeding, tail
gating, and road rage [24,26–28]. 

In high-risk, complex, and dynamic construction environments, such 
external factors as time pressure and productivity demands can exac
erbate the environments’ already hazardous conditions [29]. Produc
tivity demands include high and last-minute workloads required to be 
performed promptly to avoid production disruptions. This situation 
mainly occurs when progress is behind schedule, and it provides sudden 
changes in the workers’ speed performance while performing their tasks 
[8]. Managers will attempt to compensate for the costs of delays by 
motivating workers to speed up their performance within a limited time. 
Hinze and Site proposed that the frequency of accidents is related to 
project progress; projects ahead of schedule reported few injuries; 
however, projects that were behind schedule had higher reported in
juries [30]. Accordingly, productivity demand and time pressure are 
factors that can adversely impact job site safety and cause workers to 
focus on completing the task without considering appropriate safety 
resources, which increase the likelihood of risk compensatory behaviors 
and accidents [7,8,30,31]. Thus, it is crucial to empirically study the 
changes in workers’ perception and decision-making process under time 
pressure and productivity demand. 

2.3. Impact of mental demand on safety behaviors 

Mental demand—also known as cognitive demand or mental 
load—relates to cognitive processes, including memory, attention, 
decision-making, and concentration [32]. Specifically, mental demand 
is a person’s mental effort undertaken during a task and is highly linked 
to decision-making, perceived hazard, and attention [33]. Cognitively 
demanding tasks require individuals to continuously update and 
manipulate received sensory information from their surrounding envi
ronment. Studies argue that high cognitive demand increases the like
lihood of human error in processing the received information and 
increases the individuals’ unsafe behaviors, as explained by the Fuller 
model of Task Capability Interface [34,35]. This model specifies the 
reasons behind driving accidents and loss of control, focusing on the 
balance between the driver’s capabilities and cognitive demand. As 
such, the Fuller model suggests high cognitive demand (i.e., receiving a 
lot of information simultaneously) can adversely affect individuals’ 
performance. 

Mentally demanding situations highly engage cognitive resources, 
especially working memory. Working memory is a key system of the 
cognitive process affecting reasoning, decision-making, and behavior. 
This system is regarded as short-term memory—or the short-term stor
age of received information enabling individuals to manipulate stored 
inputs to achieve their purpose [22]. Working memory resources are 
limited, which means allocating more resources to executing a task can 
limit resource availability for executing other tasks [12,22]. Under this 
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framework, if working memory is occupied by many items/tasks, the 
mental load will increase considerably, adversely affecting individuals’ 
attentional distribution and risk perception in high-risk environments 
[10]. 

This negative effect of mental demand has been discussed in various 
areas, including driving [36,37], aviation [38,39], and construction 
[10,12]. For example, Richard et al. showed that performing an auditory 
task (i.e., talking on the phone) as the secondary task while driving (the 
primary task) decreases drivers’ attention toward hazardous elements 
and causes them to perform unsafe behaviors, such as sudden breaks and 
speeding [37]. Furthermore, in an aviation-related study, Morris and 
Leung illustrated individuals’ error rates increased when carrying out a 
primary manipulation task while receiving auditory input simulta
neously [38]. 

The construction industry is a dynamic environment that requires 
allocating sufficient attentional and memory resources to search for and 
identify hazards and to remain situationally aware [10,40]. However, 
due to workers’ limited working memory capacity (cognitive resources), 
performing simultaneous cognitively demanding tasks may result in 
mental overload situations, wherein workers miss potential risks and 
make unsafe choices during at-risk decision points [12,41]. Therefore, 
external factors (time pressure and mental demand) can effectively 
modulate risk perception and risk compensatory behaviors. Although 
the effects of such factors on human performance have been widely 
investigated in the driving research domain, few research studies are 
available in the construction sector. Given the realities of risk compen
sation, it is particularly interesting to examine the impacts of cognitive 
demand on worker safety performance and risk compensatory behaviors 
when all safety protections are in place. 

2.3.1. Mental workload assessment methods 
Recent advancements in neuroimaging technologies now enable re

searchers to quantitatively measure human cognitive load based upon 
brain signals. Traditionally, subjective approaches—such as work pro
file (WP), subjective workload assessment technique (SWAT), and NASA 
task load index (NASA-TLX)—were employed to evaluate mental 
workload by having individuals report their perceived experience of 
cognitive load. While successful to some extent, these subjective ap
proaches have been increasingly replaced with such quantitative ap
proaches as functional magnetic resonance imaging (fMRI), 
electroencephalograms (EEG), and functional near-infrared spectros
copy (fNIRS), which enable improved quantification of risk perception 
in real-time. 

fMRI measures mental workload through changes in blood flow in 
the brain; when a part of the brain is activated, the blood flow increases 
in that part, which fMRI can detect through imaging the blood oxygen 
level-dependent contrast signals (BOLD). Though fMRI does not contain 
a high temporal resolution—as the blood flow changes occur over 
time—it has a high spatial resolution. Though such spatial resolution is 
beneficial in many domains, there are several constraints in using fMRI 
for data collection in construction-related studies since fMRI is not 
portable, and subjects cannot move freely and must instead remain 
enclosed inside a scanner environment. 

Alternatively, EEG measures electrical changes in the brain by 
placing electrodes on the scalp using an EEG headcover [42]. This 
method contains a high temporal resolution but low spatial resolution, 
which causes difficulties in specifying the activated brain regions since 
signals interfere with each other. Therefore, EEG is mainly suitable 
when the task execution is simple and does not involve movements, as 
the EEG hardware is highly sensitive to motion artifacts, limiting its 
application in construction-related studies involving lots of movements 
[43]. 

fNIRS technology is viable for measuring complex brain activation 
processes in more realistic conditions. Worn as a cap, fNIRS is a safe, 
non-invasive and portable device that measures mental workload by 
emitting near-infrared light signals between 700 and 900 nm into the 

scalp and then processing brain activation using transmitter and receiver 
optodes. When the light goes through the brain tissues from the trans
mitter optodes, some scatters and some are absorbed and reflected back 
to the receiver optodes [44]. Assessing the difference in optical ab
sorption properties of brain tissues, fNIRS quantifies the relative con
centration of oxygenated and deoxygenated hemoglobin (oxy-Hb and 
deoxy-Hb) in the tissue [45]. As increasing cognitive demand in
creases oxygen consumption by neurons, the hemoglobin concentration 
changes in the active brain areas [46], thereby revealing cognitive 
processes. 

Unlike fMRI, fNIRS measurements can be taken while subjects 
execute different tasks in either standing or sitting positions [44], which 
makes this method feasible for construction studies. In this domain 
space, fNIRS is also better than EEG since it is less sensitive to motion 
artifacts while having better spatial resolution [47]. For example, in a 
construction-related study, fNIRS was used to explore design–cognitive 
processes and sustainable engineering decision-making among students 
[48–50]. Additionally, lately, several studies have illustrated the po
tential of fNIRS when combined with virtual reality tools to investigate 
human cognitive behaviors [51–53]. Since fNIRS is much more robust to 
motion artifacts than EEG and can more accurately detect active brain 
areas, this study employed a wireless fNIRS device to measure partici
pants’ mental workload while executing a task under different working 
conditions simulated in a mixed-reality environment. These data pro
vided objective insights into subjects’ risk perception and arousal level, 
as evidenced by brain activations. 

There are two commonly used methods to analyze fNIRS data and 
extract the hemodynamic changes: the block averaging/classical 
method and the General Linear Model (GLM) approach. The classical 
method uses time series fNIRS data containing continuous tasks (blocks) 
and yields the mean concentration values [54]. Although most studies 
implement the classical block averaging method to calculate the he
modynamic responses, it has several limitations: Firstly, it overlooks 
information regarding the shape or time course of the fNIRS data. Sec
ondly, this method uses a simple average function and does not model 
the effects of various sources of variance, such as cardiac activities and 
respiration. On the other hand, the GLM method provides more accurate 
brain activation responses [54] since GLM works based on a linear 
combination of different components to calculate the final Hemody
namic Response Function (HRF). In particular, GLM models all the 
sources of variance (e.g., cardiac activities, respiration, blood pressure) 
while simultaneously estimating the brain activation signals (e.g., oxy- 
Hb, deoxy-Hb, and total-Hb). The following linear equation represents 
the GLM structure: 

Y = βX + ᶓ (1)  

where Y ∈ RT×N represents a matrix including obtained fNIRS data from 
time points T and capture channels N. β ∈ RT×M is the design matrix, 
which integrates a base knowledge regarding the time duration of the 
experiment, regressors for physiological noises and drifts relative to the 
baseline, and an assumed shape of the induced hemodynamic response. 
X ∈ R M×N contains the estimated weights that model confounding 
components and functional brain activity. The additional term ᶓ ∈ RT×N 

is the error term. Eventually, the final HRF value for each channel is 
achieved by a combination of physiological (e.g., blood pressure), 
functional (e.g., oxy-Hb), and drift (i.e., changes in evoked signal shape 
considering the baseline) elements plus the additional term: 

Y = yphysiological + yfunctional + drift + ᶓ (2) 

This study employed the GLM approach to analyze fNIRS data, which 
is explained in the Data analysis section in detail. 

2.4. Point of departure 

Previous studies have indicated that providing safety training or 
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applying additional safety technological advances may not increase job 
site safety as workers may fall prey to “risk compensation” cognitive bias, 
wherein increasing safety protections creates a false sense of security 
and lower perceived risk. Such risk compensation may indirectly stim
ulate workers to over-rely on protection and technological advances and 
increase their risk-taking behavior [5,16]. Given that the construction 
domain experiences a confluence of limited time, higher expected pro
ductivity, and cognitively demanding tasks—all of which embed a 
balancing between the benefits of faster work and the drawbacks of 
unsafe behaviors—previous literature argued that these external de
mands negatively affect workers’ safety behaviors. However, the extent 
to which external factors such as time pressure and cognitive demand 
impact the risk compensation bias has not been clearly investigated yet. 
Without investigating this additional parameter of external stress on 
workers’ risk compensation in construction, future investments in pro
tective equipment and safety technologies may be misplaced. 

Therefore, this study examines the impacts of time pressure and 
cognitive demand on participants’ neural activity, risk perception, de
cision dynamics, and performance measures when insulating live elec
trical lines within a simulated, mixed-reality environment. The research 
team hypothesizes that increasing stress via time pressure and additional 
cognitive demand will cause subjects to manifest risk compensatory decision 

dynamics (i.e., deciding to perform risky actions to compensate for the safety 
benefits of interventions and technological advances), evidenced via subjects’ 
safety performance and cognitive performance under differing stressful or un- 
stressful work conditions. Understanding how workers perform under 
increasingly stressful dynamic environments when there are protected 
with consistent safety interventions can provide a better understanding 
of how workers may navigate through everyday decision-making in 
various hazardous construction tasks. Furthermore, such understanding 
can guide future investments in protective equipment and/or training 
that will best protect workers under stressful conditions. 

3. Research method 

3.1. Scenario development 

This study investigates the latent effects of safety interventions on 
workers’ performance while working under time pressure and mental 
demand. To scope this study, the experiment considered electrical line 
workers. Working on live transmission and distribution (T&D) lines 
exposes line workers to hazards that may put their lives at risk, since line 
workers must be in close proximity to energized powerlines at high el
evations, resulting in high exposures to both fall and electrical 

Fig. 1. Electrical tasks in the mixed-reality environment.  
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hazards—such as arc flashes, which are an electrical discharge that in
cludes burns, blasts, and electrocution hazards. An arc flash produces 
extremely high temperatures, loud sounds/high dB levels, and intense 
pressure and radiation. While line workers are often equipped with 
required safety protections, statistics show that fatalities and injuries 
have increased by 4% in recent years [1]. Furthermore, while various 
safety training and interventions are urged to reduce the number of 
incidents in the electrical construction industry, this sector still experi
ences one of the highest fatality and injury rates. 

To address this situation, this study used a high-level risk-case sce
nario for line workers in which subjects had to move three live power
lines from an old pole to a new pole without interrupting electricity in a 
suburban residential area, as represented in Fig. 1. This activity could 
conceivably face time pressure—e.g., during storm-recovery activities, 
where power lines may be live, but poles may need to be replaced—and 
cognitive pressure—e.g., when workers must communicate with other 
line workers and/or aerial lift operators while performing the replace
ment tasks. Accordingly, this experimental scenario represents a real-life 
task that faces critical hazards for line workers, namely the two sub- 
tasks: a) moving the energized powerlines from the old pole to a new 
pole, and b) removing insulator covers from conductors. 

3.1.1. Electrical task experimental design: mixed reality (MR) environment 
While it is not practical—or even logical—to conduct this research 

study within an actual workplace and expose workers to high-voltage 
electricity lines, this study built a simulated scenario in a multi-modal 
immersive mixed-reality environment to capture the naturalistic 
behavior of subjects to investigate whether external factors (e.g., time 
pressure and mental load) can worsen the effect of risk compensation in 
the electrical construction industry. In particular, the simulated envi
ronment used electrical utility poles as these are the backbone of most 
electric distribution systems. For a variety of reasons, poles need to be 
replaced and powerlines need to be moved to a new pole. As live line 
maintenance is common, line workers must be in close proximity to 
energized powerlines at high elevations, resulting in high exposures to 
both fall and electrical hazards—such as arc flashes. Live line replace
ment has been listed as one of the hazardous tasks in electrical safety 
literature, and the research team worked closely with the National 
Electrical Contractor of America (NECA) Electri International as well as 
electrical contractors and electrical safety professionals to build an 
authentic simulation of the activities involved in pole replacements. 
These experts provided iterative feedback about the simulated envi
ronment to confirm its validity. 

To capture the realistic responses of participants to this scenario, the 
simulation required two orthogonal components: Place Illusion (PI) and 
Plausibility Illusion (Psi). PI means that the participant must feel they 
are in the setting—namely, here, the bucket at the top of the electrical 
pole—so, as they turn their heads, they should see other poles, buildings, 
the street, and other features of the suburban setting depicted in the 
simulation. Such details reinforce the feeling of PI. In turn, Psi means 
that the depicted scenario seems to be occurring, so realistic sensations 
such as arc flash simulations, sound, and wind effects needed to be 
added to the mixed-reality model to reinforce the subject’s feeling of Psi. 

Therefore, to increase the simulated electrical task’s validity as well 
as the participants’ sense of the presence, this study used a Mixed Reality 
(MR) environment that included both passive haptics and a virtual 
environment. Within their virtual reality headset, participants viewed 
themselves as performing the task in an actual bucket while wearing all 
the required personal protective equipment and using a real hot stick. In 
addition, participants could hear all the sounds of a real environment, 
such as the sound of cars, birds, etc. as the developed MR environment 
contained the environmental modalities (i.e., sounds and wind). If the 
participants approached too close to the simulated energized lines, they 
experienced an arc flash (accident) and they could see and hear both 
visual and audio representations of that event. The physical and virtual 
components were synchronized to develop a close-to-real environment. 

The study used HTC VIVE Pro Eye (110◦ field of view) with millisecond 
synchronization to immerse participants in the simulated environment. 
Here, Fig. 2 details both the virtual and physical components: 

Virtual Model. The virtual reality (VR) model of this study consisted 
of four subcomponents:  

1- Model environment: The research team used Maya (Maya 2020.4) to 
generate a 3D model environment representing a suburban area in 
the United States. This 3D model contains a street in which both old 
and new poles are located.  

2- VR trackers: Five VR trackers were used to collect individuals’ 
postural positions and to adjust the VR scene and avatar accordingly. 
These five trackers were attached to the subject’s body—wrists 
(two), arms (two), and waist (one)—and were synchronized with the 
virtual avatar’s body in real-time. Consequently, when wearing the 
HTC VIVE Pro Eye VR headset, the subject was immersed in the body 
of the virtual avatar and experienced all synchronized body move
ments accordingly.  

3- The case scenario: A simulated virtual arc flash contained both visual 
and audio representations to effectively simulate a real-world arc 
flash and to convey the sense of danger and risk.  

4- Additional environmental modalities: Wind and sound effects were 
added to the MR model to increase subjects’ sense of presence. 

To advance the usability of this system, the research team created a 
Graphical User Interface (GUI) to start and end the experiment and to 
select the experimental conditions, as needed. 

Physical Model. Including realistic haptic feedback in computer- 
generated environments—such as VR—is essential to improving sub
jects’ sense of involvement [55]. Haptic interfaces have two types, 
including active and passive. Active haptics are created using com
puters, while passive haptics convey a sense of reality by simulating 
objects’ physical properties, namely shape, weight, etc. Previous studies 
showed that using a passive haptic and an active device enhances users’ 
interactions with the virtual environments and improves their spatial 
perception of a given task [56]. In this study, passive haptics were 
employed to enhance users’ interactions with the simulated environ
ment by reproducing physical features of the virtual model to simulate 
the touch and force channels. Thereby, the physical model increased 
users’ involvement to help them choose appropriate responses. 

Four passive haptics—including insulating gloves, a bucket, a hot 
stick, and a fall arrest system—were used in the laboratory setting. To 
improve user interaction with the virtual environment, all passive 
haptics were the actual ones that line workers utilize in a real job site. 
The passive haptic systems were well synchronized with the virtual 
model, enhancing participants’ sense of presence during their simulated 
work with the hot stick. The research team administered a 5-point Likert 
scale questionnaire at the end of the experiment to measure participants’ 
sense of presence (5 = high, 1 = low); most of the participants reported a 
high presence score (Mean = 4, SD = 0.5), which demonstrates that the 
developed mixed-reality environment provided a suitable and valid 
platform for triggering naturalistic behaviors under the different 
experimental conditions. Thus, this environment enabled the study to 
evaluate the risk perception and risk-taking behavior of line workers in a 
risk-free setting. 

While the environment and experimental task were designed to limit 
the possibility of motion sickness, in the experimental protocol, the 
research team included contingencies in the event participants experi
enced motion sickness during the experiment; however, no participant 
cited discomfort during the experiment, and during the post-trial semi- 
structured interviews, no participants reported dizziness, motion sick
ness, or feeling any discomfort. Consequently, the motion-sickness 
contingencies were not considered in this study’s analysis. Further
more, before immersing the participants in the developed MR environ
ment for the experiment, each participant went through a 30-min 
training program to learn about the task, practice completing the task in 
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the immersive environment, and become familiar with the task and the 
different scenarios. By incorporating these introductions into the pre- 
experiment work protocol, the research team ensured that partici
pants’ control tests did not include additional, unintended stress. Thus, 
the fNIRS data were neither affected by motion sickness nor raw per
formance stressors. 

3.2. Data collection 

3.2.1. Experimental conditions 
A within-subject experiment was designed to examine subjects’ risk- 

taking behaviors under three different conditions when completing the 
electrical tasks with required safety protections (e.g., insulating gloves, 
hot stick, fall arrest system). The three conditions included (I) 
completing an electrical task (primary task) under a normal condition, 
(II) completing the primary task under time pressure, (III) completing 
the primary task under time pressure and a secondary task (cognitive 
demand). Here, the implemented cognitive demand task entailed a 2- 
back verbal working memory task, wherein individuals hear a 
sequence of random numbers and are supposed to say “Yes” when they 
hear the same number sequence as two trials ago. Under condition III, 
participants were required to complete the secondary 2-back task while 
performing the primary task of moving energized lines. The research 
team provided additional compensation incentives for subjects if they 
could finish Conditions II and III on time while giving accurate answers 
for the 2-back memory task in Condition III. The research team deter
mined not to perform a cognitive demand task without time pressure as 
participants would have been able to take too much time to perform the 
primary task, a factor that would have confounded the implications of 
mental demand within a realistic work environment. Table 1 represents 
a general overview of the experimental conditions and participants’ 
demographic information, which are explained later in detail within the 
following subsections. 

3.2.2. fNIRS neuroimaging experimental design 
As explained in the background section, this study assessed workers’ 

risk decision-making and neural activities using fNIRS. According to 
previous literature, the most common experimental designs in exam
ining evoked cognitive responses using fNIRS are block design, event- 
related design, and mixed design [44,54]. Block design contains tasks 
in a controlled condition with a fixed duration for each task, referred to 
as a block. A block time varies between 10 and 20 s (a short block) or 60 
to 120 s (a long block). Occasionally, the blocks are separated by an 
interval of around 60 to 120 s, as a rest condition is required to bring the 
participants’ hemodynamic responses back to their normal, baseline, 
state. Alternatively, an event-related design incorporates tasks with 
different durations and is randomly ordered. This experimental design is 
mainly used to monitor neural activation or hemodynamic responses 
associated with particular tasks or events—for example, in a risk-taking 
study developed by Holper et al. (2014), participants were asked to 
perform the task at their own speed and to make decisions at any time; 
their cognitive activations regarding decision-making events were 
analyzed to study subjects’ risk attitudes and task performance [57]. The 
experimental design that contains both a block and event setup is called 
mixed design. 

The present study incorporated an event-related experimental design 
in which neural activities were recorded to assess how subjects 
responded to situations and made decisions while executing the 

Fig. 2. Mixed-reality environment development process.  

Table 1 
Overview of experimental conditions.  

Conditions Duration (second) Time 
Constraint 

Secondary 
Task 

Number of 
Participants 

Baseline 120 – – 33 (22 M, 11 
F) 

Condition I T = Based on 
Participants’ pace to 
complete the task 

– – 33 (22 M, 11 
F) 

Condition 
II 

T Condition I – 10s ✓ – 33 (22 M, 11 
F) 

Condition 
III 

T Condition I – 10s ✓ 2-back task 33 (22 M, 11 
F)  
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designated task. The task was designed under three conditions to 
observe subjects’ cognitive responses (Fig. 3). In order to remove the 
order effect, Conditions II and III were counterbalanced. A rest time took 
place between each condition to confirm hemodynamic responses 
returned to a baseline point for each condition. 

3.2.3. Participants 
Thirty-three healthy subjects, including 22 males and 11 females, 

participated in this study. The subjects were recruited from civil engi
neering, construction engineering and management, and construction 
management technology programs. On average, participants had 1.5 
years of experience working in the construction industry. Recruiting 
student participants enabled this study to be conducted more rigorously 
in regulated experimental setups without experiential bias that can 
impact subjects’ risk-taking and risk-compensatory behaviors. All pro
cedures were approved by Purdue University’s Institutional Review 
Board (IRB). The whole experiment was carried out in a single 120-min 
session. Subjects received gift cards as compensation for participating. 

3.2.4. General procedures 
All participants were informed about the whole experiment, and they 

were asked to sign the consent form. They also filled out demographic 
questionnaires. Thereafter, participants were provided with train

ing—including PowerPoint presentations about electrical risks and 
required precautionary behaviors—as well as videos from the VR envi
ronment and verbal explanations regarding the main task and the three 
designed conditions. This training ensured subjects were familiar with 
the electrical task and the experimental process. Furthermore, a 
required explanation regarding how to conduct the 2-back memory task 
was given. 

After training, the subjects were equipped with the fNIRS cap while 
seated on a chair in a comfortable position. After calibration, partici
pants were asked to stand in the bucket and were equipped with the fall 
arrest system, VR headset, location trackers, insulating gloves, and hot 
stick to execute the line-replacement task. Subjects received a 120-s 
break between each experimental condition to ensure participants’ he
modynamic responses were back to their normal state. At the end of the 
experiment, a semi-structured interview was carried out to investigate 
subjects’ risk perception within each experimental condition and to 

assess their sense of presence in the MR environment. 

3.2.5. Performance measures 
To determine the effect of time pressure and mental load on subjects’ 

risk compensatory behaviors, this study first assessed individuals’ 
overall performance based upon three criteria: performing the designed 
task without experiencing arc flash, completing the task within the 
defined time (time pressure condition), and accurately performing the 2- 
back working memory task (cognitive demand condition). Specifically, 
the developed third person’s view within the VR model enabled the 
research team to observe whether participants have completed the task 
within the defined time and/or whether they have experienced arc flash 
in course of performing the task. Further, the research team observed the 
accuracy of each participant’s responses in the 2-back task within 
Condition III and took notes. Based on such observations, a quantitative 
combination of costs (loss) and benefits (gain) is implemented to mea
sure participants’ performance in each condition. The error rate per 
participant in Conditions was calculated based on Eqs. (3), (4) and (5). 
The collective error rate was computed by dividing the error rate of each 
condition over the total number of participants (Eq. (6)) 

Error per participantCondition I = Number of arc flashes (3)    

Collective error rate per condition =

∑III

I
Errori

n
(6)  

where i represents the conditions (I, II, III) and n represents the total 
number of participants. 

3.2.6. Apparatus 
This study used a wireless fNIRS (Brite, Fig. 4) to measure changes in 

oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb) 
throughout five brain regions. The fNIRS cap included ten transmitter 
optodes to transmit near-infrared light from 730 nm to 850 nm wave
length—with a sampling frequency of 10 Hz—and eight receiver opto
des to receive the light along the trajectory of 20 channels. The 
transmitters and receivers were designed to be located a maximum of 

Fig. 3. Event-related experimental design and description of each event (condition). To remove the order effect, Condition II and Condition III were swapped for 
some participants. 

Error per participantCondition II = Number of arc flashes +

{
0, if completed tasks under imposed time constraint

1, if tasks NOT completed under imposed time constraint (4)  

Error per participantCondition III = Number of arc flashes +

{
0, if completed tasks under imposed time constraint

1, if tasks NOT completed under imposed time constraint

+

{
0, if completed secondary tasks with a 100% accuracy

1, if secondary tasks NOT completed with a 100% accuracy (5)   
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three centimeters apart (Fig. 4). 
Fig. 5 demonstrates the arrangement of the optodes’ locations along 

with the five defined regions of interest (ROIs): A and B are the Pre
frontal Cortex (PFC), particularly the Dorsolateral Prefrontal Cortex 
(DLPFC), which is considered the cognition region and is mainly 
involved in cognitive behavior (e.g., decision-making). D, E, and C are 
the premotor cortex and supplementary motor cortex, respectively, 
which are mostly involved in initiating and executing movements. 
Further, Table 2 shows the Brodmann areas, associated anatomic loca
tion, and the correlated defined ROIs in this study. 

3.3. Data analysis 

This study used the Homer package (Homer3), a MATLAB-based 
toolbox, which provides several embedded functions to remove mo
tion artifacts, eliminate physiological noise, and analyze the captured 
hemodynamic data [58]. It must be mentioned that three subjects’ data 
were excluded in this study due to issues with the calibration process. 

While fNIRS signals are resistant to motion artifacts when compared 
to other brain activation sensors (e.g., EEG), applying necessary filtering 
during pre-processing to remove motion artifacts and physiological 

noise before analysis is vital. Since participants were located in the 
bucket, their movements were restricted to a limited area, thereby 
nullifying concerns regarding motion artifacts. Accordingly, merely the 
physiological noise (e.g., vasomotor blood pressure, respiration, and 
cardiac activities) were considered and addressed by applying a band
pass filter. For further analysis, the modified Beer-Lambert Law (ppf = 6, 
6, 6) was used to convert the recorded optical density data into a relative 
concentration in terms of oxy-Hb and deoxy-Hb. 

As mentioned in the background section, this study employed GLM to 
analyze fNIRS signals considering its advantages over the block aver
aging method. In order to employ GLM, different value parameters need 
to be adjusted based on the experimental settings. Descriptions of these 
parameters and the used values for this study are provided as:  

- “trange” (i.e., the duration of the stimuli): Defined considering the 
duration of Conditions I, II, III,  

- “glmSolveMethod” (i.e., specifies the preferred statistical approach): 
Set to 1, which specifies the GLM method to use the ordinary least 
squares.  

- “idxBasis” (i.e., determines the type of basic function to use for the 
HRF): Defined as 1 here, which is a consecutive sequence of Gaussian 
functions.  

- “paramsBasis” (i.e., parameters for the basic functiondepend on 
idxBasis): Set to 1.0, 1.0; values represent the width of the Gaussian 
and the step between consecutive Gaussians.  

- “rhoSD_ssThresh” and “flagNuisanceRMethod” (i.e., related to short 
separation channels and should be specified based on the setup of 
short separation channels): Defined as 0 since this study did not use 
short separation channels because the activity does not include many 
motions. 

Fig. 4. fNIRS Neuroimaging setup.  

Fig. 5. Graphical representation of optodes arrangement, defined RIOs, and brain activation signals.  

Table 2 
Brodmann areas, associated anatomic location, and ROI labels.  

Brodmann Areas Anatomic Location ROI 

8, 9, 10 Prefrontal Cortex (Right) A 
8, 9, 10 Prefrontal Cortex (Left) B 
6 Supplementary Motor Cortex C 
4, 40, 41, 44 Premotor Cortex (Right) D 
4, 40, 41, 44 Premotor Cortex (Left) E  
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- “driftOrder” (i.e., order of polynomial for drift correction): Set to 3, 
which uses 3rd order polynomial drift correction. 

Once all values were adjusted, the HRF was calculated for all par
ticipants across channels, and the averaged HRF of involved channels 
was used for the ROIs. The Shapiro-Wilk’s normality test and homoge
neity of variances were conducted to select proper statistical analysis for 
this study. Since the HRF results were not normally distributed (p < 0.05 
resulted from Shapiro-Wilk’s test), the appropriate statistical methods 
were used to compare brain neural activations across the normal con
dition (i.e., Condition I) with stressful conditions (i.e., Conditions II and 
III). 

4. Results and findings 

4.1. Overall performance 

In Fig. 6, error rates were calculated based on Eqs. (3), (4), (5) and 
(6); and performance was calculated as “100% - error rate%”. On 
average, subjects’ performance under time pressure (Condition II) 
demonstrated a 13% decrease compared to the normal condition. 
Similarly, under Condition III, subjects experienced errors more than 
half the time, an outcome demonstrating significantly poorer safety 
performance and indicating significantly higher risk behaviors. As the 
provided protective equipment did not change across the experimental 
conditions, this degraded safety performance signals increased risky 
behaviors under the second and third conditions, indicative of increased 
risk compensation—via overreliance on PPE—among subjects. These 
changes in visible safety performance served as the ground-truth data 
for the subsequent cognitive performance analysis. 

4.2. Changes in cognitive responses and decision dynamics 

As explained in the methodology section, this study employed GLM 
to derive the HRF from the recorded fNIRS data. The research team was 
able to control motion artifacts to a reasonable extent by fixing the fNIRS 
cap on the subjects’ heads properly. Further, subjects’ movements were 
minimal as the subjects needed to follow defined movements mostly 
involving twisting around their waists. Accordingly, motion noise
—warned about in the literature—could be kept to a minimum, and the 
research team was able to monitor the fNRIS software readout to 
confirm in real-time. In this regard, physiological noises were recog
nized as the main noises in the recorded fNIRS data. GLM considered 
potential physiological noise as one of the regressors when calculating 
HRF [54]. Thus, a low bandpass filter with a corner frequency of 0.5 was 
used to remove physiological noises (Fig. 7). 

Regional brain activation is accompanied by increased cerebral ox
ygen rate and blood flow, changes in oxy-Hb and total-Hb concentra
tions, and decreasing deoxy-Hb concentrations throughout the activated 

ROIs [59]. Accordingly, the following analyses considered changes in 
oxy-Hb concentration as primary indicators of cerebral activation [60], 
because these data experience a lower vulnerability to cross-talk as 
compared to deoxy-Hb [61]. 

The GLM revealed the HRF results across all channels under the three 
different experimental conditions. Importantly, these results took into 
consideration specific weights for each computational component (i.e., 
physiological, functional, and drift order); the weights were determined 
via a linear combination of N normalized Gaussian functions. Finally, 
the average values of the HRF results for each channel were calculated 
and later specified based upon the ROIs (Figs. 8 & 9) for further analyses. 

In order to explore the impacts of gender types, changes in brain 
activation among defined ROIs (A, B, C, D, E) for males and females are 
depicted in Fig. 8. Although there were slight differences in oxy-Hb 
concertation between males and females, no significant differences 
were observed. However, increasing trends in oxy-Hb concertation from 
the normal condition (I) to the stressful conditions (II, III) can be seen in 
all ROIs for both gender types. One reason for this result might be the 
experimental design: the time pressure and mental load manipulations 
were strong enough to dominate the impacts of gender types. Thus, 
participants’ risk compensatory behaviors and associated brain activa
tions are primarily influenced by imposed time pressure and cognitive 
demand. This is in line with previous neuroimaging studies (e.g., [62]), 
and increasing the sample size is highly recommended to further 
investigate the gender impact. In the following, the whole sample (both 
female and male participants) was used for further analysis. 

To interpret the results, Condition I was considered the baseline for 
Conditions II and III. Bean plots in Fig. 9 demonstrate the variations of 
cortical brain activation across brain regions A, B, C, D, and E for 
experimental Conditions I, II, and III. Generally, an increasing rate in 
oxy-Hb concertation manifested between the normal Condition (I) and 
the stressful conditions (II, III) for ROIs A, B, D, and E; the increasing 
rates varied based on the regions’ functionality and the experimental 
conditions. As shown, the average oxy-Hb concentration was higher in 
stressful conditions within the PFC and motor cortex. Generally, the 
increasing rate of oxy-Hb concentration from conditions I to II could be 
seen in the mean values throughout all regions except for region C. The 
reason for this inconsistency in Region C is further discussed in the 
Discussion Section and documented in Table 3. 

Statistical analyses (t-test and Wilcoxon Signed Rank test) were 
conducted to examine differences in brain activation between the 
baseline Condition I and the two stressful conditions (II and III) across 
the five different brain regions. As Table 3 shows, the analysis found no 
statistically significant differences in oxy-Hb between the normal con
dition (I) and the time pressure stressful condition (II) across ROIs (p- 
valueA = 0.151, p-valueB = 0.274, p-valueC = 0.458, p-valueE = 0.124 >
0.05). The partially significant changes in oxy-Hb were identified in 
Region D (p-valueD = 0.058 < 0.1). As shown in Table 4, there were 
statistically significant differences in oxy-Hb concentrations across ROIs 
between the normal condition (I) and Condition III, when subjects 
experienced both time pressure and cognitive demand: (p-valueA =

0.012, p-valueB = 0.035, p-valueD = 0.016, p-valueE = 0.00 < 0.05). 
However, no significant results were observed for the brain activation 
within ROI C when comparing Conditions I and III (p-valueC = 0.578 >
0.05). It must be noted that mean brain activation values for all ROIs 
were higher in III than I in all ROIs. 

Given the different functions of the brain’s right and left hemi
spheres, the research team conducted further analyses to examine the 
changes in oxy-Hb concentrations in the right and left hemispheres in 
the prefrontal and motor cortex. Fig. 10a depicts the distributions of the 
average cognitive responses in the PFC within regions A (right hemi
sphere) and B (left hemisphere) across the three experimental condi
tions. As shown, region A (right hemisphere) demonstrated higher 
hemodynamic responses than the left hemisphere under all conditions 
(Fig. 10a). Further, the brain activations in the motor cortex, including 
the right and left hemispheres, are depicted in Fig. 10b. Similarly, the 

Fig. 6. Overall performance and error rates of participants under different 
experimental conditions. 
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right hemisphere of the motor cortex (ROI D) showed higher activation 
than the left hemisphere (ROI E). In the discussion section, these dif
ferences are connected to behavioral theories and previous literature to 
better understand workers’ behavior and safety performance changes. 

5. Discussion 

This study used fNIRS data to investigate whether time pressure and 
cognitive demands affect workers’ risky decision-making when they are 
exposed to electrical risk while using required safety protections. In 
general, under a risky condition, workers’ decision dynamics will be 
highly influenced by their risk perception [63]. Workers’ analytical and 
logical assessment of received hazard information and their resulting 

risk perception engage cognitive brain resources. Taking advantage of 
fNIRS, a promising neuroimaging approach, the research team could 
assess individuals’ brain activations associated with risk perception, 
risk-taking behaviors, and decision-making dynamics in real-time. Spe
cifically, the cortical hemodynamic activations of various ROIs (A, B, C, 
D, and E), corresponding to the prefrontal and motor cortices, were 
studied while subjects completed risky electrical tasks under three 
experimental conditions (normal condition I and stressful conditions II 
and III). Brain activation serves as a reliable physiological assessment of 
workload, representing continuous variations in working memory load 
and cognitive demand over the task execution [64]. While several 
studies within the driving-safety domain have used fNIRS to observe 
decision-making and brain activation during risky situations [45,65,66], 

Fig. 7. Graphical representation of the concentration signals of two channels (each color is related to a channel) in brain ROI E. (a) Processed signal with no filter, (b) 
Processed signal using a bandpass filter. 

Fig. 8. Differences in Oxy-Hb concentrations between two gender types and across different ROIs (A, B, C, D, E).  
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there is a paucity of corresponding research in construction settings 
[44,53]. 

5.1. Impacts of stressful and demanding conditions on prefrontal cortex 
activation 

Under experimental Condition II, subjects were required to complete 
the task under time pressure while all required protections were in 
place. One of the areas of the brain that was monitored while the sub
jects were completing the task was the prefrontal cortex (PFC). The 
findings of this study showed that brain activation was increased in the 

PFC area under time pressure (Condition II) as compared to the normal 
state (Condition I), suggesting that subjects’ decision-making dynamics 
and cognitive processes were negatively affected by time pressure and 
the corresponding stress. The PFC is considered the primary part of the 
brain that supplies bias signals to other brain areas to activate neural 
pathways and map the inputs and outputs required to carry out a given 
task [67]. Therefore, changes in PFC activation are related to one’s 
thinking, information processing, and decision-making while perform
ing a task. Important for our context is the fact that working under time 
pressure increases the task difficulty since one needs to sustain attention 
and process received information from the environment in a relatively 

Fig. 9. Oxy-Hb concentrations across different ROIs A, B, C, D, E for the three experimental conditions (A and B: prefrontal cortex, C: supplementary motor cortex, D 
and E: premotor cortex). 

Table 3 
Statistical results comparing the normal, fully protected, Condition I and the 
stressful, time pressure, Condition II across ROIs.  

ROI Conditions Mean STD Test Statistics p-value 

A I 2.889 8.043 −1.435b 0.151 
II 7.423 20.962 

B I 2.325 6.109 −1.117a 0.274 
II 5.893 14.761 

C I 4.184 12.048 0.753a 0.458 
II 1.483 18.085 

D I 4.346 7.139 −1.898b 0.058* 
II 10.556 23.990 

E I 1.139 4.637 −1.538b 0.124 
II 5.951 12.881 

** p-value < 0.05. 
a t value from t-test. 
b Z value from Wilcoxon Signed Rank test. 
* p-value < 0.1. 

Table 4 
Statistical results comparing the normal, fully protected, Condition I and the 
stressful, time pressure and cognitive demand, Condition III across all ROIs.  

ROI Conditions Mean STD Test Statistics p-value 

A I 2.889 8.043 −2.710a 0.012** 
III 10.772 16.392 

B I 2.325 6.109 −2.220a 0.035** 
III 9.106 13.198 

C I 4.184 12.048 −0.564a 0.578 
III 7.151 26.728 

D I 4.346 7.139 −2.403b 0.016** 
III 14.913 18.392 

E I 1.139 4.637 −3.976a 0.000** 
III 11.193 13.495 

* p-value < 0.1. 
a t value from t-test. 
b Z value from Wilcoxon Signed Rank test. 
** p-value < 0.05. 
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shorter amount of time than under a normal condition (Condition I). 
Previous research demonstrated that task difficulty positively correlates 
with the PFC activation [68,69], so the more difficult a task is, the more 
the PFC will be activated. This fact makes PFC activation a significant 
proxy for attempts undertaken in decision-making [68]. Consequently, 
the findings indicated in Fig. 9 and Tables 3 and 4—namely, that 
experimental Condition II caused a higher activation in the PFC than the 
normal condition (Condition I)—reveal time pressure increased the 
difficulty imposed on the participants to complete the task under this 
condition. This conveys that as they found the situation difficult while 
experiencing a false sense of security (due to having required pro
tections), they focused on increasing their gains (i.e., completing the 
task on time and obtaining additional compensation) in a limited time 
and overlooking the risk inherent in the task. 

In Condition III, participants performed the same task under both 
time pressure and a designed 2-back test, which highly engaged working 
memory. Working memory is mainly regarded as short-term memory, 
relies most closely on the PFC, and is involved in the maintenance, 
integration, and manipulation of received information [12]. An increase 
in working memory load causes increased cognitive activation across the 
PFC, specifically in the DLPFC (dorsolateral prefrontal cortex) [68]. The 
results of this study illustrated a significant increase in oxy-Hb concen
tration over the DLPFC under Condition III compared to the normal 
condition (Condition I). This high increase in the brain activation within 
the PFC demonstrated the extent to which working memory was 
engaged in processing the received information. Considering limited 

working memory capacity, our application of a 2-back test during the 
subjects’ risky primary electrical task imposed a high demand on 
working memory, leading to failed processing of all hazard information 
associated with the surrounding environment, overlooked associated 
details, and/or overreliance on safety interventions. Our findings are 
well-aligned with various studies that have investigated drivers’ cogni
tive behavior and induced changes in working memory load by con
ducting n-back tests during simulated driving activities [36,70]. 

Additionally, the results show predominant lateralization to the right 
side of the DLPFC due to multiple demands placed on subjects’ working 
memory and their required attention under stressful conditions (Con
ditions II and III). Such results indicate weighting of risks and gains to
ward decision making in these conditions involves a complex neural 
network in the DLPFC area. Increased DLPFC activation during dynamic 
risky decision-making is linked to both cognitive and affective compo
nents, and within such demanding conditions as conditions II and III, 
while equipped with safety protections, participants highly focused on 
gains (i.e., extra compensation) rather than focusing on losses (i.e., 
experiencing arc flash). These observations are in accord with a risk- 
taking study, in which participants with a higher focus on gains, 
demonstrated higher activation within the DLPFC [57]. Furthermore, 
with respect to the differences in both activation and the functionality of 
the left and right parts of the PFC, the results of this study are well- 
aligned with previous studies that have indicated working memory 
load can induce a higher activation within the right DLPFC [36,70]. 

Fig. 11 depicts heat maps of brain activations of a participant across 

Fig. 10. Oxygenated hemoglobin (oxy-Hb) concentrations of the right and left hemispheres within prefrontal and motor cortices under the three different exper
imental conditions. 

Fig. 11. Heat maps representing the brain activation of a participant across three experimental conditions (I, II, III)- The range represents the brain activations, which 
can change from low activation (blue) to high activation (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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the three experimental conditions. As shown, the induced brain acti
vation is evident across different ROIs from Condition I to Condition III, 
as task difficulty and cognitive demand increase. The PFC illustrates a 
higher cognitive response (red), which overlaps here with more stress
ful—and, per the discussion above, riskier—Conditions II and III, 
reaching the highest in Condition III. These findings demonstrate the 
dominant function of the PFC in the risk decision-making process. In 
addition, greater activation is visible in the right part of the brain versus 
the left across different conditions, indicating a more significant cogni
tive response in the right PFC (particularly in the DLPFC) for working 
memory demanding situations. 

5.2. Impacts of stressful and demanding conditions on motor cortex 
activation 

This study also measured the activation of the motor cor
tex—represented in ROIs C, D, and E—while subjects completed the 
electrical tasks. ROI C is mainly the supplementary motor cortex, which 
is correlated with the decision-making process for starting a movement 
and plays an important role in the initiation of movements; ROIs D and E 
are mostly considered the primary motor cortex used to execute move
ments. The findings demonstrate an increasing rate in the oxy-Hb con
centration in both regions D and E from Condition I to Condition III. 
Previous literature stated that work intensity directly modulates brain 
hemodynamic changes, as higher work intensity results in more pro
nounced brain activations [71–73]. Since this research simulated the 
designed task in a mixed-reality environment, participants carried out 
the same work, using a real hot stick with the same weight and length 
analogous to an actual one used in a real workplace. To this end, during 
stressful conditions, they made more efforts to move the hot stick 
quickly. Accordingly, the derived results showed an increased activation 
rate associated with the motor cortex regions (D and E) that perfectly 
supported the positive correlation between work intensity and brain 
activation. 

Holper and his colleagues indicated that motor cortex activation is 
highly correlated with task complexity [74]. They observed higher he
modynamic responses over the same regions related to the motor cortex 
for a complex finger tapping task compared to a simple task. The results 
of this present study revealed the same fact: as the experimental con
dition got more complicated from Condition I (normal condition) to 
Condition III (stressful and complex condition), the hemodynamic re
sponses increased within ROIs D and E. Therefore, both work intensity 
and complexity increase workers’ mental arousal associated with the 
motor cortex. This high level of arousal can increase their mental fatigue 
and impair their situational awareness, factors directly related to 
increased risky behaviors. 

ROI C, besides initiating movements, plays a broader role in cogni
tive behavior, making it an important factor in our study to determine 
how task conditions affect risk compensation. ROI C is involved in 
different cognitive functions such as planning movement sequences, 
inhibiting and controlling complex movements, and learning new 
movements [75–77]. This ROI plays an important role in linking 
cognition to action as it modulates the coordination between the PFC 
and the motor cortex [75,76]. In this study, subjects always experienced 
the normal condition as the first experimental condition, so when they 
were performing the same task under Condition II, ROI C started to work 
automatically in a routine fashion based on learned-movement skills in 
the previous condition. As such, the brain activity in ROI C decreased as 
participants mastered the required tasks. This observation is in accord 
with previous literature stating that learning and practicing a task will 
lower brain activations within the supplementary motor cortex (i.e., ROI 
C in this study) [78,79]. Thus, previous experience with the electrical 
task in Condition I played an influential role in the sense of complacency 
with the task, especially under stressful and demanding conditions. 

Furthermore, this study coincided with several studies indicating the 
involvement of the supplementary motor cortex (i.e., ROI C) in 

attention-demanding situations, where high-level cognitive processes 
are required to coordinate cognitive behaviors (e.g., decision-making) 
and movement executions (e.g., acting) [80–82]. In this study, the 
subjects were familiar with the task but needed constant attention to 
avoid electrical accidents (i.e., arc flash) while simultaneously providing 
accurate responses to the 2-back task in Condition III, which increasingly 
activated the brain within ROI C. This result indicates complex activities 
can impose high mental demands on humans. This observation is in 
accordance with Wilson et al., whose research investigated the activa
tion of the supplementary motor cortex using fNIRS when participants 
were performing in-phase (i.e., symmetrical) and anti-phase (i.e., 
asymmetrical) movement patterns [83]. They found that the supple
mentary motor cortex was more activated during anti-phase movement 
patterns, which needed more attention. Due to limited attentional re
sources, we anticipate that high cognitive demands can significantly 
increase at-risk behaviors by causing workers to overlook potential 
electrical hazards. It is worth mentioning that despite a wide range of 
research, the supplementary motor cortex is still one of the controversial 
brain areas in the neuroscience domain, and it needs further research. 

5.3. Impacts of stressful and demanding conditions on risk perception and 
risk compensatory behaviors 

Notably, when the research team asked participants about the risks 
they perceived in each condition, they reported Conditions II and III as 
high-risk because subjects reported feeling stressed. However, as re
ported by them, their evaluated risk and stress were merely because of 
the likelihood of losing additional compensation, not due to the poten
tial possibilities of fatal consequences resulting from risky actions. Re
sults show that such high mental demand increased the subjects’ error 
rate (Fig. 6), conceivably because cognitive resources (e.g., working 
memory) are capacity limited; allocating more cognitive recourse to a 
task will reduce the resource availability for other tasks. Consequently, 
individuals could not process and analyze the received information 
properly, and they failed to perceive potential risks (i.e., lower risk 
perception), which significantly increased their risk compensatory be
haviors. Consequently, over-relying on safety interventions, not paying 
attention to the potential hazards and risks, and focusing on benefits 
(gains) caused workers to ignore electrical threats, leading to a decrease 
in their safety performance and well-being. Translated into a real-world 
context, the increase in mental workload in the face of a risky con
struction task can lead to performance breakdown, with potentially fatal 
consequences. 

Therefore, the observed changes in the intensity of prefrontal acti
vation (oxy-Hb concentration) correlated with changes in subjects’ 
perceived risk as well as with their overall safety performance, all of 
which indicate time pressure and increased mental load affect workers’ 
decision dynamics and risk compensatory behaviors. In particular, while 
the simulated energized lines were completely insulated to reduce the 
likelihood of electrical incidents, arc flashes still occurred due to sub
jects’ lower perceived electrical risk, overreliance on the protections in 
place, and violating clearance distance, all of which combine to show 
increased risk-taking behavior and the risk compensation effect. As an 
external factor, time pressure caused subjects to overlook the electrical 
risk (loss) since protections were in place and to merely focus on gains 
(extra compensation). As such, they decided to speed up to complete the 
task on time by over-relying on the safety protections. Interestingly, 
participants’ performance decreased further when they were required to 
complete the designated task under both time pressure and cognitive 
demand. As Fig. 6 shows, there was a 42% decline in individuals’ overall 
performance under the time pressure and cognitive demand condition 
(III) compared to Condition I. In addition, the error rate increased due to 
reduced accuracy in the cognitive demand task, inability to complete the 
task under time pressure, and lower safety performance (experiencing 
more arc flashes). As such, when both time pressure and cognitive de
mand were in place, participants completely ignored the electrical risk 
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inherent in the task. Importantly, the protections in place within the 
scenario only reduced the likelihood of incidents, so precautionary be
haviors were needed to complete the task safely. Therefore, with lower 
perceived electrical risk and the increased work intensity and mental 
demand, the subjects focused on completing the task on time while 
performing the secondary task accurately, which significantly increased 
their risk-taking behaviors and error rates. Accordingly, the negative 
impact of risk compensation worsened when the participants were under 
stressful conditions; they over-relied on the insulating devices while 
working on live lines. 

Furthermore, participants’ cognitive resources (i.e., working mem
ory) were engaged in stressful conditions to analyze the situation, 
perceive the associated risks, manipulate the information, and decide 
accordingly. As discussed, working memory is capacity limited, and 
high–cognitive demand situations can result in information processing 
failures. In such situations, individuals need to process a high amount of 
information simultaneously which can eventually lead to misperception 
and impaired task performance [84]. The results in Condition III confirm 
this point as participants were asked to complete the main task while 
concentrating on the secondary task. They were under high cognitive 
demands, which highly engaged working memory, and they were unable 
to analyze the risk associated with the condition correctly; thereby, their 
overall performance decreased. 

In summary, the research team hypothesizes that increasing stress 
via time pressure and additional cognitive demand will cause subjects to 
manifest risk compensatory decision dynamics, evidenced via subjects’ 
worsening safety and cognitive performance under the stressful work 
conditions. We tested this hypothesis by placing subjects within an 
immersive mixed-reality environment that simulated a real, high-risk 
electrical task and observed their different behaviors and neurophysio
logical responses within a neutral, controlled (unstressful), condition 
and then under different stress loads (time pressure, and time-and- 
increased mental load pressure). By maintaining the safety in
terventions across all three conditions, we were able to see how subjects’ 
risk-taking changed when faced with different stress loads—any 
observed degradation in safety performance (manifested here by 
increased counts of simulated arc flashes within the mixed-reality 
environment) would identify risk compensation bias because despite 
risks continuing at the same level, worsening safety behaviors would 
illustrate a recalibration in the subjects’ cost-benefit analysis. Further
more, by monitoring safety performance alongside fNIRS data, this 
experimental design allowed the study to test whether outward safety 
behaviors map to neurophysiological data to determine whether risk 
compensation coincides with worsening cognitive performance under 
stressful conditions. Any significant alignments between safety perfor
mance and fNIRS data would suggest opportunities for harnessing fNIRS 
data to passively monitor workers’ worsening safety performance in real 
time. 

5.4. Contributions and limitations 

Many researchers have attempted to explain stressed decision- 
making processes using various theoretical and methodological ap
proaches. In a high-risk work environment, making a decision necessi
tates incorporating and integrating all information regarding the 
decision’s potential positive and negative outcomes. But under time 
pressure and higher mental demand, workers may not be able to inte
grate all information sensibly, a reality that may lead to changes in their 
risk-taking behaviors or strategies. Compensatory decision-making is 
one such common strategy shift, wherein individuals under time pres
sure and/or mental load become more gain-seeking and more likely to 
overlook, underestimate, or misperceive the risk(s) inherent in a task. In 
other words, if the risk profile and safety behaviors of a task have not 
changed but the perceived benefits associated with changing proced
ures/disregarding safety precautions have changed due to time pressure 
and/or mental load, compensatory decision-making will likely manifest. 

This study found that time pressure and high mental load affect 
workers’ safety behaviors significantly more when they are provided 
with safety protections, a result that suggests stressed workers recali
brate their cost-benefit risk analysis to a greater degree when provided 
with additional safety interventions. The present study’s findings pro
vide an innovative approach to investigating how time pressure and 
mental load affect workers’ decision dynamics by examining these 
changes in subjects’ risk perception, risk-taking behavior, and perfor
mance measures. By understanding the negative effects of risk 
compensation in construction industry during time-pressured or 
mentally taxing task loads, this project is able to reveal how humans 
navigate through everydaydecision-making under time pressure, pro
ductivity demands, and mental load in a variety of contexts. Such work 
lays the foundation for improving the current T&D safety training and 
for designing an evidence-based intervention to effectively mitigate the 
negative impact of risk compensation. 

The proposed study contributes to the existing body of knowledge by 
providing empirical evidence that the effectiveness of safety in
terventions can be negated due to stressful working conditions (i.e., 
working under time pressure and mental demand). Beyond providing 
evidence for why investments in safety do not always deliver expected 
returns, the results here illustrate that demanding conditions can exac
erbate the negative effects of the risk compensation bias and induce 
workers to finish their tasks faster while taking additional risks—which 
they feel empowered to do given their protective equipment. Even in the 
immediate term, such results reveal opportunities for obtaining safety 
improvements through workplace-culture changes, especially those 
related to stress—i.e., time pressure and mental demand. While business 
stressors will continue to sow stress in construction environments, the 
results here suggest immediate amendments to workloads and time 
constraints may deliver immediate returns to safety. 

Additionally, the empirical evidence here lays the foundation for 
future research targeting novel technological interventions in conjunc
tion with other safety practices to effectively mitigate the negative ef
fects of risk compensation within the construction domain. In particular, 
this research’s findings highlight opportunities to harness neurophysi
ological data in the construction-safety setting to potentially assess 
problematic mental effort involved in worker operations; accordingly, 
such evidence demonstrates neurophysiological sensors may provide a 
promising tool for measuring neural efficiency in many contexts, 
including various safety assessments and training scenarios. In-situ 
monitoring of workers’ mental effort raises a valuable potential 
resource for providing feedback to the workers themselves or to the 
automated systems/robots that they are interacting with in future job 
sites, rendering impact in the near and long term. 

This research still faces several limitations that future studies can 
tackle. First, in this study, the subjects were students with related ex
periences. Second, risk compensation was studied at the individual level. 
Third, while the research team collected several neuro- 
psychophysiological responses for this study, only fNIRS neuroimaging 
was discussed here to capture the physiological data associated with 
individuals’ brain activation under risky situations. 

6. Conclusions 

Given the risk compensation effect hypothesized to diminish the 
safety gains of personal protective equipment and safety interventions in 
the construction domain, this paper described the latent effects of safety 
interventions on subjects’ decision dynamics by applying fNIRS tech
nology to measure cognitive brain responses while subjects performed a 
simulated powerline replacement task within a mixed-reality environ
ment. To demonstrate how productivity demand (i.e., being pushed to 
work faster) and cognitive demand (i.e., performing a parallel secondary 
task) can adversely influence safety performance and worsen the nega
tive effects of risk compensation, subjects conducted the simulated 
powerline replacement task under a normal condition, a time-pressure 
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condition, and a cognitive demand–with–time pressure condition. 
The considerable increasing rate visible in the brain’s cognitive re

sponses between Condition I (i.e., normal condition) to Conditions II and 
III (i.e., stressful conditions) across all defined ROIs reveals that the 
effectiveness of safety interventions decreases within stressful condi
tions due to the increased risk-taking behaviors of workers, who expe
rienced more simulated electrical accidents under stressful conditions. 
Greater activation was found in the right part of the brain across 
different conditions—as was especially visible in the more significant 
cognitive response in the right PFC (particularly in the DLPFC) for the 
stressful and taxed working memory situations. Notably, under stressful 
conditions, when participants perceived the situation as safe (due to the 
protections in place), they changed their decision strategies, a result that 
suggests risk compensation recalibrated the cost-benefit analysis. As a 
result, the subjects’ brain activations illustrated lower perceived elec
trical risk while they focused on gains (i.e., completing the defined task 
in less time and performing additional cognitive tasks to receive addi
tional compensation). Thus, a better understanding of how neural ac
tivity changes with time pressure, productivity, and cognitive demand in 
risky construction tasks offers valuable insights into understanding the 
potential neural mechanisms driving risk-taking and risk compensatory 
behaviors. 

There are many possible avenues for future research developments 
based on the present study: Firstly, the experiment can be repeated using 
electrical workers with various work experiences to determine whether 
experience impacts performance. Secondly, future researchers might 
assess the impacts of peer effect on workers’ decision-making under risk. 
Thirdly, future studies should investigate the impacts of changes in time 
pressure–intensity and the complexity level of the working memory task 
or the main task (i.e., the line replacement task implemented in this 
research) on workers’ risk compensatory behavior and decision 
dynamics. 
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Transports - Sécurité 66 (2000) 47–57, https://doi.org/10.1016/S0761-8980(00) 
90006-2. 

[35] P. Mitropoulos, G. Cupido, Safety as an emergent property: investigation into the 
work practices of high-reliability framing crews, J. Constr. Eng. Manag. 135 (2009) 
407–415, https://doi.org/10.1061/(ASCE)CO.1943-7862.0000002. 

[36] A. Unni, K. Ihme, M. Jipp, J.W. Rieger, Assessing the driver’s current level of 
working memory load with high density functional near-infrared spectroscopy: a 
realistic driving simulator study, Front. Hum. Neurosci. 11 (2017) 167, https://doi. 
org/10.3389/FNHUM.2017.00167/BIBTEX. 

[37] C.M. Richard, R.D. Wright, C. Ee, S.L. Prime, Y. Shimizu, J. Vavrik, Effect of a 
concurrent auditory task on visual search performance in a driving-related image- 
flicker task, Hum. Factors 44 (2002) 108–119, https://doi.org/10.1518/ 
0018720024494874. 

[38] C.H. Morris, Y.K. Leung, Pilot mental workload: how well do pilots really perform? 
Ergonomics. 49 (2006) 1581–1596, https://doi.org/10.1080/ 
00140130600857987. 

[39] P.C. Schutte, A.C. Trujillo, Flight crew task management in non-normal situations, 
in: Proceedings of the Human Factors and Ergonomics Society 40th Annual 
Meeting, 1996, pp. 244–248, https://doi.org/10.1177/154193129604000422. 

[40] S. Pooladvand, H. Taghaddos, A. Eslami, A.N. Tak, U. Hermann, Evaluating mobile 
crane lift operations using an interactive virtual reality system, J. Constr. Eng. 
Manag. 147 (2021) 04021154, https://doi.org/10.1061/(ASCE)CO.1943- 
7862.0002177. 

[41] M.R. Endsley, Toward a theory of situation awareness in dynamic systems, Hum. 
Factors 37 (1995) 32–64, https://doi.org/10.1518/001872095779049543. 

[42] Y. Liu, M. Habibnezhad, S. Shayesteh, H. Jebelli, S. Lee, Paving the way for future 
EEG studies in construction: dependent component analysis for automatic ocular 
artifact removal from brainwave signals, J. Constr. Eng. Manag. 147 (2021) 
04021087, https://doi.org/10.1061/(ASCE). 

[43] M.W. Eysenck, M.T. Keane, Cognitive Psychology: A Student’ Handbook, 
Psychology Press, 2015 (ISBN: 9781315778006). 

[44] M. Hu, T. Shealy, Application of functional near-infrared spectroscopy to measure 
engineering decision-making and design cognition: literature review and synthesis 
of methods, J. Comput. Civ. Eng. 33 (2019) 04019034, https://doi.org/10.1061/ 
(ASCE)CP.1943-5487.0000848. 

[45] H. Tsunashima, K. Yanagisawa, Measurement of brain function of car driver using 
functional near-infrared spectroscopy (fNIRS), Comput. Intellig. Neurosci. 2009 
(2009), 164958, https://doi.org/10.1155/2009/164958. 

[46] R.B. Buxton, E.C. Wong, L.R. Frank, Dynamics of blood flow and oxygenation 
changes during brain activation: the balloon model, Magn. Reson. Med. 39 (1998) 
855–864, https://doi.org/10.1002/MRM.1910390602. 

[47] Y. Zhu, C. Rodriguez-Paras, J. Rhee, R.K. Mehta, Methodological approaches and 
recommendations for functional near-infrared spectroscopy applications in HF/E 
research, Hum. Factors 62 (2020) 613–642, https://doi.org/10.1177/ 
0018720819845275. 

[48] J. Du, Q. Zhu, Y. Shi, Q. Wang, Y. Lin, D. Zhao, Cognition digital twins for 
personalized information systems of smart cities: proof of concept, J. Manag. Eng. 
36 (2019) 04019052, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000740. 

[49] M. Hu, T. Shealy, M. Hallowell, D. Hardison, Advancing construction hazard 
recognition through neuroscience: measuring cognitive response to hazards using 
Functional Near Infrared Spectroscopy, in: Construction Research Congress 2018: 
Safety and Disaster Management, American Society of Civil Engineers, 2018, 
pp. 134–143, https://doi.org/10.1061/9780784481288.014. 

[50] M. Hu, T. Shealy, J. Grohs, R. Panneton, Empirical evidence that concept mapping 
reduces neurocognitive effort during concept generation for sustainability, 
J. Clean. Prod. 238 (2019), 117815, https://doi.org/10.1016/J. 
JCLEPRO.2019.117815. 

[51] E. Aksoy, K. Izzetoglu, E. Baysoy, A. Agrali, D. Kitapcioglu, B. Onaral, Performance 
monitoring via Functional Near Infrared Spectroscopy for virtual reality based 
basic life support training, Front. Neurosci. 13 (2019) 1336, https://doi.org/ 
10.3389/fnins.2019.01336. 

[52] J. Ansado, C. Chasen, S. Bouchard, G. Northoff, How brain imaging provides 
predictive biomarkers for therapeutic success in the context of virtual reality 
cognitive training, Neurosci. Biobehav. Rev. 120 (2021) 583–594, https://doi.org/ 
10.1016/J.NEUBIOREV.2020.05.018. 

[53] Y. Shi, Y. Zhu, R.K. Mehta, J. Du, A neurophysiological approach to assess training 
outcome under stress: a virtual reality experiment of industrial shutdown 
maintenance using Functional Near-Infrared Spectroscopy (fNIRS), Adv. Eng. 
Inform. 46 (2020), 101153, https://doi.org/10.1016/J.AEI.2020.101153. 

[54] M.A. Yücel, A.V. Lühmann, F. Scholkmann, J. Gervain, I. Dan, H. Ayaz, D. Boas, R. 
J. Cooper, J. Culver, C.E. Elwell, A. Eggebrecht, M.A. Franceschini, C. Grova, 
F. Homae, F. Lesage, H. Obrig, I. Tachtsidis, S. Tak, Y. Tong, A. Torricelli, 
H. Wabnitz, M. Wolf, Best practices for fNIRS publications, Neurophotonics. 8 
(2021), 012101, https://doi.org/10.1117/1.NPH.8.1.012101. 
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