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ABSTRACT

Productivity demands, time pressure, and cognitively demanding construction tasks increase workers’ arousal
and stress; however, it is not clear how these factors may worsen risk compensation effects and lead to unan-
ticipated hazards. This paper examined the extent to which limited time and increased mental load amplify the
risk compensatory behavior of workers. Using an immersive mixed-reality environment to simulate an electrical
construction task, this paper applied a promising neuroimaging approach (functional near-infrared spectroscopy-
fNIRS) to study changes in individuals’ cognitive responses and decision dynamics under normal and stressful
conditions. The results showed that workers failed to process surrounding information due to limited cognitive
resources, and misperceived potential risks under time pressure and increased mental demand. These cognitive
failures then led to increased overreliance on safety protections and at-risk decisions, and decreased safety
performance. This paper offers valuable insights into the potential neural mechanism driving risk-taking and risk
compensatory behaviors and the importance of counteracting risk compensation bias in the construction

industry.

1. Introduction

While the construction industry employs only 5.3% of the U.S
workforce, this hazard-rich industry accounted for >19% of fatal
occupational injuries in 2019 alone [1]. Within the electrical sector, 166
fatal electrical injuries and 1900 nonfatal injuries were reported in
2019, representing a 3.75% increase over recent years [2]. Problemat-
ically, workers’ unsafe behaviors and errors have been identified as the
main cause for >49% of incidents on job sites [3], a fact prompting the
enforcement of many safety protections and regulations to increase job
site safety and reduce human error. While these rules were imposed to
protect workers, previous studies argued a lower-than-expected return
for workers’ safety due to the risk compensation effect, wherein added
safety protections decrease workers’ risk perception, leading to
increased at-risk decision-making [4,5].

Compounding this problem is the reality that while safety is un-
doubtedly a priority within the industry, the highly competitive nature
of the construction industry has driven conversations about increasing
productivity [6]. Previous studies indicate that the productivity demand
(e.g., being pressed to work faster) negatively impacts worker safety
performance [7,8], causing workers to work out of sequence and cut
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corners regarding safety to meet schedule and production demands [9].
Furthermore, construction tasks are cognitively demanding tasks that
also require adequate attention to remain situationally aware of po-
tential safety hazards [10]. The excessive mental workload negatively
influences worker safety behaviors, likely triggering more risky behav-
iors [11,12].

While several studies have demonstrated that productivity demand
(time pressure) and mental demand cause workers to deviate from safety
best-practices and overlook hazards to complete their tasks faster [7-9],
it is not clear how these external factors may impact workers’ risk
compensatory behaviors (i.e., suggesting that many safety interventions
and technologies may not be as effective as intended because people
willingly take risks due to the false sense of security they receive when
safety interventions are in place). To fill this gap in knowledge, this
study used a high-level risk-case scenario simulating an electrical ac-
tivity with adequate safety protections in place to empirically examine
the changes in subjects’ decision dynamics— an interdependent
decision-making process that takes place in dynamic environments and
is illustrated by brain activations—under time pressure and increased
mental demands. This research offers valuable insights into increased
risk compensatory behaviors resulting from excessive productivity and
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mental demands on constriction job sites.

Since this study contains several abbreviations, a list of them is
provided for the reader’s sake: Virtual Reality (VR), Mixed Reality (MR),
fNIRS (functional near-infrared spectroscopy), Prefrontal Cortex (PFC),
and Dorsolateral Prefrontal Cortex (DLPFC), General Linear Model
(GLM).

2. Background
2.1. Wilde’s risk compensation theory and risk decision-making

Gerald J.S. Wilde’s Theory of Risk Homeostasis suggests people are
inclined to trade some of their safety and health to obtain potential gains
by taking risks [4]. Based on this psychological theory of human
behavior, individuals alter their risk-taking behavior proportional to the
amount of risk they perceive and find acceptable (i.e., risk tolerance or
target level of risk) [4,13]. These behavioral choices can change based
on individuals’ characteristics, previous experience, lifestyle, personal-
ity, etc. [4]. In particular, four factors influence individuals’ target level
of risk, including 1) the expected gains of the risky behaviors, 2) the
expected losses of the risky behaviors, 3) the expected gains of the safe
behaviors, and 4) the expected losses of the safe behaviors [4]. In the
context of construction safety, these factors suggest that the benefits of
adding safety interventions to reduce the risk of injury will decrease due
to workers’ increased risk-taking behaviors (i.e., engaging in activities
or procedures that may lead to injuries), since the target level of risk may
result in a recalibration between the losses and gains of risky and safe
behaviors.

Few research studies have investigated risk compensatory behaviors
in the construction safety domain. For example, Feng and his colleagues
developed a self-reported questionnaire to identify factors contributing
to worker behavior in terms of risk compensation through various sce-
narios [14,15]. These studies argued that more safety protections do not
necessarily result in better safety performance. Furthermore, in an
empirical study, Hasanzadeh et al. (2020) documented changes in risk-
taking behaviors and the risk perception of subjects while performing a
roofing task in a simulated mixed-reality environment under differing
levels of fall risk. They concluded that more protection lowers workers’
risk perception and can lead to a false sense of security that motivates
these workers to take more risks, such as leaning over edges. Their study
also classified the types of safety interventions that affect the levels of
risk compensation; for example, injury-preventing interventions—such
as guardrails—trigger a greater sense of invulnerability than injury-
reducing protections, such as fall arrest systems [16]. In addition,
their study identified demographic and psychological factors that
considerably impact workers’ risk compensatory and risk-taking be-
haviors [5]. To this end, subjects with high-risk tolerance were distin-
guished as risk-prone (sensation seekers) who are more likely to engage
in risk compensatory behaviors. These studies proved the significant
adverse effects of safety interventions on workers’ safety behaviors
resulting from the cognitive bias of risk compensation. While the im-
pacts of individual characteristics on the risk compensatory behavior of
workers have been studied, the compounding effects of such external
factors as time pressure/productivity demand and mental demand on
workers’ risk compensation remain unexplored.

2.2. Impact of time pressure and productivity demand on safety-related
behaviors

Time pressure is defined as a lack of time to accomplish work ac-
tivities and is considered a quantitative workload factor [17-19]. One is
under time pressure when attempting to process more than the usual
amount of information to make a proper decision in a limited amount of
time. The decision-making process often includes several phases: signal
detection, signal interpretation or integration, hypothesis generation or
selection, and action selection [20]. Insufficient time negatively affects
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each of these phases to some degree [20].

Related studies stated time pressure may lead to a perceptual nar-
rowing that leads to less situational awareness and reduced utilization of
potential information [21]. Moreover, since it is challenging for an in-
dividual to obtain all essential information in a limited time, s/he will
try to employ various strategies such as increasing the information
processing rate, choosing among the choice alternatives randomly, and
focusing on parts of the data subjectively [22]. Therefore, time pressure
weakens information processing by stimulating extensive considerations
of gains before losses.

The effects of time pressure on safety behaviors have been widely
discussed in different arenas, such as driving [23,24] and the con-
struction industry [8,9,25]. In the driving arena, Dogan and his col-
leagues illustrated that time pressure directly affects the drivers’ goal
preferences and decision-making [23]. They observed that drivers
overlooked safety principles and fuel-saving under time pressure and
only focused on completing the journey earlier. In addition, several
driving-related studies identified time pressure as a leading factor in
such at-risk behaviors as dangerous overtaking, over-speeding, tail-
gating, and road rage [24,26-28].

In high-risk, complex, and dynamic construction environments, such
external factors as time pressure and productivity demands can exac-
erbate the environments’ already hazardous conditions [29]. Produc-
tivity demands include high and last-minute workloads required to be
performed promptly to avoid production disruptions. This situation
mainly occurs when progress is behind schedule, and it provides sudden
changes in the workers’ speed performance while performing their tasks
[8]. Managers will attempt to compensate for the costs of delays by
motivating workers to speed up their performance within a limited time.
Hinze and Site proposed that the frequency of accidents is related to
project progress; projects ahead of schedule reported few injuries;
however, projects that were behind schedule had higher reported in-
juries [30]. Accordingly, productivity demand and time pressure are
factors that can adversely impact job site safety and cause workers to
focus on completing the task without considering appropriate safety
resources, which increase the likelihood of risk compensatory behaviors
and accidents [7,8,30,31]. Thus, it is crucial to empirically study the
changes in workers’ perception and decision-making process under time
pressure and productivity demand.

2.3. Impact of mental demand on safety behaviors

Mental demand—also known as cognitive demand or mental
load—relates to cognitive processes, including memory, attention,
decision-making, and concentration [32]. Specifically, mental demand
is a person’s mental effort undertaken during a task and is highly linked
to decision-making, perceived hazard, and attention [33]. Cognitively
demanding tasks require individuals to continuously update and
manipulate received sensory information from their surrounding envi-
ronment. Studies argue that high cognitive demand increases the like-
lihood of human error in processing the received information and
increases the individuals’ unsafe behaviors, as explained by the Fuller
model of Task Capability Interface [34,35]. This model specifies the
reasons behind driving accidents and loss of control, focusing on the
balance between the driver’s capabilities and cognitive demand. As
such, the Fuller model suggests high cognitive demand (i.e., receiving a
lot of information simultaneously) can adversely affect individuals’
performance.

Mentally demanding situations highly engage cognitive resources,
especially working memory. Working memory is a key system of the
cognitive process affecting reasoning, decision-making, and behavior.
This system is regarded as short-term memory—or the short-term stor-
age of received information enabling individuals to manipulate stored
inputs to achieve their purpose [22]. Working memory resources are
limited, which means allocating more resources to executing a task can
limit resource availability for executing other tasks [12,22]. Under this
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framework, if working memory is occupied by many items/tasks, the
mental load will increase considerably, adversely affecting individuals’
attentional distribution and risk perception in high-risk environments
[10].

This negative effect of mental demand has been discussed in various
areas, including driving [36,37], aviation [38,39], and construction
[10,12]. For example, Richard et al. showed that performing an auditory
task (i.e., talking on the phone) as the secondary task while driving (the
primary task) decreases drivers’ attention toward hazardous elements
and causes them to perform unsafe behaviors, such as sudden breaks and
speeding [37]. Furthermore, in an aviation-related study, Morris and
Leung illustrated individuals’ error rates increased when carrying out a
primary manipulation task while receiving auditory input simulta-
neously [38].

The construction industry is a dynamic environment that requires
allocating sufficient attentional and memory resources to search for and
identify hazards and to remain situationally aware [10,40]. However,
due to workers’ limited working memory capacity (cognitive resources),
performing simultaneous cognitively demanding tasks may result in
mental overload situations, wherein workers miss potential risks and
make unsafe choices during at-risk decision points [12,41]. Therefore,
external factors (time pressure and mental demand) can effectively
modulate risk perception and risk compensatory behaviors. Although
the effects of such factors on human performance have been widely
investigated in the driving research domain, few research studies are
available in the construction sector. Given the realities of risk compen-
sation, it is particularly interesting to examine the impacts of cognitive
demand on worker safety performance and risk compensatory behaviors
when all safety protections are in place.

2.3.1. Mental workload assessment methods

Recent advancements in neuroimaging technologies now enable re-
searchers to quantitatively measure human cognitive load based upon
brain signals. Traditionally, subjective approaches—such as work pro-
file (WP), subjective workload assessment technique (SWAT), and NASA
task load index (NASA-TLX)—were employed to evaluate mental
workload by having individuals report their perceived experience of
cognitive load. While successful to some extent, these subjective ap-
proaches have been increasingly replaced with such quantitative ap-
proaches as functional magnetic resonance imaging (fMRI),
electroencephalograms (EEG), and functional near-infrared spectros-
copy (fNIRS), which enable improved quantification of risk perception
in real-time.

fMRI measures mental workload through changes in blood flow in
the brain; when a part of the brain is activated, the blood flow increases
in that part, which fMRI can detect through imaging the blood oxygen
level-dependent contrast signals (BOLD). Though fMRI does not contain
a high temporal resolution—as the blood flow changes occur over
time—it has a high spatial resolution. Though such spatial resolution is
beneficial in many domains, there are several constraints in using fMRI
for data collection in construction-related studies since fMRI is not
portable, and subjects cannot move freely and must instead remain
enclosed inside a scanner environment.

Alternatively, EEG measures electrical changes in the brain by
placing electrodes on the scalp using an EEG headcover [42]. This
method contains a high temporal resolution but low spatial resolution,
which causes difficulties in specifying the activated brain regions since
signals interfere with each other. Therefore, EEG is mainly suitable
when the task execution is simple and does not involve movements, as
the EEG hardware is highly sensitive to motion artifacts, limiting its
application in construction-related studies involving lots of movements
[43].

fNIRS technology is viable for measuring complex brain activation
processes in more realistic conditions. Worn as a cap, fNIRS is a safe,
non-invasive and portable device that measures mental workload by
emitting near-infrared light signals between 700 and 900 nm into the
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scalp and then processing brain activation using transmitter and receiver
optodes. When the light goes through the brain tissues from the trans-
mitter optodes, some scatters and some are absorbed and reflected back
to the receiver optodes [44]. Assessing the difference in optical ab-
sorption properties of brain tissues, fNIRS quantifies the relative con-
centration of oxygenated and deoxygenated hemoglobin (oxy-Hb and
deoxy-Hb) in the tissue [45]. As increasing cognitive demand in-
creases oxygen consumption by neurons, the hemoglobin concentration
changes in the active brain areas [46], thereby revealing cognitive
processes.

Unlike fMRI, fNIRS measurements can be taken while subjects
execute different tasks in either standing or sitting positions [44], which
makes this method feasible for construction studies. In this domain
space, fNIRS is also better than EEG since it is less sensitive to motion
artifacts while having better spatial resolution [47]. For example, in a
construction-related study, fNIRS was used to explore design—cognitive
processes and sustainable engineering decision-making among students
[48-50]. Additionally, lately, several studies have illustrated the po-
tential of fNIRS when combined with virtual reality tools to investigate
human cognitive behaviors [51-53]. Since fNIRS is much more robust to
motion artifacts than EEG and can more accurately detect active brain
areas, this study employed a wireless fNIRS device to measure partici-
pants’ mental workload while executing a task under different working
conditions simulated in a mixed-reality environment. These data pro-
vided objective insights into subjects’ risk perception and arousal level,
as evidenced by brain activations.

There are two commonly used methods to analyze fNIRS data and
extract the hemodynamic changes: the block averaging/classical
method and the General Linear Model (GLM) approach. The classical
method uses time series fNIRS data containing continuous tasks (blocks)
and yields the mean concentration values [54]. Although most studies
implement the classical block averaging method to calculate the he-
modynamic responses, it has several limitations: Firstly, it overlooks
information regarding the shape or time course of the fNIRS data. Sec-
ondly, this method uses a simple average function and does not model
the effects of various sources of variance, such as cardiac activities and
respiration. On the other hand, the GLM method provides more accurate
brain activation responses [54] since GLM works based on a linear
combination of different components to calculate the final Hemody-
namic Response Function (HRF). In particular, GLM models all the
sources of variance (e.g., cardiac activities, respiration, blood pressure)
while simultaneously estimating the brain activation signals (e.g., oxy-
Hb, deoxy-Hb, and total-Hb). The following linear equation represents
the GLM structure:

Y =pX+¢g (€))

where Y € RT*N represents a matrix including obtained fNIRS data from
time points T and capture channels N. 5 € RTM is the design matrix,
which integrates a base knowledge regarding the time duration of the
experiment, regressors for physiological noises and drifts relative to the
baseline, and an assumed shape of the induced hemodynamic response.
X € R ™ contains the estimated weights that model confounding
components and functional brain activity. The additional term § € RT*N
is the error term. Eventually, the final HRF value for each channel is
achieved by a combination of physiological (e.g., blood pressure),
functional (e.g., oxy-Hb), and drift (i.e., changes in evoked signal shape
considering the baseline) elements plus the additional term:

Y= yphysiologiml + yfuncrional + drift + q (2)

This study employed the GLM approach to analyze fNIRS data, which
is explained in the Data analysis section in detail.

2.4. Point of departure

Previous studies have indicated that providing safety training or
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applying additional safety technological advances may not increase job
site safety as workers may fall prey to “risk compensation” cognitive bias,
wherein increasing safety protections creates a false sense of security
and lower perceived risk. Such risk compensation may indirectly stim-
ulate workers to over-rely on protection and technological advances and
increase their risk-taking behavior [5,16]. Given that the construction
domain experiences a confluence of limited time, higher expected pro-
ductivity, and cognitively demanding tasks—all of which embed a
balancing between the benefits of faster work and the drawbacks of
unsafe behaviors—previous literature argued that these external de-
mands negatively affect workers’ safety behaviors. However, the extent
to which external factors such as time pressure and cognitive demand
impact the risk compensation bias has not been clearly investigated yet.
Without investigating this additional parameter of external stress on
workers’ risk compensation in construction, future investments in pro-
tective equipment and safety technologies may be misplaced.
Therefore, this study examines the impacts of time pressure and
cognitive demand on participants’ neural activity, risk perception, de-
cision dynamics, and performance measures when insulating live elec-
trical lines within a simulated, mixed-reality environment. The research
team hypothesizes that increasing stress via time pressure and additional
cognitive demand will cause subjects to manifest risk compensatory decision

Third person’s view

First person’s view

Third person’s view

|

a) Moving the energized powerlines from the old pole to a new pole

b) Removing insulator covers from conductors into the bucket
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dynamics (i.e., deciding to perform risky actions to compensate for the safety
benefits of interventions and technological advances), evidenced via subjects’
safety performance and cognitive performance under differing stressful or un-
stressful work conditions. Understanding how workers perform under
increasingly stressful dynamic environments when there are protected
with consistent safety interventions can provide a better understanding
of how workers may navigate through everyday decision-making in
various hazardous construction tasks. Furthermore, such understanding
can guide future investments in protective equipment and/or training
that will best protect workers under stressful conditions.

3. Research method
3.1. Scenario development

This study investigates the latent effects of safety interventions on
workers’ performance while working under time pressure and mental
demand. To scope this study, the experiment considered electrical line
workers. Working on live transmission and distribution (T&D) lines
exposes line workers to hazards that may put their lives at risk, since line
workers must be in close proximity to energized powerlines at high el-
evations, resulting in high exposures to both fall and electrical

Third person’s view

) Third person’s view

Fig. 1. Electrical tasks in the mixed-reality environment.
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hazards—such as arc flashes, which are an electrical discharge that in-
cludes burns, blasts, and electrocution hazards. An arc flash produces
extremely high temperatures, loud sounds/high dB levels, and intense
pressure and radiation. While line workers are often equipped with
required safety protections, statistics show that fatalities and injuries
have increased by 4% in recent years [1]. Furthermore, while various
safety training and interventions are urged to reduce the number of
incidents in the electrical construction industry, this sector still experi-
ences one of the highest fatality and injury rates.

To address this situation, this study used a high-level risk-case sce-
nario for line workers in which subjects had to move three live power-
lines from an old pole to a new pole without interrupting electricity in a
suburban residential area, as represented in Fig. 1. This activity could
conceivably face time pressure—e.g., during storm-recovery activities,
where power lines may be live, but poles may need to be replaced—and
cognitive pressure—e.g., when workers must communicate with other
line workers and/or aerial lift operators while performing the replace-
ment tasks. Accordingly, this experimental scenario represents a real-life
task that faces critical hazards for line workers, namely the two sub-
tasks: @) moving the energized powerlines from the old pole to a new
pole, and b) removing insulator covers from conductors.

3.1.1. Electrical task experimental design: mixed reality (MR) environment

While it is not practical—or even logical—to conduct this research
study within an actual workplace and expose workers to high-voltage
electricity lines, this study built a simulated scenario in a multi-modal
immersive mixed-reality environment to capture the naturalistic
behavior of subjects to investigate whether external factors (e.g., time
pressure and mental load) can worsen the effect of risk compensation in
the electrical construction industry. In particular, the simulated envi-
ronment used electrical utility poles as these are the backbone of most
electric distribution systems. For a variety of reasons, poles need to be
replaced and powerlines need to be moved to a new pole. As live line
maintenance is common, line workers must be in close proximity to
energized powerlines at high elevations, resulting in high exposures to
both fall and electrical hazards—such as arc flashes. Live line replace-
ment has been listed as one of the hazardous tasks in electrical safety
literature, and the research team worked closely with the National
Electrical Contractor of America (NECA) Electri International as well as
electrical contractors and electrical safety professionals to build an
authentic simulation of the activities involved in pole replacements.
These experts provided iterative feedback about the simulated envi-
ronment to confirm its validity.

To capture the realistic responses of participants to this scenario, the
simulation required two orthogonal components: Place Illusion (PI) and
Plausibility Illusion (Psi). PI means that the participant must feel they
are in the setting—namely, here, the bucket at the top of the electrical
pole—so, as they turn their heads, they should see other poles, buildings,
the street, and other features of the suburban setting depicted in the
simulation. Such details reinforce the feeling of PI. In turn, Psi means
that the depicted scenario seems to be occurring, so realistic sensations
such as arc flash simulations, sound, and wind effects needed to be
added to the mixed-reality model to reinforce the subject’s feeling of Psi.

Therefore, to increase the simulated electrical task’s validity as well
as the participants’ sense of the presence, this study used a Mixed Reality
(MR) environment that included both passive haptics and a virtual
environment. Within their virtual reality headset, participants viewed
themselves as performing the task in an actual bucket while wearing all
the required personal protective equipment and using a real hot stick. In
addition, participants could hear all the sounds of a real environment,
such as the sound of cars, birds, etc. as the developed MR environment
contained the environmental modalities (i.e., sounds and wind). If the
participants approached too close to the simulated energized lines, they
experienced an arc flash (accident) and they could see and hear both
visual and audio representations of that event. The physical and virtual
components were synchronized to develop a close-to-real environment.
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The study used HTC VIVE Pro Eye (110° field of view) with millisecond
synchronization to immerse participants in the simulated environment.
Here, Fig. 2 details both the virtual and physical components:

Virtual Model. The virtual reality (VR) model of this study consisted
of four subcomponents:

1- Model environment: The research team used Maya (Maya 2020.4) to
generate a 3D model environment representing a suburban area in
the United States. This 3D model contains a street in which both old
and new poles are located.

VR trackers: Five VR trackers were used to collect individuals’
postural positions and to adjust the VR scene and avatar accordingly.
These five trackers were attached to the subject’s body—wrists
(two), arms (two), and waist (one)—and were synchronized with the
virtual avatar’s body in real-time. Consequently, when wearing the
HTC VIVE Pro Eye VR headset, the subject was immersed in the body
of the virtual avatar and experienced all synchronized body move-
ments accordingly.

3- The case scenario: A simulated virtual arc flash contained both visual
and audio representations to effectively simulate a real-world arc
flash and to convey the sense of danger and risk.

Additional environmental modalities: Wind and sound effects were
added to the MR model to increase subjects’ sense of presence.

N
)

N
T

To advance the usability of this system, the research team created a
Graphical User Interface (GUI) to start and end the experiment and to
select the experimental conditions, as needed.

Physical Model. Including realistic haptic feedback in computer-
generated environments—such as VR—is essential to improving sub-
jects’ sense of involvement [55]. Haptic interfaces have two types,
including active and passive. Active haptics are created using com-
puters, while passive haptics convey a sense of reality by simulating
objects’ physical properties, namely shape, weight, etc. Previous studies
showed that using a passive haptic and an active device enhances users’
interactions with the virtual environments and improves their spatial
perception of a given task [56]. In this study, passive haptics were
employed to enhance users’ interactions with the simulated environ-
ment by reproducing physical features of the virtual model to simulate
the touch and force channels. Thereby, the physical model increased
users’ involvement to help them choose appropriate responses.

Four passive haptics—including insulating gloves, a bucket, a hot
stick, and a fall arrest system—were used in the laboratory setting. To
improve user interaction with the virtual environment, all passive
haptics were the actual ones that line workers utilize in a real job site.
The passive haptic systems were well synchronized with the virtual
model, enhancing participants’ sense of presence during their simulated
work with the hot stick. The research team administered a 5-point Likert
scale questionnaire at the end of the experiment to measure participants’
sense of presence (5 = high, 1 = low); most of the participants reported a
high presence score (Mean = 4, SD = 0.5), which demonstrates that the
developed mixed-reality environment provided a suitable and valid
platform for triggering naturalistic behaviors under the different
experimental conditions. Thus, this environment enabled the study to
evaluate the risk perception and risk-taking behavior of line workers in a
risk-free setting.

While the environment and experimental task were designed to limit
the possibility of motion sickness, in the experimental protocol, the
research team included contingencies in the event participants experi-
enced motion sickness during the experiment; however, no participant
cited discomfort during the experiment, and during the post-trial semi-
structured interviews, no participants reported dizziness, motion sick-
ness, or feeling any discomfort. Consequently, the motion-sickness
contingencies were not considered in this study’s analysis. Further-
more, before immersing the participants in the developed MR environ-
ment for the experiment, each participant went through a 30-min
training program to learn about the task, practice completing the task in
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Fig. 2. Mixed-reality environment development process.

the immersive environment, and become familiar with the task and the
different scenarios. By incorporating these introductions into the pre-
experiment work protocol, the research team ensured that partici-
pants’ control tests did not include additional, unintended stress. Thus,
the fNIRS data were neither affected by motion sickness nor raw per-
formance stressors.

3.2. Data collection

3.2.1. Experimental conditions

A within-subject experiment was designed to examine subjects’ risk-
taking behaviors under three different conditions when completing the
electrical tasks with required safety protections (e.g., insulating gloves,
hot stick, fall arrest system). The three conditions included (D)
completing an electrical task (primary task) under a normal condition,
(I) completing the primary task under time pressure, (III) completing
the primary task under time pressure and a secondary task (cognitive
demand). Here, the implemented cognitive demand task entailed a 2-
back verbal working memory task, wherein individuals hear a
sequence of random numbers and are supposed to say “Yes” when they
hear the same number sequence as two trials ago. Under condition III,
participants were required to complete the secondary 2-back task while
performing the primary task of moving energized lines. The research
team provided additional compensation incentives for subjects if they
could finish Conditions II and III on time while giving accurate answers
for the 2-back memory task in Condition II. The research team deter-
mined not to perform a cognitive demand task without time pressure as
participants would have been able to take too much time to perform the
primary task, a factor that would have confounded the implications of
mental demand within a realistic work environment. Table 1 represents
a general overview of the experimental conditions and participants’
demographic information, which are explained later in detail within the
following subsections.

3.2.2. fNIRS neuroimaging experimental design
As explained in the background section, this study assessed workers’

Table 1
Overview of experimental conditions.
Conditions Duration (second) Time Secondary Number of
Constraint Task Participants
Baseline 120 - - 33(22M, 11
F)
ConditionI T = Based on - - 33(22M,11
Participants’ pace to F)
complete the task
Condition T Condition 1 — 108 v - 33(@22M,11
I F)
Condition T Condition 1 — 108 v 2-back task 33(22M,11
I F)

risk decision-making and neural activities using fNIRS. According to
previous literature, the most common experimental designs in exam-
ining evoked cognitive responses using fNIRS are block design, event-
related design, and mixed design [44,54]. Block design contains tasks
in a controlled condition with a fixed duration for each task, referred to
as a block. A block time varies between 10 and 20 s (a short block) or 60
to 120 s (a long block). Occasionally, the blocks are separated by an
interval of around 60 to 120 s, as a rest condition is required to bring the
participants’ hemodynamic responses back to their normal, baseline,
state. Alternatively, an event-related design incorporates tasks with
different durations and is randomly ordered. This experimental design is
mainly used to monitor neural activation or hemodynamic responses
associated with particular tasks or events—for example, in a risk-taking
study developed by Holper et al. (2014), participants were asked to
perform the task at their own speed and to make decisions at any time;
their cognitive activations regarding decision-making events were
analyzed to study subjects’ risk attitudes and task performance [57]. The
experimental design that contains both a block and event setup is called
mixed design.

The present study incorporated an event-related experimental design
in which neural activities were recorded to assess how subjects
responded to situations and made decisions while executing the
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designated task. The task was designed under three conditions to
observe subjects’ cognitive responses (Fig. 3). In order to remove the
order effect, Conditions IT and IIl were counterbalanced. A rest time took
place between each condition to confirm hemodynamic responses
returned to a baseline point for each condition.

3.2.3. Participants

Thirty-three healthy subjects, including 22 males and 11 females,
participated in this study. The subjects were recruited from civil engi-
neering, construction engineering and management, and construction
management technology programs. On average, participants had 1.5
years of experience working in the construction industry. Recruiting
student participants enabled this study to be conducted more rigorously
in regulated experimental setups without experiential bias that can
impact subjects’ risk-taking and risk-compensatory behaviors. All pro-
cedures were approved by Purdue University’s Institutional Review
Board (IRB). The whole experiment was carried out in a single 120-min
session. Subjects received gift cards as compensation for participating.

3.2.4. General procedures

All participants were informed about the whole experiment, and they
were asked to sign the consent form. They also filled out demographic
questionnaires. Thereafter, participants were provided with train-

Error per participant ¢, giion 1 = Number of arc flashes + {

Error per participant ., 4iion ;1 = Number of arc flashes + {
+ {

ing—including PowerPoint presentations about electrical risks and
required precautionary behaviors—as well as videos from the VR envi-
ronment and verbal explanations regarding the main task and the three
designed conditions. This training ensured subjects were familiar with
the electrical task and the experimental process. Furthermore, a
required explanation regarding how to conduct the 2-back memory task
was given.

After training, the subjects were equipped with the fNIRS cap while
seated on a chair in a comfortable position. After calibration, partici-
pants were asked to stand in the bucket and were equipped with the fall
arrest system, VR headset, location trackers, insulating gloves, and hot
stick to execute the line-replacement task. Subjects received a 120-s
break between each experimental condition to ensure participants’ he-
modynamic responses were back to their normal state. At the end of the
experiment, a semi-structured interview was carried out to investigate
subjects’ risk perception within each experimental condition and to
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assess their sense of presence in the MR environment.

3.2.5. Performance measures

To determine the effect of time pressure and mental load on subjects’
risk compensatory behaviors, this study first assessed individuals’
overall performance based upon three criteria: performing the designed
task without experiencing arc flash, completing the task within the
defined time (time pressure condition), and accurately performing the 2-
back working memory task (cognitive demand condition). Specifically,
the developed third person’s view within the VR model enabled the
research team to observe whether participants have completed the task
within the defined time and/or whether they have experienced arc flash
in course of performing the task. Further, the research team observed the
accuracy of each participant’s responses in the 2-back task within
Condition III and took notes. Based on such observations, a quantitative
combination of costs (loss) and benefits (gain) is implemented to mea-
sure participants’ performance in each condition. The error rate per
participant in Conditions was calculated based on Egs. (3), (4) and (5).
The collective error rate was computed by dividing the error rate of each
condition over the total number of participants (Eq. (6))

Error per participant c,,, i, 1 = Number of arc flashes 3
0,if completed tasks under imposed time constraint )
1,if tasks NOT completed under imposed time constraint
0, if completed tasks under imposed time constraint
1,if tasks NOT completed under imposed time constraint
0, if completed secondary tasks with a 100% accuracy ()
1, if secondary tasks NOT completed with a 100% accuracy
1
> Error;
Collective error rate per condition = ! 6)
n

where i represents the conditions (I, II, III) and n represents the total
number of participants.

3.2.6. Apparatus

This study used a wireless fNIRS (Brite, Fig. 4) to measure changes in
oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb)
throughout five brain regions. The fNIRS cap included ten transmitter
optodes to transmit near-infrared light from 730 nm to 850 nm wave-
length—with a sampling frequency of 10 Hz—and eight receiver opto-
des to receive the light along the trajectory of 20 channels. The
transmitters and receivers were designed to be located a maximum of

] : B } i i
i latin t‘:.Sk without i ; N o E i Main task + time E
E 1;ne " | i ain tas time : i pressure + :
! pressure/cognitive | ' pressure | !
| ____demand SR : l__f]f__T ________ !
Baseline —>| Condition] [ Rest — Condition I [—> Rest —> Condition IIT
Start @& @ Finish
120 sec 120 sec 120 sec

Fig. 3. Event-related experimental design and description of each event (condition). To remove the order effect, Condition II and Condition III were swapped for

some participants.
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Brite wearable non-intrusive fNIRS
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Fig. 4. fNIRS Neuroimaging setup.
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Fig. 5. Graphical representation of optodes arrangement, defined RIOs, and brain activation signals.

Table 2

Brodmann areas, associated anatomic location, and ROI labels.
Brodmann Areas Anatomic Location ROI
8,9, 10 Prefrontal Cortex (Right) A
8,9,10 Prefrontal Cortex (Left) B
6 Supplementary Motor Cortex C
4, 40, 41, 44 Premotor Cortex (Right) D
4, 40, 41, 44 Premotor Cortex (Left) E

three centimeters apart (Fig. 4).

Fig. 5 demonstrates the arrangement of the optodes’ locations along
with the five defined regions of interest (ROIs): A and B are the Pre-
frontal Cortex (PFC), particularly the Dorsolateral Prefrontal Cortex
(DLPFC), which is considered the cognition region and is mainly
involved in cognitive behavior (e.g., decision-making). D, E, and C are
the premotor cortex and supplementary motor cortex, respectively,
which are mostly involved in initiating and executing movements.
Further, Table 2 shows the Brodmann areas, associated anatomic loca-
tion, and the correlated defined ROISs in this study.

3.3. Data analysis

This study used the Homer package (Homer3), a MATLAB-based
toolbox, which provides several embedded functions to remove mo-
tion artifacts, eliminate physiological noise, and analyze the captured
hemodynamic data [58]. It must be mentioned that three subjects’ data
were excluded in this study due to issues with the calibration process.

While fNIRS signals are resistant to motion artifacts when compared
to other brain activation sensors (e.g., EEG), applying necessary filtering
during pre-processing to remove motion artifacts and physiological

noise before analysis is vital. Since participants were located in the
bucket, their movements were restricted to a limited area, thereby
nullifying concerns regarding motion artifacts. Accordingly, merely the
physiological noise (e.g., vasomotor blood pressure, respiration, and
cardiac activities) were considered and addressed by applying a band-
pass filter. For further analysis, the modified Beer-Lambert Law (ppf = 6,
6, 6) was used to convert the recorded optical density data into a relative
concentration in terms of oxy-Hb and deoxy-Hb.

As mentioned in the background section, this study employed GLM to
analyze fNIRS signals considering its advantages over the block aver-
aging method. In order to employ GLM, different value parameters need
to be adjusted based on the experimental settings. Descriptions of these
parameters and the used values for this study are provided as:

“trange” (i.e., the duration of the stimuli): Defined considering the
duration of Conditions I, II, III,

- “glmSolveMethod” (i.e., specifies the preferred statistical approach):
Set to 1, which specifies the GLM method to use the ordinary least
squares.

“idxBasis” (i.e., determines the type of basic function to use for the
HREF): Defined as 1 here, which is a consecutive sequence of Gaussian
functions.

“paramsBasis” (i.e., parameters for the basic functiondepend on
idxBasis): Set to 1.0, 1.0; values represent the width of the Gaussian
and the step between consecutive Gaussians.

“rhoSD_ssThresh” and “flagNuisanceRMethod” (i.e., related to short
separation channels and should be specified based on the setup of
short separation channels): Defined as 0 since this study did not use
short separation channels because the activity does not include many
motions.
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- “driftOrder” (i.e., order of polynomial for drift correction): Set to 3,
which uses 3rd order polynomial drift correction.

Once all values were adjusted, the HRF was calculated for all par-
ticipants across channels, and the averaged HRF of involved channels
was used for the ROIs. The Shapiro-Wilk’s normality test and homoge-
neity of variances were conducted to select proper statistical analysis for
this study. Since the HRF results were not normally distributed (p < 0.05
resulted from Shapiro-Wilk’s test), the appropriate statistical methods
were used to compare brain neural activations across the normal con-
dition (i.e., Condition I) with stressful conditions (i.e., Conditions II and

n).
4. Results and findings
4.1. Overall performance

In Fig. 6, error rates were calculated based on Egs. (3), (4), (5) and
(6); and performance was calculated as “100% - error rate%”. On
average, subjects’ performance under time pressure (Condition II)
demonstrated a 13% decrease compared to the normal condition.
Similarly, under Condition III, subjects experienced errors more than
half the time, an outcome demonstrating significantly poorer safety
performance and indicating significantly higher risk behaviors. As the
provided protective equipment did not change across the experimental
conditions, this degraded safety performance signals increased risky
behaviors under the second and third conditions, indicative of increased
risk compensation—via overreliance on PPE—among subjects. These
changes in visible safety performance served as the ground-truth data
for the subsequent cognitive performance analysis.

4.2. Changes in cognitive responses and decision dynamics

As explained in the methodology section, this study employed GLM
to derive the HRF from the recorded fNIRS data. The research team was
able to control motion artifacts to a reasonable extent by fixing the fNIRS
cap on the subjects’ heads properly. Further, subjects’ movements were
minimal as the subjects needed to follow defined movements mostly
involving twisting around their waists. Accordingly, motion noise-
—warned about in the literature—could be kept to a minimum, and the
research team was able to monitor the fNRIS software readout to
confirm in real-time. In this regard, physiological noises were recog-
nized as the main noises in the recorded fNIRS data. GLM considered
potential physiological noise as one of the regressors when calculating
HRF [54]. Thus, a low bandpass filter with a corner frequency of 0.5 was
used to remove physiological noises (Fig. 7).

Regional brain activation is accompanied by increased cerebral ox-
ygen rate and blood flow, changes in oxy-Hb and total-Hb concentra-
tions, and decreasing deoxy-Hb concentrations throughout the activated

T asa
800/0 -

P
x
2 60%
E 84.8
g 40% & 72'7
A 20% 42.4
0%
Condition I Condition IT Condition III

Experimental Conditions

Performance  ® Error

Fig. 6. Overall performance and error rates of participants under different
experimental conditions.
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ROIs [59]. Accordingly, the following analyses considered changes in
oxy-Hb concentration as primary indicators of cerebral activation [60],
because these data experience a lower vulnerability to cross-talk as
compared to deoxy-Hb [61].

The GLM revealed the HRF results across all channels under the three
different experimental conditions. Importantly, these results took into
consideration specific weights for each computational component (i.e.,
physiological, functional, and drift order); the weights were determined
via a linear combination of N normalized Gaussian functions. Finally,
the average values of the HRF results for each channel were calculated
and later specified based upon the ROIs (Figs. 8 & 9) for further analyses.

In order to explore the impacts of gender types, changes in brain
activation among defined ROIs (A, B, C, D, E) for males and females are
depicted in Fig. 8. Although there were slight differences in oxy-Hb
concertation between males and females, no significant differences
were observed. However, increasing trends in oxy-Hb concertation from
the normal condition (I) to the stressful conditions (II, III) can be seen in
all ROIs for both gender types. One reason for this result might be the
experimental design: the time pressure and mental load manipulations
were strong enough to dominate the impacts of gender types. Thus,
participants’ risk compensatory behaviors and associated brain activa-
tions are primarily influenced by imposed time pressure and cognitive
demand. This is in line with previous neuroimaging studies (e.g., [62]),
and increasing the sample size is highly recommended to further
investigate the gender impact. In the following, the whole sample (both
female and male participants) was used for further analysis.

To interpret the results, Condition I was considered the baseline for
Conditions II and III. Bean plots in Fig. 9 demonstrate the variations of
cortical brain activation across brain regions A, B, C, D, and E for
experimental Conditions I, II, and IIl. Generally, an increasing rate in
oxy-Hb concertation manifested between the normal Condition (I) and
the stressful conditions (I, III) for ROIs A, B, D, and E; the increasing
rates varied based on the regions’ functionality and the experimental
conditions. As shown, the average oxy-Hb concentration was higher in
stressful conditions within the PFC and motor cortex. Generally, the
increasing rate of oxy-Hb concentration from conditions I to II could be
seen in the mean values throughout all regions except for region C. The
reason for this inconsistency in Region C is further discussed in the
Discussion Section and documented in Table 3.

Statistical analyses (t-test and Wilcoxon Signed Rank test) were
conducted to examine differences in brain activation between the
baseline Condition I and the two stressful conditions (II and III) across
the five different brain regions. As Table 3 shows, the analysis found no
statistically significant differences in oxy-Hb between the normal con-
dition (I) and the time pressure stressful condition (II) across ROIs (p-
valuey = 0.151, p-valueg = 0.274, p-valuec = 0.458, p-valueg = 0.124 >
0.05). The partially significant changes in oxy-Hb were identified in
Region D (p-valuep = 0.058 < 0.1). As shown in Table 4, there were
statistically significant differences in oxy-Hb concentrations across ROIs
between the normal condition (I) and Condition III, when subjects
experienced both time pressure and cognitive demand: (p-valuey =
0.012, p-valueg = 0.035, p-valuep = 0.016, p-valuer = 0.00 < 0.05).
However, no significant results were observed for the brain activation
within ROI C when comparing Conditions I and III (p-valuec = 0.578 >
0.05). It must be noted that mean brain activation values for all ROIs
were higher in III than I in all ROIs.

Given the different functions of the brain’s right and left hemi-
spheres, the research team conducted further analyses to examine the
changes in oxy-Hb concentrations in the right and left hemispheres in
the prefrontal and motor cortex. Fig. 10a depicts the distributions of the
average cognitive responses in the PFC within regions A (right hemi-
sphere) and B (left hemisphere) across the three experimental condi-
tions. As shown, region A (right hemisphere) demonstrated higher
hemodynamic responses than the left hemisphere under all conditions
(Fig. 10a). Further, the brain activations in the motor cortex, including
the right and left hemispheres, are depicted in Fig. 10b. Similarly, the
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Fig. 7. Graphical representation of the concentration signals of two channels (each color is related to a channel) in brain ROI E. (a) Processed signal with no filter, (b)

Processed signal using a bandpass filter.
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right hemisphere of the motor cortex (ROI D) showed higher activation
than the left hemisphere (ROI E). In the discussion section, these dif-
ferences are connected to behavioral theories and previous literature to
better understand workers’ behavior and safety performance changes.

5. Discussion

This study used fNIRS data to investigate whether time pressure and
cognitive demands affect workers’ risky decision-making when they are
exposed to electrical risk while using required safety protections. In
general, under a risky condition, workers’ decision dynamics will be
highly influenced by their risk perception [63]. Workers’ analytical and
logical assessment of received hazard information and their resulting
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Fig. 8. Differences in Oxy-Hb concentrations between two gender types and across different ROIs (A, B, C, D, E).
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risk perception engage cognitive brain resources. Taking advantage of
fNIRS, a promising neuroimaging approach, the research team could
assess individuals’ brain activations associated with risk perception,
risk-taking behaviors, and decision-making dynamics in real-time. Spe-
cifically, the cortical hemodynamic activations of various ROIs (4, B, C,
D, and E), corresponding to the prefrontal and motor cortices, were
studied while subjects completed risky electrical tasks under three
experimental conditions (normal condition I and stressful conditions II
and III). Brain activation serves as a reliable physiological assessment of
workload, representing continuous variations in working memory load
and cognitive demand over the task execution [64]. While several
studies within the driving-safety domain have used fNIRS to observe
decision-making and brain activation during risky situations [45,65,66],
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Fig. 9. Oxy-Hb concentrations across different ROIs A, B, C, D, E for the three experimental conditions (A and B: prefrontal cortex, C: supplementary motor cortex, D
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Table 3
Statistical results comparing the normal, fully protected, Condition I and the
stressful, time pressure, Condition II across ROIs.

Table 4
Statistical results comparing the normal, fully protected, Condition I and the
stressful, time pressure and cognitive demand, Condition III across all ROIs.

ROIL Conditions Mean STD Test Statistics p-value ROIL Conditions Mean STD Test Statistics p-value

A 1 2.889 8.043 —1.435" 0.151 A 1 2.889 8.043 —2.710% 0.012%*
I 7.423 20.962 m 10.772 16.392

B I 2.325 6.109 -1.117° 0.274 B I 2.325 6.109 —2.220° 0.035%*
)i 5.893 14.761 m 9.106 13.198

C I 4.184 12.048 0.753" 0.458 C I 4.184 12.048 —0.564" 0.578
I 1.483 18.085 I 7.151 26.728

D 1 4.346 7.139 —-1.898" 0.058* D 1 4.346 7.139 —2.403" 0.016%*
I 10.556 23.990 m 14.913 18.392

E I 1.139 4.637 -1.538" 0.124 E I 1.139 4.637 -3.976" 0.000%*
I 5.951 12.881 I 11.193 13.495

p-value < 0.05.

? tvalue from t-test.

b 7 value from Wilcoxon Signed Rank test.
" p-value < 0.1.

there is a paucity of corresponding research in construction settings
[44,53].

5.1. Impacts of stressful and demanding conditions on prefrontal cortex
activation

Under experimental Condition II, subjects were required to complete
the task under time pressure while all required protections were in
place. One of the areas of the brain that was monitored while the sub-
jects were completing the task was the prefrontal cortex (PFC). The
findings of this study showed that brain activation was increased in the

11

* p-value < 0.1.
? tvalue from t-test.
b 7 value from Wilcoxon Signed Rank test.
™ p-value < 0.05.

PFC area under time pressure (Condition II) as compared to the normal
state (Condition I), suggesting that subjects’ decision-making dynamics
and cognitive processes were negatively affected by time pressure and
the corresponding stress. The PFC is considered the primary part of the
brain that supplies bias signals to other brain areas to activate neural
pathways and map the inputs and outputs required to carry out a given
task [67]. Therefore, changes in PFC activation are related to one’s
thinking, information processing, and decision-making while perform-
ing a task. Important for our context is the fact that working under time
pressure increases the task difficulty since one needs to sustain attention
and process received information from the environment in a relatively
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Fig. 10. Oxygenated hemoglobin (oxy-Hb) concentrations of the right and left hemispheres within prefrontal and motor cortices under the three different exper-

imental conditions.

shorter amount of time than under a normal condition (Condition I).
Previous research demonstrated that task difficulty positively correlates
with the PFC activation [68,69], so the more difficult a task is, the more
the PFC will be activated. This fact makes PFC activation a significant
proxy for attempts undertaken in decision-making [68]. Consequently,
the findings indicated in Fig. 9 and Tables 3 and 4—namely, that
experimental Condition II caused a higher activation in the PFC than the
normal condition (Condition I)—reveal time pressure increased the
difficulty imposed on the participants to complete the task under this
condition. This conveys that as they found the situation difficult while
experiencing a false sense of security (due to having required pro-
tections), they focused on increasing their gains (i.e., completing the
task on time and obtaining additional compensation) in a limited time
and overlooking the risk inherent in the task.

In Condition III, participants performed the same task under both
time pressure and a designed 2-back test, which highly engaged working
memory. Working memory is mainly regarded as short-term memory,
relies most closely on the PFC, and is involved in the maintenance,
integration, and manipulation of received information [12]. An increase
in working memory load causes increased cognitive activation across the
PFC, specifically in the DLPFC (dorsolateral prefrontal cortex) [68]. The
results of this study illustrated a significant increase in oxy-Hb concen-
tration over the DLPFC under Condition III compared to the normal
condition (Condition I). This high increase in the brain activation within
the PFC demonstrated the extent to which working memory was
engaged in processing the received information. Considering limited

"

+he 1Ty 2t

Condition 7

Condition 77

working memory capacity, our application of a 2-back test during the
subjects’ risky primary electrical task imposed a high demand on
working memory, leading to failed processing of all hazard information
associated with the surrounding environment, overlooked associated
details, and/or overreliance on safety interventions. Our findings are
well-aligned with various studies that have investigated drivers’ cogni-
tive behavior and induced changes in working memory load by con-
ducting n-back tests during simulated driving activities [36,70].
Additionally, the results show predominant lateralization to the right
side of the DLPFC due to multiple demands placed on subjects’ working
memory and their required attention under stressful conditions (Con-
ditions II and III). Such results indicate weighting of risks and gains to-
ward decision making in these conditions involves a complex neural
network in the DLPFC area. Increased DLPFC activation during dynamic
risky decision-making is linked to both cognitive and affective compo-
nents, and within such demanding conditions as conditions II and III,
while equipped with safety protections, participants highly focused on
gains (i.e., extra compensation) rather than focusing on losses (i.e.,
experiencing arc flash). These observations are in accord with a risk-
taking study, in which participants with a higher focus on gains,
demonstrated higher activation within the DLPFC [57]. Furthermore,
with respect to the differences in both activation and the functionality of
the left and right parts of the PFC, the results of this study are well-
aligned with previous studies that have indicated working memory
load can induce a higher activation within the right DLPFC [36,70].
Fig. 11 depicts heat maps of brain activations of a participant across
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Fig. 11. Heat maps representing the brain activation of a participant across three experimental conditions (I, II, II)- The range represents the brain activations, which
can change from low activation (blue) to high activation (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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the three experimental conditions. As shown, the induced brain acti-
vation is evident across different ROIs from Condition I to Condition III,
as task difficulty and cognitive demand increase. The PFC illustrates a
higher cognitive response (red), which overlaps here with more stress-
ful—and, per the discussion above, riskier—Conditions II and III,
reaching the highest in Condition III. These findings demonstrate the
dominant function of the PFC in the risk decision-making process. In
addition, greater activation is visible in the right part of the brain versus
the left across different conditions, indicating a more significant cogni-
tive response in the right PFC (particularly in the DLPFC) for working
memory demanding situations.

5.2. Impacts of stressful and demanding conditions on motor cortex
activation

This study also measured the activation of the motor cor-
tex—represented in ROIs C, D, and E—while subjects completed the
electrical tasks. ROI C is mainly the supplementary motor cortex, which
is correlated with the decision-making process for starting a movement
and plays an important role in the initiation of movements; ROIs D and E
are mostly considered the primary motor cortex used to execute move-
ments. The findings demonstrate an increasing rate in the oxy-Hb con-
centration in both regions D and E from Condition I to Condition III.
Previous literature stated that work intensity directly modulates brain
hemodynamic changes, as higher work intensity results in more pro-
nounced brain activations [71-73]. Since this research simulated the
designed task in a mixed-reality environment, participants carried out
the same work, using a real hot stick with the same weight and length
analogous to an actual one used in a real workplace. To this end, during
stressful conditions, they made more efforts to move the hot stick
quickly. Accordingly, the derived results showed an increased activation
rate associated with the motor cortex regions (D and E) that perfectly
supported the positive correlation between work intensity and brain
activation.

Holper and his colleagues indicated that motor cortex activation is
highly correlated with task complexity [74]. They observed higher he-
modynamic responses over the same regions related to the motor cortex
for a complex finger tapping task compared to a simple task. The results
of this present study revealed the same fact: as the experimental con-
dition got more complicated from Condition I (normal condition) to
Condition IIT (stressful and complex condition), the hemodynamic re-
sponses increased within ROIs D and E. Therefore, both work intensity
and complexity increase workers’ mental arousal associated with the
motor cortex. This high level of arousal can increase their mental fatigue
and impair their situational awareness, factors directly related to
increased risky behaviors.

ROI C, besides initiating movements, plays a broader role in cogni-
tive behavior, making it an important factor in our study to determine
how task conditions affect risk compensation. ROI C is involved in
different cognitive functions such as planning movement sequences,
inhibiting and controlling complex movements, and learning new
movements [75-77]. This ROI plays an important role in linking
cognition to action as it modulates the coordination between the PFC
and the motor cortex [75,76]. In this study, subjects always experienced
the normal condition as the first experimental condition, so when they
were performing the same task under Condition II, ROI C started to work
automatically in a routine fashion based on learned-movement skills in
the previous condition. As such, the brain activity in ROI C decreased as
participants mastered the required tasks. This observation is in accord
with previous literature stating that learning and practicing a task will
lower brain activations within the supplementary motor cortex (i.e., ROI
C in this study) [78,79]. Thus, previous experience with the electrical
task in Condition I played an influential role in the sense of complacency
with the task, especially under stressful and demanding conditions.

Furthermore, this study coincided with several studies indicating the
involvement of the supplementary motor cortex (i.e., ROI C) in
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attention-demanding situations, where high-level cognitive processes
are required to coordinate cognitive behaviors (e.g., decision-making)
and movement executions (e.g., acting) [80-82]. In this study, the
subjects were familiar with the task but needed constant attention to
avoid electrical accidents (i.e., arc flash) while simultaneously providing
accurate responses to the 2-back task in Condition III, which increasingly
activated the brain within ROI C. This result indicates complex activities
can impose high mental demands on humans. This observation is in
accordance with Wilson et al., whose research investigated the activa-
tion of the supplementary motor cortex using fNIRS when participants
were performing in-phase (i.e.,, symmetrical) and anti-phase (i.e.,
asymmetrical) movement patterns [83]. They found that the supple-
mentary motor cortex was more activated during anti-phase movement
patterns, which needed more attention. Due to limited attentional re-
sources, we anticipate that high cognitive demands can significantly
increase at-risk behaviors by causing workers to overlook potential
electrical hazards. It is worth mentioning that despite a wide range of
research, the supplementary motor cortex is still one of the controversial
brain areas in the neuroscience domain, and it needs further research.

5.3. Impacts of stressful and demanding conditions on risk perception and
risk compensatory behaviors

Notably, when the research team asked participants about the risks
they perceived in each condition, they reported Conditions II and III as
high-risk because subjects reported feeling stressed. However, as re-
ported by them, their evaluated risk and stress were merely because of
the likelihood of losing additional compensation, not due to the poten-
tial possibilities of fatal consequences resulting from risky actions. Re-
sults show that such high mental demand increased the subjects’ error
rate (Fig. 6), conceivably because cognitive resources (e.g., working
memory) are capacity limited; allocating more cognitive recourse to a
task will reduce the resource availability for other tasks. Consequently,
individuals could not process and analyze the received information
properly, and they failed to perceive potential risks (i.e., lower risk
perception), which significantly increased their risk compensatory be-
haviors. Consequently, over-relying on safety interventions, not paying
attention to the potential hazards and risks, and focusing on benefits
(gains) caused workers to ignore electrical threats, leading to a decrease
in their safety performance and well-being. Translated into a real-world
context, the increase in mental workload in the face of a risky con-
struction task can lead to performance breakdown, with potentially fatal
consequences.

Therefore, the observed changes in the intensity of prefrontal acti-
vation (oxy-Hb concentration) correlated with changes in subjects’
perceived risk as well as with their overall safety performance, all of
which indicate time pressure and increased mental load affect workers’
decision dynamics and risk compensatory behaviors. In particular, while
the simulated energized lines were completely insulated to reduce the
likelihood of electrical incidents, arc flashes still occurred due to sub-
jects’ lower perceived electrical risk, overreliance on the protections in
place, and violating clearance distance, all of which combine to show
increased risk-taking behavior and the risk compensation effect. As an
external factor, time pressure caused subjects to overlook the electrical
risk (loss) since protections were in place and to merely focus on gains
(extra compensation). As such, they decided to speed up to complete the
task on time by over-relying on the safety protections. Interestingly,
participants’ performance decreased further when they were required to
complete the designated task under both time pressure and cognitive
demand. As Fig. 6 shows, there was a 42% decline in individuals’ overall
performance under the time pressure and cognitive demand condition
(II) compared to Condition I In addition, the error rate increased due to
reduced accuracy in the cognitive demand task, inability to complete the
task under time pressure, and lower safety performance (experiencing
more arc flashes). As such, when both time pressure and cognitive de-
mand were in place, participants completely ignored the electrical risk
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inherent in the task. Importantly, the protections in place within the
scenario only reduced the likelihood of incidents, so precautionary be-
haviors were needed to complete the task safely. Therefore, with lower
perceived electrical risk and the increased work intensity and mental
demand, the subjects focused on completing the task on time while
performing the secondary task accurately, which significantly increased
their risk-taking behaviors and error rates. Accordingly, the negative
impact of risk compensation worsened when the participants were under
stressful conditions; they over-relied on the insulating devices while
working on live lines.

Furthermore, participants’ cognitive resources (i.e., working mem-
ory) were engaged in stressful conditions to analyze the situation,
perceive the associated risks, manipulate the information, and decide
accordingly. As discussed, working memory is capacity limited, and
high—cognitive demand situations can result in information processing
failures. In such situations, individuals need to process a high amount of
information simultaneously which can eventually lead to misperception
and impaired task performance [84]. The results in Condition III confirm
this point as participants were asked to complete the main task while
concentrating on the secondary task. They were under high cognitive
demands, which highly engaged working memory, and they were unable
to analyze the risk associated with the condition correctly; thereby, their
overall performance decreased.

In summary, the research team hypothesizes that increasing stress
via time pressure and additional cognitive demand will cause subjects to
manifest risk compensatory decision dynamics, evidenced via subjects’
worsening safety and cognitive performance under the stressful work
conditions. We tested this hypothesis by placing subjects within an
immersive mixed-reality environment that simulated a real, high-risk
electrical task and observed their different behaviors and neurophysio-
logical responses within a neutral, controlled (unstressful), condition
and then under different stress loads (time pressure, and time-and-
increased mental load pressure). By maintaining the safety in-
terventions across all three conditions, we were able to see how subjects’
risk-taking changed when faced with different stress loads—any
observed degradation in safety performance (manifested here by
increased counts of simulated arc flashes within the mixed-reality
environment) would identify risk compensation bias because despite
risks continuing at the same level, worsening safety behaviors would
illustrate a recalibration in the subjects’ cost-benefit analysis. Further-
more, by monitoring safety performance alongside fNIRS data, this
experimental design allowed the study to test whether outward safety
behaviors map to neurophysiological data to determine whether risk
compensation coincides with worsening cognitive performance under
stressful conditions. Any significant alignments between safety perfor-
mance and fNIRS data would suggest opportunities for harnessing fNIRS
data to passively monitor workers’ worsening safety performance in real
time.

5.4. Contributions and limitations

Many researchers have attempted to explain stressed decision-
making processes using various theoretical and methodological ap-
proaches. In a high-risk work environment, making a decision necessi-
tates incorporating and integrating all information regarding the
decision’s potential positive and negative outcomes. But under time
pressure and higher mental demand, workers may not be able to inte-
grate all information sensibly, a reality that may lead to changes in their
risk-taking behaviors or strategies. Compensatory decision-making is
one such common strategy shift, wherein individuals under time pres-
sure and/or mental load become more gain-seeking and more likely to
overlook, underestimate, or misperceive the risk(s) inherent in a task. In
other words, if the risk profile and safety behaviors of a task have not
changed but the perceived benefits associated with changing proced-
ures/disregarding safety precautions have changed due to time pressure
and/or mental load, compensatory decision-making will likely manifest.
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This study found that time pressure and high mental load affect
workers’ safety behaviors significantly more when they are provided
with safety protections, a result that suggests stressed workers recali-
brate their cost-benefit risk analysis to a greater degree when provided
with additional safety interventions. The present study’s findings pro-
vide an innovative approach to investigating how time pressure and
mental load affect workers’ decision dynamics by examining these
changes in subjects’ risk perception, risk-taking behavior, and perfor-
mance measures. By understanding the negative effects of risk
compensation in construction industry during time-pressured or
mentally taxing task loads, this project is able to reveal how humans
navigate through everydaydecision-making under time pressure, pro-
ductivity demands, and mental load in a variety of contexts. Such work
lays the foundation for improving the current T&D safety training and
for designing an evidence-based intervention to effectively mitigate the
negative impact of risk compensation.

The proposed study contributes to the existing body of knowledge by
providing empirical evidence that the effectiveness of safety in-
terventions can be negated due to stressful working conditions (i.e.,
working under time pressure and mental demand). Beyond providing
evidence for why investments in safety do not always deliver expected
returns, the results here illustrate that demanding conditions can exac-
erbate the negative effects of the risk compensation bias and induce
workers to finish their tasks faster while taking additional risks—which
they feel empowered to do given their protective equipment. Even in the
immediate term, such results reveal opportunities for obtaining safety
improvements through workplace-culture changes, especially those
related to stress—i.e., time pressure and mental demand. While business
stressors will continue to sow stress in construction environments, the
results here suggest immediate amendments to workloads and time
constraints may deliver immediate returns to safety.

Additionally, the empirical evidence here lays the foundation for
future research targeting novel technological interventions in conjunc-
tion with other safety practices to effectively mitigate the negative ef-
fects of risk compensation within the construction domain. In particular,
this research’s findings highlight opportunities to harness neurophysi-
ological data in the construction-safety setting to potentially assess
problematic mental effort involved in worker operations; accordingly,
such evidence demonstrates neurophysiological sensors may provide a
promising tool for measuring neural efficiency in many contexts,
including various safety assessments and training scenarios. In-situ
monitoring of workers’ mental effort raises a valuable potential
resource for providing feedback to the workers themselves or to the
automated systems/robots that they are interacting with in future job
sites, rendering impact in the near and long term.

This research still faces several limitations that future studies can
tackle. First, in this study, the subjects were students with related ex-
periences. Second, risk compensation was studied at the individual level.
Third, while the research team collected several neuro-
psychophysiological responses for this study, only fNIRS neuroimaging
was discussed here to capture the physiological data associated with
individuals’ brain activation under risky situations.

6. Conclusions

Given the risk compensation effect hypothesized to diminish the
safety gains of personal protective equipment and safety interventions in
the construction domain, this paper described the latent effects of safety
interventions on subjects’ decision dynamics by applying fNIRS tech-
nology to measure cognitive brain responses while subjects performed a
simulated powerline replacement task within a mixed-reality environ-
ment. To demonstrate how productivity demand (i.e., being pushed to
work faster) and cognitive demand (i.e., performing a parallel secondary
task) can adversely influence safety performance and worsen the nega-
tive effects of risk compensation, subjects conducted the simulated
powerline replacement task under a normal condition, a time-pressure
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condition, and a cognitive demand-with—time pressure condition.

The considerable increasing rate visible in the brain’s cognitive re-
sponses between Condition I (i.e., normal condition) to Conditions II and
III (i.e., stressful conditions) across all defined ROIs reveals that the
effectiveness of safety interventions decreases within stressful condi-
tions due to the increased risk-taking behaviors of workers, who expe-
rienced more simulated electrical accidents under stressful conditions.
Greater activation was found in the right part of the brain across
different conditions—as was especially visible in the more significant
cognitive response in the right PFC (particularly in the DLPFC) for the
stressful and taxed working memory situations. Notably, under stressful
conditions, when participants perceived the situation as safe (due to the
protections in place), they changed their decision strategies, a result that
suggests risk compensation recalibrated the cost-benefit analysis. As a
result, the subjects’ brain activations illustrated lower perceived elec-
trical risk while they focused on gains (i.e., completing the defined task
in less time and performing additional cognitive tasks to receive addi-
tional compensation). Thus, a better understanding of how neural ac-
tivity changes with time pressure, productivity, and cognitive demand in
risky construction tasks offers valuable insights into understanding the
potential neural mechanisms driving risk-taking and risk compensatory
behaviors.

There are many possible avenues for future research developments
based on the present study: Firstly, the experiment can be repeated using
electrical workers with various work experiences to determine whether
experience impacts performance. Secondly, future researchers might
assess the impacts of peer effect on workers’ decision-making under risk.
Thirdly, future studies should investigate the impacts of changes in time
pressure-intensity and the complexity level of the working memory task
or the main task (i.e., the line replacement task implemented in this
research) on workers’ risk compensatory behavior and decision
dynamics.
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