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Abstract

Intracellular phase separation is emerging as a universal principle for organizing biochemical
reactions in time and space. It remains incompletely resolved how biological function is encoded
in these assemblies and whether this depends on their material state. The conserved intrinsically
disordered protein PopZ forms condensates at the poles of the bacterium Caulobacter crescentus,
which in turn orchestrate cell-cycle regulating signaling cascades. Here we show that the material

properties of these condensates are determined by a balance between attractive and repulsive forces
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mediated by a helical oligomerization domain and an expanded disordered region, respectively. A
series of PopZ mutants disrupting this balance results in condensates that span the material
properties spectrum, from liquid to solid. A narrow range of condensate material properties
supports proper cell division, linking emergent properties to organismal fitness. We use these
insights to repurpose PopZ as a modular platform for generating tunable synthetic condensates in

human cells.

Introduction

Biomolecular condensation is a powerful mechanism underlying cellular organization and
regulation in physiology and disease!*. Many of these condensates are formed via reversible phase
separation®*, which allows for rapid sensing of and response to a range of cellular challenges®®.
Biomolecular condensates can adopt a broad spectrum of material properties, ranging from highly

4,7-10

dynamic liquids to semi-fluid gels, glasses, and solid aggregates™’'". Perturbing protein

11-16

condensation can alter organismal fitness' ~°, and mutations promoting protein aggregation and

other pathological phase transitions have been implicated in human disease®!’!. Further, recent
studies show that disrupting the fluidity of a biomolecular condensate can affect its function?>23.
However, mechanistic studies on how condensate function is tuned along the entire width of the
material properties spectrum remain lacking. Addressing this question is crucial to understanding
how function is encoded into these condensates and how their material properties relate to

biological fitness.

The bacterium Caulobacter crescentus reproduces by asymmetric division®*, an event orchestrated
by the intrinsically disordered Polar Organizing Protein Z (PopZ)*>*. PopZ self-assembles into
200 nm microdomains localized to the cell poles (Fig. 1a) and forms a homogeneous membraneless
microdomain that excludes large protein complexes, such as ribosomes?”?® (Fig. 1b). PopZ is
required for the formation of these polar microdomains as knock-out of the popZ gene results in
their complete loss?’. PopZ binds to at least 13 cell-cycle regulating proteins®® and selectively
recruits them to the cell pole. Among them are members of the kinase-signaling cascades that
control asymmetric cell division through spatial regulation of transcriptional programs*°. Previous

work has shown that PopZ mutants unable to self-assemble into a polar microdomain result in
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severe cell division defects®!. This well-defined and important physiological function of the PopZ
microdomain makes it an ideal system for studying how biological function is encoded into

membraneless assemblies.

In this study, we show that PopZ phase separation underlies microdomain formation. By studying
the molecular logic of this scaffold protein, we found that its emergent material properties are
dictated by the sum of attractive and repulsive forces, mediated by an intrinsically disordered and
a helical oligomerization domain, respectively. This framework allowed us to scan the spectrum
of material properties with rationally designed PopZ mutants by tuning these attractive and
repulsive forces. We identified a region of PopZ material properties that allow for optimal growth,
therefore providing a unique case study on how selective pressures have tuned condensate features
to maximize biological fitness. Lastly, we use our insights into the modular nature of the PopZ
scaffold to create a condensation module for the generation of tunable condensates in eukaryote

systems.

Results

PopZ undergoes phase separation in vitro and in vivo

To probe the dynamic behavior of PopZ, we expressed mCherry-tagged PopZ in a strain of

Caulobacter bearing the mreBA3*P

mutation®?, which leads to irregular cellular elongation with
thin polar regions and wide cell bodies*>. While PopZ normally resides at the cell pole, in the
mreB*3*F background, the microdomain deforms and extends into the cell body before undergoing
fission, producing spherical droplets that move throughout the cell (Fig. 1¢c-d, Supplementary Fig.
la). The deformation of the microdomain at the thinning cell pole and the minimization of surface
tension when localized to the cytoplasm, and hence unrestrained by the plasma membrane, provide
in vivo evidence that the PopZ microdomain has liquid-like properties. This observation is further
supported by the partial fluorescence recovery of PopZ upon photobleaching, which indicates slow

internal dynamic rearrangements’® (Fig. 1e). To test whether the PopZ protein is sufficient to drive

condensate formation, we studied its behavior in vitro. Recombinant PopZ protein spontaneously
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demixed to form droplets at physiological concentrations (supplementary note) in the presence of

divalent cations (Fig. 2a, Supplementary Fig. 1b-f).

PopZ is only found in a-proteobacteria. Additionally, the sequence composition of its intrinsically

disordered region (IDR), a region often found in phase separating proteins 33

, 1s divergent from
the human disordered proteome (Supplementary Fig. 2). We, therefore, reasoned that human cells
could serve as an orthogonal system for studying PopZ condensation outside of the context of its
Caulobacter binding clients. When expressed in a human osteosarcoma U20S cell line, PopZ
formed micron-sized cytoplasmic condensates (Fig. 2b) that underwent spontaneous fusion events
(Fig. 2¢) and displayed dynamic internal rearrangements, as assayed by FRAP. Importantly, even
though expressed in human cells, PopZ condensates retained specificity for their bacterial client
proteins, such as ChpT>°, and were distinct from human stress granules (Fig. 2d). Thus, PopZ is

sufficient for condensation and client recruitment, and human cells serve as an independent

platform to study its behavior.

PopZ IDR tunes the microdomain internal dynamics

PopZ is composed of three protein domains®**! (Fig. 3a, Supplementary Fig. 3a): (i) a short N-
terminal helical region used for client binding®>*, (ii) a 78 amino-acid (aa) IDR (IDR-78), and
(iii) a helical C-terminal region which is required for PopZ self-oligomerization®!. To uncover the
molecular mechanism driving PopZ phase separation, we examined the contribution of each of
these domains to its condensation in human and Caulobacter cells. PopZ mutants missing either
the N-terminal region (A1-23) or the IDR (A24-101) were able to form condensates in both cell
types (Fig. 3b) with reduced fluidity compared to full-length PopZ (Fig. 3¢ and Supplementary
Fig. 3b,c). In Caulobacter, deletion of the IDR produced dense microdomains, while in human
cells, this deletion resulted in the formation of irregular gel-like condensates characterized by
arrested fusion events and near to complete loss of mobility (Fig. 3b,c and Supplementary Fig.
3b,c). In contrast, deleting fragments of the predicted C-terminal helical region (A102-132, A133-
156, and A157-177) markedly reduced visible PopZ condensates and increased condensate fluidity
(Fig. 3b,c and Supplementary Fig. 3b,c). We conclude that the folded C-terminal region provides

sufficient multivalency to drive condensation, and the IDR tunes the emergent material properties
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of the resulting condensates. This mechanism resembles that of the physiological stress sensor
Pabl from S. cerevisiae, whose heat shock-induced condensation is driven by its folded RNA-

binding domains, while a proline-rich linker regulates temperature sensitivity'!.

The architecture of the PopZ protein from Caulobacter crescentus is conserved not only within
the Caulobacterales order (Fig. 3d), but across all o-proteobacteria (Supplementary Fig. 4a).
Despite showing little sequence conservation, the IDR length exhibits a narrow distribution in
Caulobacterales with a mean of 93+1 aa, while other clades of o-proteobacteria occupy different
length distributions (Supplementary Fig. 4b). To characterize the molecular behavior of the PopZ
IDR, we performed all-atom simulations. We found that the IDR adopts an extended conformation,
with a radius of gyration (Rg) of 32.4 + 4.8 A and an apparent scaling exponent (v?®*?) of 0.72 (Fig.

3749 the strong negative charge

4a, Supplementary Tables 1-2). Consistent with previous studies
of the PopZ IDR makes it behave as a self-repulsing polyelectrolyte, driving expansion beyond

the denatured limit and tightly coupling its length to its global dimensions (Fig. 4b).

For any phase separating protein, condensates emerge when the protein concentration exceeds the
saturation concentration (csar). At a total protein concentration below the csa, the protein is
uniformly dispersed (dilute phase). When protein concentration exceeds csqa, demixing leads to the
formation of coexisting dense and a dilute phase (two-phase regime). As the total protein
concentration increases and exceeds a second threshold (cp), the system can shift to the dense
phase regime characterized by a single large droplet that occupies the intracellular space*3**!. We
found that in human cells, PopZ can exist in any of these three regimes as a function of its

cytoplasmic concentration (Fig. 4c), allowing us to map its full phase diagram in cells.

To test the effect of altering IDR length on csa, we transiently transfected U20S cells with PopZ
mutants containing either a truncated or extended IDR: IDR-40, corresponding to the N-terminal
half the wildtype IDR, and IDR-156, corresponding to concatenation of two wildtype IDRs
(Supplementary Data 1). We then tested the ability of these variants to form condensates in human
cells. First, we mapped an EGFP-PopZ phase diagram as a function of concentration and IDR
length. Halving the PopZ IDR length (IDR-40) decreased csa: and increased the c¢p compared to
wildtype PopZ. In contrast, doubling the PopZ IDR length (IDR-156) increased cs.r and decreased
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cp, resulting in a narrower two-phase window (Fig. 4c). Finally, increasing the IDR length
decreased PopZ partitioning, i.e., the ratio of the total concentration in the condensed phase to that
in the protein-dilute phase, (Fig. 4d) and increased FRAP dynamics (Fig. 4f) in human cells.
Collectively, our data suggest that the PopZ phase diagram and the emergent material properties

of its condensates are tuned by its IDR length.

Because IDR length offers one means of tuning PopZ material properties, we asked if altering the
degree of multivalency could be used as an orthogonal control parameter. We increased the
valency of the C-terminal helical region from three predicted helical fragments (trivalent) to five
(pentavalent) by repeating the last highly conserved helix-turn-helix motif (Fig. 3d, Fig. 4e). We
found that pentavalent PopZ condensates had strongly reduced FRAP dynamics compared to
wildtype trivalent PopZ and a morphology reminiscent of gelation (i.e., arrested fusion events,
Supplementary Fig. 5). However, by creating a double mutant where we combine the pentavalent
oligomerization domain (OD) with the long IDR-156, we normalized the FRAP dynamics to a
physiological range and generated condensates that were able to continue fusing together (Fig. 4f,
Supplementary Fig. 5). Taken together, our work reveals a modular design with two independent
functional regions (IDR, OD) through which the material properties of the PopZ condensate can
be tuned, providing robust design principles for synthetic engineering of customizable

condensates.

Conserved IDR features tune PopZ material properties and modulate cell division

In addition to its conserved length (Supplementary Fig. 4b), the PopZ IDR shows conservation of
its strong enrichment for acidic and proline residues across Caulobacterales, with a —0.28 net
charge per residue and prolines constituting 29% of the IDR residues (Fig. 5a). To test whether
amino acid content plays a role in the emergent properties of the PopZ microdomain, we
substituted acidic residues for asparagine and proline residues for glycine. Decreasing the negative
charge of the linker reduced condensate mobility in human cells while substituting prolines for
glycines slightly increased condensate mobility (Fig. 5b). In addition to amino acid composition,
the PopZ IDR shows conservation of charge patterning (Fig. 5a)*. We tested an array of IDR-

scrambled mutants and found that the distribution of negative charge along the primary sequence
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modulates material properties (Supplementary Fig. 6). Further, our all-atom simulations suggest
that charge distribution may modulate interdomain interactions (Supplementary Fig. 7). Thus, the
charged PopZ IDR tunes material properties in a predictable manner, based on specific sequence
properties that show strong conservation across Caulobacterales despite differences in the primary
IDR sequence. This strong conservation of IDR length, amino acid composition, and primary
sequence features that tune intra-condensate PopZ dynamics suggests that the microdomain

material state may be important for its biological function.

We next expressed the different PopZ IDR mutants in ApopZ Caulobacter cells and found that
FRAP dynamics were consistent between Caulobacter and human cells (Supplementary Fig. 8a,b).
Assaying Caulobacter growth in PopZ mutant strains revealed that optimal fitness was achieved
by wildtype PopZ. Mutants that form condensates that are either too solid or too fluid exhibited
reduced fitness (Fig. 5c). This is particularly notable given that the trivalent OD, linker length,
proline content, and acidity content are conserved (Fig. 3d, Fig. 5a). Importantly, both the
pentavalent mutant, resulting in solid-like condensates, and the long IDR-156 mutant, resulting in
fluid condensates, lead to reduced fitness. Yet, by combining these two independent loss-of-
function mutants into a double mutant, we restored wildtype material properties and fitness (Fig.
5¢). Collectively, we identified a narrow range of material properties, a ‘Goldilocks’ zone, where

the PopZ microdomain is fully functional and properly orchestrates cell division.

PopZ material properties alter microdomain localization and client recruitment

PopZ localization to the bacterial cell poles is attributed to nucleoid exclusion®. In Caulobacter,
the nucleoid spreads through most of the cytosol, restricting PopZ to the DNA-free cell poles.
Here, we asked whether the material properties of PopZ condensates influence their polar
localization. Both solid and liquid PopZ condensates retain their ability to form a barrier that
excludes ribosomes and DNA, as measured by correlative cryo-electron tomography (Fig. 6a,

Supplementary Fig. 9) and DAPI staining (Fig. 6b, Supplementary Fig. 10a), respectively

In wildtype Caulobacter cells, the PopZ microdomain is localized to the “old” cell pole during the

initial stages of the cell cycle. Upon cell growth and replication, a new microdomain is established
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at the opposite “new” cell pole?>-

. This behavior changed when replacing wildtype PopZ with
mutants that led to either liquid or solid PopZ condensates. On the one hand, liquid condensates
formed by the IDR-156 mutant lost their polar localization and diffused throughout the cell
(Supplementary Fig. 8a,e), leading to a constant reorganization of ribosome distribution and DNA
structure (Supplementary Figs. 9 and 10a). Given that this mutant could not retain polar
localization, it effectively prevents the PopZ microdomain from establishing asymmetry, thereby
perturbing its control over asymmetric cell division and explaining its loss-of-function phenotype.
On the other hand, solid condensates, formed by the pentavalent mutant, were able to reliably

localize to one cell pole but did not form a second microdomain at the opposing (“new”) cell pole

and therefore were also unable to reliably complete cell division (Supplementary Fig. 8c,d).

The PopZ microdomain acts as a signaling hub by recruiting members of the phospho-relay
pathway that activates the CtrA transcription factor, which regulates asymmetric division®’-*-3
(Fig. 6¢). We asked whether the material properties of PopZ condensates affected the orchestration
of this pathway. We first examined the ability of PopZ mutants to recruit a member of the phospho-
relay pathway. ChpT directly binds both CtrA** and PopZ** and activates CtrA by
phosphorylation®*. ChpT recruitment was increased in solid PopZ condensates and reduced in
liquid condensates (Fig. 6d-e, Supplementary Fig. 10b), indicating that correct ChpT partitioning
is a function of PopZ material properties. We then assayed the effect of the PopZ material state on
CtrA activation by measuring the expression level of the CtrA-regulated genes pil4 and sciP. The

expression of both genes was dependent on the material properties of the PopZ condensate—too

solid or too fluid led to improper activation of their transcription (Fig. 6f).

Collectively, our data reveal that too solid-like or too fluid-like microdomains interfere with their
proper subcellular localization, alter client recruitment, and ultimately deregulate the signaling
pathways driving asymmetry and cell division. Thus, we suggest that the function of the PopZ
microdomain is tightly linked to its material properties, which have been precisely tuned to meet
the cell's needs. Given the importance of bipolar localization of PopZ microdomains to the
progression of the Caulobacter cell cycle, we speculate that cells' inability to properly localize too
solid and too liquid condensates underlies, in part, their non-functionality. As the valency of the

OD can restore IDR length phenotypes and vice versa (Fig. 4f), we suggest that a tight balance of
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opposing forces mediated by the IDR and the OD define this physiological window. Indeed,
analyzing sequences of PopZ homologs, we found that increased linker length is compensated for
by a reduction in the charge fraction (Supplementary Fig. 11a). Therefore, the PopZ IDR sequence
might be tuned in natural populations to constrain deviations in material properties to ensure proper

cell division (Supplementary Fig. 11b).

Material properties tune features of synthetic condensates

The simple modular domain architecture of PopZ provides a tunable platform for generating
designer condensates*® (Fig. 7a). This architecture includes a C-terminal oligomerization domain
(OD) that drives condensation, an IDR that tunes its material properties, and an "actor" N-terminal
client binding domain. We found that the PopZ OD (which we named PopTag) was sufficient to
drive cytosolic condensate formation in human cells (Fig. 7b). The material properties of these
PopTag condensates could be further tuned by the addition of a PopZ IDR variant (spacer, Fig.
7¢), consistent with our finding on IDR effect on mobility for full PopZ condensates (Fig. 4a,c and
Fig. 5¢). We then constructed NanoPop, a fusion between PopTag and a GFP-targeting nanobody
(Fig. 7d). The NanoPop condensates efficiently sequestered EGFP into cytoplasmic condensates
(Fig. 7d).

In light of our observation that the material properties of PopZ condensates modulate their ability
to recruit clients (Fig. 6d-¢), we asked whether the material properties of the synthetic NanoPop
constructs would affect their recruitment ability as well. We turned to the nuclear RNA-binding
protein FUS which is reversibly sequestered to cytoplasmic physiological liquid-like stress
granules*’ (Fig. 7e). In certain forms of neurodegenerative diseases, amyotrophic lateral sclerosis
and frontotemporal dementia, FUS irreversibly condenses into solid-like cytoplasmic aggregates,
suggesting a connection between material properties and the extent of nuclear depletion.
Accordingly, we examined the effect of the material properties of NanoPop condensates on the
recruitment efficiency of EGFP-FUS. Nuclear import of EGFP-FUS was not hindered by co-
expressing the GFP nanobody (Fig. 7f). Co-expression of NanoPop led to the sequestration of
EGFP-FUS in the cytoplasm NanoPop condensates. Notably, the extent of sequestration depended
on the spacer length of NanoPop (Fig. 7g). NanoPop with an IDR-40 resulted in small solid-like

condensates that displayed arrested fusion and depleted FUS from the nucleus (i.e.,
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nucleocytoplasmic ratio < 1). NanoPop with an IDR-156 resulted in larger, more spherical
condensates that were less efficient at sequestering FUS from the nucleus. We found a 2 to 4 folds
reduction in EGFP-FUS recruitment into L156 NanoPop compared to L.40 NanoPop at equal expression
levels. Collectively, we found that recruitment of EGFP-FUS was most efficient for solid-like
NanoPop condensates, similar to our observation regarding ChpT recruitment by PopZ
condensates (Fig. 6d-e). Thus, altered material properties of condensates can partly explain their

pathological features and highlight the importance of proper condensate regulation of cell

physiology.

We further show that PopTag can be used to make a wide array of designer condensates by fusing
it to different actor domains. This allows one to create orthogonal condensates with tunable
localization, such as localization to actin filaments and lipid droplets (Supplementary Fig. 12a,b),
tunable clients such as enzymes (Supplementary Fig. 12c), as well as tunable stability using a
chemically induced degradation*® (Supplementary Fig. 12d). Therefore, we anticipate that the
PopTag platform will provide a way to decipher the contributions of specific condensate features
to their role in physiology and pathogenesis and constitute a versatile tool for synthetic biology

applications.

Discussion

Intrinsically disordered proteins are estimated to make up 4% of bacterial proteomes, unlike 30-
50% of eukaryotic proteomes*’, perhaps explaining why their role in bacterial physiology has been
largely overlooked. Accumulating evidence suggests that these proteins play vital roles in bacterial
cell physiology, including in the biogenesis of a growing number of bacterial biomolecular

52,53

condensates>*>!. Biomolecular condensates occur across the tree of life and are involved in

multiple cellular processes>>*.

What sets condensates apart from their membrane-bound
counterparts are their emergent properties, which refer to the material properties that emerge once
a protein switches from a mixed to a condensed state. Thus, a key question is whether these
condensates are important for protein function. Indeed, a growing list of studies has shown that
condensation of a protein complex is important for its function'!"!¢, It remains less clear whether

the exact material properties contribute to function. Several condensate proteins have been
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implicated in human disease®>>°

and have been reported to form pathological amyloid aggregates
in patients™!'®-217_ While this has been suggested as evidence that condensate material properties
are important for their biological function, these proteins usually aggregate outside the context of
their physiological condensate (e.g., TDP-43 aggregates outside of stress granules>*°?). Other

studies have shown that affecting the liquidity of condensates can alter their function®*??

, yet the
effect of condensate fluidity, from solid to liquid, on condensate function and organismal fitness
is largely underdetermined. Here, we used the PopZ microdomain as a case study to explore the

relationship between biophysical state and biological function.

The intrinsically disordered protein PopZ forms microdomains at the cell pole of the bacterium
Caulobacter crescentus. Previously, we have shown that these membraneless assemblies
selectively recruit kinase-signaling cascades to regulate asymmetric cell division?>2%3°, We now
report that PopZ forms these assemblies via phase separation and provide evidence that it is the
necessary and sufficient condensate scaffold (Fig. 1, Fig. 2). Next, we dissected the molecular
grammar of PopZ, revealing a push-pull mechanism mediated by a helical OD that drives
condensation and a repulsive IDR that fluidizes the assembly (Fig. 3, Fig. 4). These two domains
act as independent tuning knobs of the PopZ material state. On the one hand, modulating the
valency of the OD alters the condensate material state. Specifically, increasing the number of OD
helices from three to five strongly promoted condensation (Fig. 4e-f) while decreasing the number
of helices from three to two weakened condensations (Fig. 3b-c). On the other hand, modulating
the expanded and repulsive nature of the IDR promotes or decreases PopZ phase separation and

tunes its material properties (Fig. 4d-e, Fig. 5b, Supplementary Fig. 6).

Using bioinformatics analysis, we have identified conserved IDR characteristics, despite a lack of
primary sequence conservation, that are important in tuning PopZ mobility, suggesting that its
material state may be under selective pressure (Fig. 5, Supplementary Fig. 4). If these conserved
IDR features resulted from selective pressure, one would predict that modulating these features
would alter the precise balance of attractive and repulsive forces, thereby perturbing PopZ material
properties and its biological function. Indeed, by testing rationally designed mutants spanning the
material properties spectrum, we show that there exists a Goldilocks zone of material properties

where PopZ is functional. Deviations from this optimum, either too liquid or too solid, perturb
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proper cell division and decrease fitness (Fig. 5, Fig. 6, Supplementary Fig. 8-10). Specifically,
we found that altered material states result in the subcellular mislocalization of the PopZ
microdomain (Supplementary Fig. 8), affect client recruitment (Fig. 6d-e), and result in a failure
to activate the correct transcriptional program to drive asymmetric cell division (Fig. 6f). These
findings provide evidence for the role of condensate material properties in tuning their biological
function. Future work is required to fully understand the relationship between PopZ condensate

properties and Caulobacter cell cycle regulation.

Cells have evolved several strategies to compartmentalize their biochemical reactions to manage
their complexity. Stoichiometric protein machines (e.g., enzyme complexes) execute multiple
cellular functions®. The cytoskeleton allows for rapid and directed transport of RNA or vesicles®!,
and intracellular membranes form specialized organelles®®. Phase separation is emerging as
another ubiquitous organizing principle that is critical for many biological processes in all cells,
from bacteria to humans. What sets condensates apart from these other organizational mechanisms
are their emergent properties. Hence, if evolution had selected for compartmentalization through
phase separation, one would expect that there should indeed exist a limited range of material
properties that correspond to biological function. In the case of PopZ from the aquatic bacterium
Caulobacter crescentus, we indeed find it to be true. Examining PopZ across a-proteobacteria, we
found that while the OD sequence is highly conserved, the IDR sequence changes its conserved
features across clades (Supplementary Fig. 4). The divergent sequence of IDRs provides a
mechanism for natural selection to tailor a condensate's material properties to a particular
environmental niche. While speculative at this point, we anticipate that study of condensates in

bacteria could reveal strategies of condensate adaptation.

Lastly, inspired by the simple modular domain architecture of PopZ (Fig. 7a), we developed a
synthetic biology platform for the generation of designer condensates*® >* (Fig. 7b-c) with a
variety of functionalities and tunable properties (Fig. 8, Supplementary Fig. 12). The synthetic
constructs presented in this work were designed to showcase the versatility of the PopTag system,
here transiently expressed in U20S cells. Future work will be aimed at testing the utility of PopTag
across expression levels, cell lines, and model organisms. In this context, PopTag was used to

study how short linear motifs can recruit specific client proteins into condensates and to elucidate



402
403
404
405
406
407

408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431

the behavior of condensate modifiers®. Finally, since bacterial IDRs differ from their eukaryotic
counterparts, not only in proteome abundance but also in amino acid composition***6
(Supplementary Fig. 1c), we imagine that further exploration of the prokaryote sequence space
may provide us with additional tools to engineer orthogonal biomolecular condensates for

eukaryotic cells.

Methods

PopZ purification

PopZ was expressed and purified from E. coli strain BL21. Cells were grown to an OD of 0.4 and
then switched to induction temperatures of 30°C for 30 minutes prior to induction. PopZ
expression was induced with 1 mM IPTG for 2 hours. Cell pellets were collected via centrifugation
and stored at -80°C.

PopZ was purified under denaturing conditions®'. The frozen cell pellet was resuspended
in lysis buffer containing 100 mM Na-phosphate, 10 mM Tris-Cl pH 8.0, 300 mM NaCl, 8 M urea,
20 mM imidazole, and 1 tablet of EDTA-free UltraCruz protease inhibitors (Santa Cruz
Biotechnology) for each 50 mL of lysis buffer. 1.2 g of guanidinium chloride was added per 1L
cell culture, and the cells were homogenized by passage through a 21-gauge needle. Insoluble
material was removed via centrifugation at 12,100 g for 45 minutes at room temperature. The
supernatant was incubated for 2 hours with 1 mL His-Pur Ni-NTA agarose resin (ThermoFisher)
per 1 L of initial cell culture. The resin was washed 4 times in lysis buffer. The protein was eluted
using 4 mL elution buffer (lysis buffer modified to have 250 mM imidazole) per 1 L initial culture.
The PopZ protein was concentrated using a 30 k MWCO spin filter (Millipore). The protein was
refolded during 3 rounds of dialysis at 4°C in 20 mM Tris-Cl buffer at pH 8.0.

Turbidity assay

The turbidity measurements at 350 nm were performed using a NanoDrop 2000c UV-Vis
spectrophotometer at room temperature. Buffer, PopZ, and MgClz were all in solutions at pH 6.0
and in presence of 5 mM sodium phosphate. For each condition, reagents were mixed to yield a

final volume of 60 puL and incubated for 5 minutes in a 10 mm path length quartz cuvette

(26.10LHS-Q-10/Z8.5, StarnaCells). The cutoff value of Assonm = 0.02 was determined by whether
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or not droplets were visible after 5 to 20 minutes of incubation under a light microscope with a

100x oil immersion objective (Plan-Neofluar, 100x/1.30 Oil Pol M27).

Differential interference contrast

DIC imaging was performed on a Zeiss LSM 880 laser scanning confocal microscope, equipped
with a 63x oil immersion objective (Plan-Apochromat 63x/1.4 Oil DIC M27). For each condition,
a 20 puL sample was prepared, incubated for 10 minutes, and imaged using a Nunc Lab-Tek

Chambered Cover-glass (ThermoFisher Scientific Inc) at room temperature.

Construction of plasmids and strains for Caulobacter studies

Plasmids, strains, and primers are listed in Supplementary Tables 3-5.

Plasmids. AP211 (pBXMCS-2 mCherry-PopZ) was amplified with primer pair 1 to remove the
PopZ IDR. IDR-40 was synthesized as a gBlock gene fragment (IDT) and inserted into the
linearized AP211 by Gibson assembly®’ to make pKL539. pKL540 and pKL577 were constructed
similarly with primer pairs 2 and 3 and gBlock gene fragments that codes for IDR-156 and H3-
H4, respectively. To make pKL581, pKL540 was amplified with primer pair 3, and gBlock H3-
H4 was inserted into the linearized pKL540 by Gibson assembly. To make pKL699-704, AP211
was digested with Kpnl and Sacl. Corresponding gBlocks were inserted into the digested and
linearized AP211 by Gibson assembly. PCRs were performed with the KOD Hot-start 2x master
mix (Novagen), and cloning was performed using Gibson Assembly 2x Master Mix (New England
BioLabs, NEB) following the manufacturer's instructions. The sequence of each insert was verified
by Sanger sequencing (Sequetech).

Strains. To make KL6212, purified plasmid pBXMCS-2 mCherry-PopZ from AP211 cells was
electroporated into KLL5943. To make all other strains, purified plasmids were transformed into
ApopZ cells by electroporation and plated on marked PYE plates. The resulting colonies were

screened for mCherry fluorescence after induction with xylose and confirmed by western blots.

Imaging Caulobacter cells

Images were collected using a Leica DMi8 S microscope equipped with a Hamamatsu C9100 EM-

CCD camera, a 100x oil-immersion objective (1.63 NA), and a SPECTRA X light engine
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(Lumencor). Cell outlines and intensity profiles were identified using MicrobeJ®® and manually
filtered to eliminate false positives. Custom MATLAB 2020a (The MathWorks) scripts were used

to calculate the average fluorescence intensity profile along the long axis of the cell.

FRAP measurements in Caulobacter cells

Photobleaching experiments were performed using an LSM710 line-scanning confocal
microscope (Zeiss) with a 60x oil immersion objective with a numerical aperture (NA) equal to
1.4. A circular region of interest (ROI) within a PopZ microdomain was bleached using a high-
intensity 561 nm laser and 50% bleaching power. Pictures at a rate of five per minute were taken
for three minutes. Control pictures (cells and background) were taken under the same conditions.

Normalization and photobleaching corrections were performed!”.

Serial dilution plating viability assay

Strains were grown in M2G with appropriate antibiotics to an OD600 of 0.3. Ten microliters of
each dilution were spotted onto PYE plates in triplicates. Plates were incubated at 30°C for two
days and imaged with Gel Doc XR Imaging System (BioRad). The mean density for each spot was
calculated using ImageJ/F1JI version 1.53¢ following background subtraction. The growth value
for each strain was defined as the mean density at the sixth dilution divided by the mean density

at the first dilution. Parabolic fit was conducted using GraphPad Prism 9.3.1.

RT-qPCR gene expression

The effects of PopZ material properties on the transcription rate of the sciP and pilA genes were
determined by measuring mRNA levels with RT—qPCR. RNA was extracted using Monarch Total
RNA Miniprep Kit (cat#T2010S, NEB). In-tube DNase I treatment was performed following RNA
extraction to eliminate residual genomic DNA. The RNA was subsequently reverse-transcribed
using the SuperScript III First-Strand Synthesis System (cat#18080051, Invitrogen). Following
reverse transcription, the remaining RNA was degraded via RNase H treatment, and the

complementary DNA (cDNA) was diluted tenfold before beginning qPCR.
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Expression levels were determined using a CFX Connect Real-Time PCR system (Bio-Rad), using
the Bio-Rad CFX Manager 3.1 software. The 15uL qPCR reaction contained 2 uL of cDNA,
7.5ul of SYBR Green (Fast SYBR Green master mix, cat#4385612, Applied Biosystems), and
5.5ul of primer mix. The primer mix contained the forward and reverse primers to form
approximately 100-bp amplicons in the genes of interest at a final primer concentration in the
reaction of 230 nM. Expression measurements were then made by comparing the cycle threshold
(Cr) of the amplicons of interest to an internal standard amplicon in 7#o. This housekeeping gene
is insensitive to cellular concentrations or activity of CtrA. As a negative control, we verified the
removal of gDNA template contamination by measuring the Cr of RNA samples not treated with
reverse transcriptase. We additionally measured the amplification of a gDNA standard curve to
verify that the Rho, SciP, and PilA amplicons formed unique products and with amplification
efficiencies within 10% of one another; we measured amplification efficiencies of 102, 101, and
91%, respectively. Data were analyzed using the AAC:* method. Final gene expression
measurements represent the average and SEM of three biological replicates, each composed of at

least two technical replicates.

Bioinformatics
PopZ homologs were identified based on the C-term region using BLAST’’. Taxonomy was
extracted from NCBI. A phylogenetic tree was determined based on the full-length sequence using

Geneious Prime 2020.0.4 (https://www.geneious.com). NetSurfP-2.0’' was used to detect

intrinsically disordered regions, and JPred’? to detect secondary structures in the full-length
homologs. Custom scripts written in python 3.7.3 were used for regression analysis and

visualization.

All-atom simulations
All-atom simulations were run using the ABSINTH abs3.2 opls.prm implicit solvent model and

the CAMPARI V2 Monte Carlo simulation (http://campari.sourceforge.net/)’*. The combination

of ABSINTH and CAMPARI has been used previously to effectively sample the conformational
behavior of disordered proteins with good agreement to experiment, notably in the context of
highly charged and highly proline-rich IDRs*”74. All simulations were started from randomly

generated non-overlapping random-coil conformations, with each replica using a unique starting
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structure. Monte Carlo simulations evolve the system via a series of moves that perturb backbone
and sidechain dihedral angles along with the rigid-body coordinates of both polypeptides and
explicit ions.  Simulation analysis was performed using SOURSOP 0.1.9
(https://soursop.readthedocs.io/) and MDTraj 1.9.57° (http://mdtraj.org). The protein secondary
structure was assessed using the DSSP algorithm’®,

ABSINTH simulations were performed with the ion parameters derived by Mao et al., with the
notable exception of the double linker for which an enhanced Na* ionic radius (2.32 A vs. 1.16 A)
was applied to prevent non-physiological chelation”’. All simulations were run at 10 mM NaCl
and 310 K. An overview of the simulation input details is provided in Supplementary Table 1. A
summary of simulation analysis statistics is provided in Supplementary Table 2.

A major challenge in the sampling of disordered proteins reflects an effective exploration of
conformational space. The highly repulsive and expanded nature of the linker provides some
advantages in that conformational space is substantially reduced by the polyelectrolytic nature of
the chain. Simulations reveal no substantial secondary structure (Supplementary Fig. 13a), with
good agreement between analogous sub-regions examined in different length constructs. Further,
histograms of Rg revealed a smooth distribution consistent with a well-sampled ensemble without
substantial local kinetic traps (Supplementary Fig. 13¢). To assess sampling for full-length PopZ,
we compared simulation-derived secondary structure profiles for wildtype PopZ, N-acidity, and
C-acidity mutants (Supplementary Fig. 13b). In agreement with good conformational sampling,
we observed nearly perfectly overlapping helicity profiles for the N and terminal regions that
remain unchanged between the three constructs, giving us confidence that simulations are
relatively converged with respect to the relevant order parameters of interest. As with the linker
constructs, smooth distributions for the Ry are again consistent with a well-sampled conformational

ensemble (Supplementary Fig. 13d).

Construction of plasmids for human cell lines studies

PopZ and derived mutant constructs for expression in human cells were generated through custom
synthesis and subcloning into the pcDNA3.1+N-eGFP backbone by Genscript (Piscataway, USA).
The mCherry-G3BP1 plasmid was a kind gift from Dr. Kedersha and Dr. Anderson (Brigham and

Women's Hospital). Sequences are found in Supplementary Data 2.
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Human cell culture and microscopy

U20S cells (ATCC, HTB-96) cells were grown at 37 °C in a humidified atmosphere with 5 % CO2
for 24 h in Dulbecco's Modified Eagle's Medium (DMEM), high glucose, GlutaMAX + 10 % Fetal
Bovine Serum (FBS) and pen/strep (ThermoFisher Scientific). Cells were transiently transfected
using Lipofectamine 3000 (ThermoFisher Scientific) according to manufacturer's instructions.
Biotinylation experiments using TurbolD-PopTag condensates were performed as described in
detail”®. Cells grown on coverslips were fixed for 24 h after transfection in 4 % formaldehyde in
PBS. Slides were mounted using ProLong Gold antifade reagent (Life Technologies). Confocal
images were obtained using a Zeiss LSM 710 confocal microscope. Images were processed using

FIJIL.

FRAP measurements in human cells

U20S cells were cultured in glass-bottom dishes (Ibidi) and transfected with GFP-PopZ constructs
as described above. After 24 h, GFP-PopZ condensates were bleached, and fluorescence recovery
after bleaching was monitored using Zen software on a Zeiss LSM 710 confocal microscope with
an incubation chamber at 37 °C and 5 % COz. Data were analyzed as described previously'’. In
brief, raw data were background-subtracted and normalized using Excel, part of Microsoft 365

version 2007, and plotted using GraphPad Prism 9.3.1 software.

Statistical analysis

All data were analyzed using GraphPad Prism 9.3.1. Statistical test details are shown in figure

legends.

Cryo-Electron Tomography

Sample preparation. Log phase Caulobacter (OD600 between 0.2 and 0.5) grown in M2G media
were diluted 1:10 in fresh M2G media and induced for 4-5 hours with 3% xylose at 28 °C in a
shaking incubator. For plunge freezing of Caulobacter, induced cells were placed on ice and
concentrated to an effective OD600 of 3.0 by centrifugation. For whole-cell tomography, cells

were diluted to an effective OD600 of 0.2 and plunge frozen in a similar manner.
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To reduce the formation of crystalline ice, 1 uL of 50% w/v trehalose was added to 9 ul of the cell
suspension immediately before plunge-freezing. 4 ulL of the cell suspension were added to the
carbon side of a glow-discharged Cu 200 mesh R2/1 Quantifoil grid and manually blotted from
the back to remove excess liquid and were plunge-frozen in an ethane/propane mixture cooled to
liquid nitrogen temperatures using a custom-built manual plunger (Max Planck Institute for
Biochemistry). Grids were clipped into an Autogrid support ring to facilitate downstream handling.

The frozen grids were kept at liquid nitrogen temperatures for all subsequent steps.

Cryo-Fluorescence Microscopy. Frozen grids were observed with a CorrSight inverted
microscope (ThermoFisher Scientific) using EC Plan-Neofluar 5x/0.16NA and EC Plan-Neofluar
40x/0.9NA air objectives (Carl Zeiss Microscopy), a 1344x1024 px ORCA-Flash 4.0 camera
(Hamamatsu), and an Oligochrome light-source, with excitation in four different channels
(405/488/561/640 nm); red (mCherry-PopZ) and green (GFP-ribosomes) were used. Data
acquisition and processing were performed using MAPS 2.1 and MAPS 3.6, respectively (Thermo
Fisher Scientific). After acquiring a grid map at 5X magnification, regions of interest were imaged

at 40x magnification to identify cells with PopZ domains.

Cryo-Focused Ion Beam (FIB) Milling. Grids with Caulobacter were prepared using cryo-FIB
milling as previously described using an Aquilos (ThermoFisher Scientific) dual-beam SEM
equipped’®*. Briefly, areas covered with a monolayer of cells were targeted first for coarse milling
with an ion beam current of 0.10-0.50 nA, followed by fine milling using 10-50 pA. Lamella width
was typically 10-12 um. Five to eight lamellae were prepared on each grid in one session, with a

target thickness of ~150 nm.

Cryo-Electron Tomography. Caulobacter lamellae were visualized on a Titan Krios
(ThermoFisher Scientific) operating at 300 kV accelerating voltage with a Gatan K2 Summit
camera equipped with a Quantum energy filter. Regions of interest were determined by correlating
TEM and FM images. Tilt series of Caulobacter were obtained using SerialEM v3.8b1181,82 using
both bi-directional and dose-symmetric tilt schemes83 over a tilt range of +/- 60°, in increments
of 2° or 3°, at a pixel size of 0.4265 nm or 0.3457 nm. Each tilt image was collected using electron

counting mode and with dose-fractionation. Exposure times for each tilt were adjusted to keep an
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approximately constant number of counts on the sensor. Cumulative dose for each tilt series was

usually between 120 to 180 e/A2.

Tomogram Reconstruction. The movies corresponding to each tilt were motion-corrected using
MotionCor2 software®. Tilt series alignment and reconstruction were done using IMOD®#", Tilt
series were aligned using the patch-tracking modality and reconstructed using weighted back-
projection. If needed, individual tilts with excessive motion, poor contrast, or camera errors were
excluded from the final reconstruction. Non-linear anisotropic diffusion (NAD) filtering was

applied to tomograms using Etomo (part of IMOD) to enhance contrast for presentation in IMOD.

Ribosomal Template Matching. Ribosome locations were determined using the template
matching routine from Dynamo-v1.1.514%%, Template matching was performed on NAD filtered,
4-binned tomograms. Briefly, a reference 70S prokaryotic ribosome (PDB: SMDZ) was filtered to
a 20 A resolution and resampled to the appropriate pixel size to serve as the template and used in
conjunction with a close-fitting spherical mask (30.7 nm or 18 binned pixels) for the template
matching routine. All points located outside of the cell boundary were excluded. A cross-
correlation threshold that resulted in most ribosome-like particles being included was selected, and
particles above this threshold were extracted from unfiltered tomograms (2x-binned), aligned, and
averaged using Dynamo. Particles residing inside the PopZ compartment (<3%) were visually

inspected to verify their identity and not included if they were deemed false negative.

Membrane Segmentation. Membranes were detected using TomoSegMemTV-vApr2020%.

Membrane and ribosome annotations were visualized with Amira (ThermoFisher Scientific).

Statistics and reproducibility

Phase diagrams of recombinant PopZ protein (Supplementary Fig. 1b-f) were constructed from
two independent experiments with similar results. All other data were generated from at least three
independent experiments with similar results. Results are expressed as means + standard errors of
the mean (SEM). For all graphs where statistical analyses were applied, the number of repeats ()

has been mentioned in the figure legends. No data were excluded from the analyses. GraphPad
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Prism-v9.3.1 was used to perform the statistical analysis. Significance is expressed as p values (not
significant (ns), p>0.5; *, p<0.05; **, p<0.01; *** p<0.001; **** p<0.0001). Two-sided
unpaired t-test and ordinary one-way ANOVA test were used for parametric data and Kruskal-
Wallis for non-parametric data.

For Fig. la,c,d, Fig. 6b, Fig. 6d, Supplementary Fig. 8a, and Supplementary Fig. 10, images are
representative examples from 3 independent biological replicates with n>100 Caulobacter cells
per replicate. For Fig. 2a and Supplementary Fig. e, images are representative examples from 2
independent biological replicates with n>50 condensates per replicate. For Fig. 2b-d, Fig. 7b,c,
Fig. 8b,d images are representative examples from 3 independent biological replicates with at least
n=10 U20S cells per replicate. For Figure 3b, images are representative examples from 3
independent biological replicates with n 2100 Caulobacter cells per replicate and n=10 U20S cells

per replicate.

Data Availability

Processed tomograms generated as part of this study are available in the Electron Microscopy Data
Resource under accession codes EMD-23622 (https://www.emdataresource.org/EMD-23622),
EMD-23623 (https://www.emdataresource.org/EMD-23623), and EMD-23624
(https://www.emdataresource.org/EMD-23624). The unprocessed tilt series are available in the
Electron Microscopy Public Image Archive (EMPIAR) under accession codes EMPIAR-10693
(https://www.ebi.ac.uk/empiar/EMPIAR-10693), EMPIAR-10688
(https://www.ebi.ac.uk/empiar/EMPIAR-10688) and EMPIAR-10689
(https://www.ebi.ac.uk/empiar/EMPIAR-10689). Raw data used for bioinformatics analysis,
ChpT localization images, and data generated from Monte Carlo simulations has been deposited

at https://zenodo.org/record/7042738#.YxG3P-zMI6A°. All other data supporting the findings of

this study are included in the main text and the supplementary information. Strains and plasmids,
supporting the findings of this study are available from the corresponding author(s). Source data

are provided with this paper.
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Code Availability

Simulations and simulation analysis were performed with open-source tools: campari V2 and
ABSINTH: abs3.2 opls.prm (http://campari.sourceforge.net), SOURSOP 0.1.9
(https://soursop.readthedocs.i0/), and MDTraj 1.9.5 (http://mdtraj.org/).
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Figure Legends

Figure 1. PopZ phase separates in Caulobacter crescentus

a. PopZ self-assembles at the poles of wildtype Caulobacter cells. A fluorescent image of ApopZ
Caulobacter cells expressing mCherry-PopZ (red) from the xy/X promoter on a high copy plasmid
overlaid on a corresponding phase-contrast image. Scale bar, 1 um b. The PopZ microdomain
excludes ribosomes and forms a sharp convex boundary. (left) Slice through a tomogram of a cryo-
ET focused ion beam-thinned ApopZ Caulobacter cell overexpressing mCherry-PopZ. A dashed
red line shows the boundaries of the PopZ region. (right) Segmentation of the tomogram in (left)
showing the outer membrane (dark brown), inner membrane (light brown), and ribosomes (gold).
Scale bar, 1 um. ¢-d. PopZ creates droplets in deformed Caulobacter cells. ¢. A fluorescent image
of Caulobacter cells bearing a mreB A325P mutant, expressing mCherry-PopZ (red) from the xylX
promoter on a high copy plasmid overlaid on a corresponding phase-contrast image. Scale bar, 1
um. d. Fluorescent images show the PopZ microdomain (red) extending into the cell body,
concurrent with the thinning of the polar region, producing a droplet that dynamically moves
throughout the cell. Frames are two minutes apart. Scale bar, 1 um. e. PopZ dynamics are not
affected by a release from the cell pole. Recovery following targeted photobleaching of a portion
of an extended PopZ microdomain in wildtype and mreB A325P mutant cells. Cells expressing
mCherry-PopZ from a high copy plasmid were imaged for 12 frames of laser scanning confocal
microscopy following targeted photobleaching with high-intensity 561 nm laser light. Shown is
the mean + SEM of the normalized fraction of recovered signal in the bleached region; n equals

15 cells.

Figure 2. PopZ phase separates in vitro and in human U20S cells.

a. The PopZ protein forms droplets in vitro in the presence of magnesium. Differential interference
contrast microscopy images of PopZ at physiological concentration of 5 uM?3® in 5 mM sodium
phosphate at pH 6.0 with either 2 mM MgCIl2 (left) or 5 mM MgCI2 (right). b. Caulobacter PopZ
expressed in human U20S cells forms phase-separated condensates (black) in the cytoplasm but
not the nucleus (N). ¢. /n vivo fusion and growth of PopZ condensates in human U20S cells. 80

seconds time-lapse images of a small PopZ condensate (green) merging with a large PopZ
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condensate. Scale bar, 5 um. i. PopZ expressed in human U20S cells retains selectivity. (Top)
EGFP-PopZ (green) and stress granule protein mCherry-G3BP1 (purple) form separate
condensates. (Bottom) EGFP-PopZ (green) recruits the Caulobacter phosphotransfer protein
mCherry-ChpT (magenta) when co-expressed in human U20S cells. Scale bar, 10 um.

Figure 3. Domain organization of the PopZ condensate.

a. Domain organization of the PopZ protein from Caulobacter crescentus. PopZ is composed of a
short N-term region with a predicted helix, H1 (gray box), a 78 amino-acid intrinsically disordered
region (IDR, blue curly line), and a C-term region with three predicted helices, H2, H3, H4 (gray
boxes). b. Region deletion and its effect on PopZ condensation. (top) EGFP fused to five PopZ
deletions (black) expressed in human U20S cells. (bottom) mCherry fused to four PopZ deletions
(A1-23, A24-101, A102-132, and A133-177) (red) expressed in dpopZ Caulobacter cells. Scale
bar, 10 um c. Region deletion and its effect on PopZ mobility. FRAP, shown as mobile fractions,
the plateau of the FRAP curves for the wildtype (gray), for the five region deletions (blue, green,
and brown). Also shown are the significances, calculated as Kruskall-Wallis tests with Dunn’s
correction, of the difference in mobility between pairs of mutants. ns indicates no significant
difference, two asterisks indicate p-value < 0.01, and four asterisks indicate p-value < 0.0001. 7 is
between 15 to 20 granules per condition. Source data underlying graphs are provided in Source
Data. d. conservation of the PopZ protein regions. Graphical representation of a multiple alignment
of 99 PopZ homologs within the Caulobacterales order. Each row corresponds to a PopZ homolog
and each column to an alignment position. All homologs encode an N-terminal region (green), an
IDR (blue), and a C-terminal helical region (brown). White regions indicate alignment gaps, and
gray regions indicate predicted helices 1 to 4. Phylogeny tree of the corresponding species is
shown, highlighting the four major genera in the Caulobacterales order: Asticcacaulis (pink),
Brevundimonas (gray), Phenylobacterium (light purple), and Caulobacter (dark purple). Notably,

all species within the Brevundimonas genus code for insertion between helix 2 and helix 3.

Figure 4. Modular organization regulates the dynamics of the PopZ condensate.
a. The predicted radius of gyration (Rg) for a half linker (IDR-40, 40 aa) (light blue), full wildtype
linker (IDR-78, 78 aa) (gray), and a double linker (IDR-156, 156 aa) (dark blue). b. PopZ linker

expands beyond the denatured limit. The expected Rc of denatured proteins as a function of the
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number of amino acids is shown in black®'. Dimensions of PopZ-like linkers with varying lengths
are shown in red, and dimensions of IDR-40, 78, and 156 are shown in shades of blue and gray.
The red dashed line is an analytical fit with a scaling value of 0.80 with a prefactor value of 1.14.
c. Phase diagram of PopZ expressed in U20S cells. (top) Three states of PopZ condensation: dilute
phase (blue, left), two-phase (a diffused phase and condensed phase, red, middle), and a dense
phase (gray, right). EGFP fluorescence intensity from blue (low) to white (high) and nucleus
boundary as a white dotted line. Scale bar, 10 um. (bottom) Phase diagrams of EGFP fused to
either of the three PopZ variants. Each dot represents data from a single cell, positioned on the x-
axis as a function of the cell mean cytoplasmic intensity. Dot color indicates phase. d.
Quantification of the partition coefficient of each of the three linkers. A higher partition coefficient
indicates denser condensates. Two-sided student’s t-test; Four (two) asterisks indicate p-value <
0.0001 (0.01). n equals 30 granules per condition. Source data underlying graphs are provided in
Source Data. e. Schematics of the oligomerization domain (OD) of the wildtype PopZ (trivalent,
left) and an OD with increased valency consisting of five helices, with a repeat of helices 3 and 4
(pentavalent, right). f. The balance between condensation promoting and counteracting phase
separation tunes condensate material properties. FRAP, shown as mobile fractions, for PopZ with
a trivalent OD and a linker of three different lengths (gray and blue), and PopZ with a pentavalent
OD with IDR-78 (light green) and IDR-156 (dark green). Two-sided student’s t-test; **** p-value
< 0.0001. n equals 25 granules for each mutant. Source data underlying graphs are provided in

Source Data.

Figure S. PopZ material properties are directly linked to Caulobacter viability

and are modulated by conserved IDR properties

a. The sequence composition of the PopZ IDR is conserved across Caulobacterales. Histograms
are calculated across 99 PopZ homologs within the Caulobacterales order and show a tight
distribution for the following four parameters. (top, left) The mean fraction of acidic residues is
0.29 £0.004 (red). (top, right) The mean fraction of prolines is 0.23+0.006 (purple). (bottom, left)
Among the acidic residues within the IDR, the fraction of those found in the N-terminal half (light
blue, 0.57+0.011) and the C-terminal half of the IDR (dark blue, 0.43+0.011). (bottom, right)
Among the IDR prolines, the fraction of those found in the N-terminal half (light blue, 0.5+0.015)
and the C-terminal half of the IDR (dark blue, 0.5+0.015). Source data underlying graphs are
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provided in Source Data. b. Amino acid composition plays a role in PopZ mobility. FRAP, shown
as mobile fractions, for PopZ with its wildtype IDR (light gray) and five mutants: Substituting
either half or all of the acidic residues for asparagine (DE-N 50% in red and DE-N 100% in pink,
respectively), substituting all prolines for glycines (P-G 100% in purple), and moving all acidic
residues to either the N-terminal part or the C-terminal part of the linker (yellow and brown,
respectively). n equals 20 granules per condition. ¢. Growth is linked to PopZ's material state.
Growth, derived from serial dilution growth assay (Methods), as a function of FRAP mobility for
ten mutants. These include from left to right: 100% DE-N (pink), Pentavalent (light green), 50%
DE-N (red), IDR-156+pentavalent (green), C-acidity (orange), IDR-40 (light blue), wildtype
(gray), 100% P-G (purple), N-acidity (yellow), and IDR-156 (blue). Examples of serial dilutions
are shown for wildtype (gray box), 50% DE-N (red box), IDR-156 (blue box), and 100% DE-N
(pink box). A polynomial fit with an R-square of 0.86 is shown in red. Three biological replicates,

each with three technical replicates, were measured for each strain. a.u., arbitrary unit.

Figure 6. PopZ material properties affect cytosol organization

a. PopZ IDR-156 condensates retain ribosome exclusion. (left) Slice through a tomogram of a
cryo-focused ion beam-thinned ApopZ Caulobacter cell overexpressing mCherry-PopZ with IDR-
156. (right) Segmentation of the tomogram in (left) showing annotated S-layer (orange), outer
membrane (dark brown), inner membrane (light brown), and ribosomes (gold). Scale bar, 0.25
um. b. PopZ IDR-156 condensates retain DNA exclusion. PopZ IDR-156 condensates expressed
in APopZ cells dynamically moved in the cytosol and excluded DAPI-stained DNA (blue). Scale
bar, 5 um ¢. The CtrA activation network is sequestered to the PopZ condensate. The schematic
shows the auto-kinase CckA®? phosphorylating the phospho-transfer protein, ChpT*, which in
turn phosphorylates the master transcription factor, CtrA®®. All three proteins are sequestered to
the PopZ condensate’®**, Phosphorylation of CtrA occurs largely inside the condensate®.
CtrA~P leaves the DNA-free PopZ condensate and activates an array of asymmetry regulating
genes, including sciP***° and pilA%. d-e. PopZ material properties affect ChpT recruitment. (d)
Representative cells are shown for pentavalent, IDR-40, and IDR-156. (¢) The graph shows the
partition coefficient of ChpT inside PopZ condensates as a function of condensate mobility. The
coefficient was calculated as ChpT fluorescence intensity inside the PopZ condensates divided by

the fluorescence intensity outside the condensates. A higher partitioning coefficient indicates
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stronger recruitment. Data shown for pentavalent (light green), pentavalent with IDR-156 (green),
IDR-40 (light blue), wildtype (gray), and IDR-156 (blue). n equals 60 cells per strain. Two-sided
student’s t-test; ns indicates no significant difference, two asterisks indicate p-value < 0.01, and
four asterisks indicate p-value < 0.0001. Source data underlying graphs are provided in Source
Data. f. PopZ material properties affect the transcriptional program regulating asymmetry.
Expression levels of CtrA activated genes sciP and pilA in cells expressing different PopZ mutants.
Color code as in (e). Three biological replicates (gray points), each with at least two technical
replicates, were measured for each strain and each gene. Source data underlying graphs are

provided in Source Data.

Figure 7. A modular platform for generating synthetic condensates with

tunable properties.

a. Re-engineering PopZ as a modular platform for the generation of designer condensates. The
oligomerization domain (PopTag) drives phase separation, the IDR (spacer) tunes material
properties, and the n-terminal domain (actor) determines functionality. b. Scheme highlighting
setup of the PopTag system and formation of EGFP-PopTag condensates in U20S cells. c.
Changing the linker length alters the FRAP dynamics and partitioning coefficient of PopTag
condensates. Two-sided student’s t-test; **** p-value < 0.0001. For the FRAP dynamics plot, 15
condensates were analyzed per condition, and 30 condensates were analyzed per condition for the

partitioning coefficient plot. Source data underlying graphs are provided in Source Data.

Figure 8. NanoPop can inhibit nuclear import

a-b. The NanoPop system. (a) NanoPop is the fusion of the PopTag to a nanobody (nb), which
allows the recruitment of clients into cytoplasmic condensates. In this example, PopTag is fused
to a GFP nb, which allows the recruitment of EGFP-tagged protein. (b, top) Cells expressing EGFP
and GFP nb fused to mCherry (GFPnb-mCherry) show diffused EGFP, diffused GFPnb-mCherry,
and no correlation between them. (b, bottom) Cells expressing EGFP and GFPnb-mCherry-
PopTag show GFPnb-mCherry-PopTag condensates with co-localized EGFP. ¢. Schematics of the
NanoPop system with EGFP fused to FUS. d-f. NanoPop can inhibit nuclear import of FUS. N =
nucleus, C= cytoplasm. (d) Co-expression of an EGFP-targeting nb does not impair the nuclear

import of EGFP-FUS, whereas co-expression of NanoPop does. The strength of this effect is
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dependent on the NanoPop linker length (PopZ linker 40 versus PopZ linker 156). (¢) Nuclear
import is quantified by the nucleocytoplasmic ratios (N/C), the EGFP-FUS signal in the nucleus
divided by the signal in the cytoplasm. Schematics of EGFP signals for low, medium, and high
N/C are shown. (f) Quantification of EGFP-FUS N/C dependence on the material properties of its
recruiting protein. Axes indicate average cellular mCherry and EGFP intensity for co-expression
of EGFP-targeting nb alone (top), NanoPop-L40 (middle), and NanoPop-L156 (bottom). The color
code indicates N/C, as illustrated in (e). n equals 45, 39, and 31 cells for Nanobody, NanoPop-
L40, and NanoPop-L156, respectively. a.u., arbitrary unit.
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