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Abstract—Motor imagery (MI) based brain-computer
interfaces (BCIs) have been studied as applications for the
improving rehabilitation and recovery, as well as augmenting
existing function. MI BCI systems typically provide feedback
in an egocentric rather than an allocentric reference frame.
This study aims to see if presenting stimuli in an allocentric
reference frame is comparable to presenting egocentric stimuli.
We used dynamic visual stimuli in egocentric and allocentric
reference frames to induce motor imagery in a virtual reality
(VR) environment. Eight participants imagined grasping
actions with their left and right hands while observing
egocentric or allocentric stimuli. The allocentric and egocentric
reference frame tasks had comparable inter-rater agreement
and precision, indicating that allocentric visual feedback is as
effective as egocentric one for MI BCI.

Index Terms—Brain Computer Interface, Mirror Neuron
System, Motor Imagery, Virtual Reality

I. INTRODUCTION

Brain-computer interfaces (BCIs) serve as a means of
communication between the mind and a target device for re-
habilitation, augmenting functionality, compensating for lost
functionality, as well as enabling a new form of interaction
[1], [2]. Electroencephalography (EEG) is a low-cost non-
invasive method to capture brain activity with high temporal
resolution, and it can be used to measure both evoked and
spontaneous brain activities [3], [4]. Because of its potential
applications in a variety of BCI applications, motor imagery
(MI), in which imagined movements are translated to direct
commands, has received a lot of attention among the various
control paradigms used in EEG-based BCIs. [5]–[8]. Mirror
neuron systems (MNS) are a distinct class of neurons that
discharge during intent-centric action and observation of
comparable actions, and are involved in recognizing action
intent via generalized components as well as imitation. [9]–
[11]. Subjects using MI paradigms have reported difficulty
visualizing the motor activity required while performing MI
tasks, which is related to aspects of coordination and working
memory, necessitating trial and error via feedback congruent
to the chosen motor imagery task within the presented stimuli
[12], [13].

Dynamic and object-directed visual feedback in a vir-
tual reality (VR) environment has been used to improve
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the performance of MI-based BCI (MI-BCI) [14]–[17]. As
mentioned, the core of MI is the MNS which is also directly
connected to the advent of VR and its link to body ownership
transference (BOT) and the sense of ownership to the virtual
avatar. BOT, and the larger sense of agency, are factors in
the participants’ immersion in their environment and body,
whether virtual or physical. A VR environment allows a
subject to immerse themselves in a new or modified perspec-
tive, embodying a new frame of reference [11], [18]–[22].
These designs use an egocentric reference frame for visual
feedback, relaying the stimuli of the selected task within a
first person object-self reference system as the motor imagery
is executed [10], [20], [23]. Allocentric reference frames,
which use an object to object referencing system, have
traditionally been used only in mirror-therapy applications.
Recent research has focused on the impact of allocentric
reference frames within VR environments, and its role in
navigation and dynamic movement within cognitive and
spatially grounded tasks [24]–[28]. Navigation is one of the
tasks heavily studied in the application of BCI and cognition
that is impacted by allocentric processing. As aspects of real-
world tasks require non-standard environments with refer-
ence frames that vary with the environment, such as space,
the accuracy of navigation within the environments will de-
pend upon the strength and presentation of allocentric stimuli
as well as the application of allocentric control schemes.
Outside of the task itself, allocentric processing relies heavily
on the bottom up components of dual cognition, including
working memory. As such, this gives rise to applications of
BCI as an evaluative tool of working memory and spatial
cognition, by applying allocentric designs that incorporate
both environmental stimuli and varied layouts.

Traditionally, studies have shown that components of own-
ership and agency associated with somatosensory illusions
such as the rubber hand illusion (RHI) and virtual rubber
hand illusion (VRHI) are biased toward egocentric reference
frames [11], [19], [29]. However, allocentric reference frames
and perceptually-coupled stimuli, such as showing a grasp-
ing arm while asking participants to imagine grabbing an
object, have been successfully employed in previous studies
[30]–[32]. Results from therapy and illusory studies within
allocentric reference frames were comparable to egocentric
reference frames when environmental consistency, avatar
embodiment-adaptation, and components of how the illu-
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(a) (b) (c)

Fig. 1. The visual stimuli used in the calibration procedure. (a) The fixation cross, the stimuli that indicated the imagined grasping actions with (b) left
and (c) right hands.

sions were displayed regarding the VR-BCI hardware were
considered [26], [33]–[37]. In this nature, the strength and
dimensionality of the illusion (and its transferred sensations)
are coordinated with the presentation itself. Varying the en-
vironment to increase embodiment with perceptual feedback
results in better performance within perceptually linked pro-
cesses. Ultimately, the aspects of translocation brought upon
by this sense of ownership directly impacts the functionality
within the allocentric and egocentric processing regions of
the brain [37], with the latency of the experiences fed to
the MNS being inversely correlated to the complexity of the
signal for goal and intent interpretation [23]. Additionally,
existing perceptual signals (posture, environmental sounds
and visuals) weaken the strength of the illusion, with aspects
of proprioception and sensory input definitively reducing
the signal responses observed in motion control paradigms
versus MI-BCIs. As a result, any proposed method of tele-
operation or avatar embodiment must rely on a system with
the greatest complexity of sensory inputs from the illusion,
with less input from the existing body [22]. These control
schema and general investigative aims into the impact of VR
in MNS also explore the concept of error monitoring systems
within MNS, which affects the recruitment and construction
of MNs for intent detection and recognition [11]. The next
steps in determining whether allocentric VR embodiment can
be equivalent to that of first-person VR embodiment are to
determine the levels of immersion required for BOT and
the learning rate/capacity for MNS development when these
new systems can. And, in that same manner, to address the
dissociation of ownership during changes in temporal delay
and spatial encoding that occur from immersive VR.

This study proposes that a third-person perspective-
controlled avatar in a VR environment could create an artifi-
cial sense in which the state of BOT could be fully expressed.
In order to investigate this, and the efficiency of allocentric
versus egocentric reference frames as visually dynamic MI-
based VR-BCI feedback, an environment in which both a
third-person and first-person perspectives could be viewed
across the same task, was designed. Subjects performed
object-oriented motor imagery in a VR environment while
seated and received visual feedback from egocentric and
allocentric reference frames.

II. METHODS

A. Participants

Eight healthy adults (1 female; mean age 27 ± 4 years)
participated in this study. Each participant was asked to read
and sign an informed consent form approved by the Human

Research Protections Program of University of California
San Diego.

B. Experimental Procedure

The experimental procedure consists of two parts: cali-
bration in a 2D space and imagery in VR with dynamic
visual feedback. The experimental tasks included imagining
a grasping movement with the left hand (class 1), right hand
(class 2) and resting state (class 3). At the beginning of each
part, the subject was asked to acknowledge that they under-
stood the calibration protocol, the stimuli designation, and
the execution of motor imagery. After putting on the headset,
the Unity component, which contains the VR environment
developed for the MI tasks in C#, was launched, showing
the Main menu screen.

The subjects were first asked to complete the calibration.
The calibration is based on a cue-guided BCI paradigm, in
which the participants were asked to perform a task indicated
by a cue generated by the stimulation program. The subject
saw either a blue square on the left-hand side (Fig. 1B) or
a red (Fig. 1C) square on the right-hand side of their view
for four seconds. When the stimulus was shown, the subject
was instructed to perform a motor imagery task of grasping
an object in front of them with either the left hand (blue
stimulus) or right hand (red stimulus). After each imagery
task, a fixation cross (Fig. 1A) was shown for two seconds
as a short break. The subjects were asked to complete four
runs, each consisting of 60 pseudo-randomized trials (20 for
each class).

In the procedure with dynamic visual feedback, either the
allocentric or egocentric reference frames were randomly
assigned at each of four sessions over a single 1-hour
experiment period for each participant. For the allocentric
frame, the avatar was presented sideways from an observer’s
perspective. Each session consisted of four runs of 45 trials
(15 trials per class), for a total of 180 trials. Consistent
with the calibration procedure, the stimuli were shown for
4 seconds with 2-second intervals. Within this procedure,
the Robot Kyle Unity asset was used as an avatar of the user
and provided visual feedback of the grasping motor imagery,
shown in Fig. 2. Fig. 2A and B show the egocentric view
of the visual feedback in VR and a left-handed feedback
stimuli in the egocentric view, respectively, while Fig. 2C
and D show the allocentric view of the same scenes.

C. Experimental Environment

A MI-based BCI was implemented in VR as shown in
Fig. 3. A 3D environment was designed using Unity and
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(a) (b)

(c) (d)

Fig. 2. The visual stimuli used as dynamic visual feedback. The egocentric view (a) before and (b) during imagining grasping movements with the left
hand. The same task is shown for the allocentric task (c & d).
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Fig. 3. Architecture of the proposed MI-BCI in an VR environment. The
64-channel EEG signals were recorded with event markers, separated into
filter banks with a width of 4 Hz, a CSP is applied to each sub-band and
then classified with an SVM.

C# and communicated with an external Python script that
processed incoming EEG data from an EEG device. A Sam-
sung Odyssey head-mounted display (Samsung Electronics
Co., Ltd.) was used to present the virtual environment. EEG
data were recorded with 64 Ag/AgCL electrodes using a
BioSemi ActiveTwo EEG system (Biosemi, Inc.) with a
sampling rate of 512 Hz. Each electrode was referenced
to the common mode sense (CMS) and driven right leg
(DRL). The communication between the EEG device and
the python script was done by the PyLSL interface via the
Lab Streaming Layer (LSL) [38]. The timings of the trial
are recorded within Unity and streamed over the LSL to
LabRecorder, where they are combined with the signal from
the headset as a Python data object.

D. EEG Analysis

1) Preprocessing: The recorded data were epoched into
4-second segments via MNE based on the event marker
stream. Each epoch contained the data from 0.1 seconds after
initiation and 0.1 seconds after the conclusion of the stimuli.
Each epoch is regarded as a sample from which features
for classification are extracted. All remaining pre-processing

occurs within the band-pass filters of the filter bank common
spatial pattern (FBCSP) filter.

2) Feature Extraction: The common spatial pattern (CSP)
algorithm was implemented using the existing MNE CSP,
which is commonly used to extract features from EEG
signals, across nine 4-Hz width band-pass filters from 4 to 40
Hz in accordance with [39]–[41]. The FBCSP maximizes dis-
similarity between classes at each band-pass, detecting event-
related desynchronization and synchronization (ERD/ERS)
[40].

3) Classification: All features from the nine bands were
used to train a multi-class support vector machine (SVM).
Multi-class SVM has been shown to outperform classical
non-Bayesian machine-learning classifiers for MI tasks [42],
and was implemented using scikit-learn [43]. The radial basis
function (RBF) was used as the kernel function in the model,
with a cost function parameter C of 10 and a γ of 0.07 as
determined by grid optimization method.

4) Evaluation: To evaluate the classification performance,
the SVM was trained with the data acquired during the
calibration procedure and then used to classify data in
the imagery tasks with the dynamic visual feedback. In
addition, we assessed the performance of cross reference
frames, in which the SVM was trained using the data with
egocentric feedback and classified the data with allocentric
feedback, and vice versa. The classification performance
was quantified as the Cohen’s kappa and precision. The
Cohen’s kappa measures inter-rater reliability and chance-
independent agreement within the classification, whereas
precision measures the rate of positive predictions and overall
relevancy of the classifier.

III. RESULTS

Table I shows the classification accuracy of the MI data
with egocentric and allocentric feedback using the SVM
trained with calibration data. Averaged Cohen’s kappa across
subjects on the egocentric reference framed data was 0.195,
which was 0.009 greater than that on the allocentric reference
framed data of 0.186. On the other hand, averaged precision
across subjects on the egocentric reference framed data
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Fig. 4. Confusion matrices in classifying motor imagery data with classifiers trained by the calibration data for all subjects and precision for each of the
three classes. The error bars indicate standard errors.

TABLE I
CLASSIFICATION PERFORMANCE OF THE MOTOR IMAGERY DATA WITH

CLASSIFIERS TRAINED BY THE CALIBRATION DATA FOR EACH SUBJECTS

Egocentric Allocentric
Subject Kappa Precision Kappa Precision
1 0.530 0.637 - -
2 0.717 0.881 0.662 0.939
3 0.087 0.385 0.093 0.449
4 0.000 0.000 0.129 0.201
5 -0.094 0.203 0.085 0.472
6 0.021 0.359 0.238 0.398
7 0.061 0.251 -0.025 0.285
8 0.239 0.457 0.117 0.420
Average 0.195 0.397 0.186 0.452
Std 0.285 0.253 0.224 0.235

was lower than that on the allocentric reference framed
data (Egocentric: 0.397 vs. Allocentric: 0.452). Unpaired t-
tests showed no significant difference between the reference
frames in the Cohen’s kappa (p = 0.944) and the precision
(p = 0.682). Figure 4 shows the confusion matrices and
precision for each class. The precision of all classes on
both egocentric and allocentric reference framed data was
greater than its chance level (i.e., 0.333). Interestingly, the
confusion matrix of the egocentric data shows a bias towards
the imagined right-hand movements (Precision, left: 0.373,
null: 0.369, right: 0.459). The allocentric data shows the
inverted relationship (Precision, left: 0.477, null: 0.482, right:
0.385).

Table II shows the classification performance of the MI
data with egocentric and allocentric feedback using the SVM
trained by data with the other reference frames. Averaged
Cohen’s kappa across subjects on the egocentric reference
framed data was 0.018 greater than that of allocentric refer-
ence framed data (egocentric: 0.266 vs. allocentric: 0.248).
Averaged precision across subjects on the allocentric refer-
ence framed data was 0.492, which was 0.028 greater than
that of egocentric reference framed data of 0.464. Unpaired
t-tests showed no significant difference between the reference
frames in the Cohen’s kappa (p = 0.902) and the precision
(p = 0.785). Figure 5 shows the confusion matrices and
precision for each class. In general, the classifier trained by
the cross-reference-framed data showed better precision than
that trained by the calibration data on both egocentric (left:
0.446, null: 0.482, right: 0.482) and allocentric (left: 0.507,

TABLE II
CLASSIFICATION PERFORMANCE OF THE MOTOR IMAGERY DATA WITH
CLASSIFIERS TRAINED BY THE CROSS-REFERENCE-FRAME DATA FOR

EACH SUBJECTS

Egocentric Allocentric
Subject Kappa Precision Kappa Precision
1 0.818 0.804 - -
2 - - 0.697 0.781
3 0.281 0.313 0.035 0.496
4 0.126 0.375 0.076 0.362
5 0.216 0.469 0.131 0.404
6 0.137 0.397 0.108 0.323
7 0.167 0.482 0.036 0.281
8 0.121 0.409 0.655 0.800
Average 0.266 0.464 0.248 0.492
Std 0.250 0.139 0.295 0.186

null: 0.400, right: 0.526) data.

IV. DISCUSSION

Allocentric visual feedback for BCI has been viewed as
less effective in eliciting motor imagery because of mirror
effect and the presentation of the stimuli [32], [37]. Direct
comparisons with appropriate stimuli in a VR environment
that fully encapsulated the visual feedback have yet to be
performed. Although Ono et al. 2018 demonstrated the use of
stimuli for altered perspectives [32], the stimuli were not de-
signed for eliciting VR BOT including embodiment, agency,
and translocation [19], [21]. This study applied allocentric
and egocentric reference frames for the visual stimuli in a VR
environment. The results showed no significant difference
between the two reference frames.

As the usage of allocentric stimuli and the effectiveness
of allocentric vs egocentric referenced VR-BCI is tied to
the environment and the display of the stimuli regarding
accuracy of the representation to natural movement and
the choice of avatar, the paradigms required needed to be
constructed in the same environment with stimuli that are
directly comparable to those the subjects have experienced
[36], [44]–[46]. Calabrò et al. [33] showed that manipulating
VR characteristics such as screen size, duration of exposure,
the realism of the presentation, and the use of animated
avatar, i.e., a third-person view of the user that appears
as a player in the VR, while other studies demonstrated
increased mu suppression in synchronized and congruent
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Fig. 5. Confusion matrices in classifying motor imagery data with classifiers trained by the cross-reference-frame data for all subjects and precision for
each of the three classes. The error bars indicate standard errors.

conditions, which was increased for subjects who responded
better to the spatial illusion and had an increased tendency for
empathy [11], [16]. As such, a questionnaire to assess both
the empathy and familiarity of the subjects with VR and BCI,
a training period where the subject adjusted to the avatar, and
an avatar that elicited a higher sense of embodiment in the
subject being a closer approximation of a human figure with
pre-defined bounds for the animation constraints would have
elicited higher BOT [20], [21]. The questionnaire would have
allowed for the weighting of the BOT experienced during
the VR experience across both frameworks and reduced
variability. In this study, regardless of the high variability,
within the three imaged movements, the mean precision of
the classifiers was greater than its chance level. Training the
classifier using the data with dynamic visual feedback in the
VR environment increased precision. Therefore, recording
the initial calibration data with dynamic visual feedback
instead of the 2D cue and fixation cross may have resulted
in increased precision of the initial classification. Using
the FBCSP, we were able to analyze the contributions of
the signal across the spectrum of eight frequency banks
without reducing the dimensionality of the contributions of
the individual filter banks, and differentiating between the
mu, beta and gamma bands associated with MI, MNS and
VR spatial components [47].

The results of the VR enhanced MI-BCI in this study
indicate that there was no significant difference between
the reference frames and no impact from training bias.
However, some subjects reported minor discomfort from
the egocentric reference frame because they had to look
down for six minutes in each run. Because posture and
comfort have a direct impact on MI, the results with no
significant difference could be due to the impact of fatigue
and posture. Future improvements would necessitate testing
the impact of immersion via avatar selection bias, and having
consistent presentation of the stimuli in the VR environment.
In addition, an online experiment should be conducted in
which the subject will receive feedback that aids in imagining
the movements in real-time to evaluate the reference frames
in practical situations and their long-term effects.
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