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Abstract Our perception of reef diversity is dominated by
corals, fish, and a few other groups that visibly dominate
the reef surface. However, the bulk of reef biodiversity
resides within the reef framework, and this cryptobiota is
fundamentally important for the surface community.
Sponges are abundant and conspicuous on the reef surface
in productive, continental reefs, but largely vanish from
surveys of the oligotrophic reefs of Oceania. However,
their diversity in the cryptobiota remains poorly charac-
terized. Here, we explore the contribution of cryptobenthic
sponges to overall sponge diversity on 1750 m? of reef
habitat in Kane‘ohe Bay and Waimanalo in the island of
O‘ahu, Hawai‘i. We also assessed cryptic sponges using 15
m’ of autonomous reef monitoring structures (ARMS)
deployed in this same area. We used integrative taxonomy
combining morphology, COI and 28S barcoding to
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delineate and track species, most of which are poorly
known or undescribed. We documented 186 OTUs, 150 of
which are new records for the Hawaiian Islands, increasing
the known sponge fauna of Kane‘ohe Bay by 3.5-fold, and
that of the Hawaiian Islands by 2.5-fold. More than of the
sponge OTUs were cryptobenthic. Reef sampling provided
access to 31% (44 OTUs), whereas 52% (75 OTUs) were
retrieved exclusively from ARMS. These results illustrate
that the interstices of ARMS units provide suitable habitat
for settlement of cryptobenthic sponges that would other-
wise be impossible to access through traditional field
surveys. Tracking species with provisional names, using
integrative species delineation anchored to vouchers, ima-
ges, and DNA barcodes provides a powerful approach for
working with such a poorly understood fauna.

Keywords ARMS - Porifera - Cryptobenthic coral reefs -
COI - 28S rRNA barcoding

Introduction

Sponges (Phylum Porifera) are foundational components of
coral reef ecosystems both as surface dwellers and within
the complex matrix of the reef framework. Structurally,
they contribute to the topological complexity of reefs and
provide habitat for other organisms (Pawlik 2011). Among
holobiomes, sponges hold the Ilargest diversity of
microorganisms (Thomas et al. 2016; Moitinho-Silva et al.
2017). They have remarkable water filtering capacities
(Gili and Coma 1998) and, when coupled with their
microbial symbionts, can perform key ecological functions
such as changing the nitrogen composition of the sur-
rounding seawater (Corredor et al. 1988; Southwell et al.
2008; Gantt et al. 2019) which can facilitate growth of
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neighboring corals and seaweed (Slattery et al. 2013;
Easson et al. 2014). Sponges in cryptobenthic spaces are
the only metazoans able to transform biologically
unavailable forms of dissolved organic matter (DOM) into
nutritional, particulate organic carbon (POC), by continu-
ously producing and shedding of sponge cells (De Goeij
et al. 2013). Acting as POC bioreactors surrounded by an
endless supply of coral-derived DOM, sponges feed detri-
tovores at lower trophic levels and in turn sustain coral reef
biodiversity under oligotrophic conditions (Rix et al.
2018).

One of the most striking differences among reefs in
different regions of the tropical ocean is in the abundance
and diversity of large sponges. Sponges are major space
occupiers on Caribbean reefs in particular and are also
abundant in the “continental” western Pacific, but become
rare and inconspicuous around the islands of Oceania
(Birkeland 1987; Wilkinson 1987). These differences are
driven in part by productivity and further reflected in the
increasing relative abundance of photosymbiotic sponges
on more oligotrophic reefs (Wilkinson 1987). This gradient
in abundance is apparent in the documented diversity of
reef sponges, with hundreds of species recorded from
continental reefs compared with tens of species from
oceanic islands (Van Soest et al. 2012).

While the diversity, abundance, and ecology of macro-
sponges on the reef surface have received substantial
attention, the smaller, less conspicuous, and hidden spon-
ges of the reef interior have been much less studied. Most
of the diversity on reefs is in the subsurface spaces that
permeate the reef matrix, and sponges are a dominant space
occupier of these cryptobenthic habitats (Richter et al.
2001). Cryptobenthic sponges have received limited
attention, although their ecological and nutritional impor-
tance to the ecosystem has long been realized (Wulff 1984;
De Goeij et al. 2013). Despite their ecological importance,
cryptobenthic sponges, particularly throughout Oceania,
have been poorly studied (Van Soest et al. 2012) and likely
add to the estimated 64% of sponge species (25,000) that
remain to be discovered (Appeltans et al. 2012). Sponge
collections have been conducted for over two hundred yrs
within temperate systems such as the Northeast Atlantic
and Mediterranean, whereas remote locations in the Pacific
have been comparatively underexplored (Van Soest et al.
2012). The geographic isolation of remote Pacific reefs
combined with the taxonomic challenges of positively
identifying sponges and the pervasiveness of undescribed
and undiscovered sponges hidden within reef crevices has
challenged diversity estimates throughout the marine
tropics (Richter et al. 2001). Uncovering these sponges
across isolated oceanic islands is difficult and collecting
cryptobenthic sponges without destroying the surrounding
reef is nearly impossible.
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One tool that has proven efficient in the last decade for
collecting cryptobenthic fauna is the autonomous reef
monitoring structures (ARMS: Zimmerman and Martin
2004; Brainard et al. 2009; Knowlton et al. 2010). The
sessile community of invertebrates that settle on ARMS
after 2-3 yrs is usually scraped, homogenized and
metabarcoded to examine the entire homogenized sessile
community via universal primers that amplify a short
fragment of the mitochondrial (mtDNA) cytochrome c
oxidase subunit I (COI) gene (Geller et al. 2013; Leray
et al. 2013). Although these primers amplify sponges, the
ability to identify those sponges to lower taxonomic levels
is severely limited by both: (1) the availability of a well
curated local sponge database with individual barcodes
associated with voucher specimens and (2) the notoriously
poor performance of COI barcodes for identifying sponge
species (Vargas et al. 2012). Despite successful deploy-
ment and recovery of these structures, funding for
taxonomic analysis of the settling fauna is limited to a
handful of regional surveys (Leray & Knowlton 2015; Al-
Rshaidat et al. 2016; Ransome et al. 2017; Carvalho et al.
2019). Even among these regional surveys, little systematic
attention has been given to the phylum Porifera. Sponges
have been overlooked in such studies due in part to the
taxonomic challenge of identifying these soft-bodied
organisms, and in part to the reliance on metabarcoding
techniques that perform poorly for this phylum (Timmers
et al. 2020).

As a result of such challenges, sponge diversity, despite
representing a substantial proportion of reads in metabar-
coding studies to date, is typically included at only the
level of phylum (Leray & Knowlton 2015; Stat et al. 2017,
Nichols & Marko 2019). But continued poor resolution of
such an integral phylum to coral reef communities is
detrimental to our understanding of the evolutionary and
ecological processes governing biodiversity. Given the
critical ecological role that sponges play in reef ecosystems
and the increased vulnerability of coral reefs as a result of
global human impacts (Carpenter et al. 2008; Jackson
2008; Knowlton & Jackson 2008), a baseline of this
functionally important phylum in cryptobenthic commu-
nities is crucial.

Given the pressing need to establish a baseline of the
overlooked cryptobenthic sponge diversity of tropical
Pacific reefs, we set out to monitor sponge species richness
over a 2-yr period on ARMS deployed in Kane‘ohe Bay,
O‘ahu. The diversity of the cryptobenthic sponge fauna
from ARMS units was compared against the diversity of
surface-dwelling and cryptobenthic sponges observed from
visual surveys within Kane‘ohe Bay. Previous sponge
biodiversity surveys in the bay (De Laubenfels 1950;
Bergquist 1967; Pons et al. 2017; Vicente et al. 2020)
collectively documented sponge richness at 51 species to
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date (Table S1). However, these surveys focused on the
exposed reef, rather than within the cryptobenthic envi-
ronments of the reef interior. The reef surface in Kane‘ohe
Bay is dominated by corals, which account for 40-60% of
benthic cover (Bahr et al. 2015), while sponge cover, with
the exception of the invasive Mycale grandis (Coles et al.
2007), accounts for<1% (JVs personal observations-
Fig. la). The opposite is true for the cryptobenthic reef,
where sponges are a rich and dominant phylum in
Kane‘ohe Bay (Fig. 1b) (Timmers et al. 2020), as typical of
oceanic island reefs. Timmers et al. (2020) identified 69
cryptobenthic sponge species which exceed sponge rich-
ness previously reported for Kane‘ohe Bay. The
remarkable increase in sponge richness attributed to
sponges that recruited onto ARMS in Kane‘ohe Bay
motivated us to compare ARMS sponge richness to sponge
richness found on patch reefs, including cryptobenthic reef
spaces. Here we take a multi-locus sequencing approach of
properly vouchered sponge specimens collected from both
visual surveys and ARMS platforms to examine the extent
of cryptobenthic sponge biodiversity within one of the
most isolated archipelagos on the planet.

Materials and method

Sponge collection from autonomous reef monitoring
structures and field surveys

Autonomous reef monitoring structures (ARMS) are stan-
dardized sampling devices that mimic reef interstices,
attracting cryptobiota colonization (Brainard et al. 2009;
Knowlton et al. 2010). Standard ARMS units are

1m

comprised of an eight-tiered stack of gray Type I PVC
plates (22.9x22. 9 cm), arranged in four open and four
semi-closed layers (Figure Sla; Leray and Knowlton
2015), while modified ARMS units are composed of a two-
tiered stack of one open and one semi-closed layer (Fig-
ure S1b; Timmers et al. 2020). Sponges were sampled from
six standard ARMS deployed along the reef slope of Moku
o Lo‘e (Coconut Island) and from six modified ARMS
(Figure Slc) hovering in the water column attached to a
Moku o Lo‘e intake pipe, along an adjacent reef slope. An
additional 24 modified units were placed within mesocosm
tanks on Moku o Lo‘e that received unfiltered seawater
from the same intake pipe but were exposed to future cli-
mate conditions as described in Bahr et al. (2020)
(Figure Sla). The ARMS in mesocosm tanks and those at
the intake pipe were retrieved for sponge subsampling
every two months for two yrs and sponges from the full
ARMS on the reef slope were collected once upon recov-
ery, in July 2018. The ARMS units in ensemble provided a
total combined sampling surface area of 15 m” at each
period of collection. At each collection period, ARMS
units were disassembled for high-resolution plate imagery
and carefully examined for newly settled sponge recruits.
Sponges showing unique morphological features on each
plate were individually photographed, carefully subsam-
pled, and fixed in 95% ethanol for DNA extraction. If
enough tissue was available, sponges were additionally
fixed in two solutions, one containing 4% paraformalde-
hyde in seawater, and the other containing 4%
glutaraldehyde in 0.1 M sodium cacodylate with 0.35 M
sucrose for future histological evaluation. A total of 439
sponge samples were collected from the ARMS units.

Fig. 1 Coral-dominated reef of Kane‘ohe Bay (a) and sponge dominated cryptobenthic community by 12 sponge species from an ARMS plate

(b)
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Sponges were also collected on reef substrates along a
50-m transect line from 34 sites in Kane‘ohe Bay and one
site on the Makai Pier in Waimanalo (see Table S2 for GPS
coordinates and collection depth) throughout the 2-yr
mesocosm experimental period. Collection on Kane‘ohe
Bay reef sites included samples taken by global taxonomic
experts during the Smithsonian-led MarineGEO biodiver-
sity surveys in 2017. A total of 163 marine sponges
showing unique morphologies were haphazardly collected
in the photic zone of the reef at a depth range of 1-16 m
from within crevices, beneath coral rubble, fouling upon
structures and under overhangs. Presence/absence of
sponge OTUs was recorded at each surveyed site
(Table S3), was photographed, and fixed in 95% ethanol
for DNA extraction. Additional sponge metadata pertaining
to specimen morphology, such as color, consistency, sur-
face, oscules, exudates, and odors, was also recorded.

All samples were vouchered with the Florida Museum
of Natural History at the University of Florida (UF Por-
ifera) and the Hawai‘i Institute of Marine Biology (“KB”
or “KBOA”) (Table S4). Images and associated metadata
of each sponge sample are publicly available at https://
www.invertebase.org/portal/  and  http://specifyportal.
flmnh.ufl.edu/iz/. All samples were collected under special
activities collection permit (SAP) nos. 2018-03 and 2019—
16 (covering the period of January 13, 2017, through April
10, 2019) issued by the State of Hawai ‘i Division of
Aquatic Resources.

Sponge DNA extraction and sequencing

Vouchered specimens were subsampled for DNA extrac-
tion using the E-Z 96 Tissue DNA Kit (Promega Bio-Tek,
Norcross, GA, USA) following the manufacturer protocols.
Care was taken to subsample only sponge material free of
other organisms which would contaminate the sponge
DNA extract. Multiple primers were used in a stepwise
fashion to successfully amplify partial fragments of both
28S rRNA and COI genes using polymerase chain reaction
(PCR) (Table S1 in Timmers et al. 2020). Fragments of the
COI were initially attempted with primer pairs LCO1490/
COXRI1 (1400 bp fragment) (Folmer et al. 1994), followed
by primers jgL.CO1490/jgHCO2198 (Geller et al. 2013) (
648 bp fragment) within the previous PCR fragment region
and a final attempt with subsequent internal primers
mlCOIlint/jgHCO2198 (313 bp) (Leray et al. 2013). Similar
to the approach used for the COI, amplification of 28S
rRNA fragments was first attempted with primers F63mod/
1072RV (1050 bp) (Medina et al. 2001), followed by
internal primers (28S-C2-fwd/28S-D2-rev) (450 bp)
(Chombard et al. 1998) within the previous fragment, and a
final attempt with 28SMycF/1072RV (1000 bp). PCRs
were carried out in a total volume of 40 pL including the
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following: 14.4 uL of H,0, 20 pL of BioMix Red (Bioline,
Taunton, MA, USA) PCR Mastermix, 0.8 pL of each pri-
mer (10 mM), 3.2 puL. of bovine serum albumin (BSA) (100
mg/mL), and 0.8 pL of template DNA (1-30 ng/uL). PCR
products were examined on a 1% agarose gel stained with
GelRed and purified using ExoFAP (Exonuclease I and
FastAP-Life Technologies, Carlsbad, (CA) prior to
sequencing. When products showed multiple bands above
the 100-bp ladder mark, products were purified using gel
excision by loading 40 pL of the PCR product onto a 2%
agarose gel made with 1xmodified (no EDTA) TAE
running them at 50 mV. After 90-min bands were excised
with a sterile scalpel, loaded onto a column filter fitted
inside a 1.5-ml centrifuge tube, and centrifuged for 10 min
at 5000 rpm. Sequencing reactions were performed in both
directions using the Big Dye TM terminator v. 3.1, and
sequencing was done on an ABI Prism 3730 XL automated
sequencer at the University of Hawai ‘i Advanced Studies
of Genomics, Proteomics and Bioinformatics sequencing
facility.

Forward and reverse reads were trimmed and edited by
eye using Geneious 10 (Kearse et al. 2012). Assembled and
edited sequences were exported as fasta files and checked
for contamination by using the BLAST (Altschul et al.
1990) function in GenBank. Sequences showing>85%
sequence identity to those belonging to Porifera were kept
and used for further analysis. 28S rRNA sequences for 592
samples were produced, but only 340 sequences were
deposited in GenBank as many were repetitive sequences
with 100% identity. When available, up to three replicate
sequences per OTU were deposited and assigned accession
numbers MWO016037-MW016376. A total of 98 COI
sequences were deposited in GenBank and assigned
accession numbers MW059039-MW059109; MW 144969—
MW144988; MW143251-MW143256; MW349624
(Table S4).

Phylogenetic analysis and taxonomic assignments

Sequences were aligned with the closest sequence relatives
in the GenBank database using the ClustalW algorithm
with default parameters in Geneious. Sequence
KJ483037.1 Parazoanthus puertoricense was used as an
outgroup for all phylogenetic topologies of partial 28S
rRNA sequences and AB247348.1 Epizoanthus arenaceus
was used as an outgroup for the phylogenetic topology of
partial COI sequences. Bayesian inference (BI) using
MrBayes version 3.2.1 (Huelsenbeck & Ronquist 2001)
and a maximum likelihood (ML) framework using RaxML
(Stamatakis 2006) were added to the phylogenetic analysis.
The GTR substitution model and GTRGAMMA nucleotide
model with 1000 bootstrap replicates were implemented in
the BI and ML analyses respectively. The BI was run using
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5 million generations sampled every 200 generations. The
analysis was stopped when the standard deviation (SD) of
split frequencies fell below 0.01.

Most sponge OTUs were delineated using a combination
of>1% COI and 28S rRNA sequence divergence combined
with unique morphological features and classified as dis-
tinct operational taxonomic units (OTUs). A handful of
OTUs that were morphologically clearly differentiable, but
had<1% sequence divergence were also recognized as
distinct OTUs (Table S6). This conserved threshold was
chosen based on the different rates of evolution that can
exist within poriferan families and even genera which
make the selection of an accurate threshold for delineating
sponge OTUs arbitrary (Erpenbeck et al. 2007; Wang &
Lavrov 2008; Redmond et al. 2011; Voigt & Worheide
2016; Yang et al. 2017).

Preliminary assessments of morphological characters (i.
e., color, consistency, surface, oscules, and skeleton com-
position) were made mostly from OTUs that matched
previous vouchered sponge collections in Kane‘ohe Bay
(De Laubenfels 1950; Bergquist 1967, 1977; Pons et al.
2017) (Table S5). We assigned OTUs to taxonomic levels
based on the placement of each barcode into the lowest
clade (Bayesian posterior probability of>50) in the COI
and 28S rRNA tree topologies. On average, taxonomic
identities followed these barcode sequence identity per-
centages: Order (>90%), Family (>95%), Genus (>98%)
and for the species above (100%). Phylogenetic topologies
were first generated with only full-length amplicons for
COI and 28S rRNA and then repeated with shorter
sequences to maximize the inclusion of reference sequen-
ces from GenBank. Matches and identification at the
species level (17 OTUs) were based on sequences and a
preliminary analysis of skeleton and spicule composition
which matched sequences from vouchers in GenBank
linked to a publication with a rigorous morphological
assessment and description of the voucher. The remaining
OTUs (including GenBank accession matches without
taxonomic support) were identified as “sp.” since further
morphological analysis is needed for accurate classifica-
tion. In addition, species identification is impossible using
molecular methods for polyphyletic groups (such as sub-
orders, families and genera within Haplosclerida) without a
complete morphological assessment of OTUs. However,
the objective here is to determine species richness mostly
based on molecular OTUs rather than a full species
description of OTUs.

Diversity assessment
R v.3.6.3 (R Core Team 2020) was used to visualize and

analyze the molecular diversity assessments of sponges
recruited on ARMS and reef substrates. Phylogenetic

analyses of COI and 28S rRNA sequence data were used to
prepare a taxonomy table (Table S5) for OTU classification
(OTU) to the lowest level possible. An OTU distribution
table (Table S2) specifying OTU presence/absence on
either ARMS or reef substrate at each of the 35 sites was
used to map sponge OTU richness using the ggmap
v.3.0.0.901 package (Kahle & Wickham 2013). We used
the specaccum function from the vegan v.2.5-6 (Oksanen
et al. 2013) package to generate OTU richness rarefraction
curves for comparison between the two substrates across
the most specious sponge groups according to sponge class
and order. Number of OTUs as a function of sites was used
to generate rarefraction curves for reef substrate sponges,
and number of OTUs as a function of time points was used
for ARMS as these were only present at one site. Venn
diagrams were generated using the limma v.3.42.2 (Ritchie
et al. 2015) package to determine the number of shared
OTUs between the survey method types. Calculation of
new OTU records was based on species comparisons to
previous studies focused on Kane‘ohe Bay sponge
collections.

Results

Sponge community richness between reef sites
and ARMS

186 sponge OTUs were delineated from 616 voucher
specimens (Fig. 2, Table S2). A total of 183 OTUs were
provided with sequences from either COI, 28S rRNA, or
both loci as follows: 28S rRNA sequences were provided
for 178 OTUs (97% of OTUs), COI sequences were pro-
vided for 88 OTUs (48%), and 28S rRNA 4 COI sequences
were provided for 81 OTUs (44%) (Table S4). No suc-
cessful sequences were obtained from three species
(Calcarea sp. 2 UF 3782, Poecilosclerida sp. 15 UF 3721,
Demospongiae sp. 42 KBOA061118432), but we included
these OTUs because they were clearly distinguishable
morphologically from other species in our collection (see
images https://www.invertebase.org/portal/). Eight other
species that were clearly morphologically distinct but
had>99% sequence similarity to other OTUs were also
recognized (Table S6).

Sponge OTUs from reef environments (111 OTUs from
1750 m? surveyed area) and ARMS units (113 OTUs from
15.0 m*> ARMS surfaces) were numerically similar, but
only 38 OTUs were shared between collection methods
(Fig. 2-inset Venn diagram). Sponge diversity varied
between 1 and 51 OTUs across the 35 surveyed reef sites.
A total of 142 OTUs were confined to cryptobenthic reef
spaces provided by ARMS (98 OTUs) and reef environ-
ments (67 OTUs) (Table S5), and 23 OTUs were shared
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Fig. 2 Distribution of 186
sponge OTUs collected from
ARMS monitored throughout a
2-yr period (pointed by arrow),
34 sites in Kane‘ohe Bay and
the Makai pier site (indicated by
red asterisk outside of red box).
Rarefaction curve of species
richness is compared between
12 sampling periods on ARMS
(treated as sites) vs. the 35 reef
sites. Inset Venn diagram shows
38 OTUs were shared between
all reef sites and ARMS. GPS
coordinates and OTU
distribution table are found in
Table S2 and Table S3
respectively

21.51

21.49

21.45

-157.85

between habitats. From the 38 shared OTUs, 15 were found
on both cryptobenthic and open reef habitats.

The class Demospongiae dominated the fauna with 142
OTUs, followed by Calcarea (31 OTUs) and Homoscle-
romorpha (12 OTUs). 28S rRNA was successfully
amplified across all 18 sampled orders of sponges, but COI
primers in all combinations failed for all Calcarea (2
orders), and for three orders of demosponges (Bubarida,
Verongiida and Chondrosiida) (Fig. 3;Table S8). Failure of
COI amplification was expected for Calcarea as mtDNA
within this class evolves rapidly with high substitution
rates (Voigt et al. 2012; Lavrov et al. 2013). However,
amplification within Bubarida, Verongiida, and Chon-
drosiida is likely incidental. High success rate and 28S
rRNA sequence length of all sponge classes allowed for a
more detailed phylogenetic analysis within the different
sponge classes and orders. Phylogenetic assignment of 28S
rRNA sequences to the order level had a Bayesian posterior
probability of >0.84 and RaXML bootstrap>50 for all
orders except the Scopalinida which had short reference
sequences that could not be included in the alignments
(Table S7).

Richness of demospongiae

The 142 demosponge OTUs were dominated by the orders
Poecilosclerida (31 OTUs), Haplosclerida (30 OTUs),
Suberitida (23 OTUs), Dictyoceratida (14 OTUs), Tethyida
(8 OTUs), Tetractinellida (8 OTUs), and Dendroceratida (8
OTUs). The orders Clionaida (4 OTUs), Axinellida (3
OTUs), Bubarida (2 OTUs), Biemnida (1 OTU),
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Scopalinida (1 OTU), Chondrillida (2 OTUs), Chondrosi-
ida (1 OTUs), and Verongiida (1 OTU) were less diverse.
OTUs that were less abundant and were not assigned to
specific orders within demosponges included Heteroscle-
romorpha (2 OTUs), Keratosa (2 OTUs), and
Verongimorpha (1 OTU). Within Poecilosclerida, 15 OTUs
had COI or 28S rRNA sequences that matched GenBank
reference sequences at>95%. Phylogenetic analysis and
comparison of external morphological characters allowed
further classification of these poecilosclerids into seven
Mycale spp. including M. parishii, two Tedania spp.
including T. cf. klausi, three Lissodendoryx spp. including
L. hawaiiana, two Iotrochota spp. including I. protea, and
Monanchora clathrata (Fig. 4). Eight poecilosclerid OTUs
were documented in this survey from among the 11 pre-
viously reported in Kane‘ohe Bay (Table S1), and 22 are
new records (Fig. 4). More species of poecilosclerids were
found on reef sites (21 OTUs) than ARMS (18 OTUs), and
8 OTUs were shared between these habitats (Fig. 4).
Haplosclerida diversity was greater on ARMS (21
OTUs) than on reef sites (14 OTUs), with six OTUs shared
(Fig. 4). Morphological characters and>95% sequence
matches with GenBank reference sequences allowed 16
OTUs to be further classified into two Chalinidae spp., two
Callyspongia spp., nine Haliclona spp., Cladocroce sp. 1,
Haliclona caerulea, and Gelliodes wilsoni. These collec-
tions added an additional 25 haplosclerid OTUs to the
previous 8 recorded in Kane‘ohe Bay (Table S1 Fig. 4).
Similar to haplosclerids, Suberitida richness was greater
in ARMS (16 OTUs) than reef sites (13 OTUs), with six
OTUs shared (Fig. 5). Sequences with>95% identity to
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Fig. 3 Bayesian and maximum likelihood topology from partial 28S
rRNA sequences (a) and Folmer (5’) region of the coxl gene (b). A
total of 1484 positions were used to generate the 28S rRNA tree and
577 positions were used to generate the COI tree. Numerical values at

GenBank reference sequences and morphological analysis
further classified 19 OTUs into six Suberitidae spp., four
Hymeniacidon spp., five Halichondria spp. including
Halichondria cf. coerulea, two Suberites spp. including
Suberites cf. aurantiacus, and one species each of Terpios,
and Amorphinopsis. A total of 18 OTUs are new records,
while six were shared with seven previously recorded
Suberitida from Kane‘ohe Bay (Table S1).

Tethyida and Tetractinellida also contributed to the
greater richness of ARMS than reef sponges (Figs. 4 and
5). Among eight OTUs classified as Tethyida, seven were>
95% identical in COI or 28S rRNA sequences to Tethya
spp.. Four Tethya spp. were closely related phylogeneti-
cally (>98% sequence identity) and were shared between
ARMS and reef habitats. Unlike Tethyida, Tetractinellida
species were largely confined to ARMS (6 OTUs) with
only two OTUs found on reef sites (Fig. 5). Of the 16
Tetractinellida and Tethyida species encountered, Tethya
sp. 1 was recently reported by Vicente et al. (2020) and
Tethya sp. 3 matched the morphology of Tethya cf. diplo-
derma (a Caribbean species) reported by De Laubenfels
(1950), while 14 are new species records for Kane‘ohe Bay
(Table S1).

Dictyoceratida and Dendroceratida (=Keratosa) were
more diverse on reef sites (18 OTUs) than ARMS (11

nodes show Bayesian posterior probabilities followed by RAXxML
bootstrap values (also available in Table S6). Nodes with “—* refer to
bootstrap values of <50 generated by RAxML. Colors denote
different sponge groups either by order or class

OTUs), with five OTUs shared (Fig. 6). Sequences
matching COI and 28S rRNA reference sequences at>95%
identity allowed the further classification of Dendrocer-
atida OTUs into four Chelonaplysilla spp. including
Chelonaplysilla erecta, and to Aplysilla rosea. Similarly,
dictyoceratid OTUs could be further classified into six
Dysidea spp., including D. cf. arenaria, D. cf. pallescens,
and to Lamellodysidea cf. chlorea and an Ircinia sp..
Dendroceratida have not been previously reported from
Kane‘ohe Bay; all 10 species records are new. Three dic-
tyoceratid OTUs matched previous records, while nine are
new. New species records were also attributed to orders
Clionaida (2), Axinellida (2), Bubarida (2), Scopalinida
(1), Chondrillida (1), Chondrosiida (1), and subclasses
Verongimorpha (1) and Heteroscleromorpha (2).

Richness of calcarea and homoscleromorpha

The 31 OTUs of Calcarea encountered include 13 Calcinea
and 17 Calcaronea (Fig. 7). Low Bayesian posterior
probabilities (<0.5) and RAXML bootstrap values (<50)
allowed only limited assignment of some OTUs to the
orders Leucosolenida within Calcaronea and Clathrinida
within Calcinea. Calcarea richness in ARMS (20 OTUs)
exceeded that of the reef (14 OTUs), and only 3 OTUs
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Fig. 4 Bayesian and maximum likelihood topology from 702 bp Table S1. Numerical values at nodes show Bayesian posterior
positions of partial 28S rRNA sequences for OTUs belonging to probabilities followed by RAXML bootstrap values. Nodes with “~”
orders Haplosclerida, Clionaida, Tethyida, and Poecilosclerida. refer to bootstarp values <50 generated by RAXML. Short sequences
Sequences in bold were generated from taxa in this study. Color of from eight haplosclerid, and six poecilosclerid OTUs were omitted
circles adjacent to sequence names indicate whether sponges were from the alignment. Subplots (right) show species richness rarefrac-
collected from ARMS (blue), reef (pink), and whether they matched tion curves and Venn diagrams indicating distribution of OTUs of
previous species collected from Kane‘ohe Bay (green), listed in each sponge class between habitat types
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Fig. 5 Bayesian and maximum likelihood topology from 847 bp
positions of partial 28S rRNA sequences for OTUs belonging to
orders Suberitida, Tetractinellida, Biemnida, and Axinellida.
Sequences in bold were generated from taxa in this study. Color of
circles adjacent to sequence names indicate whether sponges were
collected from ARMS (blue), reef (pink), and whether they matched
previous species collected from Kane‘ohe Bay (green), listed in
Table S1. Clades highlighted in blue denote cryptic speciation of

were shared between habitats. Survey of the calcareous
sponges added 29 new sponge species records for
Kane‘ohe Bay with only two species (Leucettidae sp. 3 UF
4024 and Leucosolenida sp. 14) matching previously
reported species as Leucetta solida (a Mediterranean spe-
cies) (de Laubenfels 1950), and Leucosolenida sp. (Pons
et al. 2017) (Table S1). The phylogenetic analysis showed
that seven species sampled were>99% identical in 28S
sequences to Calcarea species reported from other areas of
the Indo-west Pacific: Clathrina luteoculcitella (Van Soest

o J

OTUs. Numerical values at nodes show Bayesian posterior probabil-
ities followed by RAXML bootstrap values. Nodes with “~ refer to
bootstrap values of <50 generated by RAXML. Short sequences from
four Suberitida, one Tetractinellida, and two Axinellida OTUs were
omitted from the alignment. Subplots (right) show species richness
rarefraction curves and Venn diagrams indicating distribution of
OTUs of each sponge class between habitat types

& De Voogd 2015) from Indonesia, Ernstia variabilis from
French Polynesia (Klautau et al. 2020), Leucetta primige-
nia from the Great Barrier Reef (Thacker et al. 2013),
Anamixilla torressi and A. singaporensis from Indonesia
(Van Soest & De Voogd 2015, 2018), Leucandra nicolae
from the Coral Sea, and Sycettusa hastifera specimens from
the Red Sea (Voigt et al. 2012). The remaining 23 OTUs
showed<99% sequence identity to other available Cal-
carea sequences.
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Fig. 6 Bayesian and maximum likelihood topology from 709 bp
positions of partial 28S rRNA sequences for OTUs belonging to
subclass Keratosa (Dendroceratida and Dictyoceratida), Chondrillida,
Chondrosiida and Verongimorpha. Sequences in bold were generated
from taxa in this study. Color of circles adjacent to sequence names
indicate whether sponges were collected from ARMS (blue), reef
(pink), and whether they matched previous species collected from
Kane‘ohe Bay (green), listed in Table S1. Numerical values at nodes

Of 12 Homoscleromorpha OTUs, eight were collected
from ARMS, seven from reef sites, and three were shared
between habitats. Oscarella spp. were the most speciose,
with seven OTUs matching COI sequences at 95-96% of
O. microlobata and O. lobularis from the Mediterranean
(Gazave et al. 2010) (Table S4). Oscarella spp. were found
almost exclusively in ARMS. Other species collected
matched 28S and COI sequences at>95% belonging to
Plakina (2), Plakinastrella (1), Plakortis (1), and Corticium
(1). All homoscleromorphs are new species records for
Kane‘ohe Bay except for Plakortis sp. 1 UF 3472 which
matches the description of Plakortis simplex by De
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Verongimorpha sp. 1 UF 4076

eydiowibuosap

show Bayesian posterior probabilities followed by RAXxML bootstrap
values. Nodes with “~” refer to bootstrap values of <50 generated by
RAxML. Short sequences from Dictyoceratida sp. 2, Dysideidae sp. 1,
Chondrillida sp. 3 and Pseudoceratina sp. 1 were omitted from the
alignment. Subplots (right) show species richness rarefraction curves
and Venn diagrams indicating distribution of OTUs of each sponge
class between habitat types

Laubenfels (1950). Nevertheless, pairwise comparisons of
COI and 28S rRNA sequences between P. simplex and
Plakortis sp. 1 were 94% and 87% identical respectively,
indicating that De Laubenfels’ assignment of Kane‘ohe
Bay samples to that species, described from the Mediter-
ranean, was in error.
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Fig. 7 Bayesian and maximum likelihood topology from 466 bp
positions of partial 28S rRNA sequences for OTUs belonging to
classes Calcarea and Homoscleromorpha. Sequences in bold were
generated from taxa in this study. Color of circles adjacent to
sequence names indicate whether sponges were collected from ARMS
(blue), reef (pink), and whether they matched previous species
collected from Kane‘ohe Bay (green), listed in Table S1. Numerical

values at nodes show Bayesian posterior probabilities followed by
RAXML bootstrap values. Nodes with “~” refer to the bootstrap
values of <50 generated by RAXML. Short sequences from three
calcareous OTUs and Oscarella sp. 7 were omitted from the
alignment. Subplots (right) show species richness rarefraction curves
and Venn diagrams indicating distribution of OTUs of each sponge
class between habitat types
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Discussion

We documented 186 species of sponges from Kane‘ohe
Bay, thus increasing the known fauna of this major reef
system more than 3.5-fold. For comparison, 51 species
have been previously recorded in the bay (Table S1), while
the last review of the entire Hawaiian fauna lists 67 species
(Bergquist 1977), albeit other species have been reported
since (e.g., Van Soest et al. 2012; Calcinai et al. 2013).
Most of the new species records for Kane‘ohe Bay are
likely also new records for the Hawaiian Islands, greatly
increasing the known diversity of the archipelago. These
results underscore how poorly known tropical sponge
faunas are in even places subjected to substantial past
studies (De Laubenfels 1951, 1954, 1957; Bergquist 1977,
Pons et al. 2017; Vicente et al. 2020).

Sponges are generally not considered to be as diverse or
abundant in the oligotrophic waters of the insular central
Pacific (Kelly-Borges & Valentine 1995) compared to
other ecoregions of the tropical Pacific such as the coral
triangle (Van Soest et al. 2012). Within Oceania, macro-
sponges on the reef surface are largely confined to more
productive lagoonal waters and rare on the outer reef. For
example, previous sponge surveys in Mo’orea, French
Polynesia, focused mostly on macrosponges, report eight
species with<1% cover (Freeman & Easson 2016). In
Palmyra Atoll, 24 species of macro sponges, with 27%
cover, are only confined to the lagoon habitat of the atoll
(Knapp et al. 2013). Similar patterns are observed in the
Mariana Islands, where many of the 124 species docu-
mented are known only from the deep lagoon of Apra
Harbor on Guam (Paulay et al. 1997; Kelly et al. 2003).
While low abundance and diversity may be true for sur-
face-dwelling sponges, the great diversity of sponges
documented here are within the confines of cryptobenthic
spaces, demonstrating the absolute dominance of crypto-
benthic sponges in Hawai‘i. This suggests that the
cryptobenthic community in the insular central Pacific is
far more diverse than previously realized.

The utilization of ARMS units greatly enhanced our
collection and identification of cryptobenthic sponges,
exceeding the diversity of sponges from the reef itself (113
ARMS species vs 111 reef species) despite sampling two
orders of magnitude less area (Fig. 2). These results con-
firm previous observations from other comparative
diversity surveys between reef and cryptobenthic fauna
from ARMS in the Red Sea, where sponges from ARMS
surveys were among the top three phyla to increase in
richness and abundance when compared to the surrounding
reef surface (Pearman et al. 2016). Nonetheless, in this
study we also compared the sponge diversity of ARMS to
sponge diversity confined to the cryptobenthic community
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which was responsible for 76% (142 OTUs) of all species.
Sampling from the cryptobenthic reef provided exclusive
access to 31% (44 OTUs) of species, while sampling from
ARMS provided exclusive access to 52% (75 OTUs) of the
cryptobenthic specific diversity. These results suggest that
the interstices of ARMS units provide suitable habitat for
settlement of cryptobenthic sponges that would be impos-
sible to access through traditional field surveys.

Sampling of ARMS and reef sponges revealed 142 new
species records for Kane‘ohe Bay, including 108 demo-
sponges, 24 Calcarea and 10 Homoscleromorpha. Diversity
estimates for sponges belonging to orders Clathrinida,
Leucosolenida, Homosclerophorida, Tetractinellida,
Suberitida, Tethyida, and Haplosclerida from ARMS all
exceeded the number of species from these groups found
on the reef (see rarefraction curves in Figs. 4, 5 and 7).
Keratose sponges, however, were more diverse on the open
reef than cryptobenthic spaces, perhaps revealing a sensi-
tivity of keratose diversity to low light environments. For
the purpose of this study, we compared molecular OTU
diversity with species previously reported for Kane‘ohe
Bay including those previously provided with sequence
data (Pons et al. 2017). However, sponge diversity from
just the ARMS in our study almost doubles the diversity
previously reported for the entire Hawaiian archipelago
(De Laubenfels 1951, 1954, 1957; Bergquist 1977; Van
Soest et al. 2012; Calcinai et al. 2013), suggesting that
sampling of surface-dwelling sponges through traditional
survey techniques severely underestimate richness of this
phylum in coral reef ecosystems.

Regionally, our cryptobenthic diversity surveys in
Kane‘ohe Bay also shed light on the magnitude of
Hawaiian cryptobenthic diversity of Calcareous sponges
when compared to other biodiversity rich ecoregions of the
world. For example, sampling efforts from 15 ecoregions
of the Western Indian Ocean identified 45 calcareous
species from 140 specimens (Van Soest & De Voogd
2018); sampling in eight ecoregions of the coral triangle
identified 37 species from 155 samples collected (Van
Soest & De Voogd 2015); and nine species identified from
over 100 samples spanning the entire French Polynesian
archipelago (Klautau et al. 2020). In our study, 20 cal-
careous species were recovered from ARMS and an
additional 11 species from reef habitats from just a single
island location of the Hawaiian archipelago. These results
illustrate the usefulness of ARMS as a tool to recover
diversity of cryptobenthic sponges such as the Calcarea
from throughout this understudied region.

Our results demonstrate that cryptobenthic sponge bio-
diversity in remote Pacific island archipelagos is largely
overlooked and that integrative taxonomy combining
morphological assessments with multi-loci 28S rRNA and
COI barcoding greatly improves detection of cryptic
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species and richness estimates for sponges (Erpenbeck
et al. 2016b, 2020). Integrating molecular and morpho-
logical methods is important because classical taxonomic
approaches based on conserved morphological characters
can sometimes lead to incorrect classification of species
and underestimate actual species richness, particularly
among challenging groups such as sponges (Muricy et al.
1996; Xavier et al. 2010; Uriz & Turon 2012; Vicente et al.
2019). Likewise, classification solely based on molecular
techniques can also limit taxonomic accuracy (Rubinoff &
Holland 2005; Neigel et al. 2007). Continuous application
of an integrative, detailed morphological assessment to our
collection will likely increase diversity estimate as we
discover more sponge species with slowly evolving COI
and 28S rRNA sequences.

Moreover, integrating museum vouchering and species
descriptions of sponges with COI and 28S rRNA barcoding
will greatly improve taxonomic accuracy of classification
in future metabarcoding studies using next generation
sequencing (NGS) technology. Biodiversity surveys using
NGS are advancing at a faster pace than taxonomists can
complete accurate taxonomic assessments of species dis-
covered from cryptobenthic communities such as ARMS.
As a result, GenBank databases provide only limited
identification for metabarcoding studies. For example, in a
recent metabarcoding dataset, up to 95% of metazoan
OTUs encountered were not identifiable to species
(Nguyen et al. 2020). The ability to assign a species name
to a sequence is particularly problematic among sponges
for which molecular databases are exceedingly sparse and
less than 1% of holotype specimens in museum collections
have been barcoded to date (Erpenbeck et al. 2016a).
Furthermore, in some groups, including the cryptobenthic
sponges studied here, the majority of species are unde-
scribed and thus not identifiable in the conventional sense.
Nevertheless, once rigorously delineated by integrative
study, species can be tracked using provisional names that
are tied to vouchers, and documented with images as well
as sequence data, thus creating a reference for tracking
species in such a poorly known fauna. Such studies are
needed to support the annotation of next generation
sequencing data that rely on the DNA databases to support
biodiversity assessment and monitoring. Our database for
Kane‘ohe Bay sponges has already improved sponge
classification in a local COI targeted metabarcoding effort
by increasing species-level OTU identifications by 37%
(Timmers et al. 2020).

A primary goal for state managers is to establish a
baseline of species present in Hawai‘i, to identify and
protect native species, detect future sponge introductions,
and monitor changes in the sponge community in response
to human impacts. Our surveys of the cryptobenthic fauna
show that this community remains highly undersampled.

Future taxonomic efforts will provide accurate species
identification integrating morphological assessments with
sequence data provided in this study. However, in order to
identify species as endemic, native, or introduced, sam-
pling and vouchering of the cryptobenthic sponge
community from ARMS must be standardized and com-
pared from other sites throughout the world. Taxonomic
efforts should be coupled with sequencing initiatives such
as the sponge barcoding project (Worheide et al. 2007)
which continue to enrich the GenBank Porifera database.
Particular emphasis should be given to barcoding approa-
ches using multi-loci (COI and 28S rRNA) as these are
more effective at discerning related species to aid future
metabarcoding studies in resolving the poriferan commu-
nity of cryptobenthic reefs.
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