Ibex: Privacy-preserving ad conversion tracking and bidding

Ke Zhong

University of Pennsylvania

ABSTRACT

This paper introduces Ibex, an advertising system that reduces the
amount of data that is collected on users while still allowing adver-
tisers to bid on real-time ad auctions and measure the effectiveness
of their ad campaigns. Specifically, Ibex addresses an issue in recent
proposals such as Google’s Privacy Sandbox Topics API in which
browsers send information about topics that are of interest to a
user to advertisers and demand-side platforms (DSPs). DSPs use
this information to (1) determine how much to bid on the auction
for a user who is interested in particular topics, and (2) measure
how well their ad campaign does for a given audience (i.e., measure
conversions). While Topics and related proposals reduce the amount
of user information that is exposed, they still reveal user prefer-
ences. In Ibex, browsers send user information in an encrypted
form that still allows DSPs and advertisers to measure conversions,
compute aggregate statistics such as histograms about users and
their interests, and obliviously bid on auctions without learning
for whom they are bidding. Our implementation of Ibex shows that
creating histograms is 1.7-2.5X more expensive for browsers than
disclosing user information, and Ibex’s oblivious bidding protocol
can finish auctions within 550 ms. We think this makes Ibex capable
of preserving a good experience while improving user privacy.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; Privacy protections; »
Information systems — Online advertising.

KEYWORDS

Online advertising privacy; Private aggregation; Oblivious bidding

ACM Reference Format:

Ke Zhong, Yiping Ma, and Sebastian Angel. 2022. Ibex: Privacy-preserving
ad conversion tracking and bidding. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS °22), November
7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3548606.3560651

1 INTRODUCTION

Online advertising serves as the financial backbone of the free
Web. Two key components of this ecosystem are the ability of ad
platforms to select relevant ads for users and measure an ad’s ef-
fectiveness. To do so, ad platforms track users’ browsing habits to
understand their behavior and demographics, which helps adver-
tisers predict the value of showing an ad to the user and determine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560651

Yiping Ma

University of Pennsylvania

Sebastian Angel
UPenn and MSR

Advertisers

1. User profile generation

“ ~
o °°° Third-parw EEE 2. Estimation
- 9/ cookies of user value
- %
—— Ad Exchang
Ad tag Subm|t bids EEE Winner
Browser Notify winner
Send ad t 3. Conversion
—— endactag measurement
()
©)
|| T Conversion °3
T

Figure 1: Lifecycle of a displayed ad today. Advertisers use
third-party cookies to generate the profile of a user. Based
on this profile, advertisers can determine how much to bid
for the user’s attention when the user visits a publisher that
displays ads. After the user has seen the ad, advertisers keep
track of whether the user acted on the ad (a conversion).

whether ads lead to the user performing some action such as buying
a product (known as a conversion). A key issue with the current
state of affairs is that users’ browsing information is collected and
shared by a multitude of providers, from publishers to ad platforms
to advertisers, often without users’ consent. Our animating goal in
this paper is to propose an alternative: we describe Ibex, a system
that allows advertisers to determine the value of a user so that they
can bid in ad auctions, enables the selection of relevant ads for
users, and supports the measurement of conversions—all without
collecting information about individual users.

Figure 1 depicts the end-to-end process that results in an ad being
shown to a user. It begins with a user profile generation phase in
which advertisers (typically with the help of ad platforms) identify
users, track their activities across different sites over time and
aggregate this data, and ultimately generate a profile for each user.
Then during a phase of estimation of user value, when a user visits
a publisher’s site, this visit triggers an auction. The product being
auctioned is real estate on the user’s browser as they navigate a
particular site. To determine the value of such real estate, advertisers
rely on the profiles they have generated in the past for users and
use that information to decide on how much to bid. Entities called
ad exchanges run real-time auctions where they process the bids
of different advertisers to determine whose ad to show to the user.
After a winner is chosen and its ad is displayed in the user’s browser,
a phase of conversion measurement is used to measure the users’
response to the ad: does the user interact with the ad or purchase
some product or subscription as a result?

Protecting user privacy is challenging because in the current
ecosystem, the above phases rely on two operations that must act
on sensitive user information: aggregation and bidding. First, in the
user profile generation and conversion measurement phases, trackers
(e.g., advertisers, ad platforms, demand-side platforms) aggregate

https://doi.org/10.1145/3548606.3560651
https://doi.org/10.1145/3548606.3560651

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

the activities of users across different sites over time using third-
party cookies to get a better idea of who the users are and how
they are affected by ads. Second, in the phase of estimation of user
value, the user’s profile is critical to determine how to bid for the
user during an auction.

Ibex deals with the challenge of data aggregation with a new
protocol that collects the information needed for the user profile
generation and conversion measurement phases but does so at the
granularity of groups of users rather than individuals. In particular,
Ibex adopts the setting of recent industry proposals such as Google’s
Privacy Sandbox FLoC [84] and Topics API [22] that abandon the
use of third-party cookies altogether. Instead, these proposals cap-
ture user profiles in a coarse, but still useful, way with a group id
or several topic identifiers. Ibex extends these proposals to allow
trackers to construct a histogram that conveys how many times a
particular group of users visits certain sites or performs particular
actions after seeing an ad but without ever learning to which group
a particular user belongs.

Ibex also designs an oblivious bidding protocol in which an ad-
vertiser or demand-side platform runs an arbitrary computation on
the collected histograms to determine the value of each particular
group of users (i.e., how much to bid for each group). Then, when
a user visits a publisher and a real-time auction is conducted for
that user, the bidder obliviously submits their bid for the auction
without learning to which group the user belongs or which bid
they even submitted. Ibex then takes these oblivious bids and uses
them as inputs to an existing two-party private auction protocol
(e.g., Addax [89]). The result is that the auctioneers learn who the
winner of the auction is and how much they must pay, but they
learn no information about the losing bidders’ bids. Finally, the
auctioneers charge the winning bidder but do so after a batch of
auctions and (optionally) after some small amount of noise is added.
This ensures that the final bill itself does not reveal to the bidder
the group of a particular user in a particular auction.

In more detail, Ibex’s technical contributions are:

o Private histogram. A new two-party asymmetric private aggre-
gation protocol that combines secret sharing and homomorphic
encryption. The protocol requires one of the parties to very
cheaply validate some of the inputs provided by the browser
while the other party performs more (but still lightweight) oper-
ations. Crucially the two parties never talk to each other directly,
which avoids a privacy vulnerability of prior aggregation proto-
cols where one large ad platform helps aggregate reports of many
advertisers and can piece together users’ interests (§4.1). Having
one party partially validate the inputs of the browser means that
Ibex avoids expensive proofs to ensure that a malicious browser
is not supplying bogus inputs. This means that the computation
costs for browsers are minimal: they only need to split their
aggregation report into additive shares and communicate the
share (and some other materials) to each aggregator.

e Oblivious bidding. A new protocol whereby a bidder can sub-
mit the appropriate bid without learning the user’s group. To
do so, the bidder first pre-generates bids for different groups of
users, encrypts secret shares of the bids, and stores them in a pub-
lic bidding database. The user’s browser fetches the encrypted
bid shares corresponding to the user’s group privately using

Ke Zhong, Yiping Ma, and Sebastian Angel

private information retrieval (PIR) and submits the encrypted bid
shares to the two auction servers that compute the auction. In
the process above, no party learns the profile of the user.

Our implementation of Ibex shows that with Ibex’s private his-
togram aggregation, the response time when a browser visits a site
increases to 1.7-2.5X over the status quo with no privacy. In the
most optimistic case (out of many that we evaluate), the oblivious
bidding protocol is fast enough to complete an auction in 550 ms,
which is about 1.8X slower than existing non-private auctions.

Limitations. Besides data aggregation and bidding, there are other
important aspects such as ad delivery that indirectly leak to the
advertiser something about the user’s interests. We do not imple-
ment protections for those other aspects, but recent work [79] looks
at these complementary problems. Another limitation is that our
auction protocol reveals to the auctioneer which advertiser wins
the auction in order to bill the advertiser for the impression. Un-
fortunately this also means that the auctioneer could over time
determine which advertisers are winning auctions for a given user
and infer some of its interests. Ibex’s oblivious bidding protocol
takes into account the user’s group and can also incorporate some
contextual data (e.g., type of site showing the ad, location within the
page, time of day). However, if there are too many features, Ibex’s
approach becomes impractical and more work is needed to devise
a better mechanism. Finally, Ibex’s threat model is not as strong
as we would like: we assume that browsers are malicious, but that
advertisers, ad platforms, and auction servers are semi-honest.

2 BACKGROUND

This section gives a brief overview of how tracking and real-time
bidding work today; we later discuss how recent industry proposals
plan to change the ad ecosystem to provide better privacy for users
and how Ibex fits into that new ecosystem.

Ad platforms can show ads that are relevant to users by under-
standing users’ prior activities on the Web. This is done in a user
profile generation phase in which trackers use third-party cookies
and cookie matching techniques [27, 29] to assign the user a unique
identifier. Trackers use this identifier to build a holistic profile of
the user that includes activities such as which pages the user visits
and which items the user purchases.

When a browser visits a publisher’s site, the publisher—or more
commonly a supply side platform (SSP) which is a company that
represents the publisher—auctions the user on an ad exchange. In
this auction, the exchange requests bids from interested bidders
which are typically demand side platforms (DSPs). DSPs are com-
panies that represent advertisers and run ad servers that have the
resources required to participate in real-time auctions. One of the
key steps that takes place during the auction is for bidders to esti-
mate the value of the user (i.e., how much they are willing to bid).
To make this decision, bidders are provided with the user’s profile,
demographic information, and relevant details about the publisher
and the ad slot, such as size, type, and location within the page [68].

Based on this information, bidders return a bid to the ad exchange.
The ad exchange runs an auction to select the winning bidder,
charges the winner, and sends the ad tag of the winner to the
browser; this ad tag contains information that the browser needs
to retrieve and display the ad.

Ibex: Privacy-preserving ad conversion tracking and bidding

In the conversion measurement phase, trackers use third-party
cookies to follow a user’s actions after it clicks on the ad. Con-
versions refer to events such as a purchase or a signup and are
used to measure the effectiveness of ads. The trackers first record
the click by a browser on the publisher’s site, and then record the
activities of the user on the advertiser’s site. Trackers match these
recorded clicks and activities and attribute a conversion to a click.
There are also more advanced mechanisms known as view-through
conversions that can attribute a conversion to the display of an ad
rather than a click (e.g., if the user sees an ad and then goes to the
advertiser’s site on a new tab without clicking on the ad [24]).

2.1 Where is the industry headed?

The ad industry is currently in the design phase of a more privacy-
friendly ecosystem that deprecates the use of third-party cookies.
There have been several proposals put forth. Before describing them,
we want to emphasize that these proposals are speculative and most
have not been implemented or deployed. Our here goal is to just
give a flavor of the ideas that have piqued the community’s interest,
and how Ibex’s mechanisms fit within the larger ecosystem.

Finding a proxy for user profile. Several works such as Google’s
Topics API [22] (a refinement of a prior proposal called FLoC [84])
and Microsoft’s PARAKEET [17] introduce ideas to replace a user’s
profile and browsing history with something good enough to de-
scribe the interests of the user, but coarse enough to not uniquely
identify the user. In these proposals, the browser is extended to
include code that maps a user to some group of like-minded users
or to a set of topics of interest, based on the websites that the user
visit. We do not discuss how this mapping is done, as things are
constantly in flux, but in Ibex we assume that some such mapping
exists. We will use the term group id to describe the coarse identifier
assigned to the user (Ibex generalizes to a set of topics).

Measuring conversion. Once users are assigned to groups, it be-
comes important for advertisers, DSPs, and ad platforms at large
to have a mechanism to measure how users in each group interact
with sites (how often do they buy a product, share an article, etc.).
To do so, one proposal from Google is for browsers to send these
reports to trusted hardware enclaves [2] that collect and aggregate
the data, and produce noisy aggregates for ad platforms to use.
Other proposals [12, 36] discuss the possibility of having multiple
non-colluding servers compute this aggregate with secure multi-
party computation. The way Ibex approaches this problem is also
based on multiparty computation, but there is a key distinction in
which servers Ibex uses, and what kind of computation they each
do. As we will discuss in Section 4.1, in existing proposals an ad plat-
form serves as one of the servers and is involved in processing all
aggregation reports. This gives the ad platform a powerful vantage
point that allows it to determine which sites a user is visiting; over
time, the platform can piece together the user’s interests, which is
precisely what we wish to avoid.

Bidding. When a user visits the publisher and an auction is trig-
gered, there is a question of how can the bidders determine which
user is for auction and how valuable this user is to them? In Chrome’s
FLEDGE proposal [33], the idea is to have the auctions happen di-
rectly in the user’s browser. In this way, the user’s group id (or

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

topics) stay within the browser, safeguarding the user’s privacy. To
enable this, each bidder must submit their bidding function (e.g.,
a machine learning model) to the browser, which then runs this
function on the appropriate data to compute bids and then pick the
winner. This approach is actually really appealing, but browsers can
easily be modified to run code that extracts the bidding function of
each DSP. In many cases, these functions represent the intellectual
property of the company, and competitors could take advantage of
this. There are also questions about the integrity of the auctions.

Another proposal called MaCAW [13] secret shares the user’s
group id (or topics) among two or more servers that run a simple
bidding model (e.g., linear regression) to determine the bid for the
user. This bid can then be used in an auction outside of the browser.
Ibex also adopts this model of running the auction outside of the
browser. However, Ibex proposes a very different mechanism than
running MPC to compute a bid. Instead, Ibex introduces an obliv-
ious bidding protocol whereby the bidder submits its bid without
learning what bid it submitted. This is done with the help of the
browser, as we detail in Section 5.

3 OVERVIEW OF IBEX

Ibex is a new ad platform that replaces a user’s profile and browsing
history with a group id. This group id is derived as per recent
proposals such as Google’s FLoC [84] and its successor [22]. Ibex
then introduces various technical mechanisms to ensure that real-
time bidding auctions and conversion measurement mechanisms
continue to work, even when the group id is not shared (at least
not in the clear) with other parties.

We begin by answering some basic questions about Ibex’s setting,
and then discuss the threat model and goals in more detail.

Is Ibex necessary? One may wonder whether revealing a coarse
group id is problematic. It is. Prior proposals that have done this [22,
84] have been criticized precisely because this is enough to leak
sensitive user information [6, 7, 18, 23, 78]. Briefly, the criticisms
state that while a single group id (or set of topics) alone might not
reveal too much about a user, as time passes and the user browses
the web, the group id inevitably changes—revealing new facets
of the user’s interests. Exposing such information allows trackers
to study and understand users over time. With enough of these
observations, trackers can put together a detailed profile of the user,
allowing the inference of the user’s browsing history.

Does Ibex prevent tracking? Even if one hides the group id from
trackers, could they not continue to track users anyway? Indeed,
Ibex does not prevent cross-site tracking explicitly. However, all
major browsers are disabling third-party cookies which is the de-
fault way of tracking users across sites. There are other ways to
track users across sites (e.g., browser fingerprinting [25]), but these
methods are noisy, involved, and require the coordination of multi-
ple sites. We therefore expect that sites will respect users’ privacy
if the existing functionality can be provided through other means.

How does Ibex work? In Ibex, browsers locally record all user
activities and identify reports that should be sent to aggregators
(e.g., an advertiser who tracks conversion reports). The aggregators
combine the reports provided by many users and generate a profile

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Browser % /,

Main Aggregator
(advertiser) @

Ke Zhong, Yiping Ma, and Sebastian Angel

Bidding database| Advertiser |Bidding database| Advertiser

7777777777777777777777777777 ; Grp 1
Encrypted 'l lempel !
— report ! Grp 3]
\
Encrypted | ! @
hls‘rogram !

Sighature

Auxiliary Aggregator
(ad platform)

(a) Private Aggregation

ay
Main Aggregator -l- {—* E

(advertiser)

Batch charges

®

I
|
1
@ i Private auction
|
|

Auction servers

(b) Oblivious Bidding

Figure 2: Overview of Ibex’s architecture. It consists of private aggregation (§4) and oblivious bidding (§5). Aggregation helps
advertisers understand the value of different kinds of users, and they use this information to bid in auctions.

for each group of users (rather than individuals). Each user’s group
id then serves as a proxy for the user’s profile.

As we show in Figure 2, Ibex introduces algorithms that allow
aggregators to function without seeing individual reports, and bid-
ders in auctions to determine how much to bid for a user without
learning who the user is. We discuss the details of aggregation in
Section 4 and of bidding in Section 5. One key point worth mention-
ing is that Ibex requires multiple non-colluding servers to achieve
these goals. We next discuss what we assume of the different parties
in the ad ecosystem, and how we could instantiate non-colluding
servers (which is a very strong assumption) in practice.

3.1 Threat model and assumptions

In Ibex, there are several principals: browsers, publishers (or SSPs
that represent publishers), advertisers (or DSPs that represent ad-
vertisers), and ad platforms. There are also two additional roles that
could be taken up by different combinations of these principals:
auction servers and aggregation servers. We suggest the following
concrete arrangement (other arrangements might work too).

For aggregation, each advertiser (or DSP) serves as a “main” ag-
gregator, and its job is to aggregate the visits and conversion reports
of the users that interact with its own site. Since Ibex requires two
non-colluding aggregators, we also have one out of the many exist-
ing ad platforms serve as an “auxiliary” aggregator. In this role, the
ad platform merely helps the main aggregator complete its task—it
does not learn the final aggregation results (histograms).

For auctions, each publisher (or SSP) serves as one of the auction
servers, and an ad platform serves as the other auction server. If
having each SSP serve as an auction server is too onerous or creates
too much market fragmentation (i.e., too many concurrent auction
platforms), then one can use a service like Divvi Up [4] to take up
the role of the auctioneer in place of each publisher. Divvi Up is a
service provided by the non-profit ISRG [10] (the same organization
in charge of Let’s Encrypt [11]) that helps prop up a second server
for applications that require non-collusion assumptions.

Based on the above principals and roles, we have the following
threat model.

Browsers. Since browsers are under the control of users and can
be easily modified, we model them as malicious adversaries that
can deviate from any prescribed protocol.

Advertisers, publishers, and ad platforms. We model these par-
ties as honest-but-curious adversaries: they will follow the pre-
scribed protocol but will try to infer users’ private information.
We assume that these parties will not collude with each other. If
one uses a service like Divvi Up, this model also applies to them.

Non-goals. Ibex does not prevent users from claiming to be in-
terested in categories of sites or products that they are actually
not. For example, claiming that they are interested in sports when
in reality the user does not like sports. We are not aware of any
mechanism that could enforce this against malicious users that can
modify their browsers to submit false information.

4 PRIVATE HISTOGRAM AGGREGATION

In our architecture, and consistent with industry proposals (§2.1),
when a user clicks on an ad or visits a site after seeing an ad (see-
through conversion), the user’s browser generates a report (e.g., a
conversion). The goal of the aggregation protocol described in this
section is for an advertiser or DSP to be able to tell which groups of
users are most valuable to it (more likely to interact with its content,
purchase products, etc.). In Ibex we wish to do this without any
party learning to which group any individual user’s report belongs.
That is, the reports are aggregated in such a way that the advertiser
learns the final aggregate value and the total number of reports,
but does not learn which report belongs to which user.
Abstractly, we can model this task as follows. There are N users
and d different groups. Each user holds a report belonging to one
group. Among these N users, there are Ny users with reports of
group 0, N7 users with reports of group 1, .. ., and Ny_; users with
reports of group d — 1. Each report is a number indicating the
group. At the end of the protocol, the aggregator obtains a vector
[No,N1,...,Ny_1]. The vector can be interpreted as a histogram
with the x-axis corresponding to the different groups and the y-axis
representing the number of reports belonging to each group.

Ibex: Privacy-preserving ad conversion tracking and bidding

nike.com

o

Aggregation

@ i Linkability between the br'owser',i
('B E nike.com, and adidas.com i
Browser] ===Z0@0 Gl e - e e -
p= = @
Aggregation

S -

adidas.com

Ad platform
I | purchase sportswear !

Figure 3: Linkability issue of a centralized ad platform in
current advertising architecture.

4.1 Issues of existing aggregation protocols

Asking users to submit the reports in plaintext violates users’ pri-
vacy, as they would be revealing their group. A promising alter-
native is works [32, 36, 42, 50, 59] that show how to privately
aggregate data while ensuring that the inputs are well-formed (to
avoid corrupting the final result). They fall into two categories:

e Homomorphic encryption (HE): each user encrypts its report
using a homomorphic cryptosystem that supports batching (so
it can represent the value of 0 or 1 for each of the d groups
within a single ciphertext) and sends the resulting ciphertext
and a proof that the corresponding plaintext is well-formed to
the aggregator. The aggregator sums up reports across many
users and forwards the result to a third party with the decryption
key who can recover the final histogram.

o Aggregate shares: the user splits its report (represented as a d-bit
vector) into two or more additive shares and sends them to sev-
eral non-colluding aggregators. The aggregators then compute a
multi-party protocol on the shares to obtain the final aggregate
histogram across many users.

Neither of these types of protocols is a great fit in our context.
For HE aggregation, it is costly for the browser to generate zero-
knowledge proofs (ZKP) that show that the ciphertext corresponds
to a well-formed plaintext. In Appendix C.2 [88] we show that
the cost of generating the required ZKP for state-of-the-art HE
schemes is expensive. For multi-server aggregation protocols such
as Prio [50] and Poplar [42] their symmetric nature poses a problem
if a large ad platform helps aggregate reports for many advertisers.
Consider the example of Figure 3 where an advertiser (e.g., nike.com
or adidas.com) employs the help of a (non-colluding) ad platform
to perform the aggregation. If the ad platform helps more than one
advertiser to aggregate reports, then the reports must specify for
which advertiser they are meant. For example, browsers will need to
tell the ad platform: “this is a share of a report for nike.com”. While
the ad platform does not learn the user’s group from the share, it
still learns that the user visited nike.com. In the extreme case where

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

a single ad platform helps all advertisers aggregate reports, it is
akin to a situation where it gets to see users’ entire history. We call
this advertiser linkability.

One way to eliminate this issue is to designate two aggregators
to handle the reports from all users and all sites, and ensure that the
id of the advertiser is encoded in the report share and is only visible
once the shares are aggregated. In this way, neither aggregator
can distinguish the target advertiser of a user’s report. However,
this design has two shortcomings: (1) it can be abused; and (2) it
increases the size of a report.

First, as advertisers are not involved in the aggregation process,
a malicious user can send many random reports to the two aggrega-
tors; the advertiser cannot verify whether activities of these reports
are real at all, since it only sees the final histogram. For example,
an adversary can send many reports indicating many users from
group 2 purchased shoes on an advertiser’s site, which tricks the
advertiser into thinking that users from group 2 are the most desir-
able. In contrast, in Ibex, the user sends its report as it is visiting
the advertiser and making the purchase, so the advertiser knows
that this is a valid report.

Second, since reports of all sites are sent to the same two ag-
gregators, each report needs to include an additional feature, the
target advertiser’s id. Based on prior documentation [14], the total
number of advertisers can be over 10 million. Increasing the size of
areport impacts performance since many of these protocols [42, 50]
have computational complexity linear in the size of the report. One
exception is the work of Anderson et al. [36] which scales well.
Nevertheless, it is still not a great fit in our setting since advertisers
are out of the loop and cannot verify the authenticity of reports.
Appendix C [88] discusses these schemes in more detail.

4.2 Asymmetric aggregation

To solve the advertiser linkability problem, Ibex’s key idea is to
enable an “auxiliary” aggregator (such as an ad platform) to help
a “main” aggregator (an advertiser or DSP) to aggregate reports
without actually learning the identity of the main aggregator that
it is helping. This seemingly paradoxical property boils down to
enforcing a notion of information asymmetry: we allow the main
aggregator to know the identity of the auxiliary aggregator and its
public key, but not the other way around. To leverage this asym-
metry, all messages from the auxiliary aggregator to the main ag-
gregator must be proxied via the browser. But as browsers can be
malicious, the proxied messages must be signed by the sender. This
means that the main aggregator cannot send any messages to the
auxiliary aggregator, as otherwise the auxiliary aggregator would
be required to know the identity of the main aggregator to validate
its signatures, violating information asymmetry.

In Ibex, the auxiliary aggregator generates the proof required
to validate the report, encrypts the report share, signs the proof
and encrypted share, and gives these messages to the browser. The
browser then forwards these messages and the other report share
to the main aggregator. The main aggregator receives its share, the
auxiliary’s aggregator signed encrypted share and proof, and uses
these materials to locally compute the histogram.

Challenge of adapting existing protocols. Given the above, a
natural question is whether existing aggregation protocols such as

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Prio [50] and Poplar [42] can be easily adapted to be asymmetric.
This is not the case. The reason is that in order for these protocols
to validate the inputs provided by users, the aggregators need to
interact with each other for two or more rounds (e.g., in Prio, ag-
gregators use Beaver triples [41] and are required to exchange their
local shares of a value). Thus, the proof cannot be generated locally
by the auxiliary aggregator without receiving a message from the
main aggregator (and therefore learning its identity and violating
asymmetry). Ideas from group signatures [48, 69] could hide the
identity of the sender, but the number of main aggregators could
be in the thousands, which would lead to high costs. Instead, Ibex
designs a protocol where validating inputs from browsers requires
no communication between the two aggregators.

4.3 Histogram aggregation overview

To enable histogram aggregation, there are a few things that need
to be addressed. First, we need a way to encode the user’s group g
into a representation that indicates the g-th bin of the histogram,
and such representation should be aggregatable. Second, we need
an encryption scheme that naturally represents all the bins and the
encryption scheme should be aggregatable over ciphertexts. Third,
as browsers are malicious, we should avoid asking the browser to
do the encryption; otherwise, the browser needs to generate an
expensive ZKP to prove that the ciphertext encrypts a well-formed
encoding of the user’s group. We discuss the high-level ideas of
Ibex’s histogram aggregation design below and discuss the details
in the sections that follow.

Histogram encoding. We observe that a one-hot vector, which
is a vector where one entry is a 1 and all others are zeros, is a
good fit to represent the aggregatable bins. The browser encodes its
report, group g, into the one-hot vector [0,...,1,...,0]. Element-
wise additions over the vectors give us the “bin” aggregation. For
example, given three vectors, [0,1,0,0], [0, 1,0,0], and [0, 0, 1, 0],
corresponding to two reports for group 2 and one report for group
3, their sum yields [0, 2, 1, 0]; the i-th element of the vector gives
the total number of reports belonging to group i.

Encryption and aggregation. Given the above representation, a
strawman solution is to encrypt each value in the vector individually
with an additively homomorphic cryptosystem like Paillier [76].
However, this is far too expensive. Instead, cryptosystems based on
the Ring-LWE assumption [70] have the advantage that each bin can
be represented as a different coefficient in a polynomial. Specifically,
in the BFV cryptosystem [45, 55], plaintexts are polynomials of
degree at most N with integers coefficients modulo ¢. Formally,
they are polynomials from the quotient ring R; = Z;[x]/(xN + 1),
where N is a power of 2 and ¢ is the plaintext modulus. One can
therefore represent the one-hot vectors [0, 1,0, 0], [0, 1,0, 0], and
[0,0,1,0] with the monomials x, x, and x%in Ry, respectively. Their
sum is 2x + x%, which is equivalent to the histogram [0, 2, 1, 0].

Correct encoding and secret sharing. One way to avoid the
browser generating the encryption of the one-hot vector for group
g and proving that it is well-formed (i.e., that a single entry is a
1 and the rest are 0) is to have the servers generate the one-hot
vector themselves. Of course, the client cannot simply give g to the
servers, since this would leak g. Instead, the browser can view g as

Ke Zhong, Yiping Ma, and Sebastian Angel

an element in a group Z; (d is the total number of groups) and can
randomly sample two additive shares s; and sp from Z; such that
s1+s2 = g (mod d). The browser can then send s; to the auxiliary
aggregator and sp to the main aggregator. The auxiliary aggregator
represents s; as the monomial x* and encrypts it with its public
key pkayx to obtain: ¢ = Enc(pkgyy, x*1). The auxiliary aggregator
then sends (via the browser) ¢ to the main aggregator.

Once the main aggregator receives c, it can represent its share
sz as the monomial x2 and then perform a plaintext-ciphertext
multiplication: x% - ¢ = Enc(pkgyyx, % - x2) = Enc(pkgyyx, x%17%).
For example, suppose a user’s group id is 2 € Zy4, and the browser
generates two additive shares, 1 and 1. The auxiliary aggregator
takes its share (1) and generates the ciphertext ¢ = Enc(pkgyx, x1).
The main aggregator receives its share (also 1) and the ciphertext
c. It then expresses its share as the monomial x!, and performs a
plaintext-ciphertext multiplication with c to obtain Enc(pkaysy, x2),
which is the encoded one-hot vector representing a report for group
2. This plaintext-ciphertext multiplication essentially “shifts” the
original plaintext by sz positions to the right.

Dealing with shift overflows. One issue with the above is that
when the shift operation overflows it results in a negative coefficient.
For example, if g = 1, its two shares can be 2 and 3 (2 +3 =
1 € Zy4). So the auxiliary aggregator generates a ciphertext for the
monomial x?, and the main aggregator further increases its degree
by 3 (equivalent to shifting the entries in a one-hot vector to the
right 3 positions). The result is: Enc(pkayx, x2+3) = Enc(pkayx, —x).
This negative coefficient occurs because plaintexts are defined over
Ry =Z[x]/(xN +1),s0xN +1=0 (mod xN + 1) and xN*! = —x
(mod xN +1). We address this by increasing the polynomial degree
to 2d; since the multiplied monomials both have degrees lower
than d, multiplying them will not overflow a polynomials with
degree of 2d. This approach is very simple and more efficient than
alternatives (e.g., performing rotations [56]).

End-to-end flow. We consider a single auxiliary aggregator that
serves all main aggregators though Ibex naturally extends to sup-
port multiple auxiliary aggregators. The auxiliary aggregator gen-
erates a pair of keys for the homomorphic cryptosystem and a pair
of signing and verification keys. The public key and verification
key are distributed to all main aggregators.

A browser privately splits its report into two shares, s; and sz,
and sends s; to the auxiliary aggregator. The auxiliary aggregator
responds to the browser with an encrypted report share and a
signature generated with its signing key. The browser then sends sz,
the encrypted report share, and the signature to the main aggregator.
The main aggregator first validates these materials, and shifts the
encrypted report share using s, to obtain the appropriate encryption
of the report. The main aggregator then adds up many encrypted
reports over a window of time to obtain an encrypted aggregate
result. Finally, the main aggregator adds some randomness to this
encrypted aggregate result, submits it to the auxiliary aggregator
for decryption, and removes the randomness from the decrypted
result to recover the histogram.

4.4 Construction

Ibex’s private histogram protocol provides the following properties.

Ibex: Privacy-preserving ad conversion tracking and bidding

o Correctness. If all parties follow the protocol, the final output of
the histogram aggregation protocol is the correct distribution of
the number of reports from different groups.

e Robustness. In Ibex, malformed inputs from malicious browsers
can be detected and discarded by both aggregators.

e Privacy. Ibex’s histogram aggregation protocol hides all raw
inputs of users from both aggregators, except what is implied
by the output histogram to the main aggregator. Moreover, the
auxiliary aggregator does not learn which user sends a report to
which main aggregator.

Notation.

o All polynomials defined below have degree 2d.

o The polynomials below are defined over the ring Z;[x]/ (x241),
with plaintext modulus being t. Since each coefficient will act as
a “bin” in our histogram, and the maximum value of a coefficient
is t, then t is also the maximum number of reports that can be
summed together before overflow happens (e.g., t + 2 = 2 € Z;).

o The auxiliary aggregator generates a pair of public and secret
keys, pk and sk, from an additively homomorphic cryptosystem
by calling HE-KeyGen. pk is public to all main aggregators.

o The auxiliary aggregator generates a pair of signing and verifi-
cation keys, sigkey and vrfkey by calling Sig-KeyGen; vrfkey is
public to all main aggregators.

Subroutines. Now we define subroutines that will be used later
in the construction of the private histogram aggregation.

o Additive-Shares(g) — (s1,s2). Takes an element g € Z;, and
generates two uniformly random shares sy, s; € Z; such that
s1 + s = g € Z. Neither share leaks any information about g.

e H E-KeyGen(lA) — (pk, sk). Takes in a security parameter A and
outputs a public key pk and a secret key sk.

e HE-Enc(pk, pt) — c. Takes the public key pk and a plaintext
polynomial pt and outputs a ciphertext ¢ which encrypts pt.

e HE-Dec(sk, c) — pt. Takes the secret key sk and a ciphertext ¢
and outputs the decrypted polynomial pt.

e HE-Add(cq, c2) — cg44- Takes two ciphertexts, ¢; and c¢; which
encrypt two polynomials, and outputs a ciphertext c,4; which
encrypts the sum of the two polynomials.

e HE-Add-Plain(c, p2) — cuqq- Takes a ciphertext ¢, which en-
crypts a polynomial p;, and a plaintext polynomial py, and out-
puts a ciphertext c 4y which encrypts p1 + pa.

e HE-Mul-Plain(c, p2) — cpu1- Takes a ciphertext ¢, which en-
crypts a polynomial p;, and a plaintext polynomial py, and out-
puts a ciphertext c,,,,; which encrypts p; - ps.

o Sig-KeyGen(14) — (sigkey, vrfkey). Takes security parameter A
and outputs a signing key sigkey and a verification key vrfkey.

e Sign(sigkey, m) — sig. Generates a digital signature on message
m using the signing key sigkey.

o Verify(vrfkey, m, sig) — valid. Outputs whether sig is a valid
signature for message m with the signer’s verification key vrfkey.
valid is set to true when sig is valid. Otherwise, it is set to false.

Figure 2(a) shows the architecture of Ibex’s private histogram.
Ibex’s aggregation consists of three steps as follows.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Step 1: Browser generates shares and obtains materials from
auxiliary aggregator. The browser runs the Additive-Shares func-
tion on its report group g € Z,4, and obtains two shares, s; and s,
as the output. The browser sends s; to the auxiliary aggregator. The
auxiliary aggregator first checks whether s; is valid, and discards
the share otherwise. Then, it generates the encrypted share cs and
signature sig as follows.
(1) If 51 ¢ Zg4, discard the share and abort;
(2) pt < x5
(3) ¢s « HE-Enc(pk, pt);
(4) sig « Sign(sigkey, cs).

The auxiliary aggregator sends (cs, sig) back to the browser; the
browser then forwards (cs, sig, s2) to the main aggregator.

Step 2: Main aggregator validates, recovers, and aggregates
reports. For each aggregation report, the main aggregator receives
a tuple (cs, sig, s2) of encrypted share, signature, and share from
a browser. For each tuple, the main aggregator first validates the
signature using the auxiliary aggregator’s verification key vrfkey,
then locally recovers the encrypted report cr if validation passes.
(1) If sp ¢ Zy4, discard the report and abort;
(2) If Verify(vrfkey, cs, sig) # true, discard report and abort;
(3) pt « x%;
(4) cr < HE-Mul-Plain(cs, pt).

For a number of recovered encrypted reports (cry, ..., cry), the
main aggregator combines them into the encrypted aggregation
result (cAgg) as follows.

(5) cAgg «— Zﬁ 1 cri, this is ciphertext addition using HE-Add.

Step 3: Main aggregator obtains aggregation result. To hide
the aggregation result from the auxiliary aggregator (who is the
only one who can decrypt cAgg), the main aggregator first generates
a mask polynomial that has uniformly random coefficients, and
adds it to the local encrypted aggregation result as follows.

(1) mask < uniformly random element in Z;[x] /(de +1).
(2) mAgg « HE-Add-Plain(cAgg, mask).

The main aggregator submits mAgg to the auxiliary aggregator,
who can decrypt mAgg using its secret key sk:

(3) dAgg < HE-Dec(sk, mAgg).

The main aggregator receives the decrypted polynomial dAgg
from the auxiliary aggregator. It removes the previously generated
random mask to obtain the real aggregation result as follows.

(4) agg «— dAgg — mask.

Decode the histogram. Recall that in Step 1, the browser invokes
Additive-Shares to generate two additive shares in Z ;. These two
shares add up to either g or g+d in Z,,. Thus, the coefficients of the
g-th and (g + d)-th term in the decrypted polynomial, agg, refer to
the number of reports belonging to the same group g. For example,
suppose d is 2 (only two groups of reports) and the decrypted
polynomial that the main aggregator obtains is 1x° +2x! +3x% +4x3.
This means that main aggregator receives 4 (1+3) reports from group
1, and 6 (2+4) reports from group 2.

THEOREM 4.1. Ibex’s private histogram aggregation protocol achieves
the properties defined in Section 4.4.

We give the full proof in Appendix B.1 [88].

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

4.5 Multiple sets of HE parameters

Different aggregation tasks may require different number of groups.
In Ibex, the auxiliary aggregator can generate different HE parame-
ters including the secret key, public key, and the number of total
groups (d). For each set of parameters, the auxiliary aggregator
assigns it a unique id. Then, in Line 4 of Step 1, the auxiliary aggre-
gator embeds the id into the message it signs (id||cs).

5 OBLIVIOUS BIDDING

In today’s ad auctions, each bidder is given the user’s profile as
well as contextual information; the bidder then generates a bid and
submits the bid to the auctioneer. The auctioneer computes the
auction and selects the highest bidder as the winner, and outputs a
sale price (in some auctions the sale price is the highest bid itself,
in others it may be the second highest bid). In Ibex, each user is
assigned to a group and uses its group id as a proxy for its profile.
Our goal is to enable bidders to generate a bid for a given group id
without actually learning the group id.

5.1 Private auctions

Bidding does not make sense without a corresponding auction
protocol. So for completeness, we describe a semi-honest two-party
private auction protocol where each party takes a set of bid shares
as input and the parties jointly compute the winner and the sale
price of the auction. Note that the auction protocol that we describe
is not novel; it simply uses a generic MPC framework. That said,
there are very efficient custom two-party auction protocols that
Ibex could use instead [89]. Importantly, these works take shares
of bids as inputs but they are agnostic to how the bids (and the
corresponding shares) are generated. The process of bid generation
is precisely what is novel in Ibex.

The auction protocol consists of two parts: how to encode bids
into shares, and how to compute the auction using shares.

Bid encoding. Each bidder represents its bid (assumed to exist) as
a binary string B and then generates two additive shares B' and B?
such that B! @ B? = B. We use this binary encoding because in our
context we find that it is cheaper to use an MPC framework that
operates over boolean rather than arithmetic circuits to compute
the auction (see Section 7.1 for details).

Private auction. Each bidder submits its first share B! to the first
auction server and B? to the second auction server. The two servers
collect shares from many bidders and then run a secure two-party
computation that outputs the winning bidder and the auction’s sale
price (they basically reconstruct the bids inside the MPC and then
find the highest bid). Appendix A.1 [88] provides the pseudocode.

5.2 High-level idea of oblivious bidding

In Ibex, the bidders use the aggregated information about each
group of users to decide their bidding strategies. When the browser
visits a publisher’s site and needs an ad tag, it locally selects poten-
tial bidders from a list provided by the publisher (this is actually how
header bidding [3] works today and how Google’s FLEDGE [33]
proposal is intended to work). If the list is too large, the browser
can filter them based on which ones are the best match for the user
by leveraging the local profile stored within the browser.

Ke Zhong, Yiping Ma, and Sebastian Angel

To hide the user profile but allow bidders to bid for a user, each
bidder encodes its bids into two shares, encrypts each share with
a different auction server’s key, and stores them in the bidding
database. Note that one auction server can only decrypt one share
but not the other; without it, it cannot learn the bid. The browser
then uses a single-server private information retrieval (PIR) protocol
to privately read encrypted bid shares from the invited bidder’s
bidding database while hiding which element of the database is
read. The browser then randomizes the encrypted bid shares before
submitting each encrypted bid share to the corresponding auction
server. Each auction server then decrypts the received randomized
bid shares, runs a private two-party auction protocol, and tells the
browser where to fetch the winner’s ad.

Why and how to randomize encrypted bid shares. The bid-
ding database is pre-generated and public; auction servers can
access it too. This means that when an auction server receives an
encrypted bid share from the browser, it could simply scan the
bidding databases of all bidders and find the matching ciphertext,
thereby learning the user’s group id.

Ibex avoids this by randomizing the bid shares—not just the ci-
phertext themselves but also the underlying plaintext (the share
itself). It is important to randomize the plaintext because the auc-
tion server has the corresponding secret key so it can decrypt
the ciphertext. To do so, recall that the two shares B! and B? of
the binary representation of a bid B are uniformly random, and
B = B' @ B%. A browser can generate a uniformly random mask
mask of the same length as B and add mask to the shares. Since
(B! ® mask) ® (B?> ® mask) = B, the bid B is unchanged but the
auction servers do not obtain the original B! and B?. A bit homo-
morphic encryption scheme [57, 58] supports adding randomness
(XOR over bits) to the encrypted shares.

5.3 Properties

Ibex’s oblivious bidding protocol provides the following properties.

o Correctness. If the browser and all bidders follow the protocol,
the two auction servers each receive a valid bid share for the
user’s group from each bidder. If the auctioneers are also honest,
then the output of the auction is correct (e.g., the winner is the
highest bidder and the sale price is the winner’s bid).

o Robustness. Misbehavior of malicious browsers (§5.5) can be
detected in Ibex’s oblivious bidding protocol.

o Privacy. Ibex’s oblivious bidding protocol hides an honest user’s
group id from the auction servers and bidders.

5.4 Construction
Below is the notation and subroutines that we will use.

o Each of the two servers holds a set of public and secret keys of an
additively homomorphic cryptosystem. We use the Goldwasser-
Micali’s cryptosystem [57, 58] since it encrypts each bit individ-
ually and supports homomorphic XOR over ciphertexts.! We
denote the set of keys of the first auction server as (pkj, ski)

!We make this choice since the two-party auction protocol that we use takes as input
boolean shares. If we had instantiated Ibex with an auction protocol that uses integer
shares, we would have used cryptosystems like Paillier [76] or EIGamal [54].

Ibex: Privacy-preserving ad conversion tracking and bidding

and the keys of the second auction server as (pkz, skz). pk; and
pks are made available to all bidders and browsers.
o There are d total groups and k bidders are invited to an auction.
e The range of bids is from 0 to 2¢ — 1. All bit strings and lists of
ciphertexts below have length ¢.

Subroutines. Below are the subroutines that we use. Appendix
A [88] provides details on their constructions.

e Bid-Encode(b) — (B!, B?). Encodes bid b € [0,2f — 1] as a bit
string B, and generates shares B! and B? such that B! ® B? = B.

. Priv-Auction(B%, e Bllc’ B%, e, Bi) — (bs, id). Runs a semi-honest
two-party auction protocol between the auction servers. The i-th
server inputs the bid shares of the k invited bidders, Bi, el B;{.
This subroutine outputs the sale price bs and the winner’s index
id without leaking anything else.

e Share-Enc(pk, B) — (C). Encrypts each bit in the bit string B
into a ciphertext using additive bit homomorphic encryption
with public key pk, and outputs the list of bit encryption C.

e Share-Dec(sk, C) — (B). Decrypts each ciphertext in C using
the secret key sk and outputs the bit string B of decrypted bits.

e Share-Add(Cy, C2) — (Cuqq)- Takes two lists of ciphertexts C;
and Cp, which encrypt the bit string B; and By respectively, and
outputs the list of ciphertexts C,44, which encrypts each bit in
the bit string (B; @ By).

e PIR-Read(g) — (entry). Protocol that fetches the g-th row of
some database without revealing the index g.

5.4.1 Workflow of oblivious bidding. Ibex’s oblivious bidding is
depicted in Figure 2(b). It consists of 5 steps. In the initialization
step (not depicted), bidders use information they acquire about each
group of users through Ibex’s aggregation (§4) and pre-generate
bids for each group. A bidder generates its bid shares, encrypts
them, and posts the ciphertexts to a bidding database. In Step (1),
the browser identifies potentially interested bidders using its local
history. In Step (2), the browser fetches the encrypted bid shares
for its group from the bidding database, randomizes the encrypted
shares, and submits the randomized encrypted shares to the auction
servers. In Step (3), the two auction servers decrypt the received
ciphertexts, compute the auction, and notify the browser of the
winner’s ad tag. Finally, the auction servers store the sale price and
the winner of each auction. After a long enough time window, Step
(4) occurs, in which the auction servers issue a bill to each bidder
for all pending charges. The details are as follows.

Initialization: Bidders set up bidding database. Each bidder
generates a bid for each group of users, encodes, splits, and en-
crypts the shares. For the group of users for whom the bidder is
not interested, it simply chooses a bid of zero. It sets up its bidding
database db as follows.

e Initialize an empty database db;

e For each group g € [1, d], the bidder generates its bid b[g| using
any algorithm of its choice and then does the following;
(B'[gl, B?[g]) « Bid-Encode(b[g]);

C!g] « Share-Enc(pk1, B'[g]);

C?[g] « Share-Enc(pk2, B*[g]);

Set the g-th row of db to (C![g], C?[g]).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Step 1: Browser selects Bidders. The browser locally uses its
browsing history to select k bidders for the auction using a local
ads selection algorithms [60, 61, 79, 80] without leaking the user’s
browsing history and preferences. Google’s FLEDGE proposal [33]
also has a similar mechanism.

Step 2: Browser fetches and randomizes encrypted shares.
The browser locally computes its group id g. For each invited bidder
i, it reads the encrypted bid shares from each bidder’s database and
does the following to randomize the encrypted shares and generate
the encrypted shares with randomness, CR} and CR?,

(1) (Cl1 Ll Ci2 [g]) « PIR-Read(g) to i’s database;

(2) mask; < {0,1}!

(3) R} « Share-Enc(pki, mask;);
(4) ng « Share-Enc(pkz, mask;);
(5) CR} « Share-Add(C}[g].R});
(6) CR? — Share-Add(C?[g], R?).

The browser submits CR} and CR? for each bidder i to the auction
servers. Note that the browser does not disclose the identities of
the bidders it selects to the auction servers; the servers only learn
the number of bidders and the index of each encrypted share in the
list. This is important, as otherwise the auction servers would learn
all of the bidders that are invited to the auction and can use that
information to better infer the user’s interests over time. We limit
the auction servers to only learning the identity of the winner.

Step 3: Auction servers compute auction. The servers decrypt
all ciphertexts they receive, and run the auction protocol.

(1) S1 computes BR} « Share-Dec(ski, CR});

(2) Sz computes BR? « Share-Dec(sks, CR?);

(3) (bs, id) < Priv-Auction(BR}, ..., BR}, BR?, ..., BR}).

The auction servers respond to the browser with the index of the
winner, id. The browser then sends to the auctioneers the winner’s
identity, which they use to notify the winner, request the ad tag,
and forward it to the browser.

Step 4: Delayed and batch charges. The auction servers record
the winner and the sale price of each auction. In Ibex, a bidder is
not immediately charged for winning the auction as that would
allow the bidder to link a recent click of a user with the auction’s
sale price, thereby leaking the user’s group id. Instead, the auction
servers charge each advertiser in a batch after the number of its
winning auctions exceeds a certain threshold (e.g., every ten thou-
sand auctions). Note that there might still be a small leakage from
the aggregate value. For example, suppose that every bid from the
bidder is even except for the bid for group 5 which is odd. Then, if
the final aggregate is odd, the bidder can infer that at least one of
the ten thousand auctions that it won was for a bidder of group 5.
If even this type of leakage is unaccepted, one of the auctioneers
could add a careful amount of noise to the final value before disclos-
ing it to the bidder. Differential privacy [52, 53, 73] can be used to
analyze how much noise must be added and the sensitivity of this
aggregate value. Further, it can shed light on the tradeoff between
privacy and utility (i.e., what premium must the bidder pay due to
the added noise).

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

5.5 Malicious browsers

The protocol above ensures that the user’s group id is kept confiden-
tial. But as a browser can be malicious, it may try to submit arbitrary
encrypted shares to the auction servers. This can lead to a sale price
that is higher or lower than what the winning bidder actually bid.
To defend against malicious browsers, when each bidder sets up
the database, it also provides all of its bids in a shuffled order to the
auction servers. This means that the auction servers learn all of the
bidder’s bids, but not their mapping to specific group ids. Note that
in the status quo, ad exchanges learn all of the bids as well, so this
is not an additional source of leakage. When the private auction
outputs the winner’s bid as the sale price, the auction servers can
check if this sale price is on the list of bids that the bidder previously
supplied. If not, the auction servers mark this auction as invalid
and do not charge the winner. The auction servers can also mark
the browser as potential fraud and deny services to these browsers.

One small caveat is that this does allow a malicious browser
to create a fake bid that is one of the other bids submitted by a
bidder. However, the browser could always do that because there is
currently no mechanism to prevent a browser from claiming that it
belongs to a different group than it actually does.

5.6 Update bidding database

The bidders may update their bids for different groups of users
at any time. When it changes the bids, it generates a whole new
bidding database by running the initialization step (§5.4.1) even
though the bids for some groups of users will remain the same. It
then sends the shuffled bid list to the auction servers as before (§5.5).
This way, the auction servers only learn the advertiser changed
bids for some groups of users, but cannot learn the group ids of the
updated bids.

Browsers could cache the fetched encrypted bid shares of a bidder
when it selects the bidder for an auction. If the next time the browser
selects the same bidder for an auction, instead of issuing PIR queries
again, it sends “if-modified-since” requests to the advertiser. If the
bidder’s bidding database has not been updated since the last query
of the browser, the browser does not need to issue a PIR query again.
This reduces the end-to-end latency of oblivious bidding (§7.4).

THEOREM 5.1. Ibex’s oblivious bidding protocol achieves the prop-
erties defined in Section 5.3.

We give the full proof in Appendix B.2 [88].

Above we describe the basic version of our bidding protocol.
The limitation is that bidders need to pre-generate the bids and the
bidding database is static. Frequently updating the bidding database
can invalidate the cached encrypted bid shares of a browser. Besides,
the bidder might want to customize its bids based on other dynamic
factors, such as who the publisher is, and the time of day. We discuss
some ideas to support these features in Section 9.

6 INTEGRATE IBEX FOR AGGREGATION

We classify the aggregation tasks into two categories, first-site
aggregation and cross-site aggregation. We discuss how we can
apply Ibex’s private histogram aggregation for the two kinds of
aggregation tasks.

Ke Zhong, Yiping Ma, and Sebastian Angel

6.1 First-site aggregation

In first-site aggregation tasks, the user activities, such as viewed
pages, are known to the aggregators (advertisers). Advertisers want
to understand the activities of different groups of users, such as their
browsing and purchasing preferences on their sites. For example,
an advertiser needs to understand the interest of groups of users
in particular items as in the user profile generation phase. To do
so, the advertisers first classify the contents on their sites (e.g.,
pages or items) into different categories. For example, advertisers
can classify their pages or items into the 392 categories from the
Internet Advertising Bureau’s (IAB) contextual taxonomy [15]. For
different types of content, the advertiser maintains one encrypted
histogram which includes how many times a certain group of users
has viewed this type of content.

As the advertiser sees all activities of users on its site, the user
only needs to split and share its group id with the aggregators.
When a browser visits an advertiser’s site for the first time, it uses
the private histogram aggregation protocol to send its group id
privately while the advertiser works as the main aggregator and
the ad platform works as the auxiliary aggregator. The advertiser
obtains the encrypted group of the user, issues a first-site cookie
to the browser, and uses the cookie as an identifier to record this
user’s visits or purchases on its site. When the browser visits the ad-
vertiser’s site again before the cookie expires, it does not recompute
its group id; it only needs to include the assigned cookie.

For each activity (viewed content) of a user, the advertiser adds
the encrypted group id to the encrypted histogram of that type
of content. For example, if a user visits sports-related pages three
times, the advertiser can add the encrypted group id of this user
three times to the encrypted histogram of sports contents. After the
advertiser aggregates enough aggregation reports (e.g., all reports
in one day), the advertiser submits each encrypted histogram to
the ad platform for decryption.

The process above enables each advertiser to understand user
interests on its site. Appendix D [88] also provides a way for adver-
tisers to understand the user interests by combining aggregation
results on different sites as needed.

6.2 Cross-site aggregation

In many cases, aggregation needs to account for actions of users
across different sites. For example, during the conversion measure-
ment phase, one might want to attribute an action (e.g., conversion)
on one site to some activity that happened on another site. This
requires the browser to locally record important activities on dif-
ferent sites, such as the click of an ad. To do this, Ibex follows an
existing conversion measurement proposal [30]. In short, when the
user performs an activity such as a purchase at an advertiser’s site,
the advertiser sends the browser a request for an attribution report.
The browser uses its local history to attribute this conversion to a
previously clicked or seen ad of the advertiser and asynchronously
sends the report.

Different from the original proposal that asks browsers to send
reports in plaintext, the browser uses the private histogram proto-
col to send its attribution report in a way that hides the identity of
the publisher that led to the user’s visit and subsequent conversion.
The report contains the user’s group id and the id of the publisher’s

Ibex: Privacy-preserving ad conversion tracking and bidding

site. Each combination of the group and id of the publisher’s site
corresponds to a unique report number. For example, if the ad-
vertiser’s ads are displayed on N publishers and there are d user
groups, there will be N - d types of reports in total. For each kind
of user action (e.g., conversion), the advertiser maintains one en-
crypted histogram. After the advertiser aggregates enough reports,
the advertiser submits each encrypted histogram to the ad platform
for decryption.

7 EVALUATION

In this section, we would like to answer the following questions:

(1) What are the costs of Ibex’s private histogram and oblivious
bidding for each party?

(2) How does Ibex’s private histogram affect the user’s browsing
response time compared to the non-private method?

(3) What is the end-to-end latency of Ibex’s oblivious bidding and
how does it compare to non-private auction?

7.1 Implementation and evaluation setting

We answer the above questions in the context of the following
implementations and evaluation environment.

Ibex’s implementation. Ibex consists of about 2.5K lines of C++.
In private histogram aggregation, we use SEAL’s [34] implemen-
tation of the BFV scheme [55] as the HE scheme and OpenSSL
3.0.0 [16] for our basic cryptographic operations, and instantiate
the signature algorithm with RSA. In oblivious bidding, we use the
open-sourced implementation [19] of SealPIR [37] as the single-
server PIR scheme and use the GMP library 6.2.1 [21] to implement
Goldwasser-Micali (GM) encryption scheme [57, 58] with 2048-bit
modulus. We implement the semi-honest two-party private auction
protocol using the sh2pc protocol [5] in EMP toolkit [82]. To reduce
the latency of fetching bid shares from the PIR servers, we split the
bidding database into eight chunks, and process the PIR query for
each chunk on a different core.

Why use a bit-homomorphic cryptosystem? We need each
auctioneer to receive a secret share of bidders’ bids, and these shares
need to be defined over the plaintext space of a homomorphic cryp-
tosystem so that we can apply the mask (Step 2 in Section 5.4). The
GM cryptosystem satisfies this. We can also use additive or multi-
plicative shares and an additive or multiplicatively homomorphic
cryptosystems, and then define the auction using an arithmetic
MPC. In any case, the constraints we face are that (1) we want
ciphertexts to be as small as possible since we store them in the
PIR database (so larger ciphertexts increase PIR’s costs); and (2) we
need the MPC to be defined over the same ring or field as the plain-
text space of the homomorphic cryptosystem to avoid performing
expensive modular reductions inside the MPC.

Method and metrics. Besides the microbenchmarks, our key met-
rics are the response time of a browser’s HTTP requests to the
aggregator’s web server and the end-to-end latency of the oblivious
bidding. The oblivious bidding includes the events after the browser
locally selects the advertisers for auction, but before the browser
fetches and displays the winner’s ad.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Group size 214 215 216
Browser costs

Generate shares (i) 0.38 0.37 0.43
Share size (bit) 14 15 16
Auxiliary aggregator costs

Encrypt and sign (ms) 25.58 47.05 91.33
Encrypted share and signature size (MB) 0.66 1.35 2.72
Decrypt aggregation result (ms) 3.35 7.12 14.81
Main aggregator costs

Validate and recover encrypted report (ms) 2.20 4.50 9.23
Aggregation (ms) 0.36 0.84 1.90
Encrypted report size (MB) 0.66 1.35 2.72

Figure 4: Microbenchmarks for operations of each party in
private histogram aggregation, the reported numbers are
mean over results of 10 trials.

Evaluation environment. We run all our experiments on AWS
c5.4xlarge instances (8-core Intel Xeon Platinum 8000 series proces-
sor with hyper-threading and 32 GB RAM) running Ubuntu 20.04.
To measure the response time to HTTP requests of the private
histogram when the browser visits the aggregator’s site, we run
the client in US East (Ohio) and the server in US West (California).
To measure the end-to-end latency of oblivious bidding, we run
the client in US East (Ohio), the advertisers’ PIR servers and one
auction server in US West (California), and another auction server
in US West (Oregon). We use one c5.24xlarge instance (48-core
machine) to run 6 advertisers’ PIR servers.

Parameters. We experiment with the user group size close to the
FLoC’s trial experiment [31]. For private histogram, we choose the
HE parameters in such a way that it can support the aggregation
of 227 encrypted reports (more than one hundred million), which
is sufficient to handle the daily visits to the New York Times [20].
For oblivious bidding, we experiment with 24 invited bidders in an
auction and 14-bit bids, which is consistent with disclosed reports
from ad exchanges [86, 87].

7.2 Microbenchmarks: costs of each party

7.2.1 Private histogram aggregation. We report our microbench-
mark evaluation results in Figure 4, with varied group size. Most
computation of each party can be computed off the critical path.
And we detail the costs of each party below.

Browser’s costs. An Ibex-enabled browser asynchronously com-
putes its group id locally. And the group id can be recomputed once
a week or so based on FLoC’s trial [84]. The only computation on
the browser is to locally encode and split its group id into shares.
The shares have the same bit length as the group size and the time
to generate shares is negligible. It first sends one share to an aux-
iliary aggregator by attaching the share in its HTTP request to
obtain the encrypted report share and signature. It then appends
the encrypted report share and signature in the request to the main
aggregator. The average size of these materials is 0.66, 1.35, and
2.72 MB for group size of 214, 215, and 21° respectively.

Auxiliary aggregator’s costs. For each received report share, the
auxiliary aggregator encrypts the share and signs the encrypted
share. The most costly part of this operation is one homomorphic

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Group size 214 215 216
Browser costs

Generate one PIR query (ms) 1.94 1.70 1.75
One PIR query size (KB) 90.75 90.86 90.73
Decode PIR reply (ms) 1.42 1.42 1.41
Bidder costs

Process one PIR query (ms) 230.02 375.70 650.46
One PIR reply size (KB) 181.05 181.19 181.15
Number of bidders 6 12 24
Browser costs

Randomize bidding shares (ms) 0.27 0.55 1.1
Size of bidding shares (KB) 21 42 84
Auction server costs

Decrypt bidding shares (ms) 0.88 1.77 3.53
Private auction (ms) 19.64 19.83 19.80

Figure 5: Microbenchmark for operations of each party in
oblivious bidding with varied group sizes and varied number
of bidders in an auction. The costs of PIR operations are the
costs on a database chunk. For example, the entire database
consists of 2!° rows and it is split into 8 smaller chunks that
have 213 rows each. The numbers are the mean over 10 trials.

encryption to encrypt the share. The time to encrypt and sign the
share and the size of generated materials grow linearly with the
group size. For an aggregation task with the group of 2¢, such
materials are 2.72 MB and it takes about 91.33 ms to generate. The
auxiliary aggregator is also responsible to decrypt the encrypted
aggregation result (histogram) for the main aggregator. The time
of decryption also grows linearly with the size of the group and it
takes 14.81 ms to decrypt with a group of size 216,

Main aggregator’s costs. For each report, the main aggregator
first validates and recovers the encrypted report locally. Costs of
this operation grow linearly with the group size and it takes 9.23
ms with group size of 216, Aggregating recovered encrypted reports
is a lot cheaper as it only requires ciphertext additions, and it only
takes a few milliseconds to sum up two encrypted reports. Adding
randomness to the final aggregation result is a one-time cost when
the main aggregator needs to decrypt the aggregation result and this
operation shares the same cost as one homomorphic encryption
and summing up two ciphertexts. Removing the randomness is
also a one-time cost and takes several milliseconds. The recovered
encrypted report has the same size as the encrypted share.

7.2.2 Oblivious bidding. Figure 5 shows the costs of each party of
private bidding with varied group sizes and we detail them below.

Browser’s costs. In oblivious bidding, a browser first locally se-
lects bidders to join the auction. It then concurrently issues PIR
requests to the selected bidders’ PIR servers. The time of generating
one PIR request and the size of each request is constant for varied
group sizes since we use the same set of parameters for PIR. Gener-
ating one request takes less than 2 ms and the size of one request
is around 90 KB. To decode the PIR reply from the PIR servers,
it takes about 1.4 ms to recover the encrypted bid shares. After
retrieving the shares the browser randomizes these shares, and the
time grows linearly with the number of invited bidders; the size of

Ke Zhong, Yiping Ma, and Sebastian Angel

1.0

0.8
N
o)
£06
c
@
S04 Baseline (non-private)
)
o ——Group size: 214

0.2 Group size: 21°

—o— Group size: 216
0.0
0 500 1000 1500 2000 2500

Response time (ms)

Figure 6: CDF (cumulative distribution function) of the re-
sponse time of HTTP requests to a single-threaded web
server using Ibex’s private aggregation under different
group sizes and a non-private aggregation method. For each
setting, we sample 300 data points where the HTTP requests
are issued at the same rate which is far below the rate that
will saturate the server.

the bid shares is only tens of KB. It takes 1.1 ms to randomize the
bid shares for an auction with 24 bidders.

Bidder’s costs. The bidder splits its bidding databases into 8 chunks.
It processes the PIR query on all 8 chunks in parallel. The time to
answer one PIR query is linear to the group size while the reply size
is constant. For each chunk, the bidder can answer a query in 650
ms for a group size of 21°. The bidder can further split the entire
database into more chunks to reduce the latency of answering PIR
queries, but it requires more cores.

Auction server’s costs. Auction servers receive the randomized
shares from the browsers. They each first decrypt the randomized
shares and then run the private auction protocol. The time to de-
crypt shares is linear to the number of invited bidders. It takes 0.88
ms, 1.77 ms, and 3.53 ms for 6, 12, and 24 advertisers respectively.
The local computation time of the private auction remains roughly
the same with the varied number of bidders and takes around 20
ms per auction server.

7.3 Browsing response time comparison

Most operations of Ibex’s private aggregation protocol can be com-
puted off the critical path. The part that influences user experience
most is response time when the user visits an aggregator’s site.
The private aggregation requires the browser to attach additional
materials in the request when visiting the aggregator’s site while
the non-private methods [22, 84] directly expose the user’s group
id in plaintext. To compare the two, we build a single-threaded web
server implemented in Python that receives HT TP requests from
the clients and responds with a 1 MB webpage, and use wrk2 [26]
to benchmark the response time of browsers’ HTTP requests. The
browser attaches the group id or the additional materials in the pay-
load of POST requests. Figure 6 shows the CDF of the response time
of HTTP requests under different settings. The median response
time of the browser using Ibex’s private aggregation is 1.7-2.5X
slower than that of the non-private method.

Ibex: Privacy-preserving ad conversion tracking and bidding

3.0
E=1 Baseline 22 Group size: 212
2.5 =3 Group size: 214 Group size: 21°
—_ I 2k
920
8 : .
315 7 7
c 7 7
g 7 %
© 1.0 /Z Z
7 7
/% /%
0.0 2 24

1
Number of invited bidders

Figure 7: End-to-end latency of Ibex’s oblivious bidding and
auction protocol. The baseline (purple bar) is a non-private
auction with bids provided in the clear.

7.4 End-to-end latency of oblivious bidding

Figure 7 shows the end-to-end latency of Ibex’s oblivious bidding
compared with the non-private method. With 24 invited bidders, the
non-private auction takes 300 ms to complete while Ibex’s oblivious
bidding takes 1.54 sec, 1.78 sec and 2.25 sec with group sizes of 214,
215, and 21 respectively. This is 4.97-7.26X more costly than the
non-private auction. The browser needs to send around 17.1 MB of
extra data (PIR queries and the bid shares) with 24 invited bidders.

Note that the browser might have cached the bid shares of some
bidders locally. If the bidder has not updated its bidding database
since the last query of the browser, the browser can reuse the value
in its cache. In the overly optimistic case when all bid shares are
local and the browser does not need to issue PIR queries, oblivious
bidding only takes around 550 ms to complete with 24 invited
bidders, which is 1.8x slower than the non-private auction.

While these numbers are high, existing studies [1, 8, 28, 83] show
that page loading takes several seconds today, so Ibex should be
able to run the auction and display the ad asynchronously (using
AJAX) without significantly impacting page load.

8 RELATED WORK

This section describes other efforts that relate to Ibex.

8.1 Privacy-preserving advertising

AdVeil [79] uses Tor [51] and anonymous tokens to hide the identity
of the user submitting a report, while ObliviAd [39] performs all
adverting operations (ad selection, reporting) in a TEE. Ibex does
not require each user to be equipped with Tor, nor does it use
TEEs which are riddled with vulnerabilities [47, 49, 67, 75, 81, 85].
PPAD [43] computes statistics at the granularity of groups, but
reveals which group a user belongs to (which Ibex does not do).
BAdASS [63] assumes that bidders use a linear model to privately
generate a bid using secret shares of the user profile. In contrast,
Ibex bidders can choose arbitrary bids for each group. IPA [35] has a
way to measure conversions on blinded ids but does not discuss how
to use this mechanism to allow bidders to adjust their estimation
of user value.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

8.2 Private or verifiable auctions

Parkes et al. [77] and VEX [38] provide auction integrity but the
auctioneer learns the bids. Other works [62, 65] hide the bids but
lack integrity. Addax [89] provides both. Some designs [40, 46] run
MPC among the bidders. These works are orthogonal to Ibex.

9 DISCUSSION

This section discusses potential extensions and improvements.

Bottleneck of Ibex in practice. Ibex’s costs during the auction is
still more expensive than current non-private methods. The main
costs come from bidders’ PIR servers processing queries. One possi-
bility is to experiment with other single-server PIR protocols such
as Spiral [72], PIR schemes that do preprocessing for cheaper com-
putation [64], or fast multi-server PIR schemes [44, 66, 71, 74] with
proper deployment of multiple PIR servers.

Hide winner’s identity. In the oblivious bidding, auction servers
in the end learn which winner’s ad is viewed by the user. Com-
bining multiple winners of auctions for the same user allows the
auction server to infer the user’s interest. One way to limit the auc-
tion server’s view is to hide the winner’s identity from the auction
servers. After learning the winner’s index, the browser directly
fetches an ad tag from the winner and displays the ad. Instead of
directly sending both auction servers the winner’s identity, the
browser could split the identity into two shares (the identity can
be the id of the winner among all advertisers), and send each auc-
tion server one share. The auction servers input the shares of the
winner’s id and the sale price of each auction and run a two-party
computation (2PC) program that outputs the batch charges of each
bidder without leaking the winner of each auction.

Dynamic features during bidding. Instead of just relying on the
user profile, bidders may want to bid based on information about
the publisher’s site (where on the page the ad is shown), time of
day when a user visits, etc. To address this issue, the bidder can set
up a different bidding database for each combination of features.
For example, a bidder sets up a bidding database for the publisher
of news sites and morning visits. The browser chooses the bidding
database it needs to read according to its visit. The bidders can
decide which features of bidding are sensitive to a user and include
that feature in the database. For example, each row in the database
represents the bidding share for a combination of a type of publisher
site and user group.

Other tracking methods. While Ibex prevents tracking via group
identifiers or third-party cookies, there are other more noisy track-
ing methods such as browser fingerprinting [25] and IP addresses.
Ongoing efforts specifically address these tracking issues, such as
Apple’s private relay service [9] that hide IP address and browsing
activities in Safari, can be integrated with Ibex.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Amrita Roy
Chowdhury, for their helpful comments that improved the content
and presentation of this work. This work was funded in part by
NSF grant CNS-2045861 and DARPA contract HR0011-17-C0047.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

REFERENCES

(1]

[2

—

[10]
[11]

[12]

[13]

[20]

[23]

[24]

oo
&

[26

[27]
[28

[29]

[30

[31]

[32

[33]
[34]
[35]

[36]

[37]

[38

[39]

About pagespeed insights.
https://developers.google.com/speed/docs/insights/v5/about.

Aggregation service for the attribution reporting api.
https://github.com/WICG/attribution-reporting-
api/blob/main/AGGREGATION_SERVICE_TEE.md.

Back to basics: What is header bidding?
https://www.lotame.com/back-basics-header-bidding/.

Divvi up: A privacy-respecting system for aggregate statistics.
https://divviup.org/.

EMP sh2pc. https://github.com/emp-toolkit/emp-sh2pc.

Google Has a New Plan to Kill Cookies. People Are Still Mad.
https://www.wired.co.uk/article/google-floc-cookies-chrome-topics.

Google’s Topics APL: Rebranding FLoC Without Addressing Key Privacy Issues.
https://brave.com/web- standards- at-brave/7-googles- topics-api/.

Here’s what we learned about page speed.

https://backlinko.com/page- speed-stats.

icloud private relay overview. https:
//www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf.
Internet security research group. https://abetterinternet.org/.

Let’s encrypt: A nonprofit certificate authority providing tls certificates to 260
million websites. https://letsencrypt.org/.

Masked learning, aggregation and reporting workflow (masked lark). https:
//github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md.
Multi-party computation of ads on the web (macaw).
https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md.
Number of active advertisers on Facebook from 1st quarter 2016 to 3rd quarter
2020. https://www.statista.com/statistics/778191/active-facebook-advertisers/.
Openrtb protocol buffer 2.5.0. https://developers.google.com/authorized-
buyers/rtb/downloads/openrtb- proto.

OpenSSL. https://www.openssl.org.

Parakeet.
https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md.
Privacy analysis of FLoC.
https://blog.mozilla.org/en/mozilla/privacy-analysis- of-floc/.

SealPIR: A computational PIR library that achieves low communication costs
and high performance. https://github.com/microsoft/SealPIR.

Similarweb. https://www.similarweb.com.

The GNU Multiple Precision Arithmetic Library. https://gmplib.org/gmp6.2.
The Topics APIL https://github.com/patcg-individual-drafts/topics/.

This is how Google plans to track you now. https://www.slashgear.com/this-is-
how-google-plans-to-track-you-now-25708910/.

Understand your conversion tracking data.
https://support.google.com/google-ads/answer/6270625.

What is fingerprinting and why you should block it.
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/.

wrk2: a http benchmarking tool based mostly on wrk.
https://github.com/giltene/wrk2.

Cookie synching. https://www.admonsters.com/cookie-synching/, 2010.

Find out how you stack up to new industry benchmarks for mobile page speed.
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-
benchmarks.pdf, 2017.

Cookie matching.
https://developers.google.com/authorized-buyers/rtb/cookie- guide, 2020.
Attribution reporting api.
https://github.com/WICG/conversion-measurement-api, 2021.

FLoC origin trial & clustering.
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc,
2021.

Private aggregation. https://github.com/WICG/conversion-measurement-
api/blob/main/SERVICE.md, 2021.

Fledge api. https://developer.chrome.com/docs/privacy-sandbox/fledge/, 2022.
Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL, Mar. 2022.
Privacy preserving attribution for advertising. https:
//blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/,
2022.

E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and C. Weng. Aggregate
measurement via oblivious shuffling. Cryptology ePrint Archive, Paper
2021/1490, 2021. https://ia.cr/2021/1490.

S. Angel, H. Chen, K. Laine, and S. Setty. Pir with compressed queries and
amortized query processing. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2018.

S. Angel and M. Walfish. Verifiable auctions for online ad exchanges. In
Proceedings of the ACM SIGCOMM Conference, 2013.

M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably secure and
practical online behavioral advertising. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2012.

[40

[41

[42

[43]

[44

[45

[46

[47]

(48]

[50

[51

[52

(53]

[54

[56

[57]

(58]

[59]

=
2

[61

[62

[63

[64]

o
i

[66

[67

(68

Ke Zhong, Yiping Ma, and Sebastian Angel

S. Bag, F. Hao, S. F. Shahandashti, and I. G. Ray. Seal: Sealed-bid auction without
auctioneers. IEEE Transactions on Information Forensics and Security, 15, 2020.
D. Beaver. Efficient multiparty protocols using circuit randomization. In
Proceedings of the International Cryptology Conference (CRYPTO), 1991.

D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai. Lightweight
techniques for private heavy hitters. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2021.

S. T. Boshrooyeh, A. Kiipcii, and O. Ozkasap. Ppad: Privacy preserving
group-based advertising in online social networks. In 2018 IFIP Networking
Conference (IFIP Networking) and Workshops, 2018.

E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and
extensions. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

Z. Brakerski. Fully homomorphic encryption without modulus switching from
classical GapSVP. In Proceedings of the International Cryptology Conference
(CRYPTO), 2012.

F. Brandt. A verifiable, bidder-resolved auction protocol. In Proceedings of the
5th International Workshop on Deception, Fraud and Trust in Agent Societies, 2002.
J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikei, F. Piessens,

M. Silberstein, T. Wenisch, Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order execution. In
Proceedings of the USENIX Security Symposium, 2018.

D. Chaum and E. van Heyst. Group signatures. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), 1991.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre attacks:
Leaking enclave secrets via speculative execution. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2019.

H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable computation
of aggregate statistics. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the USENIX Security Symposium, 2004.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Theory of Cryptography Conference
(TCC), 2006.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3-4), 2014.

T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4), 1985.

J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with
polylog overhead. In Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2012.

S. Goldwasser and S. Micali. Probabilistic encryption; how to play mental poker
keeping secret all partial information. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), 1982.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2), 1984.

M. Green, W. Ladd, and I. Miers. A protocol for privately reporting ad
impressions at scale. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in online advertising.
In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2011.

S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis. Serving ads from
localhost for performance, privacy, and profit. In Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2009.

M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions with private bids.
In 3rd USENIX Workshop on Electronic Commerce (EC 98), 1998.

L.]J. Helsloot, G. Tillem, and Z. Erkin. Badass: Preserving privacy in behavioural
advertising with applied secret sharing. In Provable Security, 2018.

A. Henzinger, M. M. Hong, H. Corrigan-Gibbs, S. Meiklejohn, and

V. Vaikuntanathan. One server for the price of two: Simple and fast single-server
private information retrieval. Cryptology ePrint Archive, Paper 2022/949, 2022.
https://eprint.iacr.org/2022/949.

H. Kikuchi, S. Hotta, K. Abe, and S. Nakanishi. Distributed auction servers
resolving winner and winning bid without revealing privacy of bids. In
Proceedings of the Seventh International Conference on Parallel and Distributed
Systems: Workshops, 2000.

D. Kogan and H. Corrigan-Gibbs. Private blocklist lookups with Checklist. In
Proceedings of the USENIX Security Symposium, 2021.

S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In Proceedings of the
USENIX Security Symposium, 2017.

H. Liao, L. Peng, Z. Liu, and X. Shen. Ipinyou global rtb bidding algorithm
competition dataset. In Proceedings of the Eighth International Workshop on Data

https://developers.google.com/speed/docs/insights/v5/about
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md
https://github.com/WICG/attribution-reporting-api/blob/main/AGGREGATION_SERVICE_TEE.md
https://www.lotame.com/back-basics-header-bidding/
https://divviup.org/
https://github.com/emp-toolkit/emp-sh2pc
https://www.wired.co.uk/article/google-floc-cookies-chrome-topics
https://brave.com/web-standards-at-brave/7-googles-topics-api/
https://backlinko.com/page-speed-stats
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://abetterinternet.org/
https://letsencrypt.org/
https://github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md
https://github.com/WICG/privacy-preserving-ads/blob/main/MaskedLARK.md
https://github.com/WICG/privacy-preserving-ads/blob/main/MACAW.md
https://www.statista.com/statistics/778191/active-facebook-advertisers/
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://developers.google.com/authorized-buyers/rtb/downloads/openrtb-proto
https://www.openssl.org
https://github.com/WICG/privacy-preserving-ads/blob/main/Parakeet.md
https://blog.mozilla.org/en/mozilla/privacy-analysis-of-floc/
https://github.com/microsoft/SealPIR
https://www.similarweb.com
https://gmplib.org/gmp6.2
https://github.com/patcg-individual-drafts/topics/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://www.slashgear.com/this-is-how-google-plans-to-track-you-now-25708910/
https://support.google.com/google-ads/answer/6270625
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://github.com/giltene/wrk2
https://www.admonsters.com/cookie-synching/
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://github.com/WICG/conversion-measurement-api
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox/floc
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://github.com/WICG/conversion-measurement-api/blob/main/SERVICE.md
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://github.com/Microsoft/SEAL
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://ia.cr/2021/1490
https://ia.cr/2012/144
https://eprint.iacr.org/2022/949

Ibex: Privacy-preserving ad conversion tracking and bidding CCS 22, November 7-11, 2022, Los Angeles, CA, USA

Mining for Online Advertising, 2014.

[69] B.Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT), 2016.

[70] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 2013.

[71] Y. Ma, K. Zhong, T. Rabin, and S. Angel. Incremental offline/online PIR. In
Proceedings of the USENIX Security Symposium, 2022.

[72] S.]J. Menon and D. J. Wu. Spiral: Fast, high-rate single-server pir via fhe
composition. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2022.

[73] L Mironov. Rényi differential privacy. In Proceedings of the IEEE Computer
Security Foundations Symposium, 2017.

[74] H. Mozaffari and A. Houmansadr. Heterogeneous private information retrieval.
In Proceedings of the Network and Distributed System Security Symposium (NDSS),
2020.

[75] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens.
Plundervolt: Software-based fault injection attacks against intel sgx. In
Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020.

[76] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern, editor, Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT), 1999.

[77] D.C.Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe. Practical
secrecy-preserving, verifiably correct and trustworthy auctions. Electronic
Commerce Research and Applications, 2008.

[78] E.Rescorla and M. Thomson. Technical comments on FLoC privacy.
https://mozilla.github.io/ppa-docs/floc_report.pdf, 2021.

[79] S. Servan-Schreiber, K. Hogan, and S. Devadas. Adveil: A private
targeted-advertising ecosystem. Cryptology ePrint Archive, Report 2021/1032,
2021. https://eprint.iacr.org/2021/1032.

[80] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Adnostic:
Privacy preserving targeted advertising. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2010.

[81] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin, Y. Yuval,
B. Sunar, D. Gruss, and F. Piessens. LVI: Hijacking Transient Execution through
Microarchitectural Load Value Injection. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[82] X. Wang, A. J. Malozemoft, and J. Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit, 2016.

[83] X.S.Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.

Demystifying page load performance with wprof. In Proceedings of the USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2013.

Y. Xiao and J. Karlin. Federated learning of cohorts. https://wicg.github.io/floc/,

2021.

[85] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2015.

[86] S.Yuan, J. Wang, B. Chen, P. Mason, and S. Seljan. An empirical study of reserve

price optimisation in real-time bidding. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2014.

W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding benchmarking with

ipinyou dataset. https://arxiv.org/abs/1407.7073, 2015.

[88] K. Zhong, Y. Ma, and S. Angel. Ibex: Privacy-preserving ad conversion tracking

and bidding (full version). Cryptology ePrint Archive, Paper 2022/1174, Sept.

2022. https://eprint.iacr.org/2022/1174.

K. Zhong, Y. Ma, Y. Mao, and S. Angel. Addax: A fast, private, and accountable

ad exchange infrastructure. In Proceedings of the USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2023.

(84

[87

[89

https://mozilla.github.io/ppa-docs/floc_report.pdf
https://eprint.iacr.org/2021/1032
https://github.com/emp-toolkit
https://wicg.github.io/floc/
https://arxiv.org/abs/1407.7073
https://eprint.iacr.org/2022/1174

	Abstract
	1 Introduction
	2 Background
	2.1 Where is the industry headed?

	3 Overview of Ibex
	3.1 Threat model and assumptions

	4 Private histogram aggregation
	4.1 Issues of existing aggregation protocols
	4.2 Asymmetric aggregation
	4.3 Histogram aggregation overview
	4.4 Construction
	4.5 Multiple sets of HE parameters

	5 Oblivious bidding
	5.1 Private auctions
	5.2 High-level idea of oblivious bidding
	5.3 Properties
	5.4 Construction
	5.5 Malicious browsers
	5.6 Update bidding database

	6 Integrate Ibex for aggregation
	6.1 First-site aggregation
	6.2 Cross-site aggregation

	7 Evaluation
	7.1 Implementation and evaluation setting
	7.2 Microbenchmarks: costs of each party
	7.3 Browsing response time comparison
	7.4 End-to-end latency of oblivious bidding

	8 Related work
	8.1 Privacy-preserving advertising
	8.2 Private or verifiable auctions

	9 Discussion
	References

