RESEARCH ARTICLE

Journal of Ecology

Warmer temperatures are linked to widespread phenological

Leveraging Natural History Collections to Understand the Impacts of Global Change

mismatch among native and non-native forest plants

Tara K. Miller¹ J. Mason Heberling² Sara E. Kuebbing^{3,4} Richard B. Primack¹

Correspondence

Tara K Miller Email: tkingmil@bu.edu

Funding information

National Science Foundation, Grant/ Award Number: DEB 1936877, DEB 1936960, DEB 1936971 and DGE 1735087

Handling Editor: Amy Iler

Abstract

- 1. Deciduous trees, shrubs and forest wildflowers may be advancing their leafout phenology at different rates in response to a warming climate. A mismatch between understory and overstory phenology may lead to a reduction of understory light levels in the early spring, which is a critical period when many spring-blooming wildflowers achieve highest photosynthetic rates. However, the extent of this phenomenon beyond a single site or region is largely unknown.
- 2. Using 3083 herbarium specimens collected between 1870 and 2019 across eastern North America, we assessed leaf-out and flowering times of 10 tree species (6 native, 4 non-native), 4 shrub species (2 native, 2 non-native) and 7 wildflower species (6 native, 1 non-native). We paired phenological data with historical climate data to quantify differences in phenological sensitivity to spring temperature across canopy strata, across species' geographical ranges and between native and non-native species.
- 3. Predicted phenological mismatches between native trees and wildflowers differed across large spatial scales, with wildflower populations in warmer regions of North America more likely to be affected. Overall, native tree species leafed out 3.6 days earlier per °C spring warming, while native wildflower species advanced their flowering times by 3.2 days per °C, resulting in phenological mismatch as wildflowers experience fewer days before tree leaf-out at warmer temperatures. Native trees and wildflowers in the warmer, southern part of their ranges advanced their spring phenology 2 and 1.5 times faster, respectively, than those in colder, northern locations. The phenological sensitivity of nonnative plants was less variable across their ranges. Non-native trees and shrubs exhibited greater phenological sensitivity than native wildflowers. Notably, phenological sensitivities differed substantially among wildflower species, suggesting that certain species are more likely to be affected by phenological mismatch as climate warming progresses.
- 4. Synthesis: Our results provide new insight into novel phenological responses within and among species across a wide geographical range and the potential impact of competition and interactions with non-native invasive species. This research highlights the value of newly-available digitized museum collections

¹Biology Department, Boston University, Boston, Massachusetts, USA

²Section of Botany, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, **USA**

³Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

⁴The Forest School, Yale School of the Environment, New Haven, Connecticut, USA

in phenological research to cover longer time periods, wider spatial areas and a greater diversity of species than otherwise possible.

KEYWORDS

climate change, eastern deciduous forest, herbaceous layer, herbaria, invasive plants, museum specimens, phenological sensitivity, spring ephemerals

1 | INTRODUCTION

Plants are important indicators of climate change, as plant species in temperate ecosystems demonstrate a strong trend of shifting their spring phenology—or timing of seasonal events—earlier with warmer temperatures (Bertin, 2008; Cleland et al., 2007; Ellwood et al., 2019; Everill et al., 2014; Menzel et al., 2006; Miller-Rushing & Primack, 2008; Panchen et al., 2012; Polgar et al., 2013; Primack et al., 2004; Stuble et al., 2021). Species vary in their phenological sensitivity, with some species demonstrating greater or lesser shifts with each degree of spring warming (Heberling, McDonough MacKenzie, et al., 2019; Lee & Ibáñez, 2021a; Park et al., 2018; Reeb et al., 2020). These different rates of response could lead to phenological mismatches, where alignment in the timing of ecological relationships is disrupted (Kharouba et al., 2018; Kharouba & Vellend, 2015; Mayor et al., 2017; Renner & Zohner, 2018).

A recent study in Concord, Massachusetts, USA, building on the observations of environmental philosopher Henry David Thoreau from the 1850s, found that canopy trees are advancing their leaf-out times faster than understory wildflowers are in response to warming temperatures (Heberling, McDonough MacKenzie, et al., 2019). Many early-blooming forest wildflowers rely on the period of full sunlight exposure before canopy trees leaf out in order to perform most of their photosynthesis and carbon gain for the year (Augspurger & Salk, 2017; Heberling, Cassidy, et al., 2019; Kudo et al., 2008; Lapointe, 2001). This difference in phenological sensitivity is resulting in a shrinking period of full early-spring sunlight for wildflowers, and thus a likely decline in their ability to photosynthesize and store carbon (Heberling, McDonough MacKenzie, et al., 2019). However, it remains untested if this phenological mismatch is widespread across eastern North America. As climate warming intensifies, it is important to understand how the phenology of different plant species will respond, and if different responses correspond to understory plants receiving more or less sunlight. Wildflowers are important for their ecological roles in cycling key nutrients in the ecosystem, contributing to forest species diversity and providing nutrition to pollinators and animals (Gallinat et al., 2020; Gilliam, 2007; Whigham, 2004).

Phenological mismatches resulting from different rates of change have been documented across trophic levels (Kharouba et al., 2018; Kharouba & Vellend, 2015; Mayor et al., 2017; Post & Forchhammer, 2008). However, few studies have compared phenological mismatches among plants occupying different forest layers (but see Heberling, McDonough MacKenzie, et al., 2019; Lee & Ibáñez, 2021a; Routhier & Lapointe, 2002, suggesting that such

mismatches may be common but understudied), and most studies of phenological mismatches have been limited to small geographic areas (Heberling, Cassidy, et al., 2019; Kharouba & Vellend, 2015; Post & Forchhammer, 2008). Early spring light is also important for tree seedling survival (Lee & Ibáñez, 2021b), and a recent study found earlier leaf out in seedlings under climate change to be critical to tree recruitment (Lee & Ibáñez, 2021a).

Long-term data necessary to study these dynamics are limited, though herbaria are increasingly being used to study how phenology is changing in response to climate change (Davis et al., 2015; Heberling, Prather, et al., 2019; Lang et al., 2019; Meineke et al., 2018; Reeb et al., 2020; Zohner & Renner, 2014). Recent mass digitization of herbarium specimens has enabled easy access to millions of records of plant occurrence and phenology through time (Daru et al., 2017; Heberling, Prather, et a., 2019; Panchen et al., 2019; Soltis, 2017; Yost et al., 2018). Researchers can now use this vast, digital resource to conduct studies of changing phenology across large geographic ranges for thousands of species with an efficiency not previously possible (Ellwood et al., 2019; Heberling & Isaac, 2017; Meineke et al., 2018; Willis, Ellwood, et al., 2017). Park et al. (2018) showed that for widely-distributed plant species, populations had greater phenological sensitivity in the southeastern USA compared with the northeastern USA. Kopp et al. (2020) found that phenological sensitivity was greater at western latitudes and lower elevations in the Pacific Northwest region of North America. Song et al. (2021) found greater phenological sensitivity at lower latitudes in eastern Asia. These prior studies indicate that species frequently differ in phenological sensitivity across their ranges. Such withinspecies variation further suggests that phenological mismatch may vary across regions, but this has rarely been studied (but see Routhier & Lapointe, 2002).

Deciduous forests are commonly invaded by shade-tolerant woody shrubs (Martin et al., 2009), which also form a canopy over wildflowers. Non-native plants that have been introduced to new regions have evolved in different climate conditions and thus may have unique sensitivities to environmental cues that differ from native plants (Zohner & Renner, 2014). For example, many non-native plant species in North America occupy different phenological niches compared with native plants (Fridley, 2012; Gallinat et al., 2018; Gallinat et al., 2020; Reeb et al., 2020), and Reeb et al. (2020) found that native and non-native species had different phenological sensitivities to temperature and precipitation in Pennsylvania, USA. These changing dynamics could impact whether non-native species outcompete and shade out native wildflowers. However, it is yet

untested whether non-native species are also contributing to or affected by phenological mismatch among forest layers.

In this study, we use herbarium specimens to examine a potential phenological mismatch between overstory trees and understory wildflowers in temperate deciduous forests of eastern North America. This ecosystem is currently heavily invaded by non-native plants (Martin et al., 2009) with predicted increases in introductions of new non-native plants (Allen & Bradley, 2016; Seebens et al., 2017). Therefore, we also investigate the phenological sensitivity of non-native invasive trees, shrubs and wildflowers and compare these with native species. We hypothesize the following:

- Native understory wildflowers across eastern North America are at risk of reduced early-spring sunlight exposure due to phenological mismatches with shrubs and overstory trees.
- Non-native species have greater phenological sensitivity to warming temperatures than native species, further contributing to mismatches.
- 3. Plant species in North America have greater phenological sensitivity to temperature in warmer locations than in colder locations.
- 4. The order in which species leaf out or flower changes as spring temperatures increase.

Overall, we ask whether understory native wildflowers across eastern North America are losing early-spring light access due to phenological mismatches with overstory native or non-native woody species and will continue to be shaded out earlier with ongoing warming.

2 | MATERIALS AND METHODS

2.1 | Herbarium specimens

We assessed leaf-out date (LOD) or flowering date (FD) from herbarium specimens collected in eastern North America for 21 species that are common in deciduous forests and have large ranges spanning much of the eastern half of the continent (Table 1). In this study, LOD and FD are proxies of phenological events assessed using herbarium specimens, and we use these terms to mean the date of collection for a specimen that was assessed to be in early-leafing condition (trees) or with open, functional flowers (shrubs, wildflowers). We do not use these terms to mean onset or first date. We selected species which are widespread and common across much of the Eastern Deciduous Forest Biome of North America and well represented in the herbarium record: six native overstory tree species (Acer rubrum, Acer saccharum, Carya glabra, Fagus grandifolia, Quercus alba, Quercus rubra), two native midstory shrub species (Lindera benzoin, Vaccinium corymbosum) and six native perennial herbaceous, spring-blooming wildflower species (Anemone quinquefolia, Dicentra canadensis, Dicentra cucullaria, Erythronium americanum, Hepatica americana, Sanguinaria canadensis). We chose non-native species which are considered invasive in at least ten U.S. states (EDDMapS, 2021) that

also span forest strata: four invasive tree species (*Acer platanoides*, *Populus alba*, *Pyrus calleryana*, *Ulmus pumila*), two invasive midstory shrub species (*Berberis thunbergii*, *Euonymus alatus*) and one invasive understory wildflower (*Ficaria verna*).

We sought to capture when plants leaf out to determine the implications of potential phenological mismatch for plants' photosynthetic capacity in the early spring. We assessed LOD for trees, as we found that it was possible to distinguish young leaves from mature leaves in pressed herbarium specimens. However, we did not evaluate shrub and wildflower species directly for leaf-out times, as it is not possible on most specimens to distinguish young leaves from mature leaves, owing in part to the smaller size of shrub and herb leaves relative to tree leaves. Instead, we assessed FD for shrubs and wildflowers. We selected species which leaf out at around the same time as they flower (see Everill et al., 2014 for trees; shrubs and wildflowers were selected based on authors' field knowledge of these characteristics). For our analyses, we assume that the gap between leaf out and flowering (and therefore, their responses to climate) is small enough that it does not affect the results. Therefore, for shrubs and wildflowers, our phenological evaluations for flowering status also capture leaf-out times. In fact, many of the shrub and wildflower specimens had young leaves on them.

From spring 2019 through summer 2020, we accessed all available digitized specimen records (with images) of study species from the Consortium of Northeastern Herbaria (https://portal.neherbaria.org), the New York Botanical Garden William and Lynda Steere Herbarium (https://sweetgum.nybg.org), the Mid-Atlantic Herbaria Consortium (https://midatlanticherbaria.org), the Southeast Regional Network of Expertise and Collections (https://sernecportal.org), the Consortium of Midwest Herbaria (https://midwestherbaria.org), Canadensys (https://data.canadensys.net) and the Acadia University E.C. Smith Herbarium (https://procyon.acadiau.ca).

Tree species were evaluated for early, young leaves. Early leaves were determined using a combination of characteristics, including size, translucency, visual texture and the presence or absence of flowers (Everill et al., 2014). Shrub and wildflower species were evaluated for functional flowers using a combination of characteristics, including shape, openness, colour and the absence of fruits. For specimens included in the study, we recorded the date, location, collector and herbarium. We used geographic coordinates provided with the specimens, or if they were not available, we georeferenced the specimens to the centroid of the most precise geographic unit provided (address, then city or town, then county; Ellwood et al., 2019) using 'geocode' in R package GGMAP (Kahle & Wickham, 2013). We evaluated a total of 3797 herbarium specimens in early-leafing or flowering condition from over 100 herbaria across the eastern United States and Canada. However, we eventually excluded 714 evaluated specimens because we were unable to find matching climate data, leaving us with 3083 specimens in the final analysis. Data from all 3797 specimens are available in Supplemental Table S1.

Specimens dated from 1870 to 2019 and were collected from Florida, USA, to Quebec, Canada (Figure 1). The collection years of herbarium specimens were similar among native trees, shrubs and

Scientific name	Common name	n	Growth form	Origin	Latitudinal range (°N)
Acer rubrum	Red maple	310	Tree	Native	29.7-46.8
Acer saccharum	Sugar maple	141	Tree	Native	30.2-48.6
Carya glabra	Pignut hickory	110	Tree	Native	27.2-43.0
Fagus grandifolia	American beech	153	Tree	Native	29.7-46.2
Quercus alba	White oak	163	Tree	Native	29.8-44.5
Quercus rubra	Red oak	124	Tree	Native	33.3-47.0
Lindera benzoin	Northern spicebush	255	Shrub	Native	28.6-44.5
Vaccinium corymbosum	High-bush blueberry	262	Shrub	Native	27.3-46.1
Anemone quinquefolia	Wood anemone	181	Wildflower	Native	33.0-47.4
Dicentra canadensis	Squirrel corn	141	Wildflower	Native	34.9-46.9
Dicentra cucullaria	Dutchman's breeches	176	Wildflower	Native	34.5-46.7
Erythronium americanum	Yellow trout lily	188	Wildflower	Native	32.3-46.8
Hepatica americana	Round-lobed hepatica	147	Wildflower	Native	32.4-47.7
Sanguinaria canadensis	Bloodroot	216	Wildflower	Native	30.2-48.0
Acer platanoides	Norway maple	65	Tree	Non-native	34.5-46.8
Populus alba	White poplar	20	Tree	Non-native	32.6-45.5
Pyrus calleryana	Callery pear	55	Tree	Non-native	30.4-41.8
Ulmus pumila	Siberian elm	28	Tree	Non-native	35.0-46.9
Berberis thunbergii	Japanese barberry	132	Shrub	Non-native	32.9-45.5
Euonymus alatus	Burning bush	99	Shrub	Non-native	34.9-43.2
Ficaria verna	Lesser celandine	117	Wildflower	Non-native	34.8-44.5

TABLE 1 The scientific names, common names, sample sizes (n), growth form classification and native/non-native classification of the 21 study species. Latitudinal range describes the lowest and highest latitude of a collected herbarium specimen in the study

wildflowers, and similar among non-native trees, shrubs and wildflowers in the study, with non-native specimens skewing later in time than native specimens (Figure S1). We collected an average of seven specimens per species from each state or province, with the number of specimens ranging from 0 to 80 across our study region. Greater sample sizes for some species were due to the inclusion of data from existing datasets (Ellwood et al., 2019; Everill et al., 2014). Herbarium datasets often include common geographic and temporal herbarium specimen collection biases, such as an overrepresentation of specimens collected near roads and herbaria and peak collection of specimens occurring during the 1900s in North America (Daru et al., 2017; Meineke & Daru, 2021).

2.2 | Climate data

We collected historic climate data for each specimen from the National Oceanic and Atmospheric Administration's Global Historical Climatology Network. We extracted temperature data for each specimen in the year it was collected from the nearest weather station within a 25-km radius using the R packages GGMAP (Kahle & Wickham, 2013) and RNOAA (Chamberlain, 2017). We calculated monthly average temperatures for all months in the dataset by averaging daily minimum and maximum temperatures for all days in a month. We excluded herbarium specimens with incomplete temperature records from the analysis. We used R² values to determine that average March and April temperature was the best or among the best predictors of early-spring phenology for all of our subgroups of data (including native species, non-native species, trees, shrubs, wildflowers and Cold, Medium and Warm-temperature subdivisions). We used mean spring temperature because of its documented correlation with plant phenology (Miller-Rushing & Primack, 2008; Panchen et al., 2012) and our ability to directly compare results with those of previous phenological studies in the eastern United States (e.g. Ellwood et al., 2013; Heberling, McDonough MacKenzie, et al., 2019; Park et al., 2018; Willis, Law, et al., 2017).

FIGURE 1 Map of herbarium specimen collection locations in eastern North America by growth form and origin.

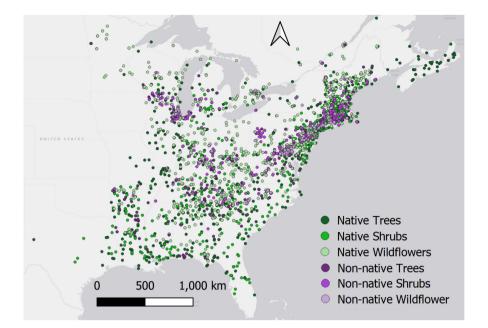
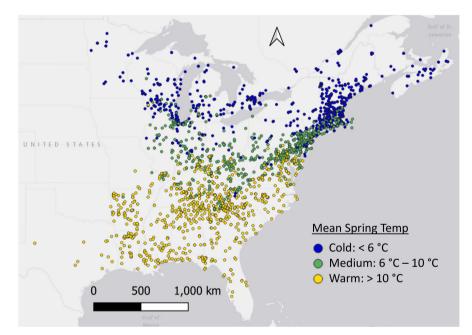



FIGURE 2 Map of herbarium specimen collection locations in eastern North America by mean spring (March/April) temperature groups.

2.3 | Dividing specimens by spring temperature

Plants from warmer climates sometimes respond differently to climatic variation than plants from colder climates (Kopp et al., 2020; Park et al., 2018; Song et al., 2021). Because our collected specimens spanned a large temperature gradient across eastern North America, we wanted to control for the effect of climatic differences on plant temperature sensitivity. To compare phenological sensitivity across climates, we divided our specimens into three spring temperature groupings (Cold, Medium and Warm) based on the average spring (March and April) temperature in the year a specimen was collected. This analysis also addresses the different geographic spread of specimens by comparing specimens in similar locations to each other. In a method similar to Love and Mazer (2021), we split the specimens into three equal-sized groups of those with the coldest, medium and

warmest temperatures, then determined the temperature cut-offs dividing those groups and rounded to the nearest whole degree. This division of the dataset resulted in the Cold temperature group as locations with an average spring temperature of less than 6°C, the Medium temperature group as locations with an average spring temperature of greater than or equal to 6°C and less than or equal to 10°C, and the Warm temperature group as locations with an average spring temperature of greater than 10°C. The Cold, Medium and Warm temperature groups had similar sample sizes among native species (mean sample size 285) and non-native species (mean sample size 57). There is some geographical overlap among the temperature groups due to the presence of some colder high elevation sites further south, some warmer coastal sites further north, and due to interannual temperature variation, with occasional cold springs further south and warm springs further north (Figure 2).

2.4 | Data analysis

All analyses were conducted using R statistical software, version 3.5.1 (R Core Team, 2018). We used Bayesian linear regression, performed in JAGS (Plummer, 2003) using *r2jags* (Su & Yajima, 2015), to model relationships between average spring temperature (which we define throughout as the mean of March and April temperatures in the year the specimen was collected) and the day of year of early-spring phenology (leaf-out for trees and flowering for shrubs and wildflowers). To determine the best temperature predictor variable for early-spring phenology of our specimens, we compared linear regressions of day of year for leaf-out or flowering phenology (LOD or FD) and different combinations of average monthly temperatures (Heberling, McDonough MacKenzie, et al., 2019; Supplemental Table S2).

We performed regressions separately for native trees, native shrubs, native wildflowers, non-native trees, non-native shrubs and non-native wildflower, including random intercepts for species and year (Table 2). We also modelled phenological responses of trees, shrubs and wildflowers to temperature separately for subdivisions by temperature grouping (i.e. Cold, Medium and Warm) and for each individual species, including year as a random effect (Iler et al., 2017). We used these models to estimate changes in the sequence of phenological events across groups and species at spring temperatures of 0°C, 10°C and 20°C. We conducted analyses to confirm that our conclusions were robust to different time periods. All prior distributions were non-informative. Normal distribution priors with mean zero and variance 10⁵ were used for fixed-effect parameters, and random-effect standard deviations were sampled from a uniform prior (0, 100). We ran our final models with three parallel Markov chain Monte Carlo (MCMC) chains for 50,000 iterations, discarding the initial 10,000 for burn-in. Trace plots and the Gelman-Rubin diagnostic (<1.1) were used to confirm convergence (Gelman & Hill, 2007). Across models, we consider two groups to be statistically significant if the 95% credible intervals from parameter posterior distributions do not overlap.

3 | RESULTS

3.1 | Native trees shift phenology more with spring warming than native wildflowers

Native trees advanced their LODs significantly faster than native wildflowers advanced their FDs in response to warmer spring temperatures. The six native tree species leafed out 3.6 days earlier per °C increase in mean spring temperature, while the six native wildflower species flowered 3.2 days/°C earlier (Figure 3). The models predict that native wildflowers flower 16 days earlier than native trees leaf out at average spring temperatures of 0°C, but only 7 days earlier at average spring temperatures of 20°C. We compare phenology at 0°C and 20°C to capture the range of spring temperatures in

the dataset and highlight how phenology may shift as the climate warms.

Individual species differed in their sensitivity to spring temperature. *Fagus grandifolia* and *A. rubrum* were the most-sensitive native tree species, advancing their leaf-out 4.0 and 3.7 days/°C, respectively (Figure 4). *Quercus alba* and *A. saccharum* were the least-sensitive native tree species, advancing leaf-out 3.2 and 3.3 days/°C, respectively. *E. americanum* and *S. canadensis* were the most-sensitive native wildflower species, both advancing their flowering 3.5 days/°C. *A. quinquefolia*, *D. canadensis* and *D. cucullaria* were the least-sensitive native wildflower species, advancing their flowering only 2.6, 2.8 and 2.8 days/°C, respectively.

3.2 | Phenological sensitivity across species' ranges

Native trees in the Warm spring temperature group advanced their leaf-out phenology about two times faster for each degree of warmer spring temperature compared with native trees in the Medium or Cold temperature groups (Figure 5). Native wildflowers in the Warm and Medium spring temperature groups were more sensitive to spring temperature than those in the Cold temperature group, although modelled slope β_{LOD} or β_{ED} credible intervals overlap. Native shrubs were more sensitive in the Medium temperature group, but not significantly so. Non-native trees and the non-native wildflower did not differ significantly in their sensitivity across Cold, Medium and Warm spring temperature groups, although the nonnative wildflower did exhibit a trend of increasing sensitivity from Cold to Warm temperature groups. Non-native shrubs were more than two times more sensitive in the Medium compared with the Cold temperature group and had intermediate sensitivity in the Warm temperature group. Native trees were significantly about 1.5 times more sensitive to spring temperature than native wildflowers in the Warm spring temperature group, but there was no significant difference between native trees and wildflowers in the Cold temperature group.

3.3 | Non-native species phenological sensitivity

Non-native trees, shrubs and wildflowers did not differ significantly in their phenological sensitivity to spring temperature compared with their native counterparts; although non-native trees were slightly more sensitive than native trees, native shrubs were slightly more sensitive than non-native shrubs and the non-native wildflower was slightly more sensitive than native wildflowers (Figure 3). Non-native plants had much greater variability in their phenological sensitivity.

Individual non-native species also differed in their phenological sensitivity, although the credible intervals were large and only one difference was statistically significant (Figure 4). Pyrus calleryana was the most-sensitive non-native tree species, advancing its leaf-out 4.4 days/°C of spring warming. Quercus alba was the least-sensitive

(Continues)

TABLE 2 Bayesian regression model results of slope (\(\beta1\) and intercept (\(\beta0\) estimates with 2.5 and 97.5 credible intervals (CI) and standard deviations (SD)

Origin	Growth form	Species	Temperature group	β1 mean	β12.5 CI	β1 97.5 CI	β1 sd	β0 mean	β0 2.5 CI	β0 97.5 CI	gs 08
Native	Trees	NATIVE TREES	All	-3.607	-3.755	-3.458	0.075	150.558	147.364	153.802	1.653
		Acer rubrum	All	-3.743	-4.022	-3.449	0.148	144.621	137.377	152.043	3.498
		Acer saccharum	All	-3.286	-3.586	-2.989	0.148	143.469	135.839	151.578	3.866
		Carya glabra	All	-3.693	-4.155	-3.218	0.238	159.339	149.638	168.720	4.682
		Fagus grandifolia	All	-3.979	-4.366	-3.613	0.193	151.544	141.194	161.527	4.962
		Quercus alba	All	-3.196	-3.521	-2.851	0.171	152.593	143.850	160.550	4.061
		Quercus rubra	All	-3.500	-3.873	-3.125	0.189	151.003	143.422	158.384	3.562
	Shrubs	NATIVE SHRUBS	All	-4.258	-4.486	-4.026	0.118	147.890	140.756	155.082	3.666
		Lindera benzoin	All	-3.783	-4.111	-3.444	0.172	131.951	126.903	137.149	2.566
		Vaccinium corymbosum	All	-4.546	-4.853	-4.257	0.152	161.796	152.636	170.877	4.346
	Wildflowers	NATIVE WILDFLOWERS	All	-3.222	-3.382	-3.063	0.081	135.177	132.052	138.498	1.632
		Anemone quinquefolia	All	-2.561	-2.991	-2.120	0.221	139.334	132.545	146.266	3.386
		Dicentra canadensis	All	-2.845	-3.267	-2.434	0.211	137.143	132.082	142.290	2.542
		Dicentra cucullaria	All	-2.843	-3.236	-2.452	0.197	131.852	125.420	138.869	3.248
		Erythronium americanum	All	-3.538	-3.866	-3.196	0.171	136.297	128.705	143.982	3.747
		Hepatica americana	All	-3.303	-3.839	-2.744	0.280	129.168	123.219	135.121	3.064
		Sanguinaria canadensis	All	-3.484	-3.723	-3.239	0.127	130.823	121.430	140.598	4.594
Non-native	Trees	NON-NATIVE TREES	All	-3.682	-4.110	-3.256	0.220	143.482	136.672	150.116	3.404
		Acer platanoides	All	-3.028	-3.502	-2.560	0.239	140.543	135.185	146.514	2.815
		Populus alba	All	-2.925	-4.134	-1.706	0.592	145.063	119.761	170.819	12.750
		Pyrus calleryana	All	-4.359	-5.270	-3.485	0.449	138.635	121.056	155.959	8.809
		Ulmus pumila	All	-3.979	-4.970	-2.992	0.497	148.640	135.995	160.302	6.149
	Shrubs	NON-NATIVE SHRUBS	All	-3.933	-4.390	-3.502	0.227	157.880	151.315	164.730	3.406
		Berberis thunbergii	All	-4.258	-4.767	-3.730	0.262	151.887	145.746	157.487	2.943
		Euonymus alatus	All	-3.731	-4.484	-2.993	0.373	164.598	156.436	172.738	4.175
	Wildflower	NON-NATIVE WILDFLOWER	All	-3.638	-4.355	-2.931	0.367	135.824	123.374	147.340	5.755
		Ficaria verna	All	-3.638	-4.355	-2.930	0.367	135.824	123.374	147.340	5.755

TABLE 2 (Continued)

Origin	Growth form	Species	Temperature group	β1 mean	β12.5 CI	β1 97.5 CI	β1 sd	β0 mean	β0 2.5 CI	β0 97.5 CI	β0 SD
Native	Trees	NATIVE TREES	Cold	-2.616	-3.154	-2.062	0.276	145.670	141.882	149.478	1.929
		NATIVE TREES	Medium	-3.129	-4.470	-1.773	0.685	148.295	137.120	159.264	5.608
		NATIVE TREES	Warm	-4.943	-5.388	-4.495	0.230	168.987	161.438	176.181	3.789
	Shrubs	NATIVE SHRUBS	Cold	-2.764	-3.697	-1.853	0.466	142.067	133.587	150.306	4.168
		NATIVE SHRUBS	Medium	-4.659	-6.246	-3.026	0.821	151.940	136.273	167.645	7.996
		NATIVE SHRUBS	Warm	-3.781	-4.510	-3.072	0.372	140.378	126.045	154.653	7.332
	Wildflowers	NATIVE WILDFLOWERS	Cold	-2.422	-2.902	-1.935	0.249	132.366	128.763	136.158	1.879
		NATIVE WILDFLOWERS	Medium	-3.513	-4.396	-2.627	0.443	138.203	130.604	145.509	3.815
		NATIVE WILDFLOWERS	Warm	-3.505	-4.364	-2.633	0.438	138.351	125.951	151.117	6.459
Non-native	Trees	NON-NATIVE TREES	Cold	-1.674	-3.022	-0.300	0.687	137.571	129.354	145.311	4.095
		NON-NATIVE TREES	Medium	-3.151	-5.029	-1.202	0.973	140.646	124.713	155.865	7.842
		NON-NATIVE TREES	Warm	-2.580	-3.729	-1.416	0.599	129.581	112.538	146.552	8.907
	Shrubs	NON-NATIVE SHRUBS	Cold	-2.614	-4.189	-1.041	0.802	152.371	141.697	162.712	5.265
		NON-NATIVE SHRUBS	Medium	-5.909	-7.516	-4.385	0.807	172.612	159.069	186.591	7.017
		NON-NATIVE SHRUBS	Warm	-4.126	-6.668	-1.695	1.278	160.989	129.885	192.003	16.043
	Wildflower	NON-NATIVE WILDFLOWER	Cold	-1.818	-5.081	1.330	1.629	129.004	102.431	156.525	13.314
		NON-NATIVE WILDFLOWER	Medium	-3.308	-6.375	-0.084	1.570	133.488	104.498	160.935	14.172
		NON-NATIVE WILDFLOWER	Warm	-3.534	-6.356	-0.751	1.454	132.515	93.036	171.134	19.660

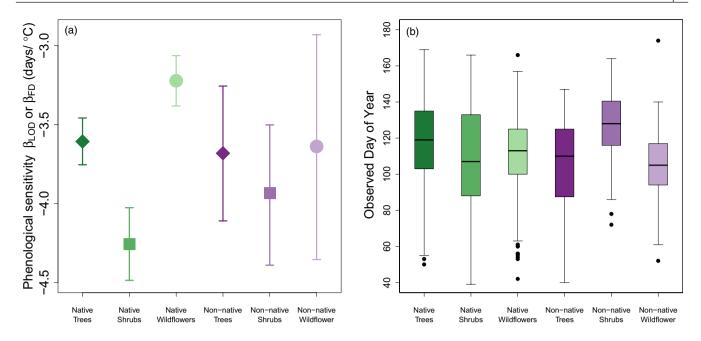
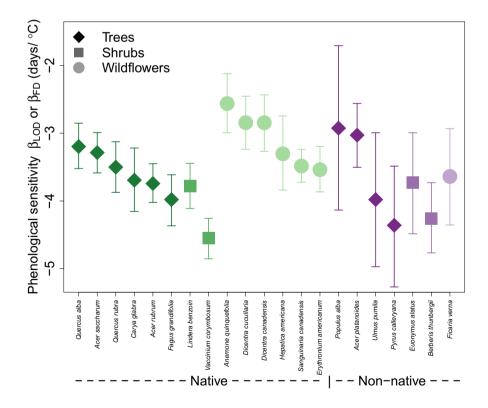
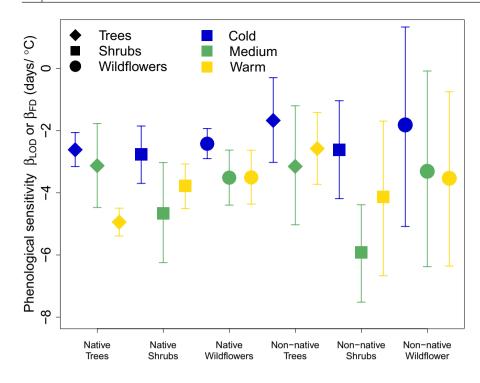



FIGURE 3 Forest plant species exhibited different modelled phenological sensitivity (leaf-out date for trees, flowering date for shrubs and wildflowers) to mean spring temperature (a) and different observed mean dates and ranges of leaf out or flowering (b) based on their growth form (overstory tree, midstory shrub or understory wildflower) and their origin (native or non-native) using herbarium records across eastern North America. Points in 3A represent the model slope estimates for β_{LOD} or β_{FD} . Non-overlapping 95% credible intervals in 3A indicate model results which are statistically significantly different. Green colours represent native species and purple colours represent non-native species.


FIGURE 4 Individual forest plant species exhibited different phenological sensitivity to warming temperatures. Points represent the slope estimates (with 95% credible intervals) for β_{LOD} (trees) or β_{FD} (shrubs, wildflowers) from species-specific models. Non-overlapping credible intervals indicate parameter posterior estimates which are statistically significantly different. Green colours represent native species and purple colours represent non-native species.

non-native tree species, advancing leaf-out 2.9 days/°C of warmer spring temperature. Of the non-native shrubs, *B. thunbergii* was more sensitive than *E. alatus*, advancing their flowering times 4.3 and 3.7 days/°C, respectively. The non-native wildflower *F. verna* advanced its flowering 3.6 days/°C.

3.4 | Order of early-spring phenology changes with warming

Based on fitted model estimates, the order of early-spring phenological events—leaf-out and flowering—changed at different

10

FIGURE 5 Forest plant species had different phenological sensitivity to warming temperatures based on their collection location's average spring temperature (Cold, Medium or Warm), growth form (canopy tree, midstory shrub or understory wildflower) and origin (native or non-native) in a study of herbarium records collected across eastern North America. Points represent slope estimates β_{LOD} or β_{FD} (with 95% credible intervals) by sites grouped by long-term mean spring temperatures. Non-overlapping credible intervals indicate parameter posterior estimates which are statistically significantly different.

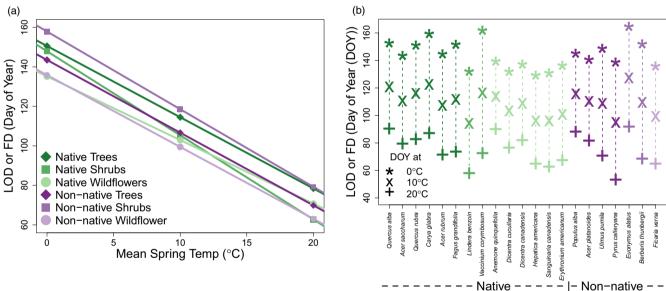


FIGURE 6 The order of early-spring phenology for forest plant species by growth form and origin groups (a) and individual species (b) changed across different average spring temperatures. Points represent fitted model estimates of LOD (trees) and FD (shrubs, wildflowers) at spring temperatures of 0°C, 10°C and 20°C. Green colours represent native species and purple colours represent non-native species.

spring temperatures. At colder average spring temperatures (0 °C), the native wildflowers were the first to flower, followed by the leaf-out and flowering of the non-native wildflower, non-native trees, native shrubs, native trees, and then non-native shrubs (Figure 6a). Non-native shrubs flowered on average 23 days later than native wildflowers and 7 days later than native trees. At warmer average spring temperatures (20°C), native shrubs were the first to leaf out, followed by the leaf-out and flowering of the non-native wildflower, non-native trees, native wildflowers, native trees and then non-native shrubs. Non-native

shrubs flowered on average 16 days later than native shrubs and 1 day later than native trees.

From 0°C to 20°C, the gap between native wildflowers' flowering and native trees' leafing out decreased from 15 to 8 days. The gap between native wildflowers' and non-native trees' early phenology decreased with warmer spring temperatures. Native wildflowers flowered about 8 days before non-native trees at 0°C, but non-native trees leafed out about 1 day before native wildflowers at 20°C. Non-native shrubs flowered about 22 days after native wildflowers at 0°C, and this gap decreased to about 9 days at 20°C.

At the species level, the order of phenology also changed at different spring temperatures, based on the fitted model estimates for individual species. *Vaccinium corymbosum* (native shrub) shifted from being one of the latest species to flower at 0°C to being in the middle at 20°C (Figure 6b). *Populus alba* (non-native tree) shifted from being in the middle at 0°C to being one of the latest species at 20°C. *P. calleryana* (non-native tree), *L. benzoin* (native shrub), *H. americana* (native wildflower) and *F. verna* (non-native wildflower) remained four of the earliest species across temperatures. Three of the native wildflowers—A. *quinquefolia*, *D. canadensis* and *D. cucullaria*—shifted to being later in the order at higher temperatures.

4 | DISCUSSION

4.1 | Native trees shift phenology more with warmer spring temperatures than native wildflowers

We evaluated over 3000 digitized herbarium specimens to assess differences in spring leaf out and flowering sensitivities and resulting changes to spring phenology order across forest layers and across the ranges of 21 species. We found that native trees advanced their leaf-out times with increased spring temperatures faster than native wildflowers advanced their flowering times. Although interesting regional variation exists, this study demonstrates that earlier findings at a single site in Concord, Massachusetts (Heberling, McDonough MacKenzie, et al., 2019) are consistent with a general phenomenon across eastern North America. This phenological mismatch means that wildflowers are likely to experience reduced sunlight access for photosynthesis in the early spring in coming decades, and these impacts may lead to declines in the abundance of native wildflower populations as the climate warms (Augspurger & Salk, 2017; Heberling, McDonough MacKenzie, et al., 2019; Nault & Gagnon, 1993). It is unclear whether small changes of a few days in this early-season light window meaningfully affect fitness. Further studies should examine the impacts of this phenological mismatch on wildflower growth, reproduction and survival.

A loss of wildflower species from the forest understory would have widespread ecological and conservation impacts. Wildflowers comprise a key component of the species-diverse herbaceous forest layer, impact the regeneration and success of overstory plants, mediate carbon cycling, maintain key nutrients in the ecosystem (e.g. nitrogen, phosphorus) and provide nutrition to many animals (Gallinat et al., 2020; Gilliam, 2007, 2014; Whigham, 2004). In addition to their ecological roles, spring-blooming wildflowers are important for food, medicine, nature appreciation and cultural heritage, particularly for Indigenous communities (Applequist, 2010; Burkhart & Jacobson, 2009; Foster & Duke, 2000; Herrick, 1995; Hirsch, 2018; Kuhnlein & Turner, 1991; Meeker & Elias, 1993).

Therefore, it is important to quantify the different responses to climate change among species in order to better understand the extent of mismatches and which species might be more or less successful as the climate warms. Wildflower species that are more sensitive to temperature (e.g. *E. americanum*) may be less impacted by advancing tree canopy leaf out than wildflower species which are less sensitive (e.g. *A. quinquefolia*). In addition, a wildflower population located in a forest where the dominant tree species is less sensitive to temperature (e.g. *Q. alba*) may have more sunlight access and ability to photosynthesize than if the wildflowers were in a forest area where the dominant tree species is more sensitive (e.g. *F. grandifolia*) and thus, shades them over sooner.

Overall, we did find the same general pattern and similar rates of sensitivity to temperature variation as the earlier Heberling, McDonough MacKenzie, et al. (2019) study from Concord. Our study and Heberling, McDonough MacKenzie, et al. (2019) found a consistent pattern of sensitivity among species: for example, of the six native tree species, Q. alba was the least sensitive and A. rubrum was the most or second-most sensitive in both studies. However, these two studies found slightly different phenological sensitivities for trees and wildflowers. Heberling, McDonough MacKenzie, et al. (2019) found that native tree species advanced their leaf-out times by 4.4 days/°C spring warming on average and wildflower species advanced their flowering times by 2.2 days/°C, whereas we found that, at the broader continental scale, native tree species advanced their leaf-out times by 3.6 days/°C spring warming on average and wildflower species advanced their flowering times by 3.2days/°C. These differences in magnitude of sensitivity suggest that, within this patten, there is important species-level variation. Heberling, McDonough MacKenzie, et al. (2019) included nine additional native tree species, and A. quinquefolia was the only native wildflower species in both studies. Nevertheless, given that our two studies used different types of data (field observations vs. herbarium specimens) and covered different geographical regions (Concord, Massachusetts vs. eastern North America), species and time periods, it is striking that the overall pattern and direction of sensitivity are similar. This consistency in the pattern of phenological sensitivity for native trees and spring-blooming wildflowers indicates that these results may be generalizable for these growth forms in temperate North American deciduous forests. Furthermore, we found that native shrub phenological sensitivity was similar to that of native trees. This is consistent with results from other studies which found that woody understory plant phenology is equally as or more sensitive to spring temperature compared with that of canopy trees (Lee & Ibáñez, 2021a, 2021b). We are not sure if our results are generalizable to other species of non-native trees, shrubs and wildflowers, due to the smaller number of species in our analyses, and in particular, the greater variability of the phenological responses in non-native species.

4.2 | Phenological sensitivity across species' ranges

Phenological sensitivity differed across native species' latitudinal ranges in eastern North America. Native trees and wildflowers were more sensitive to temperature in the Warm temperature group (predominantly in the southeastern USA) in comparison with

the Cold temperature group (predominantly in the northeastern USA), although this difference was not significant for wildflowers. This implies that phenological mismatches will be greater for native wildflowers in the southeastern United States-wildflowers in the warmer, southern locations will have fewer days of full sunlight access before they are shaded over, compared with wildflowers in the colder, northern sites. Other studies have found similar trends of species phenological sensitivity increasing at lower latitudes (Park et al., 2018; Song et al., 2021; Zhang et al., 2015). Both Park et al. (2018) and Zhang et al. (2015) suggest that plants in southern regions may have adapted greater phenological sensitivity because the climate is more stable and less variable, and thus there is a greater payoff of tracking spring temperatures when there is less risk of late-spring frost damage. Differences in species' phenological sensitivity across latitudinal ranges could also be influenced by changes in community composition and competition.

12

In contrast to native trees, non-native species did not differ in phenological sensitivity across their latitudinal range. One reason for this may be that all the non-native plants in our study were intentionally introduced by humans as ornamental plants. Human selection may have reduced genetic variability or selected for individuals with specific phenological timing. Thus, these non-native species may not have adapted to the highly-variable northeastern U.S. climate and may have maintained similar phenological sensitivity across their range (Ebeling et al., 2011). An alternative reason is that the ranges of our non-native species are more limited, with fewer occurrences in the Southeast (EDDMapS, 2021), which may have reduced our ability to detect latitudinal differences.

4.3 | Non-native species phenological sensitivity

We did not find significant differences between the phenological sensitivity of native and non-native plants. Our results differ from other studies, which largely found that non-native species have more plastic phenology and are advancing more with warming temperatures than are native species (Calinger et al., 2013; Willis et al., 2010; Wolkovich et al., 2013; Wolkovich & Cleland, 2014; Zettlemoyer et al., 2019; but see Wilsey et al., 2018 for greater phenological sensitivity in native species). However, many of these studies differed from ours in methodology (experimental field or twig warming studies) and geographic scope. We also had smaller sample sizes of non-native plants relative to native plants. Further work is needed to determine if the comparability we found in phenological sensitivity between native and non-native plants is due to genuine similarity or due to our choice of species, methods or sample size. Non-native trees have greater phenological sensitivity than native wildflowers, thus posing a threat to native wildflower fitness, particularly in areas where non-native trees are the dominant canopy trees. In addition, the greater sensitivity of non-native shrubs compared with native wildflowers suggests that in warmer climates the impact of non-native shrub shading may increase with warming.

4.4 | Order of early-spring phenology changes with warmer spring temperatures

The order of early-spring phenology changed from colder to warmer temperatures, with the more-sensitive groups advancing in the order, and the less-sensitive groups falling back in the order. The two native shrubs shifted from fourth- to first-earliest of the six groups. The native wildflowers shifted from first to fourth in the order.

In general, species which are more sensitive and advance in the order are likely to benefit from increased access to sunlight. The species which advanced the most in the order are V. corymbosum, P. calleryana, B. thunbergii, F. grandifolia, U. pumila, L. benzoin, A. rubrum, C. glabra and E. alatus. It is possible that these species will have the competitive advantage of earlier and longer access to sunlight in the early spring under conditions of climate warming (Alexander & Levine, 2019; Cleland et al., 2012; De Frenne et al., 2011; Willis et al., 2008; Willis et al., 2010). Pyrus calleryana and L. benzoin are two of the earliest-leafing and earliest-flowering species, so their phenology may become comparatively even earlier at warmer temperatures. This may be an advantage, or it is possible that these earliest species will suffer from increased frost damage (Augspurger & Salk, 2017; Inouye, 2008) and herbivory (Meineke et al., 2021). Zohner et al. (2020) suggest that late spring frost risk is decreasing in North America, but increasing in Europe and Asia. These dynamics should be considered when projecting which species are likely to thrive or decline under future climate change conditions.

The species that moved back the most in the order of spring activity are A. quinquefolia, D. canadensis, D. cucullaria, P. alba and A. platanoides. It is possible that these species will suffer competitively under warming climate conditions. They may have less access to early-spring sunlight and less ability to synthesize and store carbon.

5 | CONCLUSIONS

The results of this study may be used to inform recommendations for conserving native wildflower populations. Wildflower species that are less phenologically sensitive to spring temperature and flower later are more likely to be at risk of decline (e.g. A. quinquefolia, D. canadensis, D. cucullaria), and tree and shrub species that are more phenologically sensitive and leaf out early in the spring (e.g. A. rubrum, F. grandifolia, P. calleryana, U. pumila, L. benzoin) are more likely to shade out wildflowers. This dynamic is likely to be particularly salient in the Southeastern United States where conservation professionals and managers may seek out further resources to guide management options, which may include thinning out trees and shrubs to maintain early sunlight access for wildflowers (e.g. Maynard-Bean & Kaye, 2019 for non-native shrub removal) or managed relocation for wildflower species threatened by shading (Karasov-Olson et al., 2021).

Our results provide new insight into phenological responses within and among species across a wide geographical range and the potential impact of competition and interactions with

non-native invasive species. This research highlights the value of newly-available digitized museum collections in phenological research to cover longer time periods, wider spatial areas and a greater diversity of species than otherwise possible. This field of study would benefit from further analyses to determine how generalizable these results are to other species, regions and ecosystems. It remains unclear if these phenological patterns are similar in other temperate deciduous forests of the world, as these patterns may differ due to biogeography (Zohner et al., 2017). Similar studies could also be conducted in different ecosystems to assess if these trends in phenological sensitivity and mismatch also apply to other ecosystems, such as chaparral or boreal forests, or are controlled by other climatic variables like moisture (Keatley et al., 2002; Kramer et al., 2000; Song et al., 2020). Furthermore, to elucidate the mechanisms of these phenological mismatches, physiological experiments could be conducted to test whether different levels of the canopy are responding to different temperature cues, such as air or soil temperature, or are relying more on photoperiod. Understanding differences in the temperature cues for different levels of the canopy could help us anticipate future mismatches as climate conditions continue to change. Further, understanding the changes in other ecosystems and the roles of other climate variables can help us to understand the magnitude of the potential mismatches and plan conservation responses.

AUTHOR CONTRIBUTIONS

Richard B. Primack and Tara K. Miller designed the research. Tara K. Miller and Richard B. Primack contributed to data collection. Tara K. Miller analysed data with assistance from J. Mason Heberling, and Tara K. Miller, J. Mason Heberling, Sara E. Kuebbing and Richard B. Primack interpreted data. Tara K. Miller wrote the manuscript with contributions from J. Mason Heberling, Sara E. Kuebbing and Richard B. Primack.

ACKNOWLEDGEMENTS

We thank Alyssa Helmling, Laís de Castro Machado de Souza, Po Ying Lai, Carina Terry and Matt Rothendler for assistance collecting data from herbarium specimens. We thank Benjamin R. Lee, Elizabeth Ellwood, Abraham Miller-Rushing and Amanda Gallinat for their helpful comments on this manuscript. This work was supported by the National Science Foundation Research Traineeship-funded Boston University Graduate Program in Urban Biogeoscience and Environmental Health (Grant No. DGE-1735087) and National Science Foundation Grants No. DEB 1936971, 1936877 and 1936960.

CONFLICT OF INTEREST

The authors have no conflicts of interest.

PEER REVIEW

The peer review history for this article is available at https://publo ns.com/publon/10.1111/1365-2745.14021.

DATA AVAILABILITY STATEMENT

Data are archived on Open Science Framework: https://doi.org/10.17605/OSF.IO/YMHJR (Miller, 2022).

NATIVE LAND ACKNOWLEDGEMENT

This research studies plants found in deciduous forest ecosystems across the eastern United States. We acknowledge that our institutions and study sites are located within the ancestral and unceded homelands of many Indigenous communities. Below, we recognize the specific location where we work and the specific communities who first called this site their home. We also recognize that land acknowledgements are not enough to rectify the violence, forcible displacement and treaty violations by early European colonists and US federal, state and governments on Indigenous peoples. However, we hope our land acknowledgement will offer recognition and respect to the people who lived and worked on these lands, create public awareness about the history of where we work, promote the decolonization of ecology and conservation biology and serve as a call that more work needs to be done to promote social justice in our profession and in our nation.

SUFFOLK COUNTY, MASSACHUSETTS The Boston University main campus in Boston, MA is located on lands once occupied by the Massachusett (Mass-adchu-es-et) people, the Pawtucket people and the Wampanoag people (Wôpanâak). English colonizers and the United States and Massachusetts Commonwealth governments decimated the Indigenous people through forcible removal, forced assimilation, land grabbing and genocide. Many people of these and other Indigenous Nations still live in Massachusetts today.

ALLEGHENY COUNTY, PENNSYLVANIA The University of Pittsburgh main campus and the Carnegie Museum of Natural History (CMNH) in Pittsburgh, PA are located on lands once occupied by the Monongahela people (autonym unknown), the Seneca (O-non-dowa-gah) people--one of the Six Nations of the Haudenosaunee (hoe-den-ah-show-nee)--and the Lenape (Lenni-Lenape or Delaware) people, the Wyandot (Wandat) people, the Shawnee (Shaawanwaki) people and the Osage Nation (Wahzhazhe). These lands are home to many nations and peoples, in part, because of continued colonial expansion that forced entire nations to move westward to avoid violence and extirpation. European colonists violated multiple treaties and used the Indian Removal Act of 1830 to forcibly remove the Seneca (now the Seneca-Cayuga Nation), Lenape (now the Delaware Nation and Delaware Tribe of Indians), Wyandot (now the Wyandotte Nation) and Shawnee (now the Absentee-Shawnee Tribe of Indians of Oklahoma, Eastern Shawnee Tribe of Oklahoma and Shawnee Tribe) to what is now Oklahoma, where many of their descendants live today. A related group of Seneca are the Seneca Nation of Indians who today live in Salamanca, New York. We encourage our readers to use the Native Land Digital map (https://native-land.ca/) that seeks to map the Indigenous territories, treaties and languages from around the world.

ORCID

Tara K. Miller https://orcid.org/0000-0002-2827-4578

J. Mason Heberling https://orcid.org/0000-0003-0756-5090

Sara E. Kuebbing https://orcid.org/0000-0002-0834-8189

Richard B. Primack https://orcid.org/0000-0002-3748-9853

REFERENCES

- Alexander, J. M., & Levine, J. M. (2019). Earlier phenology of a nonnative plant increases impacts on native competitors. *Proceedings of the National Academy of Sciences of the United States of America*, 116(13), 6199–6204.
- Allen, J. M., & Bradley, B. A. (2016). Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. *Biological Conservation*, 203, 306–312.
- Applequist, W. L. (2010). Ornamental, beneficial and vanishing? the challenge of protecting America's wildflowers. *Phi Kappa Phi Forum*, 90(1), 12–14.
- Augspurger, C. K., & Salk, C. F. (2017). Constraints of cold and shade on the phenology of spring ephemeral herb species. *Journal of Ecology*, 105. 246–254.
- Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. *Journal of the Torrey Botanical Society*, 135, 126–146.
- Burkhart, E. P., & Jacobson, M. G. (2009). Transitioning from wild collection to forest cultivation of indigenous medicinal forest plants in eastern North America is constrained by lack of profitability. Agroforestry Systems, 76, 437–453.
- Calinger, K. M., Queenborough, S., & Curtis, P. S. (2013). Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. *Ecology Letters*, 16, 1037–1044.
- Chamberlain, S. (2017). rnoaa: 'NOAA' Weather Data from R. R package version 1.1.0. https://CRAN.R-project.org/package=rnoaa
- Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., Zavaleta, E. S., & Wolkovich, E. M. (2012). Phenological tracking enables positive species responses to climate change. *Ecology*, 93, 1765–1771.
- Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change. *Trends in Ecology & Evolution*, 22, 357–365.
- Daru, B. H., Park, D. S., Primack, R. B., Willis, C. G., Barrington, D. S., Whitfeld, T. J. S., Seidler, T. G., Sweeney, P. W., Foster, D. R., Ellison, A. M., & Davis, C. C. (2017). Widespread sampling biases in herbaria revealed from large-scale digitization. *New Phytologist*, 217, 939-955.
- Davis, C. C., Willis, C. G., Connolly, B., Kelly, C., & Ellison, A. M. (2015). Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms. *American Journal of Botany*, 102, 1599-1609.
- De Frenne, P., Brunet, J., Shevtsova, A., Kolb, A., Graae, B., Chabrerie, O., Cousins, S. A., Decocq, G., De Schrijver, A., Diekmann, M., Gruwez, R., Heinken, T., Hermy, M., Nilsson, C., Stanton, S., Tack, W., Willaert, J., & Verheyen, K. (2011). Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biology, 17, 3240–3253.
- Ebeling, S. K., Stöcklin, J., Hensen, I., & Auge, H. (2011). Multiple common garden experiments suggest lack of local adaptation in an invasive ornamental plant. *Journal of Plant Ecology*, 4(4), 209–220.
- EDDMapS. (2021). Early detection & distribution mapping system. The University of Georgia Center for Invasive Species and Ecosystem Health. http://www.eddmaps.org/ last accessed July 19, 2021.

- Ellwood, E. R., Primack, R. B., Willis, C. G., & HilleRisLambers, J. (2019). Phenology models using herbarium specimens are only slightly improved by using finer-scale stages of reproduction. *Applications in Plant Sciences*, 7, e01225.
- Ellwood, E. R., Temple, S. A., Primack, R. B., Bradley, N. L., & Davis, C. C. (2013). Record-breaking early flowering in the eastern United States. *PLoS ONE*, 8, e53788.
- Everill, P. H., Primack, R. B., Ellwood, E. R., & Melaas, E. K. (2014). Determining past leaf-out times of New England's deciduous forests from herbarium specimens. *American Journal of Botany*, 101, 1293–1300.
- Foster, S., & Duke, J. A. (2000). A field guide to medicinal plants and herbs of eastern and Central North America (2nd ed.). Peterson Field Guides, Houghton Mifflin Company.
- Fridley, J. D. (2012). Extended leaf phenology and the autumn niche in deciduous forest invasions. *Nature*, 485(7398), 359–362. https://doi.org/10.1038/nature11056
- Gallinat, A. S., Primack, R. B., & Lloyd-Evans, T. L. (2020). Can invasive species replace native species as a resource for birds under climate change? A case study on bird-fruit interactions. *Biological Conservation*, 241, 108268.
- Gallinat, A. S., Russo, L., Melaas, E. K., Willis, C. G., & Primack, R. B. (2018). Herbarium specimens show patterns of fruiting phenology in native and invasive plant species across New England. American Journal of Botany, 105, 31–41.
- Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. Cambridge University Press.
- Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. *Bioscience*, *57*, 845–858.
- Gilliam, F. S. (2014). The herbaceous layer in forests of Eastern North America (2nd ed.). Oxford University Press.
- Heberling, J. M., Cassidy, S., Fridley, J. D., & Kalisz, S. (2019). Carbon gain phenologies of spring-flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist, 221, 778–788. https://doi.org/10.1111/nph.15404
- Heberling, J. M., & Isaac, B. L. (2017). Herbarium specimens as exaptations: new uses for old collections. American Journal of Botany, 104, 963–965.
- Heberling, J. M., McDonough MacKenzie, C., Fridley, J. D., Kalisz, S., & Primack, R. B. (2019). Phenological mismatch with trees reduces wildflower carbon budgets. *Ecology Letters*, 22, 616–623.
- Heberling, J. M., Prather, L. A., & Tonsor, S. J. (2019). The changing uses of herbarium data in an era of global change: An overview using automated content analysis. *Bioscience*, 69(10), 812–822.
- Herrick, J. W. (1995). Iroquois medical botany. Syracuse University Press. Hirsch, J. (2018). Wildflower counter-power: Herbal medicine and the politics of plant-based embodiment, Thesis. McGill University, Canada.
- Iler, A. M., Inouye, D. W., Schmidt, N. M., & Høye, T. T. (2017). Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity. *Ecology*, 98(3), 647-655.
- Inouye, D. W. (2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. *Ecology*, 89, 353–362.
- Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1), 144–161. http://journal.r-project.org/ archive/2013-1/kahle-wickham.pdf
- Karasov-Olson, A., Schwartz, M. W., Olden, J. D., Skikne, S., Hellmann, J. J., Allen, S., Brigham, C., Buttke, D., Lawrence, D. J., Miller-Rushing, A. J., Morisette, J. T., Schuurman, G. W., Trammell, M., & Hoffman, C. H. (2021). Ecological risk assessment of managed relocation as a climate change adaptation strategy. Natural Resource Report NPS/NRSS/CCRP/NRR—2021/2241. National Park Service.
- Keatley, M. R., Fletcher, T. D., Hudson, I. L., & Ades, P. K. (2002). Phenological studies in Australia: potential application in historical

and future climate analysis. *International Journal of Climatology*, 22, 1769–1780.

- Kharouba, H. M., Ehrlen, J., Gelman, A., Bolmgren, K., Allen, J. M., Travers, S. E., & Wolkovich, E. M. (2018). Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academies of Sciences of the United States of America, 115, 5211–5216.
- Kharouba, H. M., & Vellend, M. (2015). Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. *Journal of Animal Ecology*, 84, 1311–1321.
- Kopp, C. W., Neto-Bradley, B. M., Lipsen, L. P. J., Sandhar, J., & Smith, S. (2020). Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region. *International Journal of Biometeorology*, 64, 873–880.
- Kramer, K., Leinonen, I., & Loustau, D. (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. International Journal of Biometeorology, 44, 67–75.
- Kudo, G., Ida, T. Y., & Tani, T. (2008). Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants. *Ecology*, 89, 321–331.
- Kuhnlein, H. V., & Turner, N. J. (1991). Traditional plant foods of Canadian indigenous peoples: Nutrition, botany, and use. Gordon and Breach Publishers.
- Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A., & Bossdorf, O. (2019). Using herbaria to study global environmental change. New Phytologist, 221, 110–122.
- Lapointe, L. (2001). How phenology influences physiology in deciduous forest spring ephemerals. *Physiologia Plantarum*, 113, 151–157.
- Lee, B. R., & Ibáñez, I. (2021a). Improved phenological escape can help temperate tree seedlings maintain demographic performance under climate change conditions. Global Change Biology, 27(16), 3883–3897.
- Lee, B. R., & Ibáñez, I. (2021b). Spring phenological escape is critical for the survival of temperate tree seedlings. Functional Ecology, 35, 1848–1861.
- Love, L. R., & Mazer, S. J. (2021). Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range. *American Journal of Botany*, 108, 1-16.
- Martin, P. H., Canham, C. D., & Marks, P. L. (2009). Why forests appear resistant to exotic plant invasions: intentional introductions, stand dynamics, and the role of shade tolerance. Frontiers in Ecology and the Environment, 7, 142–149.
- Maynard-Bean, E., & Kaye, M. (2019). Invasive shrub removal benefits native plants in an eastern deciduous forest of North America. *Invasive Plant Science and Management*, 12(1), 3–10.
- Mayor, S. J., Guralnick, R. P., Tingley, M. W., Otegui, J., Withey, J. C., Elmendorf, S. C., Andrew, M. E., Leyk, S., Pearse, I. S., & Schneider, D. C. (2017). Increasing phenological asynchrony between spring green-up and arrival of migratory birds. *Scientific Reports*, 7, 1902.
- Meeker, J. E., & Elias, J. E. (1993). Plants used by the great lakes Ojibwa. Great Lakes Indian Fish and Wildlife Commission.
- Meineke, E. K., & Daru, B. H. (2021). Bias assessments to expand research harnessing biological collections. *Trends in Ecology & Evolution*, in press, *36*, 1071–1082.
- Meineke, E. K., Davis, C. C., & Davies, T. J. (2018). The unrealized potential of herbaria for global change biology. *Ecological Monographs*, 88, 505–525.
- Meineke, E. K., Davis, C. C., & Davies, T. J. (2021). Phenological sensitivity to temperature mediates herbivory. Global Change Biology, 27(11), 2315–2327.
- Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., Braslavaska, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella,

- Y., Jatczak, K., Mage, F., ... Zust, A. (2006). European phenological response to climate change matches the warming pattern. *Global Change Biology*, 12, 1969–1976.
- Miller, T. K. (2022, September 12). Phenological mismatch among forest plants. https://doi.org/10.17605/OSF.IO/YMHJR.
- Miller-Rushing, A. J., & Primack, R. B. (2008). Global warming and flowering times in Thoreau's Concord: A community perspective. *Ecology*, 89, 332–341.
- Nault, A., & Gagnon, D. (1993). Ramet demography of Allium tricoccum, a spring ephemeral, perennial forest herb. Journal of Ecology, 81, 101–119.
- Panchen, Z. A., Doubt, J., Kharouba, H. M., & Johnston, M. O. (2019). Patterns and biases in an Arctic herbarium specimen collection: implications for phenological research. *Applications in Plant Sciences*, 7, e01229.
- Panchen, Z. A., Primack, R. B., Anisko, T., & Lyons, R. E. (2012). Herbarium specimens, photographs, and field observations show Philadelphia area plants are responding to climate change. *American Journal of Botany*, 99, 751–756.
- Park, D. S., Breckheimer, I., Williams, A. C., Law, E., Ellison, A. M., & Davis, C. C. (2018). Herbarium specimens reveal substantial and unexpected variation in phenological Sensitivity across the eastern United States. *Philosophical Transactions of the Royal Society B*, 374, 20170394.
- Plummer, M. (2003). JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Achim Zeileis. https://www.r-project.org/conferences/DSC-2003/Proceedings/ Last accessed 08 January 2019.
- Polgar, C., Gallinat, A., & Primack, R. B. (2013). Drivers of leaf-out phenology and their implications for species invasions: Insights from Thoreau's Concord. *New Phytologist*, 202, 106–115.
- Post, E., & Forchhammer, M. C. (2008). Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society B, 363, 2367–2373.
- Primack, D., Imbres, C., Primack, R. B., Miller-Rushing, A. J., & Del Tredici, P. (2004). Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. American Journal of Botany, 91, 1260–1264.
- R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Reeb, R. A., Acevedo, I., Heberling, J. M., Isaac, B., & Kuebbing, S. E. (2020). Nonnative old-field species inhabit early season phenological niches and exhibit unique sensitivity to climate. *Ecosphere*, 11(8), e03217.
- Renner, S. S., & Zohner, C. M. (2018). Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annual Review of Ecology, Evolution, and Systematics, 49, 165–182.
- Routhier, M. C., & Lapointe, L. (2002). Impact of tree leaf phenology on growth rates and reproduction in the spring flowering species *Trillium erectum* (Liliaceae). *American Journal of Botany*, 89, 500–505.
- Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., Pagad, S., Pyšek, P., Winter, M., Arianoutsou, M., Bacher, S., Blasius, B., Brundu, G., Capinha, C., Celesti-Grapow, L., Dawson, W., Dullinger, S., Fuentes, N., Jäger, H., ... Essl, F. (2017). No saturation in the accumulation of alien species worldwide. Nature Communications, 8, 14435.
- Soltis, P. S. (2017). Digitization of herbaria enables novel research. American Journal of Botany, 104, 1281–1284.
- Song, Z., Fu, Y. H., Du, Y., & Huang, Z. (2021). Global warming increases latitudinal divergence in flowering dates of a perennial herb in humid regions across eastern Asia. Agricultural and Forest Meteorology, 296, 108209.

Song, Z., Fu, Y. H., Du, Y., Li, L., Ouyang, X., Ye, W., & Huang, Z. (2020). Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and non-humid regions. *Functional Ecology*, *34*, 1870–1881.

16

- Stuble, K. L., Bennion, L. D., & Kuebbing, S. E. (2021). Plant phenological responses to experimental warming- a synthesis. *Global Change Biology*, 27(17), 4110-4124. https://doi.org/10.1111/gcb.15685
- Su, Y.-S., & Yajima, M. (2015). R2jags: A package for running jags from R. R package version 0.05–01.
- Whigham, D. F. (2004). Ecology of woodland herbs in temperate deciduous forests. *Annual Review of Ecology, Evolution, and Systematics*, 35, 583–621.
- Willis, C. G., Ellwood, E. R., Primack, R. B., Davis, C. C., Pearson, K. D., Gallinat, A. S., Yost, J. M., Nelson, G., Mazer, S. J., Rossington, N. L., Sparks, T. H., & Soltis, P. S. (2017). Old plants, new tricks: phenological research using herbarium specimens. *Trends in Ecology & Evolution*, 32, 531–546.
- Willis, C. G., Law, E., Williams, A. C., Franzone, B. F., Bernardos, R., Bruno, L., Hopkins, C., Schorn, C., Weber, E., Park, D. S., & Davis, C. C. (2017). CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens. New Phytologist, 215, 479-488.
- Willis, C. G., Ruhfel, B. R., Primack, R. B., Miller-Rushing, A. J., Losos, J. B., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau's woods are driven by climate Change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029-17033.
- Willis, C. G., Ruhfel, B. R., Primack, R. B., Miller-Rushing, A. J., Losos, J. B., & Davis, C. C. (2010). Favorable climate change response explains non-native species' success in Thoreau's woods. PLoS ONE, 5(1), e8878.
- Wilsey, B. J., Martin, L. M., & Kaul, A. D. (2018). Phenology differences between native and novel exotic-dominated grasslands rival the effects of climate change. *Journal of Applied Ecology*, *55*(2), 863–873.
- Wolkovich, E. M., & Cleland, E. E. (2014). Phenological niches and the future of invaded ecosystems with climate change. *AoB Plants*, 6, plu013.
- Wolkovich, E. M., Davies, T. J., Schaefer, H., Cleland, E. E., Cook, B. I., Travers, S. E., Willis, C. G., & Davis, C. C. (2013). Temperaturedependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany, 100, 1407–1421.
- Yost, J. M., Sweeney, P. W., Gilbert, E., Nelson, G., Guralnick, R., Gallinat, A. S., Ellwood, E. R., Rossington, N., Willis, C. G., Blum, S. D., Walls,

- R. L., Haston, E. M., Denslow, M. W., Zohner, C. M., Morris, A. B., Stucky, B. J., Carter, J. R., Baxter, D. G., Bolmgren, K., ... Mazer, S. J. (2018). Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants. *Applications in Plant Sciences*, 6, e1022.
- Zettlemoyer, M. A., Schultheis, E. H., & Lau, J. A. (2019). Phenology in a warming world: differences between native and non-native plant species. *Ecology Letters*, 22(8), 1253–1263.
- Zhang, H., Yuan, W., Liu, S., Dong, W., & Fu, Y. (2015). Sensitivity of flowering phenology to changing temperature in China. *Journal of Geophysical Research: Biogeosciences*, 120, 1658–1665.
- Zohner, C. M., Benito, B. M., Fridley, J. D., Svenning, J. C., & Renner, S. S. (2017). Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. *Ecology Letters*, 20, 452–460.
- Zohner, C. M., Mo, L., Renner, S. S., Svenning, J.-C., Vitasse, Y., Benito, B. M., Ordonez, A., Baumgarten, F., Bastin, J.-F., Sebald, V., Reich, P. B., Liang, J., Nabuurs, G.-J., de Miguel, S., Alberti, G., Antón-Fernández, C., Balazy, R., Brändli, U.-B., Chen, H. Y. H., ... Crowther, T. W. (2020). Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 12192–12200.
- Zohner, C. M., & Renner, S. S. (2014). Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. *Ecology Letters*, 17, 1016–1025.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Miller, T. K., Heberling, J. M., Kuebbing, S. E., & Primack, R. B. (2022). Warmer temperatures are linked to widespread phenological mismatch among native and non-native forest plants. *Journal of Ecology*, 00, 1–16. https://doi.org/10.1111/1365-2745.14021