Brain-Inspired Hyperdimensional Computing
for Ultra-Efficient Edge Al

Special Session Paper

Hussam Amrouch, Mohsen Imani, Xun Jiao, Yiannis Aloimonos, Cornelia Fermuller, Dehao Yuan,
Dongning Ma, Hamza E. Barkam, Paul R. Genssler, Peter Sutor

Abstract—Hyperdimensional Computing (HDC) is rapidly
emerging as an attractive alternative to traditional deep learning
algorithms. Despite the profound success of Deep Neural Networks
(DNNs) in many domains, the amount of computational power
and storage that they demand during training makes deploying
them in edge devices very challenging if not infeasible. This,
in turn, inevitably necessitates streaming the data from the
edge to the cloud which raises serious concerns when it comes
to availability, scalability, security, and privacy. Further, the
nature of data that edge devices often receive from sensors is
inherently noisy. However, DNN algorithms are very sensitive to
noise, which makes accomplishing the required learning tasks
with high accuracy immensely difficult. In this paper, we aim at
providing a comprehensive overview of the latest advances in HDC.
HDC aims at realizing real-time performance and robustness
through using strategies that more closely model the human
brain. HDC is, in fact, motivated by the observation that the
human brain operates on high-dimensional data representations.
In HDC, objects are thereby encoded with high-dimensional
vectors which have thousands of elements. In this paper, we will
discuss the promising robustness of HDC algorithms against noise
along with the ability to learn from little data. Further, we will
present the outstanding synergy between HDC and beyond von
Neumann architectures and how HDC opens doors for efficient
learning at the edge due to the ultra-lightweight implementation
that it needs, contrary to traditional DNNs.

Index Terms—Hyperdimensional Computing, Embedded Sys-
tems, Energy-efficient Computing, Adversarial Attack, Voltage
Scaling, In-memory Computing, Security, Graphs, Robotics,
Computer Vision

I. INTRODUCTION

HE field of edge Al challenges machine-learning (ML)

methods with a broad set of requirements. The inference
accuracy is not the only goal, each system design is a tradeoff of
various aspects. Due to energy constraints, any algorithm has
to be as efficient as possible, simply increasing the layers
of a neural network is not sustainable. Furthermore, real-
time requirements limit the time available for an inference
operation. To achieve an adaptable system, (re)training at the

Hussam Amrouch and Paul R. Genssler are with the Chair of Semiconductor
Test and Reliability (STAR), University of Stuttgart, Stuttgart, Germany. E-
mail: {genssler, amrouch} @iti.uni-stuttgart.de. Mohsen Imani and Hamza E.
Barkam are with the Bio-Inspired Architecture and Systems (BIASLab), UC
Irvine, California, USA. E-mail: {m.imani, herrahmo} @uci.edu. Xun Jiao and
Dongning Ma are with the Dependable, Efficient, and Intelligent Computing
Lab (DETAIL), Villanova University, Pennsylvania, USA. E-mail: {xun.jiao,
dma2} @villanova.edu. Yiannis Aloimonos, Cornelia Fermuller, Dehao Yuan,
and Peter Sutor are with the Perception and Robotics Group, University of
Maryland, Maryland, USA. E-mail: yiannis@cs.umd.edu, fer@cfar.umd.edu,
dhyuan@umd.edu, psutor@umd.edu.

edge is necessary. However, the quality of sensors is low, the
environmental conditions can cause errors in the system, e.g.,
in the memory, or employed emerging technologies are less
unreliable yet efficient. The ML algorithm has to be robust
against such errors in the computation and noise in the data
during (re)training and inference.

Brain-inspired hyperdimensional computing (HDC) is a
machine-learning (ML) concept not based on neural networks
but large vectors [1]. Such vectors have thousands of dimen-
sions and are called hypervectors. Each hypervector component
is independent, creating a unique set of properties to address
the challenges of edge Al. First, computations are executed
on each component individually, making parallelization easy.
Thus, the operations can be completed fast, fulfilling real-
time requirements and allowing the system to go back into
hibernation. In addition, the independent components not
only carry the information but are inherently redundant. The
computations do not have to be accurate, for a successful
inference a high similarity between two hypervectors is
sufficient. Hence, if components of a hypervector are corrupted,
e.g., from undervolting the memory, the thousands of remaining
correct components ensure a reliable operation. For a similar
reason, robustness against noise in the data is high. A noisy data
sample is still similar to a noise-free one. After encoding the
real-world data into hyperspace, the hypervector representing
this sample is again similar. The encoding process does not
require any back propagation and thus a few data samples are
sufficient to create an HDC model. HDC has been applied
to many different areas include circuit reliability [2], drug
discovery [3], anomaly and outlier detection [4, 5], Computer
Vision and Robotics [6—8], among others [9].

In this paper, HDC for ultra-efficient edge Al is explored
from different perspectives. Section II explores software-only
implementations and highlights a temperature and energy
challenge motivating the need for dedicated hardware and
in-memory solutions. In Section III, HDC’s robustness against
noise is increased by different methods, and the defense against
adversarial attacks is described. With an efficient implementa-
tion, knowledge is represented in graphs in Section IV enabling
reasoning with HDC and recovery of lost memories. Section V
describes the concept of hyperdimensional active perception,
allowing a system to generate an informative reaction from the
environment by intelligently taking an action.

II. HW/SW CODESIGN FOR EFFICIENT BRAIN-INSPIRED
HYPERDIMENSIONAL IN-MEMORY COMPUTING

HDC is often proposed as a less energy-intensive alternative
to neural network-based and traditional ML algorithms. Dedi-
cated hardware accelerators are proposed to further increase
the efficiency of the implementations to execute training and
inference with HDC. Because the concept of HDC is based on
hypervectors with independent components, parallelizing the ba-
sic operations is straight forward. For hypervectors with floating
point components, the base operations include a component-
wise addition and multiplication. Hence, these operations are
mathematically simple and do not require sophisticated and
complex computations. However, hardware implementations
are less flexible than pure software implementations. Changes
to the algorithm or a change of the datatype of the hypervectors’
components, e.g., a reduction in bit width, can require a revision
of the hardware implementation to maximize the energy
efficiency. In contrast, software-only solutions are less efficient
to execute on the device but can be easily updated. Hence,
consumer electronics, especially in fast-paced markets like
wearable or mobiles, extensively use software implementations
to reduce time to market and save development costs. Only in
recent years have mobile SoCs been enhanced by dedicated
neural network accelerators, although the ML algorithms have
been used much longer. In summary, emerging algorithms, like
HDC, cannot be evaluated with dedicated hardware alone, but
their software-only metrics have to be considered as well.

A. Power and Temperature Evaluation

For portable battery-powered devices, energy consumption
is a major concern. Algorithms have to be efficient to not
drain the batteries. In addition, wearable and handheld devices
have a much stricter temperature limit. While embedded and
automotive devices can dissipate the generated heat into the
environment or the surrounding structure, wearables come into
contact with the human skin. Hence, high temperatures have
to be avoided to not harm the user. Furthermore, wearables are
lightweight and thus the devices have less thermal capacity.

In this section, various software-only HDC implementations
are compared to neural network-based and traditional ML
algorithms [10]. The experiments are executed on a Raspberry
Pi 4 Model B to represent an off-the-shelve embedded device
without dedicated HDC or ML hardware. The Broadcom 2711
SoC features four ARM Cortex-A72 cores with a nominal
frequency of 1500 MHz. If a core temperature of 80 °C is
exceeded consistently, the CPU frequency is automatically
throttled down to 600 MHz. With an ambient temperature of
around 20 °C, the SoC has an idle temperature of 41 °C. As
a second metric, the power consumption of the whole board
is measured. An INA260 sensor is placed between the output
of the power supply and the whole Raspberry Pi board. Idle
power consumption is about 3.5W at 600 MHz.

Various implementations of ML algorithms and datasets
are evaluated. First, OnlineHD is based on PyTorch (Python
with C backend) and encodes a data sample by multiplying its
features with a floating-point base hypervector [11]. The second
HDC implementation is HD-Lib [12], which is implemented

solely in C and for binary hypervectors. An SVM and
a KNN is implemented based on the Scikit-learn library
(Python with C backend). A simple CNN is implemented with
Tensorflow (Python with C backend), with the following layers:
convolutional, max pooling, dropout, flatten, dense, dropout,
dense. In total, the CNN has 15,000 trainable parameters. The
ISOLET and Fashion-MNIST datasets serve as workloads.

For the ISOLET dataset, the KNN has nine neighbors and the
Euclidean distance metric (“Minkowski” with power parameter
two). These parameters were found through hyperparameter
search and the inference accuracy is 92.1 %. The inference
accuracies for OnlineHD are given in Tab. I for various
dimensions with retraining. For HD-Lib [12], the samples are
quantized to 13 levels providing the highest accuracy, which
was also observed in [13]. These 13 level hypervectors are
created as a continuous item memory [1]. Each sample is
encoded as a record [1] where a randomly generated key
hypervector is bound to the corresponding level hypervector
and all pairs bundled into a single sample hypervector.

Fig. 1 shows that both HDC-based models cross the soft
thermal limit of 80 °C. KNN does not reach this limit because
about one third of the inference time is limited to a single
CPU core, an implementation detail of the Scikit-learn library.
Assuming full CPU utilization, the KNN would process
520 samples/s on a par with the HD-Lib model.

OnlineHD uses mainly floating-point operations whereas,
the HD-Lib implementation primarily comprises additions and
bit operations with integers. By using a record encoding, the
number of HDC operations (binding, bundling, permutation)
is lower compared to an n-gram encoding because each
feature value is only handled once (compared to n times)
and not permuted. If the 3.5W idle power consumption is
subtracted from the mean power, then OnlineHD consumes
15 % more compared to HD-Lib, which correlates with the 12 %
higher CPU utilization. Although HD-Lib’s record-encoding is
efficient, the pure C-implementation is not heavily optimized
and is outperformed by the PyTorch-based OnlineHD by 4X
for processing speed (2370 samples/s). The temperature for
both implementations is at a similar level above the 80 °C soft
threshold. In summary, a hand-crafted encoding implemented
in C-code does not perform better than the unspecific encoding
of OnlineHD with a general-purpose CPU.

Image classification is evaluated on the Fashion MNIST
dataset with OnlineHD, a CNN, and an SVM implementation.
The inference accuracy with OnlineHD varies from 82.3 % to
86.7 % with a dimension of 500 to 10,000. The CNN achieves
a comparable 85.8 % and the SVM performs best with 89.4 %.
Fig. 2 shows the impact on the CPU temperature. OnlineHD
crosses the soft temperature limit of 80 °C during the inference

TABLE I
INFERENCE ACCURACY FOR ISOLET DATASET. THE samples/s AND MEAN
POWER REFER TO 4096 bits AND 2048 floating-point HYPERVECTORS.

Implementation 2048 4096 Samples/s Mean Power (W)
HD-Lib, binary 83.5 87.1 537.7 5.61
OnlineHD, real ~ 94.7 95.1 2369.5 5.92
KNN, n =9 -92.1 - 390.1 5.48

OnlineHD HD-Lib KNN
¢
B
=
ks
o)
3
< 70 + Measurement —4-sample mean | - — Temperature limit (max)
T T T T T T T

7 Mean power consumption
5 . .
o)
2
<
~

4 - T T T T - T T T T B T T T T

7530 7540 7550 7560 7530 7540 7550 7560 7530 7540 7550 7560
Time (seconds) Time (seconds) Time (seconds)

Fig. 1. Temperature and power measurements for HDC and KNN implementations for the ISOLET dataset. While OnlineHD consumes the most power and

generates the most heat, it performs 4X and 5X more inferences than HD-Lib and KNN. The light blue vertical intervals indicate a restart of the inference cycle.

- Measurement — 4-sample mean — Temperature limit —CNN

/\/\/\m/\ﬂf

VY

NMW\MN

T
8020

82 4

@x®
[«

Temperature (°C)
SN
(o)) (o)
1 1

T T
8040 8060

Time (seconds)

8000 8080

Fig. 2. Comparison of the CNN implementation with OnlineHD for inference
on the Fashion MNIST dataset. The CNN processes 2.4X more images per
second at a lower temperature although both implementations are based
PyTorch.

cycles consistently with an average of 79.7 °C. Yet, it does
not push the system close to the 85 °C maximum temperature
limit and thus the impact on the CPU frequency is minimal,
the SoC does not throttle the CPUs. The temperature drops
frequently between two inference cycles. During each complete
cycle, the inference is performed on the whole test dataset of
10,000 images and house keeping tasks are performed, like
logging the measured metrics and calculating the inference
accuracy. The CNN does not see such drops because its
associated temperature is comparatively low at a stable 76.1 °C
on average. In addition to a lower temperature, the CNN also
process 2.4X more images per second, 1000 with OnlineHD
compared to the CNN’s 2427. Further, power consumption is
reduced by 0.2 W.

To simulate a wearable device, the maximum temperature is
lowered to 60 °C. Although the SoC throttles the CPU cores
to 600 MHz, OnlineHD still exceeds this lowered temperature
limit by 6 °C on average. The inference speed drops to 382
images per second. The CNN is less impacted because of its
overall less energy-intense computations. In summary, HDC
implementations have not yet reached the same maturity-

level as neural network-based algorithms, even though both
implementations are based on a similar underlying framework.
Hence, for ultra-efficient edge Al systems, a hardware/software
codesign approach is still required.

B. Computing-in-Memory for Efficient Inference

One of the main limits on energy efficiency is the von
Neumann bottleneck. It describes the challenge of moving the
data from any storage closer to the processing elements. Each
data transfer costs orders of magnitude more than an operation
on it [14]. Hence, reducing the movement of data within a
computing system increases its energy efficiency. One approach
is computing-in-memory, in which the computations happen
where the data already resides, inside the memory. With HDC
for edge Al, inference is most likely the most frequent operation.
For binary hypervectors, the search in the associate memory
(AM) involves the computation of the Hamming distance from
all stored class hypervectors with the query hypervector. In a
traditional system, each class hypervector has to be transferred
through the cache hierarchy to the CPU. With a computing-
in-memory approach, to avoid expensive data transfers, the
structure of the memory is changed to compute the Hamming
distance directly in the AM [15].

Each binary class vector is split into small blocks of, e.g.,
n = 15 bits [16]. Each of these blocks comprises n TCAM
cells, each storing a single bit. All TCAM cells within a block
are connected to a match line, which is precharged to the supply
voltage before an inference operation. Then, the corresponding
bits of the query vector are applied to the block’s bits. If the
stored and the query bit do not match, the TCAM cell forms a
conductive path discharging the match line. The more TCAM
cells do not match (query and class hypervector are dissimilar),
the faster the match line is discharged. A sense amplifier maps
the discharge time to the number of mismatching bits. To obtain
the Hamming distance of two full hypervectors, the number
of mismatching bits are collected from all blocks.

An AM for c classes and hypervectors of dimension D
consists of ¢ * (D/n) blocks. During an inference operations,
the above-described procedure is executed in all blocks
at the same time, effectively parallelizing the AM lookup.
The individual Hamming distances are accumulated and the
class hypervector with the lowest Hamming distance is the
inference result. All TCAM cells within such an AM can be
implemented with conventional CMOS technology or with
emerging FeFET technology. The following results are based
on SPICE models calibrated to reproduce Intel’s 14 nm FinFET
measurements [17].

Both technologies, traditional CMOS and the emerging
FeFET technology, are impacted by process variation, resulting
in blocks reporting an incorrect Hamming distances. However,
the impact on FeFET is greater, doubling the error probability
(78 %) compared to SRAM (40 %) for a block size of 15 bits
and 0.5V supply voltage. Nevertheless, HDC is robust against
errors in the reported Hamming distance. For language clas-
sification and a block size of 7bits, the inference accuracy
drops by 0.2 % and 0.8 % for SRAM and FeFET, respectively.
The major advantage of FeFET over SRAM is, besides its
non-volatility, that TCAM cells required 8X fewer transistors
and thus less chip area. This additional area can be invested
into multiple instances of the AM to reduce the impact of
process variation by averaging the results. With five replicas,
the inference accuracy drop is limited to 0.3 % and close to the
level of the mature SRAM technology. One Hamming distance
computation with SRAM-based TCAM cells consumes 0.25 pJ
to 0.5 pJ, depending on the various design parameters. A FeFET-
based AM requires similar amounts of energy but can be turned
off during hibernation whereas the SRAM has to be powered
all the time.

III. ROBUST HYPERDIMENSIONAL COMPUTING AGAINST
HARDWARE ERRORS AND ATTACKS

A. Hardware Errors

1) Error Characterization: The major advantages of HDC
over conventional machine learning algorithm are higher
energy efficiency and more compact model. Therefore, the
primary targets of HDC deployment naturally become resource
constrained platforms such as edge and embedded architectures,
where the energy efficiency usually comes at the expense of
higher degrees of hardware error because of the compromised
“near-perfect execution”. While research has focused on evalu-
ating the conventional machine learning algorithms about the
robustness against such hardware errors, there has not been
an established line of literature for the emerging HDC. Our
works attempt to present insights into the effect of hardware
errors on HDC model, targeting at two major sources: memory
errors and voltage scaling induced errors.

The processing of HDC requires extensive support from
memories. During encoding, item memory is frequently ac-
cessed to fetch the corresponding item HVs of each feature
value; during training and inference, the associative memory
is also subject to numerous reading and writing operations
so that an HDC model can be trained and then evaluated.

E Error Injection and Masking i ! HDC System i
1 o \
i | Memory Error i Item Memory Encoding H

' Error o T 4
H Injection ! \
H Voltage 1| Associative Traini H
Scaling Error : Memory raining !
)

\ 1). Zero Masking
v 2). Sign-bit Masking

ME:IZ; 3 : Inference :
3). Word Masking 9 i |

OO

Fig. 3. Framework for hardware error injection and masking for HDC system.

However, the manufacture process and device aging and wear-
out effects such as negative bias temperature instability (NBTI),
electromigration, and time-dependent dielectric breakdown can
cause memory to exhibit error patterns. To systematically assess
the error schemes and their influence, we measure, quantify,
and characterize the impact of errors in associative memory
on the classification accuracy of HDC models [18].

We select the most widely used single bit flip (SBF) error
model to quantify the memory error: once an error occurs, the
corresponding bit is flipped (becomes corrupted). The error
occurs at the associative memory when the HDC model is
making an inference with a predefined possibility referred to as
error rate. We sweep the error rate from 1079 to 1071, the HV
dimensions of 10,000, 5000 and 3000, and the data widths of
16-bit, 8-bit and 1-bit. Results on three applications show that
HDC possesses strong robustness against memory errors that,
without any error mitigation schemes, error rate up to 10~
will not induce any noticeable accuracy loss. As to dimensions
and data widths, in general lower dimensions and data widths
can tolerate higher error because the value shifts caused by bit
errors have less impact on them.

In addition to memory errors, voltage scaling is also a major
source of errors for edge intelligence architectures. Voltage
scaling is one important technique for low power designs
to achieve higher energy efficiency at the expense of higher
latency and potential timing violations, which can subsequently
translate into accuracy degradation at the application level.

To analyze the impact of voltage scaling during HDC
inference, we target voltage-scaled on-chip SRAMs fabricated
in FDX22 (22nm) technology [19]. We first profile the bit
error rate under different voltages from the nominal 0.8 V to
as aggressive as 0.35V and then inject errors for the HDC
inference process based on the rates profiled. Results on four
datasets show that reducing voltage from 0.8V to 0.6 V will
not trigger notable accuracy loss, thus we refer to the region
between 0.8V and 0.6V as the safe region. However, more
aggressive voltage scaling will bring drastic accuracy loss, e.g.,
when the voltage lowers to 0.5V, the accuracy plummets to
only 40 % which is about 50 % lower compared with baselines
without voltage scaling.

2) Robustness Enhancement: We propose three low cost
error mitigation or protection schemes: zero masking, sign-bit
masking and word masking as illustrated in Tab. II to ameliorate
the degraded accuracy induced by memory errors or voltage
scaling [18, 19]. Zero masking and sign-bit masking set all the
corrupted bits (marked as X) to 0 and the sign-bit respectively,

TABLE II
MASKING SCHEMES FOR PROTECTING HDC MODELS FROM HARDWARE ERRORS

Zero Masking

Sign-bit Masking

Word Masking

error-free 11010010 00111001 11110011 | 11010010
before masking | 11X100X0 0X111X01 11110011 | 11X100X0
after masking 11010000 00111001 11110011 | 11110010

00111001 11110011 | 11010010 00111001 11110011
0X111X01 11110011 | 11X100X0 0X111X01 11110011
00111001 11110011 | 00000000 00000000 11110011

while word masking sets the entire number (numerical value)
to 0.

Using masking schemes, we can fortify the robustness of
HDC models so that error rate up to 107> and even 10~* for
some applications can be tolerated with only 1% accuracy
loss. This is more than one order of magnitude robustness than
baseline implementations (without any error masking scheme).
As to voltage scaled HDC systems, we can further recovers the
accuracy at 0.5V and can push the voltage even lower to 0.45 V
with negligible accuracy loss only. Note that this enables the
HDC model to tolerate 10,000 times higher error rate, which
can further expands the safe region from 0.8 V-0.6 V to 0.8 V-
0.45 V. For energy efficiency, using the masking schemes can
bring about 50 % to 70 % energy saving on average.

B. Attacks

1) Attack Characterization: Although machine learning
algorithms can achieve comparable or even surpassing accuracy
than human for certain applications, they are known to be
vulnerable to adversarial attacks. For neural networks, research
has shown that by adding negligible perturbation to the original
input samples, adversarial samples can be fabricated which
can induce inconsistent or incorrect behaviors of the model
under attack, posing a substantial threat for security sensitive
applications [20]. Although adversarial attacks exist in HDC
models as the example in Fig. 4, how they can be automatically
generated is not straightforward for HDC. That is, adversarial
attacks can be generated using gradient based methods for
neural networks, however, as HDC does not primarily own such
necessary mathematical properties, gradient-based methods
cannot be directly borrowed here and applied.

On the other hand, the emerging coverage-guided fuzz
testing which originates from software testing communities is
increasingly applied for enhancing the robustness of machine
learning algorithms [21]. Fuzz testing is a flexible and heuristic-
inspired method which does not require tedious manual labeling
of samples and can be applied with black, gray and white-box
schemes. We introduce this concept into the HDC domain and
develop differential (fuzz) testing frameworks.

For black-box scenarios, we develop HDXplore, a highly
automated testing tool specifically designed for HDC based
on differential testing [22]. HDXplore takes the original input
image without necessarily knowing its label. A set of mutation
algorithms are then applied to create perturbed input. The
perturbed input along with the original input are fed into
the HDC model together for predictions. If the labels are
inconsistent, an adversarial sample is successfully generated.
Otherwise, HDXplore will iterate the generation process
until success. For gray-box scenarios, we propose HDTest

as illustrated in Fig. 5, which is also a differential fuzzing
testing framework but is coverage-guided [23]. Different from
HDXplore which assumes the entire HDC model as a black-
box, HDTest has the access to the associative memory and
the similarity information of each prediction. Therefore when
generating new perturbed samples, the similarity information
can be used as a coverage to select higher quality generations
which are more likely to induce inconsistency in HDC inference,
thus increasing the successful rate of adversarial attacks.

Data poisoning attack is also a realistic threat to machine
learning models where noises are injected into labels of
training data to impair the performance of ML models [24].
To characterize the impact of such attack on HDC, we
propose PoisonHD [25], a poison attack framework that
maximizes its effectiveness in degrading the HDC classification
accuracy. PoisonHD particularly leverages the internal structural
information of HDC models of confidence of each sample and
performs label flipping on the most vulnerable samples by
their confidence ranking. By flipping 15 % of the total training
samples, we are able to lower the model classification accuracy
by up to 30 % on three datasets: MNIST 1-7, Dog-Fish, and
Breast Cancer.

g o

¥

Fig. 4. Perturbation on just several pixels can “fool” an HDC model to
mis-classify 9 as 4.

Continue guided fuzzing

Generated
input

yﬁ"‘“

Original
input

™ | HDC |~ 2

Objective: Generate
mis-predicted images
Mutation Algorithm

Original
input

= . N

Strategies for input mutation Mis-predicted

images
Fig. 5. Coverage-guided differential fuzz testing for HDC

2) Robustness Enhancement: To enhance the robustness of
HDC against adversarial attacks, we leverage the generated
adversarial samples to retrain the HDC models. Experimental
results show that with adversarial retraining, the HDC model
can successfully defend up to 30% of unseen incoming
adversarial input samples, which can drastically enhance the
robustness of the models against attacks.

To defend data poisoning attacks, we propose a sanitizing
defense mechanism which is also referred to as “Oracle
Defense” [24]. We train an outlier detection model based on a

separate verification set which is not accessible to the attackers.

The outlier detection model is also an HDC model but focuses
on checking the similarity between the HV and the class that
its corresponding input label refers to. If there is a discrepancy
between the oracle and the provided label, then this sample is
regarded as a “noxious” sample and thus discarded. By using
this oracle defense method, we are able to reduce the accuracy
loss of PoisonHD attack from up to 30 % to less than 3 %.

The defense mechanisms do come with expenses, for
example, although adversarial retraining can reduce the impact
caused by attacks, it at the same time poses negative influence
on the performance of classifying benign samples, resulting in
accuracy loss. In the future, we aim to develop new defense
and robustness enhancement algorithms to minimize the impact
to the original HDC model.

IV. AN HDC PLATFORM FOR ROBUST AND EFFICIENT
PERCEPTION AND DECISION MAKING AT THE EDGE

As neuroscientists have already shown, the human brain
memorizes events as a sparse memory graph [26, 27], where
nodes are the objects/events, and the edges represent the
correlation between them. The brain does reasoning and analogy
by referring to this memory as prior knowledge. For example,
as humans, when we see a set of events or objects repeatedly
occurring together, these objects get a higher correlation in our
graph memory. By referring to this memory, we can identify
the correlated objects, make better decisions, and reason about
them [28].

Although building up this graph is often easy, the main
challenges are: (1) how to effectively represent this graph to
enable highly efficient and robust brain-like memorization, and
(2) how to perform information retrieval and reasoning on the
graph. Unlike the existing graph processing algorithms that
perform costly exact computations, brain memorization and
cognitive tasks are highly approximate and efficient [29].

We propose GrapHD, a hyperdimensional graph memory that
enables robust, efficient, and holographic cognitive learning.
Fig. 6 shows an overview of GrapHD. GrapHD encodes various
graph data into high-dimensional space (Fig. 6a). The encoding
is based on a well-defined set of mathematics. Our encoding
represents a graph using a single hypervector, where each
dimension represents a neuron. GrapHD enables a wide range
of cognitive operations directly over the graph hypervector
(Fig. 6b). These cognitive operations extract information from
the graph without explicit access to original nodes. We exploit
these functionalities to enable several applications, including
graph matching, shortest path, and object detection (Fig. 6¢).

A. Hyperdimensional Graph Representation

We exploit hyperdimensional mathematics to spread the
graph information across the fully holistic high-dimensional
representation. In this representation, no hypervector element
is more responsible for storing any piece of information than
another. Fig. 7 shows the functionality of GrapHD encoding

\ Hyperdimensional

Encoding @
LA s ok
'\\.

Graph Hypervector
"0 vpermute ph e

v

® ®
v Graph Similarity Matching 7 ¥'Information Retrie.val
O ¥'Shortest Path Discovery « h_\!? v'Node Reconstruction

v'Object Detection v'Graph Reconstitution

GrapHD Applications GrapHD Cognitive Operations

Fig. 6. GrapHD Overview: (a) hyperdimensional graph encoding into a
hypervector, (b) GrapHD cognitive operations, and (c) GrapHD applications.

representing unweighted graphs. We first assign a random
hypervector H; to each node in the graph (Fig. 7a). Assuming
a graph with n nodes, we generate {Hy, Hy,--- , H,} as high-
dimensional signature of nodes, where I;T,- is a D—dimensional
vector whose components are randomly chosen from the set
{=1,+1}. Due to random generation, the node hypervectors
are nearly orthogonal: & (’}-_Zk, ’}-_[l) ~ (0 (k #), where 0 denotes
the cosine similarity.

We exploit the node hypervectors to create a memory for each
node. The node memory needs to remember all connections
that a particular node has to its neighbors (Fig. 7b). For
example, we construct the node ¢ memory by accumulating
all node hypervectors connected to it: M; = Z H , where
j represents all the neighbors of node <. Thanks to HD
computing mathematics, the bundling keeps the information of
all connections. For example, we can check if memory node
i has connection to node k using: §(M;, H},), where § > 0
and § ~ 0 show existence and non-existence, respectively.

After generating a memory for each node, we construct a
single hypervector representing a graph. The graph memory
should memorize the information of nodes and their connec-
tions. To this end, for each node, we associate the node and
memory hypervectors, e.g., H;@® M; for node i. The bundling of
all associated hypervectors generates a graph memory (Fig. 7c¢):

T . . .
G=§(Hl@Ml+H2@M2+-~-+Hn@Mn)

I = -
=5 Z H; & M;
where the graph memory is a compressed, invertible, and

transparent model. Given the graph memory G, we can
reconstruct a local node memory using:

— — —; —

H;, ® G = M; + noise = M;

where this approximate equality holds true because the HD vec-
tors are randomly constructed; thus, they are nearly orthogonal.
Once we have the local memory, we can check if nodes j and
i are connected by calculating the similarity R = &(H s M;),
where R is termed as the decision score. If there exist an edge
between ¢ and j, then R ~ 1. Otherwise, R ~ 0.

(b) Memory Node

O-a®@

(c) Graph Memory Generation

ﬁ Bindin
——ba{Mo]eee [[=5 g
Hy [hyp [eev [y,] Dy

M
——53[Mzp[eee [Mz[My]

(a) Node Hypervector

(6)
L O

My =H, +Hy + H,

O AN, N AT TR AL
— — [XX]
Hy[hip[e [Ty | o see ey oo] se | Mgz [M)
. —— Ho[gp | s+ [gy | iy

He[hep[ees [he[et| Mg = H; + H,
S(H,H)~0 L%k

G [G [eve [0 [or e[+

Bundling

Fig. 7. Graph-memory encoding in GrapHD: (a) node hypervector generation,
(b) creating a memory node, and (c) graph memory generation.

I Signal 1
[Noise

2 T \

]
I ©
1 o
1]
.‘? | E 0.5
7] 1 0.
5 1 1 False 4 §
a I Positive | & A D=1k
X 2 // D=2k
S
= 7 == D=4k
0 mmmm D=6k
[}

0 0.2 0.4 0.6 0.8
False Positive Rate

-

(a)- Decision Score (b)

Fig. 8. (a) Distribution of signal and noise during information retrieval, and
(b) ROC curves for different dimensionalities.

B. Algorithms with GrapHD Representation

We perform several important cognitive functionalities over
the memory graph to extract information or reason based on
that. We discuss a few key capabilities which have a wide
range of applications in robotic, genomics, signal processing,
and machine learning. All tasks can be directly implemented
over a single graph memory hypervector, with no need to
store original nodes or their connection. In other words, we
will show how a single graph hypervector can answer several
cognitive questions in a fast and efficient way.

Information Retrieval: The main objective of information
retrieval is to extract information about the edges connected to a
node and the information associated with each node. We devise
a statistical framework to study the errors and data recovery.
Given the main memory é, we can use this to reconstruct the
node memory. Using the node memory, we run inference to
find the two main quantities — the nodes that share an edge with
the current node and the information that has been associated
with the current node via binding.

Fig. 8a shows the distribution of signal and noise when an
exist and do not exist in reference, respectively. As results
indicate, both signal and noise follow Gaussian distribution,
where the spread is an effect of interference noise. To identify
the existence of a pattern, our goal is to put a threshold that
can separate signal and noise distribution. Fig. 8b shows the
ROC curve indicating the impact of threshold value on true
and false-positive rates. Ideally, we want the ROC curve to
pass through the left-top corner, where true and false positive
rates are 100 % and 0 %, respectively. The sharp turning point
would represent the optimal scenario. However, the ROC would
be less sharp if we decrease the dimensionality. For example,
in D = 1k, signal and noise will have wider distribution; thus,
the perfect true positive rate can only be obtained with a very

high false-positive rate.

Node Memory Reconstruction: We develop an iterative
method to recover the node memory from the graph hypervector
in an error-correcting way. The main idea is to first formulate a
reasonable estimation of all node memories using the unbinding
procedure. Then, we find a revised estimate for all the nodes
by recursively canceling out the interference noise.

Fig. 9a shows the impact of hypervector dimensionality and
the number of edges on the quality of information retrieval.
Our results indicate a larger graph requires higher hypervector
dimensionality to ensure full graph memorization. For example,
a graph with 100 and 200 edges can be accurately stored in a
graph hypervector with D = 4k and D = 6k dimensionality,
respectively. Fig. 9b shows the number of required iterations for
data recovery. Our technique requires fewer iterations of noise
cancellation when the dimensionality of a hypervector is larger
than the number of edges that it can accurately store. From
another hand, when the dimensionality is much lower than the
required value, our algorithm may still require a few iterations,
but it would converge to a random solution. In summary,
maximum iterations are required when the dimensionality is
the lowest possible value that provides enough capacity to
accurately recover the stored information.

Fig. 9c also shows the number of mismatched edges during
different noise cancellation iterations. Initially, our graph
reconstruction comes with a large number of mismatched
edges. This mismatch is larger for larger graph sizes. The
error rate starts decreasing during our recursive error correction
mechanism. When the size of the graph is within a capacity
of a hypervector (n < 150 for D = 4k, as shown in Fig. 9a),
our reconstruction will accurately recover the model. However,
when the hypervector stores more patterns, our data recovery
often diverges to a random graph (red line shown in Fig. 9c).

One of the main advantages of hyperdimensional represen-
tation is its high robustness to noise and failure [11, 30]. In
GrapHD, hypervectors are random and holographic with i.i.d.
components. Each hypervector stores the information across all
its components so that no component is more responsible
for storing any piece of information than another. This
makes a hypervector robust against errors in its components.
Fig. 9d shows the impact of noise in dimensions on graph
memory reconstruction. The results are reported when different
percentages of hypervector dimensions are randomly dropped.
Our representation provides inherent robustness to such noise,
as the data can still be reconstructed when the dimensionality is
large enough. For example, our method tolerates 10 % random
noise using D = 6k dimensions to represent a graph.

V. HYPERDIMENSIONAL ACTIVE PERCEPTION

Artificial Intelligence has undergone impressive leaps in the
past couple decades, giving birth to countless networks, models,
learning algorithms, architectures, and so on. For virtually every
dataset, we now have armies of trained Als that attempt to
solve the problems in different ways, with different strengths
and weaknesses. Can we use our existing models to bootstrap
Als for more general tasks? Directly related to this issue, the
field of Robotics itself is shifting towards tackling the problem

(b) Average # of Iterations

(a) Reconstruction Accuracy

-
=]
=

X
c.°“e°

=]
=
(]

(=2}
=

w

Dimensions (D)
»
=

N
=

=
=

X

200
of Edges

100 200 100

of Edges

(c) Error vs. Iterations (d) Robustness to Noise

-
N
o

8 Noisy 120
2 Convergence | o P
80 = R
° T80
e =) 1° =g
] ges| o D=2k
] === 150 Edges|| &
© © g «© mmmm D=4k
g 40 rre w200 Edges|| £ 40 | o Do
£ om’ect, £ D=6k
s 90 s
® \ — * g
2 4 8 8 0 10 20 30

Iterations Noise in Dimensions (%)

Fig. 9. Memory graph: (a) reconstruction accuracy, (b) required iterations vs. graph size and dimensions, (c) error rate v. iterations, (d) robustness to noise

of integration to support ever more complex sensors and motors
in modern robots, utilizing them to solve general problems.
In this section, we explore how HDC models could be
applied to the problem of Active Perception in robotics - the
notion that an autonomous agent must actively interact with its
environment to generate perception signals upon which it then
further reacts. This is simply referred to as Hyperdimensional
Active Perception (HAP). Furthermore, we explore how HDC’s
properties can be used to facilitate a type of central Al, which
can be used to also solve the problem of integration in robots.

A. Learning Sensorimotor Control with HAP

First, we discuss a case study in applying HDC to Active
Perception, a move towards HAP in robots [6]. Consider the
seemingly straightforward task of teaching an autonomous
agent to estimate its ego-motion from neuromorphic visual
sensors. In event-based cameras, each “pixel” of the camera
asynchronously detects changes in intensity of light, generating
so-called events at particular timestamps for that pixel. So, the
agent’s movements can directly generate perception in the form
of events, implying the feature of ego-motion is immediately
present in the event stream generated. This gives rise to an
active perception situation.

The pipeline of a HAP system for this task is shown
in Fig. 10, where an agent moves and generates velocity
vectors, shown in (a), as well as raw events from the event
camera, shown in (b). The problem of neuromorphic ego-
motion detection is easily translated into a hyperdimensional
formulation by using motion aligned projections referred to
as “time slices” [31], which bin events in time into convenient
RGB images that encode the events as blurred motion, shown
in (c). Such images are then easily encodeable into binary
hypervectors by encoding each pixel intensity and its position
by the method described in [6], using representations for
intensity and position that can be derived from methods such
as those shown in [32]. The black and white square visualizes
this binary hypervector in (f). Simply aggregating some of
these time slice hypervectors in a sequence encodes a moment
in time that the autonomous agent is perceiving, shown in (d).
Likewise, on the control side, the ego-motion is a simple 3D
vector, encoded via similar methods to the intensity, albeit with
finer bins for the range of velocities the agent has experienced
in each component. Given a moment of perception hypervector
P, and a velocity bin as a hypervector in some component
V, the action and perception can be easily bound together by
P &V, where & is the XOR operation, as shown in (e).

Fig. 10. The pipeline of the HAP system described in [6]. An autonomous
agent generates velocities through movement (a) and events in the event camera
as it moves (b). The latter are binned into time slices (c). Time slices are paired
with their respective velocities across a period of time (d). The hypervector
representations of a time slice and a velocity bin are bound together, and then
aggregated to represent a moment of the agent’s experience (e). Time slice
hypervectors are obtained via the RGB image by a pixel wise intensity-location
encoding scheme into a single hypervector.

With the perception and control sides encoded and bound
as hypervectors, a dataset for HAP is formed. Now, a learning
mechanism is required to be able to recall the correct action to
perform (the velocity) given a change in perception (the event
stream). Both classification and regression methods exist, but
classification is focused on for simplicity. Given a moment
in time as a hypervector, we want to recall the most likely
velocity bin in each dimension. A learning mechanism for this
is shown in Fig. 11. During training, a memory hypervector
M=(A1+...)eVi+..4+(Z1+...) BV, is formed of velocity
bins V; as classes, bound to training examples for each velocity.
Given a new input I, we can classify the velocity by computing
M & I and finding the closest velocity hypervector.

This simple mechanism performs surprisingly well. Bench-
marking was performed on the MVSEC dataset [33], in
which an autonomous car with an event camera navigates
an environment. With competitive results to a CNN based
approach, the HAP approach requires just one hypervector
for M, and n hypervectors for the velocity representations.
Inference is blindingly quick, hundreds of inferences per
second, requiring a handful of XOR operations. Meanwhile, the
training converges within seeing only a fraction of the dataset,
approximately 15 seconds of data, requiring approximately 1
second to train on a single CPU core. Effectively, the training

(A MATCHING
RESULE w VELOCITY

+H o+ R

INPUT

-

Fig. 11. The Hyperdimensional Inference Layer (HIL). A simple, common
mechanism for learning to classify a hyperdimensional vector output, given
a hyperdimensional vector input. During training, we aggregate each time
slice bundle hypervector (shown in shades of red) that experiences a particular
velocity, and bind it to the hypervector representation of this velocity (shown
as green). We then aggregate the result for every velocity into a single, memory
hypervector M. At testing time, given a new input I, we XOR this with M,
and probe each velocity V;; the one the closest Hamming Distance to M & [
is our prediction. This paradigm is generalizeable for arbitrary input and output
hypervectors.

LEARNED FROM
EXAMPLES

can be performed online, in real time, and the small size and
rapid inference of the HAP model allows for multiple models
to be formed. This is a simple, but powerful demonstration of
the potential of HAP, and HDC in robotics, in general.

B. Symbolic Representation and Learning With HDC

For HDC to enable effective integration, a mechanism
for integrating multiple sensors, perceptions, and actions
is desirable. By projecting symbolic data into a common
hyperdimensional space, fusion of different modalities is easily
achieved. Suppose we have multiple models that solve a task
or provide feature vectors: we would like to fuse their output
at a symbolic level via HDC, to form a single predictive model.
Another case study shows that this can be readily achieved with
HDC [7]. Given several models, memory vectors are formed
for each model in a similar fashion to [6], by forming an HIL
much like in Fig. 11 for each model as it learns or is presented
input after training, and then aggregating these HILs into a
single memory that predicts in consensus.

Namely, three different CNN based Hashing Networks were
used to simulate differing models: the Deep Quantization
Network (DQN), Deep Cauchy Hashing (DCH), and Deep
Triplet Quantization (DTQ). Each improves on the previous
in performs, and each uses very learning strategies. However,
by projecting hashes generated by such networks into hyper-
dimensional lengths, HILs were easily learned for each, and
then aggregated into a consensus structure. The HIL learns
much quicker than the networks themselves, as HDC is well
suited to few-shot problems, and project to hyperdimensional
lengths eliminated the need to search for optimal hash-length
difference. Fig. 12 shows this phenomena for DQN. When
all 3 networks were aggregated together, the consensus model
outperformed the best performing standalone model (DTQ)
by an impressive near 10 % relative improvement, from about
72 % to 92 %. Combined with HAP, these results imply a valid

— f1,dan
1, dgn + hil

— f1,dan
06 £1, dan + hil 06

01
01
00

250 500 750

1000 1250 1500 1750 [20 a0 60 80 100 120

Fig. 12. F1 Score of DQN (blue) vs. DQN + HIL (yellow) over training
epochs (left) and Hamming Distances for classification (right).

Embedding

Final layer weights for classification Ihy|e 1, 17

M e 11, 1]

(LA ~, Predicted i€ fa.]
IMAGE Neural Net Q 2 :
Class . tanh .

Weights extracted as vector

Lookup bin hypervector H; for value h;
H=Hi® Vi + Hy® Vp + ... + Hy® Vj, .
Random hypervector V; for component location i

Fig. 13. Given a network and an input, output signals from just before the
classifying layer are vectorized and symbolically converted to hypervectors.
Applying tanh normalizes these values to a range of [—1, 1], which is then
binned to the desired precision.

strategy for both having Active Perception and a form of AGI
for robots for arbitrary sensors and controls.

C. HD-Glue

We can push the idea of symbolic integration in [7] to a
further logical conclusion: feature level learning as opposed to
the symbolic representations. Given an arbitrary set of networks
and in input for them, we can directly encode the vector of
output signals just before the final layer of each network. This
vector is used by the network to predict the class; we can
directly correlate these signals to our output class using HDC.
Using the same idea in [7], one can effectively glue neural
networks / feature vectors together into a consensus model
that outperforms its constituents. This process is referred to
as HD-Glue [8]. In Fig. 13, the pipeline of this process is
illustrated.

The results indicate that for diverse networks architectures,
HD-Glue will form an effective consensus that has all the
advantages of HDC. Benchmarking on MNIST and CIFAR-
10 and CIFAR-100, against various common techniques for
aggregating feature vectors, HD-Glue consistently outperforms,
while still being able to handle any length of feature vector. Like
with any HIL based approach, new networks can be added, the
model is tolerant to any missing networks, and can be trained
with very little overhead when compared to the constituent
networks. From an integration perspective, this approach is
very attractive for integrating existing, trained models for tasks,
while still being flexible to handle any new modalities that
could be added later. From a robotics perspective, this is ideal
to handle the integration problem while still facilitating HAP
all the way from the sensor level, to the control level, to the
central Al level.

VI. CONCLUSION

This work provides a comprehensive overview of the latest
advances in HDC. Temperature and energy challenges from
software-only implementations are explored, motivating the
need for dedicated hardware and in-memory solutions. In
addition, methods are described to increase HDC’s robustness
against noise and defend against adversarial attacks. With an
efficient implementation, knowledge is represented in graphs
enabling reasoning with HDC and recovery of lost memories.
Last, hyperdimensional active perceptions is described allowing
a system to intelligently take actions to trigger a reaction from
the environment.

ACKNOWLEDGMENT

This research was partially supported by Advantest as part
of the Graduate School “Intelligent Methods for Test and
Reliability” (GS-IMTR) at the University of Stuttgart and in
part by the German Research Foundation (DFG) “ACCROSS:
Approximate Computing aCROss the System Stack”. This study
was also supported by National Science Foundation (NSF)
#2028889, #2127780, Semiconductor Research Corporation
(SRC) Task #2988.001, Department of the Navy, Office of
Naval Research, grant #N00014-21-1-2225 and #N00014-22-1-
2067, Air Force Office of Scientific Research, grant #22RT0060,
and generous gifts from Cisco. The authors would like to thank
Austin Vas for this support with the temperature measurements
and Simon Thomann for his valuable contributions to the
computing-in-memory work.

REFERENCES

[11 P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors,” Cognitive computation, vol. 1, no. 2, pp. 139-159, 2009.

[2] P. R. Genssler and H. Amrouch, “Brain-inspired computing for circuit
reliability characterization,” IEEE Transactions on Computers, 2022.

[3] D. Ma, R. Thapa, and X. Jiao, “Molehd: Drug discovery us-
ing brain-inspired hyperdimensional computing,” arXiv preprint
arXiv:2106.02894, 2021.

[4] R. Wang, F. Kong, H. Sudler, and X. Jiao, “Brief industry paper:
Hdad: Hyperdimensional computing-based anomaly detection for
automotive sensor attacks,” in 2021 IEEE 27th Real-Time and
Embedded Technology and Applications Symposium (RTAS), 1EEE,
2021, pp. 461-464.

[5] R. Wang, X. Jiao, and X. S. Hu, “Odhd: One-class hyperdimensional
computing for outlier detection,” in 2022 59th ACM/IEEE Design
Automation Conference (DAC), IEEE, 2022.

[6] A. Mitrokhin, P. Sutor, C. Fermiiller, and Y. Aloimonos, “Learning
sensorimotor control with neuromorphic sensors: Toward hyperdimen-
sional active perception,” Science Robotics, vol. 4, no. 30, 2019.

[7] A. Mitrokhin, P. Sutor, D. Summers-Stay, C. Fermiiller, and Y. Aloi-
monos, “Symbolic representation and learning with hyperdimensional
computing,” Frontiers in Robotics and Al, vol. 7, p. 63, 2020.

[81 P. Sutor, D. Yuan, D. Summers-Stay, C. Fermuller, and Y. Aloimonos,
Gluing neural networks symbolically through hyperdimensional com-
puting, 2022.

[91 P R. Genssler and H. Amrouch, “Brain-inspired computing for
wafer map defect pattern classification,” in IEEE International Test
Conference (ITC’21), 2021.

[10] P. R. Genssler, A. Vas, and H. Amrouch, “Brain-inspired hyperdimen-
sional computing: How thermal-friendly for edge computing?” IEEE
Embedded Systems Letters, 2022.

[11] A.Hernandez-Cane, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD:
Robust, efficient, and single-pass online learning using hyperdimen-
sional system,” in 2021 Design, Automation Test in Europe Conference
Exhibition (DATE), 2021, pp. 56-61.

[12] M. Hersche, S. Kurella, and T. Schneider, Hyperdimensional Comput-
ing Library. 2022.

[13]

[14]

[15]

[16]
(17]

[18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD: Hyperdi-
mensional computing for efficient speech recognition,” in 2017 IEEE
Int. Conf. on Rebooting Computing (ICRC), 2017, pp. 1-8.

Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, et al., “Dynamically
reconfigurable hybrid cache: An energy-efficient last-level cache
design,” in 2012 Design, Automation & Test in Europe Conference
(DATE), 2012, pp. 45-50.

S. Thomann, H. L. G. Nguyen, P. R. Genssler, and H. Amrouch, “All-
in-memory brain-inspired computing using fefet synapses,” Frontiers
in Electronics, vol. 3, 2022.

S. Thomann, P. R. Genssler, and H. Amrouch, Hw/sw co-design for
reliable in-memory brain-inspired hyperdimensional computing, 2022.
S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, et al.,
“A 14nm logic technology featuring 2nd-generation finfet, air-gapped
interconnects, self-aligned double patterning and a 0.0588 um?2 sram
cell size,” in 2014 IEEE International Electron Devices Meeting, 2014,
pp. 3.7.1-3.7.3.

S. Zhang, R. Wang, J. J. Zhang, A. Rahimi, and X. Jiao, “Assessing
robustness of hyperdimensional computing against errors in associative
memory,” in 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), IEEE, 2021,
pp- 211-217.

S. Zhang, R. Wang, D. Ma, J. J. Zhang, X. Yin, et al., “Energy-efficient
brain-inspired hyperdimensional computing using voltage scaling,” in
2022 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 1IEEE, 2022, pp. 52-55.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in proceedings of the
26th Symposium on Operating Systems Principles, 2017, pp. 1-18.
J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
2018, pp. 739-743.

R. Thapa, D. Ma, and X. Jiao, “Hdxplore: Automated blackbox
testing of brain-inspired hyperdimensional computing,” in 2021 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), IEEE, 2021,
pp. 90-95.

D. Ma, J. Guo, Y. Jiang, and X. Jiao, “Hdtest: Differential fuzz
testing of brain-inspired hyperdimensional computing,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC), 1EEE, 2021,
pp. 391-396.

J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for
data poisoning attacks,” Advances in neural information processing
systems, vol. 30, 2017.

R. Wang and X. Jiao, “Poisonhd: Poison attack on brain-inspired
hyperdimensional computing,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), IEEE, 2022, pp. 298-303.
P. Poduval, A. Zakeri, F. Imani, H. Alimohamadi, and M. Imani,
“Graphd: Graph-based hyperdimensional memorization for brain-like
cognitive learning,” Frontiers in Neuroscience, p. 5, 2022.

B. M. Tijms, A. M. Wink, W. de Haan, W. M. van der Flier, C. J. Stam,
et al., “Alzheimer’s disease: Connecting findings from graph theoretical
studies of brain networks,” Neurobiology of aging, vol. 34, no. 8,
pp. 2023-2036, 2013.

Z. Zou, Y. Kim, E. Imani, H. Alimohamadi, R. Cammarota, et al.,
“Scalable edge-based hyperdimensional learning system with brain-like
neural adaptation,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1-15.

M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, et al., “A framework
for collaborative learning in secure high-dimensional space,” in 20719
IEEE 12th International Conference on Cloud Computing (CLOUD),
IEEE, 2019, pp. 435-446.

M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Ex-
ploring hyperdimensional associative memory,” in High Performance
Computer Architecture (HPCA), 2017 IEEE International Symposium
on, IEEE, 2017, pp. 445-456.

A. Mitrokhin, C. Fermiiller, C. Parameshwara, and Y. Aloimonos,
“Event-based moving object detection and tracking,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 1-9.

P. Sutor, D. Summers-Stay, and Y. Aloimonos, “A computational theory
for life-long learning of semantics,” in International Conference on
Artificial General Intelligence, Springer, 2018, pp. 217-226.

A. Z. Zhu, D. Thakur, T. Ozaslan, B. Pfrommer, V. Kumar, et al.,
“The multivehicle stereo event camera dataset: An event camera dataset
for 3d perception,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2032-2039, 2018.

