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ABSTRACT
Brain-inspired hyperdimensional computing (HDC) has demon-
strated promising capability in various cognition tasks such as
robotics, bio-medical signal analysis, and natural language pro-
cessing. Compared to deep neural networks, HDC models show
advantages such as light-weight model and one/few-shot learning
capabilities, making it a promising alternative paradigm to tradi-
tional resource-demanding deep learning models particularly in
edge devices with limited resources. Despite the growing popular-
ity of HDC, the robustness of HDC models and the approaches to
enhance HDC robustness has not been systematically analyzed and
sufficiently examined. HDC relies on high-dimensional numerical
vectors referred to as hypervectors (HV) to perform cognition tasks
and the values inside the HVs are critical to the robustness of an
HDC model. We propose ScaleHD, an adaptive scaling method that
scales the value of HVs in the associative memory of an HDCmodel
to enhance the robustness of HDC models. We propose three differ-
ent modes of ScaleHD including Global-ScaleHD, Class-ScaleHD,
and (Class + Clip)-ScaleHD which are based on different adaptive
scaling strategies. Results show that ScaleHD is able to enhance
HDC robustness against memory errors up to 10, 000𝑋 . Moreover,
we leverage the enhanced HDC robustness in exchange for energy
saving via voltage scaling method. Experimental results show that
ScaleHD can reduce energy consumption on HDC memory system
up to 72.2% with less than 1% accuracy loss.

1 INTRODUCTION
The developments in artificial intelligence (AI) and machine learn-
ing (ML), such as deep neural networks (DNNs), promise enormous
societal and economic benefits. However, their deployment on hard-
ware faces daunting difficulties due to their extremely-demanding
and increasing computation requirements which may not always be
satisfied by resource-constrained platforms. Recently, inspired by
the way brain works with cognition tasks, especially the very large
brain circuit size, hyperdimensional computing (HDC) has been in-
troduced as an alternative computational model [7, 8, 17]. Compared
to DNNs, HDC has shown several key advantages including more
compact model, lower computation requirements, and one/few-shot
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learning capability, making it a promising AI paradigm in resource-
constrained platforms such as mobile and wireless devices [2, 24].
Such versatility has led to its success in various application do-
mains including robotics [16], natural language process [17, 20],
drug discovery [14], and multimedia processing [5, 15].

As the transistor size scales down to deep nanometer era, mi-
croelectronic circuits are becoming increasingly susceptible to mi-
croelectronic variability [9], such as variations in manufacturing,
operating conditions (e.g., voltage droops and temperature fluc-
tuations), and aging. Such variations can cause delay uncertainty
which can prevent circuits from meeting their timing specifica-
tion, thus resulting in timing errors. Timing errors typically appear
as faults (bit flips) in the high-level operations, which can cause
incorrect computing results. Furthermore, the radiation-induced
soft error rate per bit is also estimated to increase 8% with each
technology scaling by semiconductor vendors [3]. Such variations
pose imminent threat to the correctness and quality of results deliv-
ered by computing systems, which typically requires a near-perfect
execution with extremely low error rates to guarantee correctness.

While AI/ML methods are generally more error-robust than con-
ventional computing and the quality of model output results is
relatively insensitive to the rising error rates, recent study shows
that the inference accuracy of DNN models can still drop signifi-
cantly when the error rates are too high, such as 0.001% [13, 21].

Similarly, while HDC is claimed to be robust to hardware errors
due to its holographic distributed representation with information
equally distributed into high-dimensional vectors, recent studies
show that HDC also experiences a significant accuracy drop with
error rate reaches 0.001% [23]. Considering the increasing reliabil-
ity threat posed by microelectronic variations, especially with the
burgeoning use of microelectronic devices in mobile and wireless
applications that can constantly experience variations in operating
conditions (e.g., supply voltage droops and temperature fluctua-
tions), enhancing the HDC robustness to hardware errors are of
utmost importance.

To address this problem, we present ScaleHD in this paper, which
aims to improve the robustness of HDC models to bit flip errors,
which is one typical error caused by microelectronic variations
and/or soft errors. ScaleHD leverages the distribution characteris-
tics of the values in the HDC model to perform adaptive scaling,
specifically, on the class hypervectors to obtain enhanced robust-
ness. The enhanced robustness further open the doors for oppor-
tunistic reduction of design margin (e.g., voltage) to increase the
operational efficiency of hardware in HDC systems.

Our contributions are as follows:

• We analyze the distribution of values of the class HVs in
HDC models across multiple applications, based on which
we propose ScaleHD. ScaleHD is an adaptive scaling method
that can re-distribute the values in class HVs in HDC to
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improve the robustness against bit flip errors while incurring
little to no impact on HDC inference accuracy.
• We propose three different modes of ScaleHD, including
Global-ScaleHD, Class-ScaleHD, and (Class + Clip)-ScaleHD,
each focusing on different levels of scaling to achieve differ-
ent level of performance. Experimental results across various
applications and HDC configurations show that ScaleHD can
significantly enhance HDC robustness to memory errors up
to 10, 000𝑋 .
• Using ScaleHD, we are able to enable higher energy effi-
ciency. Specifically, we propose to use voltage scaling to re-
duce the memory energy. While voltage scaling can lead to
memory errors, the enhanced robustness with ScaleHD can
lead up to 72.2% energy saving on HDC system in 22nm
SRAM architecture.

2 RELATED WORKS
AI/ML robustness to hardware errors have been intensively studied
in the past, especially in the DNN accelerators context [11, 18, 19].
DNN robustness to timing errors caused by voltage and temperature
variations has been first studied in [6], which shows that DNNs
can experience significant accuracy drop for error rate as low as
0.001%, which is consistent with [21]. A set of DNN error injection
tools are then proposed to assess the robustness to DNNs including
Ares [18] and TensorFi [12]. A common observation of all these
studies is that DNN is more robust to hardware errors to a certain
degree depending on data types, values, data reuses, and types of
layers in the design.

Brain-inspired HDC has been proposed as a light-weight novel
computing paradigm that has shown promising performance in
robotics [16], natural language process [17, 20], drug discovery [14],
and multimedia processing [5, 15]. For example, HDC outperforms
state-of-the-art DNNmodels (e.g., graph/recurrent neural networks)
in drug discovery in terms of accuracy with a significantly reduced
computing costs [14]. While HDC is claimed to be robust to hard-
ware errors [4, 17], recent studies show that, like DNNs, HDC
can also experience sharp accuracy drop with low error rates (e.g.,
0.001%) [23]. Currently, most HDC studies rely on inherent error
tolerance of existing HDC algorithms [4, 17]. This unfortunately
may not be the best way to protect HDC from hardware errors
especially considering the increasing threat from microelectronic
variations and environmental uncertainty and. Extra hardware cir-
cuitry like Razor [23] may mitigate the impact of bit flip errors but
cost extra energy and chip area [22].

Considering the algorithmic difference between DNNs and HDC,
existing algorithm-level DNNs error enhancement techniques can-
not be directly applied to HDC algorithm. In this paper, we propose
a general algorithmic-level method that does not require any hard-
ware modification.

3 HDC BACKGROUND
In this section, we describe the HDC model base element, opera-
tions and operating processes including the Encoding, Training,
Retraining, and Inference. The flow shows in Fig. 1 can help
understand the basic framework of HDC.
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Figure 1: HDC with ScaleHD framework diagram

Basic Component and Operation HDC uses a high-dimensional
(e.g., 𝐷 = 10000) pseudo-random and holographic vector( ®𝐻 ) called
a hypervector(HV) as the basic element shown in Eq. 1. HV values
can be integers, binary or bipolar. In HDC, HVs serve as a data
block to represent information depending on the application, such
as language characters, audio signal amplitudes, and image pixel
values. As part of HDC, different HV operations are used to bundle
and bind different information. Arithmetic operations supported
by HV are addition, multiplication, and permutation. Additions
and multiplications use two input HVs to perform element-by-
element additions and multiplications. Permutation rotates one HV
cyclically to generate a newHV. The dimensions of the input and the
output HVs stay the same across all the operations. By multiplying
and permuting, generated HVs are orthogonal to their original,
while adding retains 50% of the information of each original HV.

−→
𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑑 ] (1)

Encoding HDC’s framework begins with encoding. In HDC, sam-
ples are mapped from original data to HVs. Both training and in-
ference are performed using the HVs. The encoding map raw fea-
tures to HVs. For our HDC model, we employ the most common
record-based encoding [2]. In the beginning, it creates position
hypervectors( ®𝐻𝑝𝑜𝑠 ) and level hypervectors( ®𝐻𝑙𝑒𝑣𝑒𝑙 ). They are all
bipolar{−1, 1} and have the same dimension. Each position HV is
generated randomly and orthogonally to each other. Every level
HV correlates with the nearby level HVs. The subsequent level HVs
are generated by modifying certain number of bipolar elements
from nearby level HV. Each feature in a sample will have its feature
HV( ®𝐻𝑓 ) generated by multiplying the corresponding level HV and
position HV. The sample HV( ®𝐻𝑠 ) will be generated by adding the
feature HVs( ®𝐻𝑓 ) in total. The encoding is based on the equation
Eqn. 2.

®𝐻𝑓 = ®𝐻𝑙𝑒𝑣𝑒𝑙 ∗ ®𝐻𝑝𝑜𝑠
®𝐻𝑠 = ®𝐻𝑓1 + ®𝐻𝑓2 . . .

®𝐻𝑓𝑛
(2)

Training The encoding stage encodes each input sample into a
sample HV. The training stage simply add all the sample HVs ( ®𝐻𝑛

𝑠 )
of the same class together to create a class HV( ®𝐴𝑛) representing that
specific class, as shown in Eq. 3. This is an element-by-element ac-
cumulation. HDC framework stores all class HVs in the associative
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Figure 2: Original data distribution histogram in associative
memory

memory.
®𝐴𝑛 =

∑︁
®𝐻𝑛
𝑠 (3)

Retraining Furthermore, HDC retraining, other than the single-
pass method, is optional, but can significantly increase the model
accuracy through several epochs of retraining. In this first stage, the
training data will be tested. Upon incorrect prediction, the query
HV( ®𝐻𝑠 ) will be added to the correct class HV( ®𝐴) and subtracted
from the wrong predicted class HV( ®𝐴′ ). In this manner, the class
HV can be enhanced from samples, and other class HVs that may
be distorted will be reduced in relation to them. The following Eq. 4
summarizes the process. Moreover, the 𝛽 learning rate can be an
adaptive learning rate so as to enhance retraining.

®𝐴′ = ®𝐴′ − 𝛽 ®𝐻𝑠

®𝐴 = ®𝐴 + 𝛽 ®𝐻𝑠

(4)

Inference The inference stage classifies unseen samples using the
pre-trained class HVs in the associative memory. First, same as
the training stage, testing samples are encoded into sample HVs
(referred to as “query HV”). Second, the HDC model measures the
similarity between the query HV( ®𝐻𝑠 ) and every class HV( ®𝐴𝑛) in the
associative memory. The most typical similarity metric is cosine
similarity as Eq. 6 [17]. Eventually, the class(𝑙) with the highest
similarity with the query HV will be used as the inference result of
the sample as shown in Eq. 5.

𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 ({cos( ®𝐻𝑠 , ®𝐴1), cos( ®𝐻𝑠 , ®𝐴2), . . . , cos( ®𝐻𝑠 , ®𝐴𝑛)}) (5)

4 CLASS HV VALUE DISTRIBUTION ANALYSIS
In this section, we present a key observation by profiling and ana-
lyzing the value distribution of class HVs in HDC models, which
inspires the development of ScaleHD. After training HDC models
on different applications, we profile the values of class HVs in HDC
models and examine their value distribution. We find that for dif-
ferent applications, class HVs would have different value ranges
and distributions, as shown in Table 1. Because each application
has a different amount of samples, and different HDC framework
use different encoding method and training strategy, we need to
use different bit-width to implement the each element in class HV
for different HDC system to completely store these models. For
example, in our implementation, the value range is (-5266, 6340) for
CARDIO after training, which means 16 bits (i.e., int16) is enough
to store the model. While for HAR with a value range of (-155595,
104273), we need 32 bits (i.e., int32) to store the value.

Now we take a deeper look into HAR’s class HVs values by
profiling the value distribution, as shown in Fig. 2. We use two
examples — “class 6” HV and “class 7” HV. As shown in Fig. 2,
we can find the range and distribution of values for “class 6” HV
and “class 7” HV are notably different. This is caused by HAR’s
unbalanced dataset. Class 6 HV value has a wider range because of
more samples comparing to class 7. Class 7 HV values are largely
clustered around 0 due to less training samples. From the Fig. 2 (a)
and Table. 1, we realize the value range of this associative memory
is larger than int16 (-32,768 to +32,767), but much less than int32
(-2,147,483,648 to +2,147,483,647), which means there are “empty”
bits (i.e., “0” bits) in each value in the most significant positions.

Note that different value will have different relative error for a bit
flip. For example, for a 4-bit unsigned system, if the original data is
0010 (i.e., 210) and there is a bit flip on the least significant bit (LSB),
the relative error is 1/2 = 50%. However, if the original data is 1110
(i.e., 1410), the relative error of the same bit flip is only 1/14 = 7%.
This inspires us to consider the following question: can we scale
up values in HDC model without affecting the HDC classification
result? If so, we can reduce the relative effects of bit flips and
hence enhance the HDC robustness through fully using these extra
“space” comes with fixed data-width to reduce the relative error.
This inspired us to develop ScaleHD.

5 APPROACH OF SCALEHD
In this section, we first provide theoretical foundations for ScaleHD.
Then, we present the detailed process of ScaleHD, along with three
different modes of ScaleHD: Global-ScaleHD, Class-ScaleHD, and
(Class + Clip)-ScaleHD. Finally, we use special metric briefly evalu-
ate the robustness enhancements made by ScaleHD.

5.1 Mathematical Proof of ScaleHD
Before we introduce ScaleHD, we provide a theoretical foundation
for ScaleHD by demonstrating the equivalence of HDC function-
ality before and after ScaleHD. As we described in the section on
HDC background, HDC uses HV as its basic component. Moreover,
the HDC uses the cosine similarity between two vectors as the main
part of the inference process. By using cosine similarity, we can
compare the direction between two vectors, and linearly scaling
up/down each value in the class HV with the same ratio will not
impact the direction of vectors. Therefore, the results of the cosine
similarity check will not change, resulting in the same inference
result. A mathematical proof of this can also be provided by Eq. 6.
Due to this fact, scaling the same ratio to each value in a class HV
will not affect the inferences of the HDC system.

cos(𝛼 ®𝐻𝑝 , ®𝐻𝑞) =
𝛼 · ®𝐻𝑝 · ®𝐻𝑞

| | ®𝛼 · 𝐻𝑝 | | × | | ®𝐻𝑞 | |

=

∑𝑑
𝑖=1 𝛼 · ℎ𝑝𝑖 · ℎ𝑞𝑖√︃∑𝑑

𝑖=1 𝛼
2 · ℎ𝑝𝑖2 ·

√︃∑𝑑
𝑖=1 ℎ𝑞𝑖

2

=

∑𝑑
𝑖=1 ℎ𝑝𝑖 · ℎ𝑞𝑖√︃∑𝑑

𝑖=1 ℎ𝑝𝑖
2 ·

√︃∑𝑑
𝑖=1 ℎ𝑞𝑖

2

= cos( ®𝐻𝑝 , ®𝐻𝑞)

(6)
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Figure 4: Data distribution histogram in associative memory
with Global-ScaleHD

5.2 Mechanisms and Implementation of
ScaleHD

ScaleHD is an set of methods can enhance the HDC robustness
though value scaling. Essentially, it is a post-processing step for
the HDC model (associative memory) after training and before
inference. The process is specific to its data type, so it can be applied
to every integer representation HDC model with a wide range of
settings and applications. Furthermore, the process does not require
any additional hardware as it is a software-based modification.
There are limited overhead costs, and the process is almost free of
charge. Following that, we will discuss the details of each ScaleHD.

Global-ScaleHD : The first mode of ScaleHD is Global-ScaleHD.
It basically scales up all values in class HVs with the same ratio.
Specifically, we first let

−→
𝐻 = [𝑉1,𝑉2, . . . ,𝑉𝑑 ] be a𝑑 dimensional class

HV, and A = {𝐻1, 𝐻2, . . . , 𝐻𝑛} be an associative memory storing 𝑛
class HVs.𝑤 represent the data type the system use. In this paper,
we choice common used INT32, INT16 and INT8 as our data type.
Second, we find the maximum absolute value Va in the A. We also
define the maximum value that can be represented by the current
bit width as Vn. For example, for a 32-bit int32 value, the maximum
value Vn is 2,147,483,647. Then, we compute the ratio 𝛼 between Vn
and Va. Last, by scaling up every value in A by 𝛼 times, all values
in A get scaled up to As without overflow and precision loss. This
process can be summarized as Algorithm 1. Scaled value will have
less relatively error comparing to the original value when same bit
flips occur. Fig. 3 shows a example how scale can reduce relatively
error against bit flip. The original value is 5, after bit flip, it become
to 17. The relative error is |17 − 5|/5 = 240%. After 16 times scale
up, the value become 80, With the same random bit flip, the relative
error is |68 − 80|/80 = 15% which is much smaller. Fig. 4 shows
the value distribution of associative memory after Global-ScaleHD.
We can find though the distribution pattern seems the same, the

x-axis is 10000X larger after Global-ScaleHD. This will enhance the
robustness of HDC.

𝛼 =
𝑉𝑛

𝑉𝑎
As = 𝐴 × 𝛼 (7)

Algorithm 1 Global-ScaleHD
1: Parameters: Associate Memory 𝐴; Scaled Associate Memory

𝐴𝑠 ; Target data-width𝑤 .
2: # Allocate memory for scaled associate memory according to

original associate memory 𝐴 and target-width𝑤
3: 𝐴𝑠 =𝑚𝑎𝑙𝑙𝑜𝑐 (𝐴,𝑤)
4: # Find Max absolute value in the associate memory
5: 𝑉𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝐴)
6: 𝑉𝑚𝑖𝑛 ←𝑚𝑖𝑛(𝐴)
7: 𝑉𝑎 ←𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑉𝑚𝑎𝑥 ), 𝑎𝑏𝑠 (𝑉𝑚𝑖𝑛))
8: 𝑉𝑛 ←𝑚𝑎𝑥 (𝑤) # Find the max value of this data type
9: # Compute scaling ratio
10: 𝛼 ← 𝑉𝑛/𝑉𝑎
11: # Scale and save each value in the associate memory to the

scaled associate memory
12: 𝐴𝑠 ← 𝛼 ∗𝐴
13: return 𝐴𝑠

Class-ScaleHD : Next, we present the secondmodeClass-ScaleHD.
This is inspired by our observation that even for the same HDC
model, different class HVs would have different value distributions.
Thus, instead of scaling up class HVs using a global ratio, we in-
dividually scale up each class HV as shown in Fig. 5. Note that
according to Section 5.1, the class-specific scaling up will also not
change the classification results. We present the following steps to
implement Class-ScaleHD, which is also illustrated in Algorithm 2.
First, we find the maximum absolute value Vc for each class HV Hc.
Then, we compute a ratio 𝛼 between Vn (the maximum value that
can be represented by𝑤 ) and Vc. Third, we scale up this class HV
by 𝛼 . This process can be simplified as Eq. 8. We repeat these steps
for each class HV so that we can get an updated associative mem-
ory. Fig. 6 shows the value distribution of associative memory after
Class-ScaleHD. Compare to Fig. 4, we can find the Class-ScaleHD is
effective especially for unbalanced data. Because of HDC’s special
training strategy, the class with more samples usually lead to a
larger absolute value of class HV. Global-ScaleHD can not handle
this situation. The different distribution of "class 6" HV and "class
7" HV validates this idea. Because the value range of each class
HV is likely to be different from the whole associative memory
value range, this method can fully scale up with balanced data
trained associative memory which will further enhance the HDC
robustness.

𝛼 =
𝑉𝑛

𝑉𝑐
Hs = 𝐻 × 𝛼 As = {𝐻𝑠1, 𝐻𝑠2, . . . , 𝐻𝑠𝑛} (8)

(Class + Clip)-ScaleHD : At the end, we present the third mode
of ScaleHD — (Class + Clip)-ScaleHD. The key idea is to cut/clip
some extreme values in the class HV value distribution so that we
are able to scale up even more, hence providing more robustness to
HDC model. We propose the following steps. First, we use Class-
ScaleHD to the model to fully scale up the value. Second, we set
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Algorithm 2 Class-ScaleHD
1: Parameters: Associate Memory 𝐴; Scaled Associate Memory

𝐴𝑠 ; Target data-width𝑤 .
2: # Allocate memory for scaled associate memory according to

original associate memory 𝐴 and target-width𝑤
3: 𝐴𝑠 =𝑚𝑎𝑙𝑙𝑜𝑐 (𝐴,𝑤)
4: # Iterate each class HV 𝐻𝑐 in the Associate Memory 𝐴
5: for 𝐻𝑐 ∈ 𝐴 do
6: # Find Max absolute value in the class HV
7: 𝑉𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝐻𝑐 )
8: 𝑉𝑚𝑖𝑛 ←𝑚𝑖𝑛(𝐻𝑐 )
9: 𝑉𝑎 ←𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑉𝑚𝑎𝑥 ), 𝑎𝑏𝑠 (𝑉𝑚𝑖𝑛))
10: 𝑉𝑛 ← 𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒 𝑓 𝑜𝑟𝑤

11: # Compute scaling ratio
12: 𝛼 ← 𝑉𝑛/𝑉𝑎
13: # Scale and save each value in the class HV to the target

scaled class HV
14: 𝐻𝑠 ← 𝛼 ∗ 𝐻𝑐

15: end for
16: return 𝐴𝑠
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Figure 6: Data distribution histogram in associative memory
with Class-ScaleHD

an absolute clip value C, and thus we have two clip points at “+C”
and “-C”. Third, (Class + Clip)-ScaleHD will clip every value if it
is larger/smaller than the clipping values to reduce the range of
values in class HVs. The principle of clip is shown in Eq. 9. Fig. 7
shows the value distribution of associative memory after clipping,
and we can find some value has been clipped on both ends of the
distribution. After the clipping, we perform the Global-ScaleHD like
scaling based on Eq. 7. The value distribution further “fill up” the
possible range that can be represented by current bit width after
clip and scale. This detail of the procedure shows in Algorithm 3.

Table 1: Pre-trained associativememory value range, selected
clip ratio and absolute clip value for 32-bit.

Dataset Minimum Maximum Clip Ratio(R) Clip Value (C)

CARDIO -5266 6340 0.605 1.3e+9

HAR -155595 104273 0.698 1.5e+9

ISOLET -22070 28294 0.652 1.4e+9

MNIST -958416 778792 0.466 1e+9
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Figure 7: Data distribution histogram in associative memory
with (Class + Clip)-ScaleHD

Please note that because clipping has changed certain values
in the class HVs, the class HV will be affected. As a result, the
classification results and the inference results will be impacted.
If we want more scaling space to provide more robustness, the
absolute clip value should smaller. But with a smaller absolute clip
value means more values will get clipped and the accuracy may
drop more. To explore the trade-off between clipping values and
HDC inference accuracy, we performed experiment for clipping
value v.s. accuracy in 32-bit to find a balance between robustness
and accuracy. The result is shown in Fig. 8. Through a careful
examination, we choose a absolute clip value for each application so
that the inference accuracy loss is less than 1%. Next, We calculate
the ratio between the selected clip value and 32-bit data range
as the clip ratio for each application. We use this ratio for other
data-width (Class+Clip)-ScaleHD experiment. The clip ratio(R) and
absolute clip value(C) (after Class-ScaleHD) for int32 we choose in
our experiment are in Table. 1.

𝐻𝑉 [𝑖] =


+𝐶, 𝐻𝑉 [𝑖] > +𝐶
𝐻𝑉 [𝑖], −𝐶 ≤ 𝐻𝑉 [𝑖] ≤ +𝐶
−𝐶, 𝐻𝑉 [𝑖] < −𝐶

(9)

5.3 Robustness Enhancement Evaluation
As an initial step in assessing the ability of the ScaleHD to enhance
HDC’s robustness before exam with testing dataset, we explore an
evaluation metric specially for HDC to evaluation the ScaleHD en-
hancement. Given that HDC uses cosine similarity for inference,
we use the cosine similarity between error inject model and origi-
nal model as the evaluation metric to check how error influenced
HDC model get protected by ScaleHD. In general, the higher the
cosine similarity, the more likely the error inject model will be



Algorithm 3 (Class+Clip)-ScaleHD
1: Parameters: Associate Memory 𝐴; Scaled Associate Memory

𝐴𝑠 ; Target data-width𝑤 , Clip ratio for this application 𝑅

2: # Allocate memory for scaled associate memory according to
original associate memory 𝐴 and target-width𝑤

3: 𝐴𝑠 =𝑚𝑎𝑙𝑙𝑜𝑐 (𝐴,𝑤)
4: # Iterate each class HV 𝐻𝑐 in the Associate Memory 𝐴
5: for 𝐻𝑐 ∈ 𝐴 do
6: # Find Max absolute value in the class HV
7: 𝑉𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝐻𝑐 )
8: 𝑉𝑚𝑖𝑛 ←𝑚𝑖𝑛(𝐻𝑐 )
9: 𝑉𝑎 ←𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑉𝑚𝑎𝑥 ), 𝑎𝑏𝑠 (𝑉𝑚𝑖𝑛))
10: 𝑉𝑛 ← 𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒 𝑓 𝑜𝑟𝑤

11: # Compute scaling ratio
12: 𝛼 ← 𝑉𝑛/𝑉𝑎
13: # Scale and save each value in the class HV to the target

scaled class HV
14: 𝐻𝑠 ← 𝛼 ∗ 𝐻𝑐

15: end for
16: # Compute clip value for this data-width
17: 𝐶 ← 𝑉𝑛 ∗ 𝑅
18: for 𝐻 ∈ 𝐴𝑠 do
19: if H > 𝐶 then
20: 𝐻 ← 𝐶 # Clip positive extreme values
21: end if
22: if H < -𝐶 then
23: 𝐻 ← −𝐶 # Clip negative extreme values
24: end if
25: end for
26: # Scale after clip
27: 𝐴𝑠 = 𝑉𝑛/𝐶 ∗𝐴𝑠

28: return 𝐴𝑠
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Figure 8: Absolute clip values influence accuracy across dif-
ferent applications (32-bit with (Class + Clip) -ScaleHD).

close to the original model, which further demonstrates how ro-
bust the model is. We run a short test on four applications, each
with a different error rate, through 32bit settings. The results of
Fig. 9 indicate that, although HDC is robust by itself, ScaleHD is
superior at overcoming random bit-flip errors. Furthermore, Class-
ScaleHD has performed significantly better than Global-ScaleHD,
while (Class+Clip)-ScaleHD has demonstrated the strongest perfor-
mance in this evaluation metric.

Table 2: Error-free accuracy for different datasets and config-
uration.

Configuration ISOLET HAR CARDIO MNIST

32-bit 94.42% 93.77% 93.43% 91.04%

16-bit 94.42% 93.77% 93.43% 91.04%

8-bit 94.42% 91.71% 92.96% 91.01%

6 EXPERIMENTAL RESULTS
To fully explore the effectiveness of ScaleHD, we test HDC with
ScaleHD on four different applications with three different data-
width. Datasets including speech recognition(ISOLET 1), human
activities (HAR 2), medical diagnosis(CARDIO 3) and image Clas-
sification(MNIST [10]). In our model development, we implement a
basic approach of HDCmodel without special encoding method and
training strategy which means our model accuracy might not meet
state of art HDC model accuracy. But experiment still effectively
show the effectiveness robustness enhancement of ScaleHD to gen-
eral HDC model. Hardware errors are injected to the HDC models
as random bit flips with a pre-defined error rate, similar to existing
studies [11, 18, 19, 22]. This error model randomly flips a single bit
upon the occurrence of an error in memory. We inject errors to
HDC’s associative memory with aimed error rates and error models
during the inference stage. We apply ScaleHD to the HDC’s asso-
ciative memory after the training stage and before the inference
stage.

6.1 Robustness Enhancement by ScaleHD
We use three different HDC configurations in terms of three differ-
ent data width: 32-bit, 16-bit, and 8-bit across four different applica-
tions. As shown in Table. 1, the value range of class HVs is different
across different applicaiton. We perform Global-ScaleHD as the
baseline quantization method for our 16/8-bit experiment for HAR
and MNIST, and 8-bit experiment for ISOLET and CARDIO in order
to reduce the precision loss caused by fixed ratio quantization. The
different HDC configurations and their corresponding (error-free)
accuracy are presented in Table 2. Note that quantizing to 8-bit data
width incur negligible accuracy loss. Nevertheless, we focus on the
relative accuracy drop after injecting errors and relative robustness
enhancement.

For each configuration, we sweep 90 error rates equally space on
a logarithmic scale from 10−10 to 1, e.g., 8∗ 10−10, 9∗ 10−10, 1∗ 10−9
etc. At each error rate, we repeat our experiment 10 times and report
the mean accuracy. The overall experimental results are shown in
Fig. 10, based on which we present several key observations.

First, by applying ScaleHD, HDC robustness is significantly en-
hanced across all application datasets. For example, in ISOLET
32-bit (Fig. 10 (a)), the baseline classifier starts to see accuracy drop
at error rates 10−7, while after applying (Class + Clip)-ScaleHD, it
can push error rates to 10−3 without accuracy loss. This is 10, 000𝑋

1http://archive.ics.uci.edu/ml/datasets/ISOLET
2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
3https://archive.ics.uci.edu/ml/datasets/cardiotocography
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(b) HAR 32-bit
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(c) CARDIO 32-bit
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(d) MNIST 32-bit

Figure 9: Evaluation ScaleHD with cosine similarity check

10 9 10 7 10 5 10 3 10 1

Error Rate
0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

(a) ISOLET 32-bit
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(b) HAR 32-bit
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(c) CARDIO 32-bit
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(d) MNIST 32-bit
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(e) ISOLET 16-bit
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(f) HAR 16-bit
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(g) CARDIO 16-bit
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(h) MNIST 16-bit
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(i) ISOLET 8-bit
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Figure 10: ScaleHD effects on HDC Robustness

robustness improvement. Similarly, for all the other 32-bit HDC clas-
sifiers (HAR, CARDIO, MNIST), i.e., Fig. 10 (b) - (d), the robustness
are also significantly improved with 1000𝑋 - 10000𝑋 .

Second, among several modes of ScaleHD, we can consistently
see that (Class + Clip)-ScaleHD outperforms Class-ScaleHD, which
outperforms Global-ScaleHD. Using 32-bit MNIST (Fig. 10 (d)) as
our example, we can see that (Class + Clip)-ScaleHD can push
the error rates to around 10−3 without incurring accuracy loss,
while for Global-ScaleHD and Class-ScaleHD, the corresponding
metrics are around 10−5 and 10−4. This suggests that, for this ap-
plication, (Class + Clip)-ScaleHD can improve robustness 10𝑋 and
100𝑋 more than Class-ScaleHD and Global-ScaleHD, respectively.
Similar phenomenon can be observed for all the application datasets
and configurations across Fig. 10 (a) - (l).

For certain scenarios, aswementioned, we useGlobal-ScaleHD as
model quantization method for the baseline. For example, in 8-bit

ISOLET (Fig. 10 (i)), the value range of class HVs are already beyond
the range that can be represented by 8 bits. That is, all the bit posi-
tions are “full”, and there are no “empty” bits for scaling. Actually,
in this case, we need to down-scale the HV values to accommo-
date each value within 8 bits. Therefore, Global-ScaleHD can be
seen as the baseline and quantization method in this case as we
mention in the experiment setting. Regardless, by applying Class-
ScaleHD and (Class + Clip) -ScaleHD, we are still able to improve
HDC robustness around 100X.

Another interesting observation is in HAR 8-bit (Fig. 10 (j)) exper-
iment. The accuracy of themodel is higherwith Class-ScaleHD (93.61%)
and (Class+Clip)-ScaleHD (93.64%) compared to the baseline (91.71%).
The situation is unusual as we proved that the error-free model
with Global scale and Class scale will not affect the model inference
accuracy, while the (Class+Clip)-ScaleHD may only reduce less



Table 3: Energy saving through voltage scaling across different datasets and settings

Baseline Global ScaleHD Class ScaleHD (Clip+Class) ScaleHD

32-bit 16-bit 8-bit 32-bit 16-bit 8-bit 32-bit 16-bit 8-bit 32-bit 16-bit 8-bit

CARDIO 48.39% 48.73% 61.22% 61.49% 59.15% 61.22% 64.20% 63.21% 64.20% 66.82% 66.54% 68.65%

HAR 47.01% 59.15% 61.49% 59.73% 59.15% 61.49% 63.21% 61.49% 65.43% 65.86% 66.23% 67.06%

ISOLET 48.00% 48.00% 65.86% 66.23% 65.86% 65.86% 68.65% 68.65% 68.65% 72.20% 72.20% 71.97%

MNIST 51.02% 61.49% 61.22% 59.73% 61.49% 61.22% 64.20% 64.90% 64.90% 69.57% 70.70% 70.21%

Average 48.60% 54.34% 62.45% 61.79% 61.41% 62.45% 65.07% 64.56% 65.80% 68.61% 68.92% 69.47%

than 1% accuracy in our setting. In spite of the fact that this phe-
nomenon does not manifest itself in other experiments, we believe
it remains reasonable. First of all, the 8-bit model is quantized from
the 32-bit model, and thereby the precision of the model may suffer
in the quantization(integer linear scaling down). As shown in the
table, HAR, CARDIO, and MNIST all experience a decline in base-
line accuracy with a 8-bit model. Furthermore, the ratio of scaling
down may also influence model precision. When the ratio of scaling
down is high, greater precision is likely to be lost. (Class+Clip)-
ScaleHDmay result in a lower precision loss than the Global- since
(Class+Clip)- ScaleHD need less quantization scaling down ratio.
Consequently, the Class-ScaleHD and (Class+Clip)- ScaleHD are
also effective in recovering the precision loss from the quantization
in some circumstances.

Last but not least, if we compare Fig. 10 (a)(b)(c) with Fig. 9, we
find that the two plots follow similar trends. This shows despite
only comparing cosine similarity between the original model and
the error inject model, it is still able to predict how errors affect
the HDC model’s accuracy without putting the dataset under test.
Therefore, these results show our evaluation metric is a reliable
tool for evaluating HDC model robustness.

6.2 Energy Saving by ScaleHD
Recent research indicates that HDC associative memory can save
up to 72.5% energy with an additional razor circuit to prevent er-
rors [22]. To see how the robustness enhancement from ScaleHD can
benefit HDC system, we performed simulations based on the rela-
tionship between voltage scaling and bit error rates, as depicted
in Eq. 10 obtained from a real SRAM measurement fabricated in
FDX22 (22nm) technology [1]. We map the tolerable error rates to
the equation to obtain the corresponding voltage scaling budget.
Then, using 𝑃 = 𝐶𝑉 2 𝑓 , we can obtain the corresponding energy
saving with less than 1% accuracy loss. This refers to [22]’s setting.
Additionally, we carried out our simulation on each of the four
applications, using a variety of data types. Furthermore, we exam-
ined the average energy savings across the four applications using
the same settings. The details of energy savings can be found in
Table 3. As for 16-bit ISOLET, CARDIO, and all 8-bit experiments,
we employ Global-ScaleHD as the quantization method. We put
this part of results both in the baseline and Global-ScaleHD section
in Table 3.

Note that since HDC has inherent error tolerance, even the base-
line HDC without quantization can save around 50% energy with
negligible accuracy loss(<1%). Additionally, by using the Global-
ScaleHD, the Class-ScaleHD, and the (Class + Clip)-ScaleHD, the
average energy savings will rise to 62%, 65%, and 69%, respectively.
Some settings within ISOLET and MNIST even able to save more
than 70% of energy. When compared to the results found in [22] (Up
to 72.5% energy saving), the memory has the capability of achiev-
ing the same level of energy savings with the ScaleHD applied.
Nonetheless, existing work [22] requires extra protection circuit
for the memory, which costs more space ,energy and require cus-
tomized hardware, but ScaleHD is purely a software approach with
no modification to the hardware and no overhead except a one-
time post-processing procedure which takes place after training
and prior to inference. Based upon our analysis, we believe our
proposal is superior to the existing work.

𝐵𝑖𝑡 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 2e+08 ∗ 𝑒−61.69∗𝑉𝑑𝑑 (10)

7 CONCLUSION
In this paper, we propose ScaleHD, an adaptive scaling method
that scales the value of HV in associative memory to enhance the
robustness of HDC models. We propose three different modes of
ScaleHD including Global-ScaleHD, Class-ScaleHD, and (Class +
Clip)-ScaleHD. We evaluate ScaleHD by performing error injection
experiments with a wide range of error rates, datasets, HDC con-
figurations. Results show that ScaleHD is able to enhance HDC
robustness against memory errors up to 10000𝑋 . Moreover, we
leverage the enhanced HDC robustness in exchange for energy-
saving via the voltage scaling method. Experimental results show
that ScaleHD can reduce energy consumption on HDC memory
system up to 72.2% with less than 1% accuracy loss.
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