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Abstract—Recently, brain-inspired hyperdimensional comput-
ing (HDC) has demonstrated promising capability in a wide
range of applications such as medical diagnosis, human activity
recognition, and voice classification, etc. Despite the growing
popularity of HDC, its memory-centric computing characteristics
make the associative memory implementation under significant
energy consumption due to the massive data storage and pro-
cessing. In this paper, we present a systematic case study to
leverage the application-level error resilience of HDC to reduce
the energy consumption of HDC associative memory by using
voltage scaling. Evaluation results on various applications show
that our proposed approach can achieve 47.6% energy saving
on associative memory with a <1% accuracy loss. We further
explore two low-cost error masking methods: word masking
and bit masking, to mitigate the impact of voltage scaling-
induced errors. Experimental results show that the proposed
word masking (bit masking) method can further enhance energy
saving up to 62.3% (72.5%) with accuracy loss <1%.

I. INTRODUCTION

Brain-inspired hyperdimensional computing (HDC) is an
emerging computational paradigm that mimics the working
mechanism of brain which computes with deep and abstract
patterns of the neural activity instead of actual numbers.
Recently, HDC has shown advantages over traditional machine
learning (ML) methods, such as smaller model size, less
computation cost, making it a promising alternative in low-
cost computing platforms [5]. HDC has achieved promising
results in a wide range of applications such as robotics [11],
language classification [12], and voice classification [6], etc.

Conventional computing platform typically requires a near-
perfect execution with negligible error rates (e.g., < 10715 [8])
to guarantee correctness. Such requirement, however, poses a
high design cost (e.g., timing/voltage margin) at both device
and architecture levels. Modern applications offer a new
opportunity to relax this strict requirement due to their inher-
ent error-tolerant characteristics, which can be leveraged by
hardware designers to enable application-specific better-than-
worse-case design [15], [14]. ML workloads, for example, are
known to be more error-tolerant than conventional workloads
due to their statistical nature [9]. Leveraging such error re-
silience, designers have shown improved energy efficiency of
ML systems by using voltage scaling on hardware such as
ASICs [15] and FPGAs [14].

Such exploration in traditional ML systems also motivates
us to understand and explore the error resilience of HDC
models, which can potentially allow safely pushing the design
guardbands by voltage scaling for HDC systems. However, for
digital circuits that run with the under-scaled supply voltage,

timing errors may occur if the critical paths are exercised [9],
[15]. These errors usually manifest as bit flips in the circuits
which can lead to incorrect computations and therefore de-
grade application quality. To this end, it is interesting to study
if HDC models are resilient to a certain extent of voltage-
induced timing errors and how much energy benefit we can
gain from voltage scaling.

To address these questions, we perform a systematic study
in this paper to examine the impacts of voltage scaling on
HDC models. Our contributions are summarized as follows:

o We perform extensive error injection experiments under
a wide range of voltage levels on HDC models across
different applications. We quantify the impact of errors
on the accuracy of HDC models and the resulted energy
saving by voltage scaling. Our results show that HDC
models can allow up to 47.6% energy saving on associa-
tive memory with a negligible accuracy loss (< 1%).

o We explore two low-cost error mitigation mechanisms by
detecting and masking the corrupted words/bits, which
can effectively improve the resilience of HDC by up to
10, 000X . Experimental results show that with word/bit-
level error masking, HDC can allow up to 62.3%/72.5%
energy saving with negligible accuracy loss (< 1%).
Energy saving comparison with different technology node
SRAM are also included.

o We perform design space exploration to reveal the effects
of voltage scaling on HDC systems with different model
configurations. This provides further insights on optimiz-
ing and developing future error-tolerant HDC systems.

II. HDC MODEL DEVELOPMENT
A. HDC Basics

Hypervectors (HV) are high-dimensional, holographic vec-
tors with i.i.d. elements [10]. An HV H with d dimensions
can be denoted as H = (hi,ha,...,hq) , where h; refers to
the elements inside the HV. HVs are the fundamental blocks in
HDC that can represent information in different types, scales
and layers of features for its high dimensionality.

HDC utilizes different HV operations as means of ag-
gregating information. In HDC, addition, multiplication and
permutation are the three basic operations that HVs can
support. Additions and multiplication take two input HVs as
operands and perform element-wise add or multiply operations
on them. Permutation takes one HV as the input operand and
perform cyclic rotation. All the three operations do not modify
the dimension of the HVs.
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Fig. 1. Error injection and error protection for voltage-scaled HDC. HDC model has 3 phases: Encoding, Training, and Inference. Voltage scaling-induced

errors are injected into the associative memory during the inference stage.

B. Developing HDC Model

There are three key phases in developing an HDC model
for classification tasks: Encoding, Training, and Inference.
The flow of HDC model is illustrated in Fig. 1.

Encoding is the fundamental process in developing an HDC
model. It maps input features of a sample into an HV which
belongs to the high-dimensional space and makes it available
for HDC training and inference. This is done by applying
combinations of HDC operations on the corresponding HVs in
the item memory indexed by the feature value. Item memory
stores base HVs representing different feature values. Assume
in the classification task, each sample has input features
F of m dimensions, thus there are m item memories R
corresponding to each feature. In addition, the application-
specific combination of HDC operations can be denoted as
E determined by the application. Therefore, for each feature
in the input sample, we can find its corresponding base HV
in the item memory and then the encoded HV H is built by
applying operation combination E: H = E(R, F).

Training is the process of aggregating information of
training samples from the same class. HDC performs training
by summing up the encoded HVs sharing the same label
into a class HV inside the associative memory. Associative
memory stores the class HVs, each representing a class in the
specific learning problem. Assume there are & classes in the
classification problem and have encoded the HVs H! for each
training sample (I refers to the class label), training process
to establish associative memory A is thus by adding up HVs
having the same label I: A= {3 H',S> H2,..., H*}.

Inference is the process of using the learnt informa-
tion to predict an unseen sample’s class. In HDC, this is
done by comparing the similarity of the unseen sample’s
HV with every class HV in the associative memory: | =
argmaz({6(H,, A)}). HDC first encodes the input sample
into its representing HV H, ¢» referred to as the query HV, then
checks the similarity between the query HV and each class
HV inside the associative memory. The class of the highest
similarity with the query HV is selected as the predicted label
for the input sample.

III. VOLTAGE SCALING ON HDC ASSOCIATIVE MEMORY
A. Voltage Scaling-induced Error Injection

While voltage scaling can lead to significant reduction
in static and dynamic power dissipation in SRAM, it also
compromises the memory data integrity that has prevented
aggressive voltage scaling on SRAM cells. Generally, voltage
scaling on SRAM can introduce several different types of fail-
ures, i.e., read failures, write failures, and access failures [1].
In HDC inference, memory reading is the dominant operation
for memory access, so in this paper we are focusing on
evaluating over the read failures. Typically, voltage scaling
leads to random bit flips in SRAM bitcells with a certain
probability [4].

Due to the statistical nature of SRAM cell failure, in our
framework, when performing the similarity simulation during
inference stage, we inject random bit flips at individual asso-
ciative memory bitcells that store each class HV to emulate
the voltage-induced errors before every inference as show in
Fig. 1. For example, considering a class HV with 10,000
dimensions and each dimension is a 32-bit number, each bit
position has a pre-determined probability (depending on the
voltage level) to flip. The bit error rate (BER) is obtained
from real chip characterization [4].

B. Low-cost Error Protection

To mitigate the impact of memory errors on HDC model
performance, we explore two low-cost error masking tech-
niques that can detect and mask errors. A simple Razor double-
sampling based circuitry [3] can be employed for error (and
its location) detection. Note that parity bits protection [7] can
also detect memory fault but provides no information on the
location of the affected bit. Upon the detection of a bit flip,
our scheme can mask the error by setting the faulty bit(s) to
0. The detailed implementations of Razor detection circuitry
can be found in [3], [13].

Two error masking granularities are explored: word-level
masking and bit-level masking. As shown in Fig. 1, for word
masking, upon detecting any bit flips, it masks the entire
word to 0. While for bit-level masking, it only recovers
the erroneous bit(s) within the word to the value of the
sign bit. Combined with Razor circuitry, both methods can
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masking” and “Bit masking” apply the word-level and bit-level error protection to the basic error injection.
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be implemented with 0.3% silicon area and 12.8% power
overheads on a single-port SRAM [13]. We incorporate these
overheads in our energy analysis in Section IV.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

We conduct our experiments based on the measurement of
voltage-scaled on-chip SRAMs fabricated in FDX22 (22nm)
technology [4], which has a nominal Vpp at 0.8V (with a
BER at < 10~!3). The BER as a function of voltage scaling is
calculated based on BER = 2e+08 % ¢ 61-69%Vad We then
perform SRAM voltage scaling and HDC inference on four
datasets: ISOLET, CARDIO, HAR, and MNIST. We perform
our simulation 10 times and get the average. We measure the
original classification accuracy of HDC models with different
configurations in terms of dimensions(d)(5000, 10000) and
data-widths (int32, int16).

B. Effects of Voltage Scaling on HDC Accuracy

Fig. 2(a)-(d) shows the classification accuracy of HDC mod-
els with D = 10000 and Int¢_32 under different voltage levels
across four datasets. Note that that all HDC models do not
experience accuracy drop until 0.6V (BER < 10~7) so we can
treat accuracy at 0.6V as the error-free accuracy. This reveals
the strong robustness of HDC models to hardware errors. The
same phenomenon can also be observed for the models with
D = 5000 as shown in Fig. 2(e)-(h). Thus, voltage levels
above 0.6V can be considered as a “safe” region. When the
supply voltage drops below 0.6V, the classification accuracy
starts to degrade, as the “baseline error” curve indicates. For

example, at voltage level 0.50V, the accuracy drops to around
40% for all the HDC models, i.e., nearly 50% accuracy drop
within a 0.1V voltage interval. Thus, we define this interval
as voltage “critical” region, which also can be observed for
HDC models with D = 5000.

The two error masking schemes — word and bit masking,
have shown significant accuracy improvement and are able
to defer the arrival of the voltage critical region. Specifically,
word masking is able to maintain a negligible accuracy loss
until the voltage scales to around 0.45V. This is 0.15V
lower than the “baseline error” curve that allows the errors
to propagate into the HDC computation. Moreover, bit-level
masking can further push the voltage critical region down
to < 0.4V (BER ~ 1073) with negligible accuracy loss.
This error rate is approximately 10,000X of error rate at
0.6V. For certain dataset, e.g., ISOLET, the voltage can even
scale down to 0.35V with an acceptable accuracy. Similar
phenomenon is observed in Fig. 2(e)-(h) where D = 5000.
This indicates that bit-level masking is able to improve the
HDC error resilience by approximately 10,000X. Bit-level
masking performs precisely error correction instead of the
whole word,

We also evaluate the effects of data-width in HDC under
voltage scaling, as shown in Fig. 3. Our quantization analysis
shows that, for CARDIO and ISOLET datasets, 16 bits are
sufficient to cover the data range and thus we use INT 16
for these two datasets. An interesting observation from Fig. 3
is that, under the baseline error injection, INT_16 shows
better resilience than INT'_32. The reason is that the more
bits we have, the higher likely bit flips resulting in greater
value deviation would happen. For example, a bit flip at
most significant bit (MSB) would incur a 23! magnitude
change for a 32 bit representation. This makes wider data-
widths more vulnerable to voltage scaling-induced errors. The
observation also provides a guideline in designing resilient
HDC models: we should avoid using “one size fits all” data-
width to represent different HDC models but rather developing
application-specific configurations by considering the dynamic
data characteristics of the application.
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C. Energy Savings

To explore the benefit of voltage scaling, we calculate the
average power saving percentage across all four different ap-
plications and dimensions. By simply down-scaling the voltage
in the “safe” region and allowing the errors to propagate
(i.e., the baseline solution), we can achieve up to 47.6%
energy saving with negligible accuracy drop (< 1%) using
P = CV?f. (Energy is proportional to power in this case).
Further, word-level masking enables 62.3% energy saving at
around 0.46V; bit-level masking can save energy up to 72.5%
at around 0.39V with < 1% accuracy loss.

To explore the accuracy-energy trade-off, we relax our
accuracy constraints as shown in Fig. 4. We can observe that
as the accuracy constraint is increasingly relaxed, more energy
saving can be achieved. For example, with 5% accuracy drop,
we can achieve 53% energy saving compared to 47.6% energy
saving at 1% accuracy drop for baseline voltage scaling.
Since HDC itself owns strong robustness, we can find with
0% accuracy drop, word masking save less energy than the
baseline because the masking protection hardware need extra
12.8% energy [13]. In addition, we can see that bit-level
masking always better than work-level masking, which is
always better than baseline case except 0% loss due to the
inherent overhead of error protection. This confirms the effects
of error protection mechanisms. Note that we incorporate the
energy overhead of all the error protection mechanisms.

We further apply our methods to a 40nm SRAM [2] and
present the accuracy-energy tradeoff in Fig. 5. Due to space
limitation, we only show a specific HDC configuration and
application but the trend holds for all the other configurations.
Results show that regardless of the technology, voltage scaling,
especially with error protection, can achieve significant energy
saving. Note that the voltage scaling will not have any impact
on the memory latency because it solely leverages the inherent
HDC error tolerance to save energy.

V. CONCLUSION

This paper presents a systematic case study in exploring
and characterizing the error resilience of HDC by performing
extensive error injection experiments under aggressive voltage
scaling. Experimental results show that HDC is inherently
resilient to hardware errors, which can lead to 47.6% energy
saving of the HDC associative memory, the key hardware
component of HDC system. We further investigate two low-
cost error mitigation mechanisms that can improve the error
resilience of HDC models by up to 10,000X, translating to
energy saving by up to 72.5%.
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