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Abstract: Recovering 3D phase features of complex biological samples traditionally sacrifices
computational efficiency and processing time for physical model accuracy and reconstruction
quality. Here, we overcome this challenge using an approximant-guided deep learning framework
in a high-speed intensity diffraction tomography system. Applying a physics model simulator-
based learning strategy trained entirely on natural image datasets, we show our network can
robustly reconstruct complex 3D biological samples. To achieve highly efficient training and
prediction, we implement a lightweight 2D network structure that utilizes a multi-channel input for
encoding the axial information. We demonstrate this framework on experimental measurements
of weakly scattering epithelial buccal cells and strongly scattering C. elegans worms. We
benchmark the network’s performance against a state-of-the-art multiple-scattering model-based
iterative reconstruction algorithm. We highlight the network’s robustness by reconstructing
dynamic samples from a living worm video. We further emphasize the network’s generalization
capabilities by recovering algae samples imaged from different experimental setups. To assess
the prediction quality, we develop a quantitative evaluation metric to show that our predictions
are consistent with both multiple-scattering physics and experimental measurements.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Imaging complex 3D biological sample remains an outstanding challenge in quantitative phase
imaging (QPI) due to the inherent trade-off between physical model accuracy and computational
efficiency for traditional techniques. The most efficient 3D QPI techniques utilize single-
scattering models, such as the first Born or Rytov approximations, providing computationally
efficient closed-form solutions for volumetric recovery [1,2]. Both interferometry-based [1,2] and
intensity-based [3–6] 3D QPI methods using these approximations are successful in applications
including immuno-oncology [7], cytopathology [8], and stem cell research [9]. However, the
single-scattering model often underestimates the refractive index (RI) of strongly scattering
samples [5,10–13] preventing the quantitative analysis of complex biology including tissue
biopsies and organoids. Recent efforts have shown improved RI estimates can be achieved using
multiple-scattering model based iterative reconstruction algorithms [10,11,13–15]. This improved
accuracy requires greater computation times that limit real-time evaluation of dynamic samples
and large-scale objects. In addition, the reconstructions are still limited by the missing-cone
problem due to limited angular coverage in the measurement [12].

Here, we overcome this tradeoff between computational efficiency and reconstruction accuracy
by melding closed-form single-scattering solutions with a fast and generalizable deep learning
(DL) model. We illustrate this synergistic approach on our recently developed high-speed annular
intensity diffraction tomography (aIDT) system, a computational 3D phase imaging modality
using oblique illumination from a ring LED illuminator to encode 3D phase into intensity
measurements (Fig. 1(a)) [5]. Our prior work demonstrated efficient 3D phase recovery with
>10Hz volume rates based on a linear single-scattering model (Fig. 1(a)) [5]. To maintain fast
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and quantitative 3D phase imaging, we combine aIDT with the proposed DL model for live
sample imaging with minimal artifacts on both weakly and strongly scattering samples.

Fig. 1. Multiple-scattering simulator-trained neural network for intensity diffraction
tomography. (a) aIDT imaging setup (top) with example intensity image (middle) and
its spectra (bottom) under single-LED oblique illumination (LED pattern shown as an
inset). (b) Simulation process for training data generation. Natural images are randomly
sorted into volumes with randomized RI. Intensity images are simulated using the SSNP
multiple-scattering model. Linear approximants are computed using the single-scattering
aIDT model for the network inputs. (c) Training process for IDTnet. The simulated object
volumes are randomly segmented into five-slice subsets during training and fed into the
network to recover the central slice. (d) Example output from IDTnet on a C. elegans
worm compared with the single-scattering reconstruction (Top: in-focus RI slice; Bottom:
color-coded depth projections).

DL has revolutionized the fields of computational microscopy with its ability to efficiently
solve complex nonlinear inverse problems [16]. Existing DL techniques for QPI utilize different
learning strategies from full “end-to-end” models for direct inversion common in 2D QPI methods
[17–19] to “guided” learning with embedded physical models or priors often used for 3D QPI
[20–27]. The DL techniques for 3D QPI successfully improved RI predictions on red blood
cells [21], high-contrast manufactured samples [24,28], and complex 3D biological samples
[22,23,26]. However, the generalizability of supervised DL techniques [21,24,28] is limited due
to the similarities between the training and testing data. For biological applications where features
of interest vary between sample types, the limited robustness against sample variations hinders
their broad application. The “untrained” DL techniques [22,23,26] use a deep neural network
(DNN) to parameterize the RI distribution and/or the priors and require “training” on each new
sample, a process that translates poorly to large-scale time-series applications. Furthermore, all
existing DNN for 3D QPI utilize 3D network structures and contain a large number of trainable
parameters that further complicate the computational requirements.

Here, we overcome these existing limitations by leveraging a multiple-scattering simulator
and a lightweight DNN architecture to achieve efficient object recovery on complex biological
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samples. First, we develop a physical model simulator-based training approach bypassing the
need for experimentally acquiring diverse training datasets with accessible ground truth. To
facilitate strongly scattering feature recovery, we generate simulated object volumes using a fast
and accurate Split-Step Non-Paraxial (SSNP) multiple-scattering IDT model [12] (Fig. 1(b)).
We promote model generalizability by generating training data volumes from diverse natural
images from multiple open-source databases. Using the single-scattering based 3D estimates as
the DNN’s input, we train the network to enhance the 3D RI recovery. Second, our DNN, termed
IDTnet, features a lightweight 2D “U-Net” structure to perform 3D reconstruction (Fig. 1(c)).
We achieve efficient learning by feeding five consecutive axial slices selected randomly from each
larger object volume as a multi-channel input and predict only the central object slice (Fig. 1(c)).
We show this approach efficiently encodes the depth and diffraction information and suppresses
missing-cone-induced artifacts in a scalable and computational efficient manner. In combination,
we show that IDTnet can be generalized to enhance the reconstructions on both weakly and
strongly scattering complex 3D biological samples.

We experimentally demonstrate IDTnet’s superior generalization capability by recovering live
epithelial buccal cells, C. elegans worm samples (Fig. 1(d)), and fixed algae samples acquired
using different experimental setups. We further highlight IDTnet’s robustness by making time-
series predictions on a living, dynamic worm. To quantitatively assess the reliability of IDTnet’s
reconstructions, we first compare IDTNet with SSNP reconstructions on both weakly and strongly
scattering samples. We subsequently adapt an image-space based evaluation procedure by feeding
the network predicted RI into the multiple-scattering SSNP forward model and comparing the
calculated intensity and experimental measurements. Even for “unseen” illumination angles that
are unused during model training or prediction, the calculated intensities from our predictions
match well with experimental data. We show a 2-3× error reduction using IDTnet over the linear
model. Our result highlights that leveraging large-scale multiple-scattering modeling can obviate
major overhead in physical data acquisition and train a reliable, highly generalizable DL model
for computational 3D phase imaging.

2. IDTnet design

To optimally combine aIDT’s reconstruction pipeline with a DL model, the network architecture
must satisfy four key properties: 1) preserve the modality’s speed, 2) provide flexible volume
size recovery, 3) suppress scattering and missing-cone induced artifacts, and 4) recover both
weak and strongly scattering samples. This requires IDTnet to learn efficient object predictions
robust to scattering strengths without sacrificing aIDT’s fast acquisition speed. Here, we satisfy
these parameters through the tailoring of our datasets and network training procedure.

Our data generation, training process, and network architecture are summarized in Fig. 1.
Generating a DNN robust for different samples requires a sufficiently diverse training dataset.
We achieve this requirement by leveraging an accurate and computationally efficient multiple-
scattering model [12] and simulated object volumes from diverse open-source natural image
datasets. As shown in [29], training with diverse images generally improves a network’s
generalization capability. Since capturing many diverse biological samples with paired ground
truth for training is infeasible, this use of open-source datasets provides readily accessible
high-entropy images to train a generalizable network for complex biological specimen recovery.

Randomly selecting natural images from these datasets, we stack the images into 3D volumes
and assign random RI values to create weak and strongly scattering samples. We then apply
our SSNP beam-propagation model [12] to generate intensity images with the same physical
parameters as the experimental aIDT setup (NA=0.65) (Fig. 1(b)). Using SSNP provides easy,
rapid generation of a large diverse dataset for training IDTnet while the use of natural images
helps prevent overfitting [29]. With the simulated intensity images, we then compute linear model
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approximants using the aIDT model, which become the network inputs for training. Details on
this simulation process are found in Supplement 1.

To reconstruct samples with large depth ranges, we introduce a randomized sampling procedure
to the training process. Due to the undersampling of the object’s 3D Fourier information in aIDT,
the linear reconstruction exhibits anisotropic, axially varying, and object-dependent missing-cone
artifacts throughout the volume. To suppress these 3D artifacts, we input randomly selected five
slice subvolumes from each extended object volume to IDTnet and predict only the subvolume’s
central slice using a modified 2D U-Net (Fig. 1(c)). This design presents 3D information as a
multi-channel input (i.e. feature maps) from which IDTnet can extract 3D information with an
efficient and easily trainable 2D network. By randomizing the subvolume input during training,
IDTnet learns object recovery based on the subvolume’s inter-slice relations and generalizes
to larger volumes. Details on the training procedure and IDTnet architecture are provided in
Supplement 1. Once trained, IDTnet performs slice-wise reconstructions of an object volume
of arbitrary size. This multiple-scattering simulator trained network is directly generalizable to
experimental data such as the C. elegans worm in Fig. 1(d).

3. Results

3.1. Weakly scattering sample recovery

We first apply IDTnet to weakly scattering epithelial buccal cells in aqueous media (n0 = 1.33)
(Fig. 2) measured using a 40×, 0.65NA objective. Figure 2(a) compares the single-scattering
(lower left) and IDTnet reconstructions (upper right) as depth-coded projections. Figure 2(b)
shows a volume rendering of a cell cluster from the IDTnet reconstruction with maximum
intensity projections (MIP) in XY, YZ, and XZ. Comparisons for different reconstructed slices
are shown in Fig. 2(c). Figure 2(d) compares XZ MIP through the reconstructed 3D Fourier
space by the linear model and IDTNet.

Compared with the single-scattering based linear model, IDTnet’s result shows significant
artifact suppression and object feature enhancement. Shown in the projection of Fig. 2(a) and
the cross-sections of Fig. 2(c), the linear reconstruction generates strong missing-cone artifacts
corrupting the reconstructed object features. While lateral cross-section images show cell edges
(Fig. 2(c), white brackets) and native bacteria (Fig. 2(c), blue arrows) are visible with the linear
estimate, the artifacts reduce feature visibility and confound the true morphology of cellular
structures (Fig. 2(c), white boxes). In contrast, IDTnet maintains or improves recovery of these
features (Fig. 2(c), white circles) and removes the missing-cone artifacts as shown in the XZ and
YZ cross-sections. IDTNet shows occasional high-frequency feature loss (Fig. 2(c), green arrows).
We attribute the feature loss to inherent limitations of IDTNet in correcting high-frequency errors
from small RI variations obscured by larger missing cone artifacts, as discussed in Supplemental
1. Despite these factors, we still observe drastically improved performance in object recovery for
IDTNet over the linear model.

The IDTnet’s improvements are also evident in the reconstructed 3D Fourier coverage shown
as the XZ MIP in Fig. 2(d). IDTnet provides better filled and smoother Fourier information,
especially around the origin, which in turn suppresses the missing-cone artifacts in the real space.
Furthermore, the similar recovered RI values of the cell’s edges and bacteria between the linear
and IDTnet reconstructions suggest the network recovers the correct quantitative values for the
weakly scattering sample. We further evaluate this quantitative recovery in sections 3.5 and 3.6.
These results provide evidence that IDTnet generalizes well to weakly scattering, experimentally
measured biological samples with complex cellular morphology.

https://doi.org/10.6084/m9.figshare.21828039
https://doi.org/10.6084/m9.figshare.21828039
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Fig. 2. Results of weakly scattering epithelial buccal cells. (a) Color-coded depth
projections of reconstructions from the IDT linear model (lower left) and IDTnet (upper
right). (b) 3D rendering of the IDTnet reconstruction from the blue subregion in (a). (c) RI
slice reconstructions, XZ, and YZ cross-sections from the linear (left) and IDTnet (right)
reconstructions. White boxes show poor depth sectioning in the linear model that is improved
with IDTnet; blue arrows highlight native bacteria features; white circles show enhanced
cell edges in the IDTnet result; white brackets highlight cell edges; green arrows indicate
high-frequency feature loss regions. (d) XZ MIP of the reconstructed 3D Fourier coverage
for the linear model (Left) and IDTnet (Right). IDTnet expands axial Fourier recovery near
the origin that helps reduce missing-cone artifacts.

3.2. IDTnet generalizes to different experimental setups

We further evaluate IDTnet’s ability to generalize to different IDT setups and sample media. In
Fig. 3, We evaluate a spirogyra sample in an aqueous medium (n0 = 1.33) measured with a 10×,
NA = 0.25 objective in an aIDT setup different from the IDTnet training. This study highlights
IDTnet’s ability to handle new imaging setups that carry stronger missing-cone artifacts than
the training data. Comparisons of the linear and IDTnet reconstructions as color-coded depth
projections are shown in Fig. 3(a) with a rendering of the IDTnet-recovered volume in Fig. 3(b).
Figure 3(c) compares individual recovered RI slices of both reconstruction methods, and Fig. 3(d)
compares MIP XZ cross-sections through the 3D Fourier spectra of the linear and learned
spyrogyra reconstructions. Despite the different imaging setup, the IDTnet predictions show
nearly artifact-free recovery of the algae sample with enhanced depth sectioning providing clear
visualizations of the algae fragments (Fig. 3(b), XZ and YZ MIP). This is further highlighted in
Fig. 3(c), where white arrows show the spirogyra’s helical structure is now well separated into
different axial planes without the missing-cone artifacts. This separation is also visible in the
color-coded depth projection of the algae helical structure in Fig. 3(a).

While IDTNet’s recovered volumes show general improvements, fine features from the
spyrogyra can be lost (Fig. 3(c) blue arrows). We attribute these losses to an inherent, sampling-
dependent bias within the trained IDTNet. The original aIDT system oversamples the object’s
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Fig. 3. Reconstructions of Spirogyra in a low-NA aIDT setup (NA=0.25). (a) Depth-coded
projections comparing the linear and IDTnet reconstructions spanning 100µm. (b) 3D
rendering of the IDTnet reconstruction with XZ and YZ MIPs. The artifact removal and
strong feature recovery provide enhanced depth sectioning throughout the volume. (c)
RI slice-wise comparisons of the linear and IDTnet reconstructions. The IDTnet’s better
depth sectioning removes defocused sample features providing greater visibility of in-focus
structures (white arrows) and more faithful RI recovery than the linear model. Blue arrows
highlight areas of high-frequency feature loss. (d) Linear (Left) and Learned (Right) XZ
MIP through the reconstructed 3D Fourier spectra.

bandwidth by 2.4× while the low-NA system exhibits slight undersampling at 1.6× the object’s
bandwidth. This finer sampling better confines the object bandwidth, observed when comparing
Fig. 2(d) and Fig. 3(d), and imposes an implicit constraint on the maximum pixel size of all
recoverable features in the object space. Because IDTNet learns feature recovery and missing
cone removal based on the relative size information provided within the input subvolume slices,
this network tends to remove lateral frequency features below this learned minimum pixel size.
This limitation, along with IDTNet’s sensitivity loss to small and high-frequency RI changes
discussed in Supplement 1, lead to this resolution loss in the spyrogyra sample. In spite of these
limitations, IDTNet still improves the recovery of low spatial-frequency features and removes
missing cone artifacts in the spyrogyra sample, as evident in the stronger spectral content near the
learned reconstruction’s origin (Fig. 3(d)). Furthermore, our results suggest that other imaging
systems matching the relative sampling conditions of the primary aIDT system could still utilize

https://doi.org/10.6084/m9.figshare.21828039
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the trained IDTNet without any resolution loss. These results show that IDTnet still provides good
generalization to different imaging setup configurations and different sample types. Additional
results shown in Supplement 1 demonstrate similar improvements are seen on diatom algae under
high-resolution aIDT systems with different imaging media.

3.3. Strongly scattering sample recovery

To evaluate IDTnet’s capabilities on stronger scattering samples, we apply the trained network
to a C. elegans worm sample in Fig. 4. A 3D rendered reconstruction is shown in Fig. 4(a)
with the central RI slice in Fig. 4(b) and zoom-in regions of tissue structures including lipid
droplets in Fig. 4(c), the terminal pharyngeal bulb with grinder in Fig. 4(d), and the buccal cavity
in Fig. 4(e). Immediately apparent in the IDTnet’s prediction is the enhanced clarity and RI
contrast of the worm’s tissue structures. IDTnet removes missing-cone artifacts, improves the RI
prediction, and recovers worm features across the entire segment in Fig. 4(b) with improved lipid
droplet visibility in Fig. 4(c). Our IDTnet result shows fine, continuous features are recoverable
through the volume such as the grinder from the worm’s digestive tract (Fig. 4(d)) and the
pharyngeal epithelium (Fig. 4(e)). While these features are also recovered using the linear model,
IDTnet significantly improves the depth sectioning and clarity of the reconstruction. This is
particularly evident with the buccal cavity centered at 5µm whose missing-cone artifacts have
been nearly completely removed from the central slice (Fig. 4(b) purple square, 4(e)). IDTNet
does show limited recovery capabilities in the worm’s mid-section, where features appear to
be reduced in value or removed entirely (Fig. 4(b), red box). Within this region, the linear
model’s reconstruction exhibits numerous scattering features that are difficult to separate as
in-focus features or missing cone artifacts from adjacent slices. As discussed in Supplement 1,
this condition can cause failures in IDTNet to resolve high-resolution features. Despite this loss,
these results still highlight IDTnet’s capabilities in improving the linear model’s reconstruction
and generalizing to strongly scattering multi-cellular organisms.

3.4. Dynamic sample recovery

A key objective for combining aIDT with IDTnet is to maintain fast reconstruction of complex
samples for imaging living dynamic biological samples. To demonstrate this capability, we apply
IDTnet to C. elegans time-series measurements from [5]. Results are shown for specific time
points in Fig. 5 and the video reconstruction is provided in Visualization 1.

Figure 5 highlights the wealth of information recovered by IDTnet from the complex, dynamic
biological sample. IDTnet provides clear visualizations of the worm’s movement through the
entire 2.5-minute measurement period shown in Fig. 5(a). IDTnet enhances the depth sectioning
across all temporal measurements, which is particularly evident in the well-separated features in
the color-coded depth projection of Fig. 5(b). During this time period, IDTnet provides recovery
of the digestive tract (white brackets) and lipid droplets (white circles) in Fig. 5(c–e) with complex
internal organ features clearly recovered in Fig. 5(d) (black oval). Figure 5(e) shows new feature
recovery previously outside of the initial time-series measurement’s FOV including muscle walls
(black bracket) and the worm’s vulva (white arrow).

IDTnet’s enhanced recovery of such features in temporal data highlights its utility for dynamic
imaging. Despite training on simulated natural images, the IDTnet’s generalization recovers
complex biological features consistently in time. This result opens the possibility for IDTnet’s
application to studying temporal dynamics of biological samples with significantly enhanced
feature recovery over conventional model-based IDT techniques.

3.5. Reconstruction quality assessment

To evaluate IDTNet’s reliability in reconstructing experimental data, we compare reconstructions
of biological samples using the aIDT linear model, SSNP [12], and IDTNet in Fig. 6. We first

https://doi.org/10.6084/m9.figshare.21828039
https://doi.org/10.6084/m9.figshare.21828039
https://doi.org/10.6084/m9.figshare.21462924


Research Article Vol. 31, No. 3 / 30 Jan 2023 / Optics Express 4101

Fig. 4. Results of strongly scattering C. elegans worm sample. (a) 3D rendering of the full
volume worm reconstruction. (b) Central slice reconstruction with outsets of lipid droplets
(green), pharyngeal bulb (black) and buccal cavity (purple). Worm tissue structure loss is
outlined in red. (c) Outset comparing the linear and IDTnet reconstructions of lipid droplets
in an XY RI slice and XZ cross-sections. (d) Consecutive Z slices of the terminal pharyngeal
bulb with clear recovery of the grinder organ. High-resolution features are recovered with
IDTnet at 1.2µm axial steps through the volume. (e) 3D rendering, YZ MIP, and RI XY
slice of the worm’s buccal cavity. The buccal cavity becomes well-resolved at the 5µm axial
plane with IDTNet.

evaluate the weak-scattering buccal cell reconstructions in Fig. 6(a) with corresponding Fourier
spectra in Fig. 6(b). The linear and SSNP models exhibit missing-cone artifacts evident in the
YZ cross-sections of Fig. 6. These artifacts are also visible from the missing Fourier information
around the origin of Fig. 6(b). These missing-cone artifacts are reduced but not removed for
SSNP through the use of iterative reconstruction with a total variation regularizer enforcing a
piece-wise constant RI sample distribution [12]. This result leads to slightly stronger spectral
content around the origin of the SSNP result spectra (Fig. 6(b)). By comparison, these features
are largely removed with IDTNet to provide better visibility of the cell features. IDTNet’s
reconstruction shows good agreement with SSNP’s recovery of the buccal cells in-focus features.
Comparing the RI values reported between SSNP and IDTNet, we observe nearly equivalent,
slightly higher RI values recovered with IDTNet compared to SSNP. We attribute this RI increase
to IDTNet’s dependency on the linear model’s RI as input because the linear reconstruction
also shows higher RI than the SSNP model. This result indicates that IDTNet can provide
equivalent 3D RI distributions to SSNP with fewer missing-cone artifacts on weakly scattering
samples. Evaluating the recovered IDTNet Fourier spectrum in Fig. 6(b), we observe strong
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Fig. 5. Results of a dynamic C. elegans worm. (a) 3D renderings of IDTnet reconstructions
across different time points of an aIDT longitudinal measurement. (b) Color-coded depth
projection of the reconstruction at 5.1 seconds. IDTnet reconstruction shows minimal
missing-cone artifacts and clear feature recovery. (c)-(e) Zoom-ins highlighting recovered C.
elegans organs and tissues during video reconstruction. White circles: lipid droplets and
high-resolution circular structures; white brackets: intestinal tract, black brackets: worm
muscle wall; black circles: complex tissue features; white arrow: vulva and reproductive
organs. Additional worm dynamics are shown in Visualization 1.

spectral content along the axial direction near the origin suggesting the recovery of low spatial
frequencies and missing-cone removal.

Next, we compare reconstruction results on the strongly scattering C. elegans worm segment
in Fig. 6(c),(d). First comparing the linear and SSNP models, we observe similar reconstructions
with significant missing-cone artifact corruption (Fig. 6(c), YZ cross-sections). The Fourier XZ
MIP also shows frequency loss near the origin indicating strong missing cone artifacts (Fig. 6(d)).
Comparing IDTNet and SSNP, we see the network can still easily remove missing-cone artifacts
to provide improved visibility of the worm’s structures (Fig. 6(c)). Lipid droplets and higher
RI structures are well-preserved with IDTNet as highlighted in the white circles of Fig. 6(c),
but lower RI structures appear to be reduced or removed with IDTNet as well (Fig. 6(c), black
squares). Due to the corrupted multiple-scattering model, we cannot easily determine whether
IDTNet properly removes reconstruction artifacts or incorrectly removes weak RI features due to
low sensitivity (Supplement 1).

3.6. Prediction reliability analysis

While IDTnet’s predictions on simulated objects show close agreement with the ground truth
(Supplement 1) and our experimental results show similar feature recovery to multiple-scattering
models, the network’s reliability for experimental data remains an outstanding question. Several
factors including noise, illumination angle, source homogeneity, imaging wavelength, and

https://doi.org/10.6084/m9.figshare.21462924
https://doi.org/10.6084/m9.figshare.21828039
https://doi.org/10.6084/m9.figshare.21828039
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Fig. 6. Reconstruction comparison between the aIDT linear (Left), multiple-scattering
SSNP (Middle), and IDTNet (Right) methods. (a) Weakly scattering epithelial buccal cell
XY reconstructions (Dark blue) at 0µm (Top) and 1.2µm (Bottom) with corresponding YZ
cross-sections (Light blue). White squares highlight similar recovered cell and bacteria
structures across all models. (b) 3D Fourier spectrum XZ MIP of the linear, SSNP, and
learned buccal cell reconstructions. (c) Strongly scattering C. elegans XY reconstructions
(dark blue) at −4.2µm (Top) and 0µm (Bottom) with YZ cross-sections (Light blue). White
circles show recovered lipid droplets. The black square highlights potential feature removal
or artifact correction with IDTNet. (d) 3D Fourier spectrum XZ MIP of the linear, SSNP,
and learned C. elegans worm section reconstructions.

aberrations could result in additional and/or stronger reconstruction artifacts. These variations
can generate unreliable object predictions that cannot be evaluated due to the lack of ground-truth
information in experimental measurements. Understanding the network reliability is crucial for
applying this pipeline to biological studies where artificial features could cause mis-classification
of features and/or disease mis-diagnoses. To mitigate this issue, we develop an image space
analysis metric to evaluate the reliability of IDTnet’s predictions on experimental data.

Our image space metric expands upon the method proposed in [21]. Here, we implement the
SSNP forward model [12], assuming perfectly calibrated illumination angles, LED intensities,
and no pupil aberrations in the system, to generate intensity images from the reconstructed
sample volumes that are then compared with the experimental measurements. With a sufficiently
rigorous simulator, deviations between the simulated and experimental images can be related to
errors in the predicted RI and structure of the recovered volumes. Here, we compare intensity
images from illumination angles used in our reconstruction (seen) and those unused (unseen) in
our models and training. Our idea is that if IDTnet “overfits” to the features recovered using seen
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illuminations, the simulated images from unseen illuminations would exhibit increased error
from network hallucinated features.

We first evaluate epithelial buccal cells across 24 illuminations as shown in Fig. 7(a) and (c).
Here we used the main setup in Fig. 1(a) for acquisition described in detail in Supplement 1. To
further evaluate the effect of experimental setup variations with this metric, we compute the
metrics on diatom algae samples measured with a different LED array setup with 120 illuminations
in Fig. 7(b) and (d). We apply the SSNP model for calculating the intensity images from the
linear (blue) and IDTnet (orange) estimates and compare them with experimental measurements
using pixel-wise absolute error maps (Fig. 7(a,b)) and the mean squared error (MSE) of each
image at different illumination angles (Fig. 7(c,d)). Seen illuminations are in magenta with green
LEDs highlighting the specific illuminations used for the images in Fig. 7(a,b).

Fig. 7. Quantitative reliability analysis of network’s predictions. We compare intensity
images computed using the multiple-scattering model from the linear and learned object
and compare them with the experimentally measured intensity images for (a) epithelial
buccal cells and (b) a diatom sample. IDTNet’s reconstructions show closer intensity image
contrast and lower errors than intensity images computed from the IDT linear model-based
reconstructions. The MSE between the computed and experimental measured images
across both seen and unseen angles for (c) epithelial buccal cells and (d) a diatom sample.
The results show consistently lower error using the learned model regardless whether the
illuminations are used in the model training.

In both the cells and diatom sample, the IDTnet intensity images show closer contrast and
lower error to the experimental data than the linear model. This result is consistent regardless of
whether the illumination angle was used for the reconstruction (Fig. 7(a,b), Seen vs. Unseen). The
main differences between the IDTnet and experimental images appears as low spatial frequency

https://doi.org/10.6084/m9.figshare.21828039
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loss (Fig. 7(a,b), white boxes) creating “flatter” images and background inhomogeneities in the
experimental measurements (Fig. 7(a,b), white brackets). These errors are attributed to the linear
approximant input lacking low spatial frequency information and the LED generating non-ideal
plane wave illumination, respectively.

Evaluating the image-wise MSE in Fig. 7(c,d) further confirms IDTnet recovers the underlying
sample volume. Plotted as a function of the illumination index, the MSE for the seen and
unseen illumination angles show no substantial difference in error for both samples. Across all
illuminations, the images from the IDTnet reconstructed volume show consistently lower error
than the linear model, which is partially attributed to the removal of missing-cone artifacts. The
dominant error in Fig. 7(d) instead results from residual illumination angle misalignments after
implementing the calibration procedures of [5]. The misalignment is most visible in illuminations
70-90 for the diatom sample where the illuminations are close to the objective’s 0.65 NA cut-off
and are difficult to calibrate. While both linear and learned estimates exhibit elevated MSE values
within this region, IDTNet shows smaller variations and provides consistently lower error across
all illumination angles. This result suggests that IDTNet still provides a better object estimate
than the linear aIDT reconstruction model.

4. Discussion and conclusion

Our results highlight the significant potential of DL in computational 3D phase imaging. With
only simulated objects, we showed a lightweight 2D network can be trained following approximant-
guided learning methods to recover the 3D phase of complex biological samples. Our IDTnet
corrects not only missing-cone artifacts but also shows reconstruction accuracy improvements
compared to linear models in simulation. We demonstrated improved volumetric RI recovery on
experimental data acquired using several IDT setups. Finally, we showed that IDTnet can be
readily applied to recover high-quality volumetric reconstructions of dynamic biological samples.

A main limitation of this approximant-guided learning approach is the network’s reliance
on the initial model-based object estimate for feature prediction. The single-scattering IDT
model neglects contributions from the nonlinear scattering signals that become significant for
strongly scattering samples [13]. This limits the information available for the network to learn
from, which contributes to the network’s failure to recover certain object features outside the
linear model’s Fourier support. This limitation could be alleviated through the incorporation of
multiple-scattering model-based approximants as network inputs [28].

Our learned IDT approach holds promise for improving the image quality in low-cost optical
setups. Recent works have developed low-cost, open-source optical imaging setups enabling
affordable multi-modal imaging in a push for the “democratization” of science to the general
public [30,31]. Particularly, recent work has shown that aIDT can be implemented in such setups
enhancing both the capabilities of these platforms and accessibility to the imaging modality
[30]. By using cheaper optical components, however, the reconstructed volume can degrade
in quality. Because our learned approach generalizes well to different optical setups, the use
of this lightweight framework on low-cost setups could drastically improve the reconstructions
and potentially be implemented on portable computing devices for real-time processing [31,32].
In addition, IDTnet could also be extended to improve the multiplexed IDT for high-speed
imaging [6]. This will bypass the tradeoff between reconstruction quality and acquisition speeds
suffered by model-based reconstructions [6]. Furthermore, IDT has recently been integrated into
a mid-infrared photothermal microscope enabling chemically specific 3D phase imaging [33].
Our IDTnet could be integrated in this setup to further improve the sensitivity and accuracy of
the chemically specific phase reconstruction results.

Finally, the generalization of IDTnet is achieved by leveraging our multiple-scattering simulator,
which shows the power of simulation-based training for applying DL for imaging in complex
media applications. Similar simulator-based DL strategies have also been demonstrated recently
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in holographic 3D imaging [34] and computational fluorescence microscopy [35,36]. Further
development of this framework may impact many other emerging areas, such as such as imaging
and light manipulation in complex media [37] and optical computing [38].
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