
1.  Introduction
The strong asymmetry of sea surface temperature (SST) and climate variability in the tropics has long been 
known, as illustrated by the marked differences between the positive (El Niño) and negative phase (La Niña) of 
the El Niño-Southern Oscillation (e.g., Okumura & Deser, 2010; Timmermann et al., 2018). The asymmetry of 
the ENSO teleconnections to extratropical latitudes is more debated, as some studies report symmetric signals 
(e.g., Deser et al., 2017) while others find asymmetry (e.g., Hardiman et al., 2019), often based observationally on 
composites that compare the sea level pressure (SLP) or other atmospheric variable associated with large positive 
and negative values of an index of the ENSO SST variability. There is also growing observational (Frankignoul 
et al., 2011; Révelard et al., 2016; Seo et al., 2017) and modeling evidences (Seo et al., 2017) that the atmos-
pheric response to western boundary currents meridional shifts may be asymmetric, hence that the atmospheric 
response to a northward shift of the current is not opposite to that to a similar southward shift. Using composite 
analysis, Révelard et al. (2016) found that the atmospheric response to dynamical states of the Kuroshio Exten-
sion is significant for its stable (northward) state while no evidence of a significant signal was found for the 
unstable (southward) state. Such result suggests that methods only searching for symmetric responses, such as 
standard linear regression, may underestimate or overestimate a response, if the actual responses are asymmetric. 
In fact, if asymmetry is so strong that similar responses of the same sign occurred in opposite states, as in some 
numerical simulations of the remote atmospheric response to wintertime SST variability in the East/Japan Sea 
(Seo et al., 2014), standard linear regression analysis of observations would fail to detect any response, and so 
would symmetric analysis (i.e., response to positive minus response to negative phases) in atmospheric response 
studies (as in Smirnov et al., 2015). In circumstances that may involve nonlinear dynamics and eddy-mean flow 
interactions, it is thus important to verify the symmetry of a detected atmospheric response, hence to establish 
how asymmetric responses can be best assessed.

In the present paper, we discuss two methods commonly used to detect asymmetry in the atmospheric response 
to SST anomalies, namely composite analysis or compositing (e.g., Deser et  al., 2017; Mezzina et  al., 2002) 
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and asymmetric linear regression (e.g., Frankignoul et al., 2011), as they can easily be applied to observational 
products and do not require the large samples that are often needed in statistical learning, causal effect networks, 
and other nonlinear methods. We further discuss the two different ways to apply the asymmetric regression, with 
fixed-zero or non-zero y-intercepts. Using mathematical derivation and a simple synthetic example, we show 
that the commonly used composite analysis may strongly underestimate the response asymmetry, while unbiased 
estimates can be obtained by asymmetric regression with non-zero y-intercepts, as least if linearity holds for the 
response to SST anomalies of the same sign.

2.  An Asymmetric Example
To easily compare how asymmetry is estimated from observations, we introduce a model that mimics in a very 
simple way the asymmetry of the atmospheric response to oceanic anomalies. Let N observations of an oceanic 
anomaly (e.g., an El Niño SST index) be represented by the time series x(j) for j = 1, N. The sample mean of the 

oceanic anomalies, 𝐴𝐴 𝑥𝑥(𝑗𝑗)  = 𝐴𝐴
1

𝑁𝑁

(

∑𝑁𝑁p

1
𝑥𝑥p +

∑𝑁𝑁n

1
𝑥𝑥n

)

 , is by definition of an anomaly equal to zero. Here 𝐴𝐴 𝐴𝐴p is positive 
and 𝐴𝐴 𝐴𝐴n negative, and there are 𝐴𝐴 𝐴𝐴p positive and 𝐴𝐴 𝐴𝐴n negative x-values, N  =   𝐴𝐴 𝐴𝐴p +𝑁𝑁n .

To represent an asymmetric atmospheric response, we assume that an atmospheric variable y is given by a term 
proportional to the oceanic anomalies plus an uncorrelated noise ε with zero mean that represents intrinsic atmos-
pheric variability and has the same variance in positive and negative cases,

𝑦𝑦p(𝑘𝑘) = 𝛼𝛼𝛼𝛼p(𝑘𝑘) + 𝜀𝜀(𝑘𝑘)� (1)

𝑦𝑦n(𝑟𝑟) = 𝑥𝑥n(𝑟𝑟) + 𝜀𝜀(𝑟𝑟),� (2)

where k corresponds to positive x's and r to negative x's. The true response to negative x-values is taken for 
simplicity to be 𝐴𝐴 𝐴𝐴n while that to positive x-values is given by 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴p . The true asymmetry is given by the ratio of 
the slopes 𝐴𝐴 𝐴𝐴 :1.

The sample mean of y is given b 𝐴𝐴 𝐴𝐴

� = 1
�

(

∑�p

1
�p +

∑�n

1
�n
)

= �
�p

�
�p +

�n

�
�n ≈

� − 1
2

�p,� (3)

if one assumes for simplicity that there are as many positive 𝐴𝐴 𝐴𝐴p and negative 𝐴𝐴 𝐴𝐴n events. Then, atmospheric anom-
alies Y(k), as used in observational analyses, are defined as departures from the sample mean and thus have zero 
mean. This is obtained by subtracting 𝐴𝐴 𝑦𝑦 in Equations 1 and 2,

𝑌𝑌p(𝑘𝑘) = 𝑦𝑦p(𝑘𝑘) − 𝑦𝑦 ≈ 𝛼𝛼𝛼𝛼p(𝑘𝑘) + 𝜀𝜀(𝑘𝑘)–
𝛼𝛼 − 1

2
𝑥𝑥p� (4)

𝑌𝑌n(𝑟𝑟) = 𝑦𝑦n(𝑟𝑟) − 𝑦𝑦 ≈ 𝑥𝑥n(𝑟𝑟) + 𝜀𝜀(𝑟𝑟) −
𝛼𝛼 − 1

2
𝑥𝑥p,� (5)

Neglecting the noise means, one has 𝐴𝐴 𝑌𝑌p ≈
𝛼𝛼+1

2
𝑥𝑥p , 𝐴𝐴 𝑌𝑌𝑛𝑛 𝐴𝐴 ≈ −

𝛼𝛼+1

2
𝑥𝑥p , hence 𝐴𝐴 𝑌𝑌pand𝑌𝑌n are equal and opposite, and 

𝐴𝐴 𝑌𝑌 = 𝑌𝑌p + 𝑌𝑌n ≈ 0 . Observational atmospheric and oceanic anomalies would therefore be represented in this exam-
ple by the Y and x time series, respectively.

3.  Asymmetric Regression
3.1.  Zero-Intercept Regression (Method 1)

If one assumes that positive and negative events are represented by two regression models with fixed-zero 
intercepts

𝑌𝑌p(𝑘𝑘) = 𝑎𝑎p𝑥𝑥p(𝑘𝑘) + 𝑒𝑒(𝑘𝑘)� (6)

𝑌𝑌n(𝑟𝑟) = 𝑎𝑎n𝑥𝑥n(𝑟𝑟) + 𝑒𝑒(𝑟𝑟)� (7)
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where e is the residual, the ap estimator of the true slope 𝐴𝐴 𝐴𝐴 is, using Equation 4,

�p ≈
∑�p

1

(

� �p(�)�p(�) −
� − 1
2

�p(�)�p

)

∕
∑�p

1
�p(�)�p(�) ≈ � −�p

� − 1
2

�p
2∕
∑�p

1
�p(�)�p(�)� (8)

If 𝐴𝐴 𝐴𝐴  > 1, the estimator ap of the true slope 𝐴𝐴 𝐴𝐴 is negatively biased, while the estimator an of the true slope 1 is 
positively biased as one has from Equation 5

�n ≈
∑�n

1

(

�n(�)�n(�) −
� − 1
2

�n(�)�p

)

∕
∑�n

1
�n(�)�n(�) ≈ 1 +�n

� − 1
2

�p
2∕
∑�n

1
�n(�)�n(�)� (9)

Hence, the true asymmetry 𝐴𝐴 𝐴𝐴 :1 is underestimated. If 𝐴𝐴 𝐴𝐴  < 1, it is easy to show that the asymmetry is also underes-
timated. If x follows a standardized Gaussian distribution, one has 𝐴𝐴 𝑥𝑥p = 0.8, 𝐴𝐴 𝐴𝐴−1

∑𝑁𝑁p

1
𝑥𝑥p(𝑘𝑘)𝑥𝑥p(𝑘𝑘) = 0.5 (half the 

unit variance). The amplitude of the bias should then be 𝐴𝐴 0.64
𝑎𝑎−1

2
.

The method 1 is biased because the regression intercepts are assumed to be zero, leading to an inconsistency. 
Indeed, from Equations 6 and 7, one has 𝐴𝐴 𝑌𝑌p ≈ 𝑎𝑎p𝑥𝑥p , 𝐴𝐴 𝑌𝑌n ≈ 𝑎𝑎n𝑥𝑥n if the means of the residuals are neglected. Hence, 
since 𝐴𝐴 𝑥𝑥n = −𝑥𝑥p, 𝑌𝑌 ≈

(

𝑎𝑎p − 𝑎𝑎n
)

𝑥𝑥p would require ap = an to satisfy 𝐴𝐴 𝑌𝑌 = 0.

3.2.  Non-Zero Intercept Regression (Method 2)

For this second approach, we apply the asymmetric regressions with fixed y-non-zero intercepts, that is, after 
removing the means for positive and negative values of the independent (oceanic) variable, respectively, and 
correspondingly for the dependent (atmospheric) variable. For positive events, let

𝑌𝑌p(𝑘𝑘) − 𝑌𝑌p = 𝐴𝐴p

(

𝑥𝑥p(𝑘𝑘) − 𝑥𝑥p

)

+ 𝑒𝑒(𝑘𝑘)� (10)

where Ap denote the estimate of the true slope 𝐴𝐴 𝐴𝐴 and e is the residual. Using Equation 4 and 𝐴𝐴 𝑌𝑌p ≈
𝛼𝛼+1

2
𝑥𝑥p , one has

�p =
∑�p

1

(

�p(�) − �p

)

(

�p(�) − �p
)

∕
∑�p

1

(

�p(�) − �p
)2 ≈

∑�p

1

(

��p(�) − ��p
)

(

�p(�) − ��
)

∕
∑�p

1

(

�p(�) − �p
)2 ≈ �

� (11)

Similarly, for negative events let

𝑌𝑌n(𝑟𝑟) − 𝑌𝑌n = 𝐴𝐴n

(

𝑥𝑥n(𝑟𝑟) − 𝑥𝑥n

)

+ 𝑒𝑒(𝑟𝑟)� (12)

where An denotes the estimate of the true slope 1. One has

�n =
∑�n

1

(

�n(�) − �n

)

(

�n(�) − �n
)

∕
∑�n

1

(

�n(�) − �n
)2 ≈

∑�n

1

(

�n(�) + �p
)

(

�n(�) + �p
)

∕
∑�n

1

(

�n(�) + �p
)2 ≈ 1

� (13)

Therefore, the estimated slopes are unbiased and model 2 should be preferred. Note that the method 2 is quickly 
asymptotically equivalent in sample size to fitting a regression with slope and intercept parameters to both the 
positive and negative 𝐴𝐴 𝐴𝐴 values, and that for 𝐴𝐴 𝐴𝐴p  = 𝐴𝐴 𝐴𝐴n  = 0, one has 𝐴𝐴 𝐴𝐴p 𝐴𝐴 ≈ −

𝛼𝛼−1

2
𝑥𝑥p + 𝑒𝑒𝑒 𝑒𝑒n ≈ −

𝛼𝛼−1

2
𝑥𝑥p + 𝑒𝑒′ . Hence, there 

is no discontinuity in the linear fit.

4.  Composites (Method 3)
Composites are built by selecting positive and negative values of x and comparing the corresponding values of 
Y, usually based on sample means. The simplest composites would consider all values of the same sign, thus 

comparing 𝐴𝐴 𝑌𝑌p to 𝐴𝐴 𝑥𝑥p and 𝐴𝐴 𝑌𝑌n to 𝐴𝐴 𝑥𝑥n , but there would be no asymmetry since 𝐴𝐴
𝑌𝑌p

𝑥𝑥p
 𝐴𝐴 ≈

𝑌𝑌n

𝑥𝑥n
 . To detect asymmetry, compos-

ites must be based on large absolute values of x generally obtained by selecting x-values larger or smaller than a 
given threshold. How it compares to the true solutions depends on the probability density function (pdf) of x and 
ε. We consider two simple cases and illustrate them for a = 3, a relatively strong asymmetry that is used in the 
synthetic examples below.
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4.1.  Uniform x-Distribution

Because it is analytically simple, we first consider the case where x is uniformly distributed in the interval (−50, 
50). The pdf f(x) is given by:

� (�) = 1∕100for� ∈ (−50, 50)andzerootherwise

�
(

�p
)

= 1∕50for� ∈ (0, 50)andzerootherwise

� (�n) = 1∕50for� ∈ (−50, 0)andzerootherwise.

� (15)

The expected values are 𝐴𝐴 𝑥𝑥p = 25 , 𝐴𝐴 𝑥𝑥n = −25, variance (x) = 100 2/12. Based on a sample of N/2 positive values and 
N/2 negative values, one would have 𝐴𝐴 𝑥𝑥p = 25 ± 100∕(6𝑁𝑁)

1

2 , 𝑥𝑥n = −25 ± 100∕(6𝑁𝑁)
1∕2 , where the error is given 

by the standard error (SE).

For very large sample, say N  =  10,000, the estimation errors are very small, 𝐴𝐴 𝑥𝑥p = 25 ± 0.41 . Compos-
ites based on the 25% largest and smallest values yield 𝐴𝐴 𝑥𝑥p25 = 37.5 ± 0.58 , 𝐴𝐴 𝑥𝑥n25 = −37.5 ± 0.58 . Neglect-
ing the small averaging errors and using Equations 4 and 5 with 𝐴𝐴 𝐴𝐴  = 3, the estimated asymmetry is given by 

𝐴𝐴

(

𝑌𝑌p25

𝑥𝑥p25

)

≈ 𝛼𝛼 −
𝛼𝛼−1

2

25

37.5
≈ 2.33,

(

𝑌𝑌n25

𝑥𝑥n25

)

≈ 1 +
𝛼𝛼−1

2

25

37.5
≈ 1.67 . Based on 1 SE of the means, the corresponding ranges 

are, assuming for simplicity uncorrelated errors in 𝐴𝐴 𝑥𝑥p25 and 𝐴𝐴 𝑥𝑥p , given by 𝐴𝐴

(

𝑌𝑌p25

𝑥𝑥p25

)

≈
112.5±1.74−25±0.41

37.5±0.58
≈

87.5±1.74

37.5±0.58
±

0.41

37.5
≈ 

(2.31–2.35), and similarly 𝐴𝐴

(

𝑌𝑌n25

𝑥𝑥n25

)

≈
62.5±0.58

37.5±0.58
±

0.41

37.5
≈ (1.65–1.69) if the errors in 𝐴𝐴 𝜀𝜀 are neglected, and broader 

otherwise. Therefore, the asymmetry is strongly underestimated. Larger thresholds decrease the biases, but do not 

cancel it since the top and bottom 1% composites yield 𝐴𝐴

(

𝑌𝑌p1

𝑥𝑥p1

)

≈ 𝛼𝛼 −
𝛼𝛼−1

2

25

49.5
≈ 2.49 , 𝐴𝐴

(

𝑌𝑌n1

𝑥𝑥n1

)

≈ 1 +
𝛼𝛼−1

2

25

49.5
≈ 1.51 . 

The biases increase with 𝐴𝐴 𝐴𝐴 , thus with the true asymmetry.

For small sample, say N = 100, one has 𝐴𝐴 𝑥𝑥p25 = 37.5 ± 5.8 , 𝐴𝐴 𝑥𝑥p = 25 ± 4.1 , 𝐴𝐴 𝑥𝑥n25 = −37.5 ± 5.8 . Neglecting errors in 

𝐴𝐴 𝜀𝜀 and the correlation between errors in 𝐴𝐴 𝑥𝑥p25and𝑥𝑥p, for 𝐴𝐴 𝐴𝐴  = 3 one obtains 𝐴𝐴

(

𝑌𝑌p25

𝑥𝑥p25

)

≈
112.5±17.4−25±4.1

37.5±5.8
≈

87.5±17.4

37.5±5.8
±

4.1

37.5
 

and 𝐴𝐴

(

𝑌𝑌n25

𝑥𝑥n25

)

≈
62.5±5.8

37.5±5.8
±

4.1

37.5
 , which yields larger ranges of about (2.10–2.53) and (1.43–1.94), respectively. Adding 

uncertainty in 𝐴𝐴 𝜀𝜀 further broadens these ranges. For instance, if ε has the same but independent uniform distri-
bution as x in Equation  15, as in the synthetic example below, one has 𝐴𝐴 𝜀𝜀p25 ≈ 𝜀𝜀n25 ≈ ±5.8 , and the approxi-
mate ranges become (2.02–2.61) and (1.35–2.02). For uniform x-distributions, composites are always biased and 
underestimate the asymmetry.

4.2.  Gaussian Distribution

The Gaussian case is more relevant to observations. In the present example, one can get insights from Equations 4 
and 5. For very large absolute x-values (e.g., 𝐴𝐴 𝐴𝐴p ≫ 𝑥𝑥p ), one has 𝐴𝐴 𝐴𝐴p(𝑘𝑘) ≈ 𝛼𝛼𝛼𝛼p(𝑘𝑘) + 𝜀𝜀(𝑘𝑘) and 𝐴𝐴 𝐴𝐴n(𝑟𝑟) ≈ 𝑥𝑥n(𝑟𝑟) + 𝜀𝜀(𝑟𝑟) , 
so that unbiased estimates could be obtained. However, in observations or even climate model simulations, such 
very large values of x never occur, and for reasonable thresholds the estimated asymmetry degrades rapidly. 
For example, for positive and negative x-values twice their mean and 𝐴𝐴 𝐴𝐴  = 3, 𝐴𝐴 𝐴𝐴p(𝑘𝑘)  = 5 𝐴𝐴 𝑥𝑥p + 𝜀𝜀(𝑘𝑘) , and 𝐴𝐴 𝐴𝐴n(𝑟𝑟)  = 3 

𝐴𝐴 𝑥𝑥n + 𝜀𝜀(𝑟𝑟) , hence the expected asymmetry is substantially biased (i.e., 5:3 instead of 3:1 for the true values). The 
expected biases could be derived from the pdf of x and e by integrating over all x above or below an assumed 
threshold, but instead we simply use synthetic data in Section 5 to show that the composites are biased even with 
large thresholds.

5.  Numerical Solutions
5.1.  Uniform x-Distribution

Synthetic data with zero mean and N = 100 are randomly generated from Equations 1 and 2 for uniform predic-
tor x and noise ε distribution in (−50, 50) with 𝐴𝐴 𝐴𝐴  = 3. A realization of the x and Y = 𝐴𝐴 𝐴𝐴 − 𝑦𝑦 data for is shown in 
Figure 1a, where x should be viewed as the oceanic anomaly and y as the atmospheric response to x. In Figure 1a, 
three different estimates of the asymmetry are represented and the results of 1,000 random simulations are in 
Figure 1b. For N = 100, the regression method 1 (Section 3.1) is biased and underestimates the slope for positive 
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events and overestimates the slope for negative ones by 0.75, as is predicted by Equations 8 and 9, thus strongly 
underestimating asymmetry (i.e., 2.25:1.75 instead of 3:1). Note that the standard (symmetric) regression (blue 
star, method 0) based on all x-values provides even more biased estimates of the true slopes since it does not 
distinguish between positive and negative x-values. On the other hand, the slope estimates are unbiased with the 
method 2 (Section 3.2), as expected. However, the error bar with the method 2 is rather large, more than twice 
that with the method 1. Note that the error bars are highly similar for positive and negative x-values since they 
only depend on N and ε.

Composite analysis (method 3) is also biased. As discussed in Section 4.1, composite based on all positive or 
negative values are unable to detect asymmetry. Consistent with our analysis, the biases in the slopes are larger 
for the 25% composites than for the 5% composites that indeed get close to the limit obtained for infinite sample 
(2.5:1.5), albeit with large uncertainty (nearly as large as with the regression method 2) since the sample is more 
limited. Interestingly, the 25% composites and the regression method 1 yield comparable estimates, but it occurs 
because they turned out to be similarly biased.

5.2.  Gaussian Distribution

A second set of synthetic data was generated for 𝐴𝐴 𝐴𝐴  = 3 using standardized Gaussian distribution for the predictor 

variable x and the noise ε, so that expected values are 𝐴𝐴 𝑥𝑥p = 0.8, 𝑥𝑥n = −0.8, 𝐴𝐴

∑𝑁𝑁p

1
𝑥𝑥p(𝑘𝑘)𝑥𝑥p(𝑘𝑘)

𝑁𝑁
= 𝐴𝐴 0.5 (half the unit vari-

ance). Figure 2 compares the different estimates of the slope for (left) N = 100 and (right) N = 10,000 random x 
and ε samples. As above, the synthetic data are randomly generated 1,000 times to document the uncertainty of 
each estimate. The mean values of the asymmetric regressions do not significantly depend on N, but the uncer-
tainties are of course much larger for N = 100 (they coarsely scale as N −1/2). In fact, the 95% confidence intervals 
are essentially negligible for N = 10,000.

From Equations 8 and 9 the mean biases of the asymmetric regression method 1 are large 𝐴𝐴 (≈ 0.64), consistent 
with Figure 2. For N = 100, the 95% confidence intervals are small, so there is negligible chance to obtain the 
true values. As predicted, the method 2 is unbiased, and the 95% confidence interval, albeit larger, is somewhat 
smaller than for uniform distributions. In our example for N = 100, the ranges of estimated slopes in 1,000 simu-
lations were (2.35–3.75) for positive x and (0.25–1.8) for negative x. Hence, relative estimation errors can be 
large, in particular if the true slope is small as was the case for negative x.

Figure 1.  (a) Scatter plot of a realization of the synthetic x and Y series with uniform x and ε distribution in (−50, 50) 
and 𝐴𝐴 𝐴𝐴  = 3 with N = 100. The symmetric regression by method 0 and the asymmetric regressions by methods 1 and 2 are 
represented, as well as composite based on a 25% threshold (method 3). (b) Results of 1,000 random simulations. The colored 
symbols indicate the mean values of the estimated slopes and the composite threshold, and the vertical bars indicate 95% 
interval from the 1,000 iterations. Crosses correspond to positive x-values and circles to negative ones, and the horizontal 
lines indicate the true slopes.

 19448007, 2022, 20, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L100777, W
iley O

nline Library on [01/11/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Geophysical Research Letters

FRANKIGNOUL AND KWON

10.1029/2022GL100777

6 of 9

Composite based on a 25% threshold are also strongly biased, and again comparable to those of the regression 
method 1, albeit with slightly larger uncertainties. For N = 100, the 95% confidence interval is (2.1–2.6) for posi-
tive x and (1.4–1.9) for negative x, while the full ranges were (1.9–2.9) and (1.1–2.1), respectively, so they did not 
even overlap with the true values. Composites based on the 5% largest or smallest x-values provide better, but still 
biased estimates of the asymmetry, and the 95% confidence intervals remain far from the true values. However, 
estimates could occasionally match or even exceed the true slope since the full ranges in 1,000 simulations were 
(2.0–3.3) for positive x and (0.6–2.0) for negative x. For N = 10,000, an unreasonable case for observed climate 
time series, composites based on a more extreme 1% threshold could be considered, but they remain biased, 
nearly as much as for the 5% threshold (not shown). Composite analysis thus always underestimates the asym-
metry, as shown in Section 4.

6.  Application to ENSO
To illustrate the differences between the three methods using observations, we consider the SST signature of 
El Niño and La Niña events and their teleconnections in boreal winter (DJF), even though ENSO time series 
have some skewness. We use the HadISST (Rayner et  al.,  2003) for SST and the NCEP-NCAR R1 (Kistler 
et al., 2001) for SLP in the period 1948–2018. After removing the mean seasonal cycle and a cubic trend from the 
monthly values, time series of the DJF mean Niño3.4 index as well as SST and SLP anomalies are constructed. 
Regressions are on the DJF Niño3.4 index. Composites are based on 10% percentile, a larger threshold than most 
analyses, which are based on values larger or smaller than 1 standard deviation of the Niño3.4 index (e.g., Deser 
et al., 2017; Mezzina et al., 2022). Our choice results in seven El Niño and seven La Niña events. Note that the 
units in Figure 3 are per positive or negative index (i.e., °C/°C), so that the sign of the negative case should be 
inverted to display La Niña signals.

The asymmetry in the SST anomalies between positive and negative cases is most noticeable in the location of the 
maximum anomalies, which is found in the central equatorial Pacific in the negative (La Niña) case but shifted 
eastward in the positive (El Niño) case. However, the local amplitudes exhibit the asymmetry consistent with our 
mathematical derivation and synthetic examples, as the amplitudes in the eastern Pacific is larger for the positive 
phase and the asymmetry is largest for regression method 2 and smallest for regression method 1. For example, at 
90°W on Equator, the regression method 2 gives 1.30°C/°C and 0.38°C/°C for the positive and negative phases, 
respectively, while the regression method 1 and the composite give 0.93°C/°C versus 0.60°C/°C and 1.05°C/°C 
versus 0.49°C/°C, respectively. On the other hand, the SST amplitude in the central Pacific is slightly larger for 
the negative phase, but the asymmetry is again largest for regression method 2. For example, the amplitudes at 
165°W on Equator for the positive versus negative phases are 1.17°C/°C versus 1.25°C/°C, 1.06°C/°C versus 
1.29°C/°C, and 1.14°C/°C versus 1.27°C/°C for regression model 1, regression model 2, and composite, respec-

Figure 2.  As in Figure 1, but using synthetic data generated using x and e from standardized Gaussian distribution and 𝐴𝐴 𝐴𝐴  = 3 
with (a) N = 100 and (b) N = 10,000. Note that (a) uses 5% threshold for the most extreme composites, while (b) uses 1%. 
Crosses correspond to positive x-values and circles to negative ones.
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tively. Therefore, the asymmetry is largest for regression model 2, and smallest for regression model 1 with the 
composites in between.

The SLP regressions are more contrasted in amplitude and pattern, showing a strong Aleutian Low for El Niño 
and a much weaker, southwestward shifted low for La Niña (Figure 4). Consistent with our analysis, the strongest 
Aleutian Low deepening is given by regression method 2 and the weakest by regression method 1. The compos-
ites are based on a high threshold and are thus in-between, consistent with our mathematical derivation and 
synthetic examples (Figure 2).

7.  Summary and Discussion
We have shown that asymmetry is best estimated by asymmetric regression models with fixed non-zero 
y-intercepts (method 2), which provide unbiased slope estimates. However, for limited samples as often found 
in observational analyses, errors in the estimated slopes can be large, in particular if the true slopes are small 
and the noise is larger than considered here. Asymmetric regression models with zero intercepts (method 1) are 
always biased and underestimate the asymmetry, and they should not be used. While method 2 removes means 
separately for the positive and negative values of the independent and corresponding dependent variables, method 
1 removes means from independent and dependent variables for the entire data set. In the ocean-atmosphere 
coupling framework, method 1 thus implicitly assumes that a neutral ocean leads to no atmospheric anomaly, 
which does not hold if there is asymmetry. The single degree of freedom lost in setting the intercept in method 2 is 
well made up by avoiding the biased slope estimates of method 2. Composites are also biased and underestimate 
the asymmetry, strongly for small thresholds but less so for very large thresholds (which may be unattainable with 
observations). However, the errors are then quite large if the sample is limited.

To illustrate the differences between the three methods investigated here using observations, we have estimated 
the asymmetry of the tropical Pacific SST anomaly associated with positive and negative values of the Niño3.4 
index in DJF in the period 1948–2018, as done in many studies. All three methods nicely show the westward shift 
of maximum SST amplitude in La Niña events and the substantial amplitude along the South American coast in 
El Niño events. While the differences between methods are rather small, the local SST amplitudes consistently 
show the largest asymmetry for regression method 2. The associated SLP anomalies show a strong asymmetry 
in all cases, with a strong Aleutian Low strengthening during El Niño events and a much smaller, southwestward 
shifted low during La Niña events. Consistent with our mathematical derivation and synthetic example, the 
Aleutian Low response to El Niño is strongest for regression method 2 and weakest for regression method 1,  

Figure 3.  Sea surface temperature (in °C/°C with contour interval of 0.3°C/°C) associated with positive and negative values of the Niño3.4 index in DJF. Estimates 
were made by (a) standard regression, (b and c) asymmetric regression 1, (d and e) asymmetric regression 2, and (f and g) composites based on a 10% threshold (seven 
El Niño and seven La Niña events).
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while compositing based on a high 10% threshold provide intermediate results. The latter are consistent with 
the composites in Mezzina et al. (2022). Although the true asymmetry is not known in the observational data, 
the results confirm that compositing tend to underestimate asymmetry and suggest that asymmetric regression 
with non-zero intercepts (unbiased method 2) should be preferred. For data that can be highly skewed, however, 
such as precipitation signals, the linear assumption in asymmetric regression is limiting, and a probabilistic 
approach for detecting asymmetric ENSO teleconnections may be preferable, such as using contingency tables 
(e.g., Lenssen et al., 2020; Mason & Goddard 2012).

In recent studies of the atmospheric response to SST or other oceanic anomalies, multiple regressions have 
been increasingly used to distinguish their impacts from the influence of concomitant factors such as sea-ice 
concentration, or snow cover (e.g., Liu et al., 2008; Révelard et al., 2018; Simon et al., 2020). Asymmetry in 
the responses could not be estimated by applying method 2 to multiple linear regression, since the positive and 
negative values of each predictor would not occur simultaneously, thus preventing an appropriate definition of 
demeaned variables Yp and Yn. If asymmetry is only expected in the response to one predictor, method 2 could be 
applied to its positive and negative values, while including in each case the additional concomitant predictors, but 
two different slopes and significance might be obtained for these other predictors, despite the implicit assumption 
of symmetry. However, if only weak correlation between positive and negative values of multiple predictors is 
expected, as could be the case if the predictors are (orthogonal) principal components of the same variable (e.g., 
tropical SST anomalies), sequential estimation with method 2 may provide acceptable results. Using method 
1 and separating each predictor time series into positive and negative sequences is feasible and was used by 
Frankignoul et  al.  (2011) and Révelard et  al.  (2016) to asymmetrically remove ENSO teleconnections based 
on two ENSO indices, but such estimates are biased, as shown here. In addition, if there are many regressors, 
the increased dimensionality might result in overfitting or collinearity, although series of positive and negative 
phases would be pairwise uncorrelated. Hence, the generalization to multiple asymmetric regression requires 
further investigation.

Figure 4.  Sea level pressure in JFM (in hPa/°C, contour interval 0.5 hPa/°C) associated with positive and negative values of the Niño3.4 index in DJF. Estimates were 
made by (a) standard regression, (b and c) asymmetric regression 1, (d and e) asymmetric regression 2, and (f and g) composites based on a 10% threshold (seven El 
Niño and seven La Niña events).
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Data Availability Statement
The SST data were downloaded from https://www.metoffice.gov.uk/hadobs/hadisst and the SLP data from https://
psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. The Matlab code used in the synthetic example is available 
from the authors on request.
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