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Abstract Two simple methods commonly used to detect asymmetry in climate research, composite
analysis, and asymmetric linear regression, are discussed and compared using mathematical derivation and
synthetic data. Asymmetric regression is shown to provide unbiased estimates only when the respective mean
of positive and negative events is removed from both independent and dependent variables (i.e., non-zero
y-intercepts). Composite analysis always provides biased results and strongly underestimates the asymmetry,
albeit less so for very larger thresholds, which cannot be used with limited observational data. Hence, the
unbiased asymmetric regression should be used, even though uncertainties can be large for small samples.
Differences in estimated asymmetry are illustrated for the sea surface temperature and winter sea level pressure
signals associated with El Nifio and La Nifa.

Plain Language Summary There is increasing evidence of asymmetry in climate variability so
that the response to a positive event may not always be opposite to that of a negative event. The most common
method to estimate such asymmetry is by compositing sufficiently large positive and negative events. We
demonstrate that composites are always biased and underestimate asymmetry, albeit less so for large threshold.
Unbiased estimates can be obtained by separate regressions on positive and negative events provided their
respective mean is removed. This is illustrated with synthetic data and an application to El Nifio and La Nifia
sea surface temperature signals and winter sea level pressure teleconnections to extratropical latitudes.

1. Introduction

The strong asymmetry of sea surface temperature (SST) and climate variability in the tropics has long been
known, as illustrated by the marked differences between the positive (El Nifio) and negative phase (La Nifia) of
the El Nifio-Southern Oscillation (e.g., Okumura & Deser, 2010; Timmermann et al., 2018). The asymmetry of
the ENSO teleconnections to extratropical latitudes is more debated, as some studies report symmetric signals
(e.g., Deser et al., 2017) while others find asymmetry (e.g., Hardiman et al., 2019), often based observationally on
composites that compare the sea level pressure (SLP) or other atmospheric variable associated with large positive
and negative values of an index of the ENSO SST variability. There is also growing observational (Frankignoul
et al., 2011; Révelard et al., 2016; Seo et al., 2017) and modeling evidences (Seo et al., 2017) that the atmos-
pheric response to western boundary currents meridional shifts may be asymmetric, hence that the atmospheric
response to a northward shift of the current is not opposite to that to a similar southward shift. Using composite
analysis, Révelard et al. (2016) found that the atmospheric response to dynamical states of the Kuroshio Exten-
sion is significant for its stable (northward) state while no evidence of a significant signal was found for the
unstable (southward) state. Such result suggests that methods only searching for symmetric responses, such as
standard linear regression, may underestimate or overestimate a response, if the actual responses are asymmetric.
In fact, if asymmetry is so strong that similar responses of the same sign occurred in opposite states, as in some
numerical simulations of the remote atmospheric response to wintertime SST variability in the East/Japan Sea
(Seo et al., 2014), standard linear regression analysis of observations would fail to detect any response, and so
would symmetric analysis (i.e., response to positive minus response to negative phases) in atmospheric response
studies (as in Smirnov et al., 2015). In circumstances that may involve nonlinear dynamics and eddy-mean flow
interactions, it is thus important to verify the symmetry of a detected atmospheric response, hence to establish
how asymmetric responses can be best assessed.

In the present paper, we discuss two methods commonly used to detect asymmetry in the atmospheric response
to SST anomalies, namely composite analysis or compositing (e.g., Deser et al., 2017; Mezzina et al., 2002)
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and asymmetric linear regression (e.g., Frankignoul et al., 2011), as they can easily be applied to observational
products and do not require the large samples that are often needed in statistical learning, causal effect networks,
and other nonlinear methods. We further discuss the two different ways to apply the asymmetric regression, with
fixed-zero or non-zero y-intercepts. Using mathematical derivation and a simple synthetic example, we show
that the commonly used composite analysis may strongly underestimate the response asymmetry, while unbiased
estimates can be obtained by asymmetric regression with non-zero y-intercepts, as least if linearity holds for the
response to SST anomalies of the same sign.

2. An Asymmetric Example

To easily compare how asymmetry is estimated from observations, we introduce a model that mimics in a very
simple way the asymmetry of the atmospheric response to oceanic anomalies. Let N observations of an oceanic
anomaly (e.g., an El Niflo SST index) be represented by the time series x(j) for j = 1, N. The sample mean of the

oceanic anomalies, x(j) = % (Zl " xp + Zfl“ Xn ), is by definition of an anomaly equal to zero. Here x,, is positive

and x, negative, and there are N, positive and N, negative x-values, N = N, + N,.

To represent an asymmetric atmospheric response, we assume that an atmospheric variable y is given by a term
proportional to the oceanic anomalies plus an uncorrelated noise € with zero mean that represents intrinsic atmos-
pheric variability and has the same variance in positive and negative cases,

Yo(k) = axp(k) + £(k) ey
Wn(r) = xu(r) + £(r), @

where k corresponds to positive x's and r to negative x's. The true response to negative x-values is taken for
simplicity to be x, while that to positive x-values is given by a x;,. The true asymmetry is given by the ratio of
the slopes a:1.

The sample mean of y is given b y

_ 1 N Ny Np_— No— a—-1—
(S ) e e ol

if one assumes for simplicity that there are as many positive N, and negative N, events. Then, atmospheric anom-
alies Y(k), as used in observational analyses, are defined as departures from the sample mean and thus have zero
mean. This is obtained by subtracting y in Equations 1 and 2,

a—1_—

Yo (k) = yp(k) =y = axp(k) + (k) > Xp @)

a1, s)

Ya(r) = ya(r) =y & xa(r) + £(r) —

Neglecting the noise means, one has Y, ~ %x_p, Y, &~ —“Tﬂx_p, hence Y,andY, are equal and opposite, and

Y = 7;, +Y, ~ 0. Observational atmospheric and oceanic anomalies would therefore be represented in this exam-
ple by the Y and x time series, respectively.

3. Asymmetric Regression
3.1. Zero-Intercept Regression (Method 1)

If one assumes that positive and negative events are represented by two regression models with fixed-zero
intercepts

Yy(k) = apxp(k) + e(k) (6)

Ya(r) = anxa(r) +e(r) @)
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where e is the residual, the a, estimator of the true slope « is, using Equation 4,

i~ Z:Vp (a Xy (k) (K) — & ; 1xp(k)x—p>/le“ xp(K)xp(k) ~ a — N ; 1x_p2/Z]N” xp(k)xp(k)  (8)

If « > 1, the estimator a of the true slope « is negatively biased, while the estimator q, of the true slope 1 is
positively biased as one has from Equation 5

. Zfln (xn(r)xn(r) _a ; lxn(r)x_p>/2fln Xn(P)xa(r) ® 1+ N, a; 1x_p2/2jvn Xn(r)xa(r) C))

Hence, the true asymmetry «:1 is underestimated. If @ < 1, it is easy to show that the asymmetry is also underes-
timated. If x follows a standardized Gaussian distribution, one has x, = 0.8, N~! Zfl” xp(k)xp(k) = 0.5 (half the

unit variance). The amplitude of the bias should then be 0.64%1.

The method 1 is biased because the regression intercepts are assumed to be zero, leading to an inconsistency.
Indeed, from Equations 6 and 7, one has Y, ~ apx,, Ya & ayX, if the means of the residuals are neglected. Hence,

since X, = —Xp,Y = (ap - an) X, would require a,=a,to satisfy Y = 0.

3.2. Non-Zero Intercept Regression (Method 2)

For this second approach, we apply the asymmetric regressions with fixed y-non-zero intercepts, that is, after
removing the means for positive and negative values of the independent (oceanic) variable, respectively, and
correspondingly for the dependent (atmospheric) variable. For positive events, let

Yo(k) =Yy = Ay (xp(k) — %) + e(k) (10)

where A, denote the estimate of the true slope « and e is the residual. Using Equation 4 and 7,, ~ “zix_p, one has

A=Y (%00 =) (%) =T )/ 2" (0ok) = %) & D (axp(h) - 05)

(n
(%) =5 )/ 2 () %) ~

Similarly, for negative events let
Ya(r) = Yo = Au (xa(r) = Xa) + e(r) (12)

where A, denotes the estimate of the true slope 1. One has

A, = Z;"n <Yn(r) - 7,,) (xa(r) = Xn )/Z:\’n (xa(r) = X_n)2 ~ Z:Vn (xa(r) +X7)

. N, ., (13)
(xa(r) + %, )/ZI (M +3%,) ~ 1

Therefore, the estimated slopes are unbiased and model 2 should be preferred. Note that the method 2 is quickly

asymptotically equivalent in sample size to fitting a regression with slope and intercept parameters to both the

positive and negative x values, and that for x, = x, = 0, one has Y, ~ — “—;lx_p +e Y~ — “T_lx_p + ¢’. Hence, there

is no discontinuity in the linear fit.

4. Composites (Method 3)

Composites are built by selecting positive and negative values of x and comparing the corresponding values of
Y, usually based on sample means. The simplest composites would consider all values of the same sign, thus

comparing Yp to x, and Y, to X, but there would be no asymmetry since ::" ~ % To detect asymmetry, compos-
ites must be based on large absolute values of x generally obtained by selepcting"x-values larger or smaller than a
given threshold. How it compares to the true solutions depends on the probability density function (pdf) of x and
€. We consider two simple cases and illustrate them for a = 3, a relatively strong asymmetry that is used in the
synthetic examples below.
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4.1. Uniform x-Distribution

Because it is analytically simple, we first consider the case where x is uniformly distributed in the interval (—50,
50). The pdf f{x) is given by:

f(x)=1/100forx € (—50, 50)andzerootherwise
f (xp) = 1/50forx € (0, 50)andzerootherwise 15)
f (xa) = 1/50forx € (—50, 0)andzerootherwise.

The expected values are x, = 25, X, = —25, variance (x) = 100%/12. Based on a sample of N/2 positive values and

N/2 negative values, one would have X, = 25 + 100/(6N)% ,Xn = =25+ 100/(6N)1/2, where the error is given
by the standard error (SE).

For very large sample, say N = 10,000, the estimation errors are very small, X, =25 +0.41. Compos-
ites based on the 25% largest and smallest values yield X5 = 37.5 +0.58, Xms5 = —37.5 + 0.58. Neglect-
ing the small averaging errors and using Equations 4 and 5 with a = 3, the estimated asymmetry is given by

(ﬁ> ~va— B 5233, (E) ~ 1+ =12 ~ 1.67. Based on 1 SE of the means, the corresponding ranges

25 2 375 %3 2 375

YpZS) ~ 112.5+1.74-25+0.41 _, 87.5+1.74 041

are, assuming for simplicity uncorrelated errorsinxys and x;, givenby( 55055 R o T35 ©
37.9%0. 37.9%0. 3.

Xp25

(2.31-2.35), and similarly (E> IS % + 2'7% ~ (1.65-1.69) if the errors in £ are neglected, and broader
Xn25 37.5%0. 37.5

otherwise. Therefore, the asymmetry is strongly underestimated. Larger thresholds decrease the biases, but do not

cancel it since the top and bottom 1% composites yield (é) ~ra— LB~ 049, (é) ~1+ 2B 515l
1 2 495 o 2 495

The biases increase with a, thus with the true asymmetry.

For small sample, say N = 100, one has X5 = 37.5 + 5.8, X, = 25 + 4.1, X;p5 = —37.5 + 5.8. Neglecting errors in

- . PR — o Yos 1125£174-25+41  875x174 | 4.1
£ and the correlation between errors in X,,sandX,, for @ = 3 one obtains [ £2 | ~ === =i E
o5 375458 375458 — 315

and < Yuos ) ~ % + %, which yields larger ranges of about (2.10-2.53) and (1.43—1.94), respectively. Adding
Xn25 DD 3.

uncertainty in £ further broadens these ranges. For instance, if ¢ has the same but independent uniform distri-
bution as x in Equation 15, as in the synthetic example below, one has €5 = €25 & +5.8, and the approxi-
mate ranges become (2.02-2.61) and (1.35-2.02). For uniform x-distributions, composites are always biased and
underestimate the asymmetry.

4.2. Gaussian Distribution

The Gaussian case is more relevant to observations. In the present example, one can get insights from Equations 4
and 5. For very large absolute x-values (e.g., x, > X, ), one has Y, (k) =~ ax,(k) + €(k) and Y, (r) = x,(r) + £(r),
so that unbiased estimates could be obtained. However, in observations or even climate model simulations, such
very large values of x never occur, and for reasonable thresholds the estimated asymmetry degrades rapidly.
For example, for positive and negative x-values twice their mean and a = 3, Y,,(k) = 5 X, + €(k), and Y,(r) = 3
Xn + £(r), hence the expected asymmetry is substantially biased (i.e., 5:3 instead of 3:1 for the true values). The
expected biases could be derived from the pdf of x and e by integrating over all x above or below an assumed
threshold, but instead we simply use synthetic data in Section 5 to show that the composites are biased even with
large thresholds.

5. Numerical Solutions
5.1. Uniform x-Distribution

Synthetic data with zero mean and N = 100 are randomly generated from Equations 1 and 2 for uniform predic-
tor x and noise ¢ distribution in (=50, 50) with @ = 3. A realization of the x and Y = y — y data for is shown in
Figure 1a, where x should be viewed as the oceanic anomaly and y as the atmospheric response to x. In Figure 1a,
three different estimates of the asymmetry are represented and the results of 1,000 random simulations are in
Figure 1b. For N = 100, the regression method 1 (Section 3.1) is biased and underestimates the slope for positive
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Figure 1. (a) Scatter plot of a realization of the synthetic x and Y series with uniform x and ¢ distribution in (=50, 50)

and o = 3 with N = 100. The symmetric regression by method 0 and the asymmetric regressions by methods 1 and 2 are
represented, as well as composite based on a 25% threshold (method 3). (b) Results of 1,000 random simulations. The colored
symbols indicate the mean values of the estimated slopes and the composite threshold, and the vertical bars indicate 95%
interval from the 1,000 iterations. Crosses correspond to positive x-values and circles to negative ones, and the horizontal
lines indicate the true slopes.

events and overestimates the slope for negative ones by 0.75, as is predicted by Equations 8 and 9, thus strongly
underestimating asymmetry (i.e., 2.25:1.75 instead of 3:1). Note that the standard (symmetric) regression (blue
star, method 0) based on all x-values provides even more biased estimates of the true slopes since it does not
distinguish between positive and negative x-values. On the other hand, the slope estimates are unbiased with the
method 2 (Section 3.2), as expected. However, the error bar with the method 2 is rather large, more than twice
that with the method 1. Note that the error bars are highly similar for positive and negative x-values since they
only depend on N and ¢.

Composite analysis (method 3) is also biased. As discussed in Section 4.1, composite based on all positive or
negative values are unable to detect asymmetry. Consistent with our analysis, the biases in the slopes are larger
for the 25% composites than for the 5% composites that indeed get close to the limit obtained for infinite sample
(2.5:1.5), albeit with large uncertainty (nearly as large as with the regression method 2) since the sample is more
limited. Interestingly, the 25% composites and the regression method 1 yield comparable estimates, but it occurs
because they turned out to be similarly biased.

5.2. Gaussian Distribution

A second set of synthetic data was generated for a = 3 using standardized Gaussian distribution for the predictor

Np
. . _ _ Kyx, (k . .
variable x and the noise ¢, so that expected values are X, = 0.8,X, = —0.8, L 5®s® = 0.5 (half the unit vari-

ance). Figure 2 compares the different estimates of the slope for (left) N = 100 and (right) N = 10,000 random x
and ¢ samples. As above, the synthetic data are randomly generated 1,000 times to document the uncertainty of
each estimate. The mean values of the asymmetric regressions do not significantly depend on A, but the uncer-
tainties are of course much larger for N = 100 (they coarsely scale as N~'"2). In fact, the 95% confidence intervals
are essentially negligible for N = 10,000.

From Equations 8 and 9 the mean biases of the asymmetric regression method 1 are large (~ 0.64), consistent
with Figure 2. For N = 100, the 95% confidence intervals are small, so there is negligible chance to obtain the
true values. As predicted, the method 2 is unbiased, and the 95% confidence interval, albeit larger, is somewhat
smaller than for uniform distributions. In our example for N = 100, the ranges of estimated slopes in 1,000 simu-
lations were (2.35-3.75) for positive x and (0.25-1.8) for negative x. Hence, relative estimation errors can be
large, in particular if the true slope is small as was the case for negative x.
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Figure 2. As in Figure 1, but using synthetic data generated using x and e from standardized Gaussian distribution and « = 3
with (a) N = 100 and (b) N = 10,000. Note that (a) uses 5% threshold for the most extreme composites, while (b) uses 1%.
Crosses correspond to positive x-values and circles to negative ones.

Composite based on a 25% threshold are also strongly biased, and again comparable to those of the regression
method 1, albeit with slightly larger uncertainties. For N = 100, the 95% confidence interval is (2.1-2.6) for posi-
tive x and (1.4-1.9) for negative x, while the full ranges were (1.9-2.9) and (1.1-2.1), respectively, so they did not
even overlap with the true values. Composites based on the 5% largest or smallest x-values provide better, but still
biased estimates of the asymmetry, and the 95% confidence intervals remain far from the true values. However,
estimates could occasionally match or even exceed the true slope since the full ranges in 1,000 simulations were
(2.0-3.3) for positive x and (0.6-2.0) for negative x. For N = 10,000, an unreasonable case for observed climate
time series, composites based on a more extreme 1% threshold could be considered, but they remain biased,
nearly as much as for the 5% threshold (not shown). Composite analysis thus always underestimates the asym-
metry, as shown in Section 4.

6. Application to ENSO

To illustrate the differences between the three methods using observations, we consider the SST signature of
El Nifio and La Nifia events and their teleconnections in boreal winter (DJF), even though ENSO time series
have some skewness. We use the HadISST (Rayner et al., 2003) for SST and the NCEP-NCAR R1 (Kistler
etal., 2001) for SLP in the period 1948-2018. After removing the mean seasonal cycle and a cubic trend from the
monthly values, time series of the DJF mean Nifio3.4 index as well as SST and SLP anomalies are constructed.
Regressions are on the DJF Nifio3.4 index. Composites are based on 10% percentile, a larger threshold than most
analyses, which are based on values larger or smaller than 1 standard deviation of the Nifio3.4 index (e.g., Deser
et al., 2017; Mezzina et al., 2022). Our choice results in seven El Nifio and seven La Nifia events. Note that the
units in Figure 3 are per positive or negative index (i.e., °C/°C), so that the sign of the negative case should be
inverted to display La Nifia signals.

The asymmetry in the SST anomalies between positive and negative cases is most noticeable in the location of the
maximum anomalies, which is found in the central equatorial Pacific in the negative (La Nifia) case but shifted
eastward in the positive (El Nifio) case. However, the local amplitudes exhibit the asymmetry consistent with our
mathematical derivation and synthetic examples, as the amplitudes in the eastern Pacific is larger for the positive
phase and the asymmetry is largest for regression method 2 and smallest for regression method 1. For example, at
90°W on Equator, the regression method 2 gives 1.30°C/°C and 0.38°C/°C for the positive and negative phases,
respectively, while the regression method 1 and the composite give 0.93°C/°C versus 0.60°C/°C and 1.05°C/°C
versus 0.49°C/°C, respectively. On the other hand, the SST amplitude in the central Pacific is slightly larger for
the negative phase, but the asymmetry is again largest for regression method 2. For example, the amplitudes at
165°W on Equator for the positive versus negative phases are 1.17°C/°C versus 1.25°C/°C, 1.06°C/°C versus
1.29°C/°C, and 1.14°C/°C versus 1.27°C/°C for regression model 1, regression model 2, and composite, respec-
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Figure 3. Sea surface temperature (in °C/°C with contour interval of 0.3°C/°C) associated with positive and negative values of the Nifio3.4 index in DJF. Estimates
were made by (a) standard regression, (b and c¢) asymmetric regression 1, (d and e) asymmetric regression 2, and (f and g) composites based on a 10% threshold (seven

El Nifo and seven La Nifa events).

tively. Therefore, the asymmetry is largest for regression model 2, and smallest for regression model 1 with the
composites in between.

The SLP regressions are more contrasted in amplitude and pattern, showing a strong Aleutian Low for El Nifio
and a much weaker, southwestward shifted low for La Nifia (Figure 4). Consistent with our analysis, the strongest
Aleutian Low deepening is given by regression method 2 and the weakest by regression method 1. The compos-
ites are based on a high threshold and are thus in-between, consistent with our mathematical derivation and
synthetic examples (Figure 2).

7. Summary and Discussion

We have shown that asymmetry is best estimated by asymmetric regression models with fixed non-zero
y-intercepts (method 2), which provide unbiased slope estimates. However, for limited samples as often found
in observational analyses, errors in the estimated slopes can be large, in particular if the true slopes are small
and the noise is larger than considered here. Asymmetric regression models with zero intercepts (method 1) are
always biased and underestimate the asymmetry, and they should not be used. While method 2 removes means
separately for the positive and negative values of the independent and corresponding dependent variables, method
1 removes means from independent and dependent variables for the entire data set. In the ocean-atmosphere
coupling framework, method 1 thus implicitly assumes that a neutral ocean leads to no atmospheric anomaly,
which does not hold if there is asymmetry. The single degree of freedom lost in setting the intercept in method 2 is
well made up by avoiding the biased slope estimates of method 2. Composites are also biased and underestimate
the asymmetry, strongly for small thresholds but less so for very large thresholds (which may be unattainable with
observations). However, the errors are then quite large if the sample is limited.

To illustrate the differences between the three methods investigated here using observations, we have estimated
the asymmetry of the tropical Pacific SST anomaly associated with positive and negative values of the Nifio3.4
index in DJF in the period 1948-2018, as done in many studies. All three methods nicely show the westward shift
of maximum SST amplitude in La Nifia events and the substantial amplitude along the South American coast in
El Nifio events. While the differences between methods are rather small, the local SST amplitudes consistently
show the largest asymmetry for regression method 2. The associated SLP anomalies show a strong asymmetry
in all cases, with a strong Aleutian Low strengthening during El Nifio events and a much smaller, southwestward
shifted low during La Nifia events. Consistent with our mathematical derivation and synthetic example, the
Aleutian Low response to El Nifio is strongest for regression method 2 and weakest for regression method 1,
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Figure 4. Sea level pressure in JEM (in hPa/°C, contour interval 0.5 hPa/°C) associated with positive and negative values of the Nifio3.4 index in DJF. Estimates were
made by (a) standard regression, (b and c¢) asymmetric regression 1, (d and e) asymmetric regression 2, and (f and g) composites based on a 10% threshold (seven El

Nifio and seven La Niiia events).

while compositing based on a high 10% threshold provide intermediate results. The latter are consistent with
the composites in Mezzina et al. (2022). Although the true asymmetry is not known in the observational data,
the results confirm that compositing tend to underestimate asymmetry and suggest that asymmetric regression
with non-zero intercepts (unbiased method 2) should be preferred. For data that can be highly skewed, however,
such as precipitation signals, the linear assumption in asymmetric regression is limiting, and a probabilistic
approach for detecting asymmetric ENSO teleconnections may be preferable, such as using contingency tables
(e.g., Lenssen et al., 2020; Mason & Goddard 2012).

In recent studies of the atmospheric response to SST or other oceanic anomalies, multiple regressions have
been increasingly used to distinguish their impacts from the influence of concomitant factors such as sea-ice
concentration, or snow cover (e.g., Liu et al., 2008; Révelard et al., 2018; Simon et al., 2020). Asymmetry in
the responses could not be estimated by applying method 2 to multiple linear regression, since the positive and
negative values of each predictor would not occur simultaneously, thus preventing an appropriate definition of
demeaned variables Y, and ¥, . If asymmetry is only expected in the response to one predictor, method 2 could be
applied to its positive and negative values, while including in each case the additional concomitant predictors, but
two different slopes and significance might be obtained for these other predictors, despite the implicit assumption
of symmetry. However, if only weak correlation between positive and negative values of multiple predictors is
expected, as could be the case if the predictors are (orthogonal) principal components of the same variable (e.g.,
tropical SST anomalies), sequential estimation with method 2 may provide acceptable results. Using method
1 and separating each predictor time series into positive and negative sequences is feasible and was used by
Frankignoul et al. (2011) and Révelard et al. (2016) to asymmetrically remove ENSO teleconnections based
on two ENSO indices, but such estimates are biased, as shown here. In addition, if there are many regressors,
the increased dimensionality might result in overfitting or collinearity, although series of positive and negative
phases would be pairwise uncorrelated. Hence, the generalization to multiple asymmetric regression requires
further investigation.
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