Improved Lower Bounds for Submodular Function
Minimization

Deeparnab Chakrabarty
Department of Computer Science
Dartmouth College
Hanover, New Hampshire, USA
deeparnab@dartmouth.edu

Haotian Jiang
Paul G. Allen School of Computer Science & Engineering
University of Washington
Seattle, Washington, USA
jhtdavid@cs.washington.edu

Abstract—We provide a generic technique for constructing
families of submodular functions to obtain lower bounds for
submodular function minimization (SFM). Applying this tech-
nique, we prove that any deterministic SFM algorithm on a
ground set of n elements requires at least (2(n logn) queries to an
evaluation oracle. This is the first super-linear query complexity
lower bound for SFM and improves upon the previous best
lower bound of 2n given by [Graur et al., ITCS 2020]. Using
our construction, we also prove that any (possibly randomized)
parallel SFM algorithm, which can make up to poly(n) queries
per round, requires at least (n/logn) rounds to minimize a
submodular function. This improves upon the previous best lower
bound of Q(nl/ 3) rounds due to [Chakrabarty et al., FOCS 2021],
and settles the parallel complexity of query-efficient SFM up to
logarithmic factors due to a recent advance in [Jiang, SODA
2021].

Index Terms—submodular function minimization,
bound, query complexity, parallel complexity

lower

I. INTRODUCTION

A real-valued function f : 2V — R defined on subsets of an
n-element ground set V' is submodular if f(XU{e})—f(X) >
fYufe}) —f(Y)forany X CY CVande e V\Y.
Submodular functions are ubiquitous and include cut functions
in (hyper-)graphs, set coverage functions, rank functions of
matroids, utility functions in economics, and entropy functions
in information theory, etc.

Given the expressive power of submodular functions, the
optimization of them has been extensively studied. The
problem of submodular function minimization (SFM), i.e.
mingcy f(5), given black-box access to an evaluation oracle,
which returns the value f(S) upon receiving a set S C V,
encompasses many important problems in theoretical computer
science, operations research, game theory, and more. Recently,
SFM has found applications in computer vision, machine
learning, and speech recognition [1]-[4]. Correspondingly,

The full version of this paper can be found on arXiv at https://arxiv.org/
pdf/2207.04342.pdf.

Andrei Graur
Department of Management Science & Engineering
Stanford University
Stanford, California, USA
agraur @stanford.edu

Aaron Sidford
Department of Management Science & Engineering
and Department of Computer Science
Stanford University
Stanford, California, USA
sidford @stanford.edu

SFM has been the subject of extensive research for decades
and is foundational to the theory of combinatorial optimiza-
tion.

Throughout the paper, unless specified otherwise, we focus
on the strongly-polynomial regime for the query complex-
ity of SFM. We refer to an SFM algorithm as strongly-
polynomial (in terms of query complexity) if the number of
evaluation oracle queries it makes is at most a polynomial
in n and does not depend on the range of the function.
After decades of advances [5]-[14], the current state-of-the-art
strongly-polynomial algorithms include an O(n? log n)-query,
exp(O(n))-time algorithm [15] and an O(n?loglogn/logn)-
query, poly(n)-time algorithm [15], which improved (in query
complexity) upon O(n?)-query, O(n*)-time algorithms of
[16]-[18].!

Despite the rich history of SFM research, obtaining lower
bounds on the query complexity for SFM has been notori-
ously difficult. [19] described two different constructions of
submodular functions whose minimization requires n-queries
to an evaluation oracle; in fact, both can be minimized by
querying all the n singletons. Later, [20] showed that one of
the examples in [19] also needs n/4 gradient queries to the
Lovasz extension of the submodular function. This remained
the best lower bound, until recently [21] proved a 2n-query
lower bound on SFM via a non-trivial construction of a
submodular function (which can be minimized in 2n queries).
For more discussions on difficulties in obtaining super-linear
lower bounds, we refer the reader to Section I-C.

More recently, there has been an interest in understanding
the parallel complexity of SFM. Note that any SFM algorithm
proceeds by making queries to an evaluation oracle in rounds,
and the parallel complexity of SFM is the minimum number
of rounds (also known as the depth) required by any query-
efficient SFM algorithm that makes at most poly(n) evaluation

IThroughout, we use O() to hide polylogarithmic factors.

https://arxiv.org/pdf/2207.04342.pdf
https://arxiv.org/pdf/2207.04342.pdf

oracle queries. All SFM algorithms described above proceed
in Q(n)-rounds. The best known round-complexity is the
algorithm due to [15] which runs in O(nlogn) rounds. On
the lower bound side, [22] proved that any query-efficient
SFM algorithm must proceed in 2(logn/loglogn)-rounds.
This was improved in [23] to an Q(n'/3)-lower bound on the
number of rounds for query-efficient SFM. The latter paper
also mentioned a bottleneck of n'/3 to their approach and
left open the question of whether a nearly-linear number of
rounds are needed, or whether there is a query-efficient SFM
algorithm proceeding in n' =% many rounds for some absolute
constant § > 0.

A. Our Results.

In this paper we provide improved lower bounds for both
the query complexity for SFM, and the round complexity for
query-efficient parallel SFM. We prove that any deterministic
SFM algorithm requires 2(nlogn) queries to an evaluation
oracle, and that any parallel SFM algorithm making at most
poly(n) queries must proceed in 2(n/logn) rounds.

Theorem I.1 (Query complexity lower bound for determin-
istic algorithms). For any finite set V with n elements and
deterministic SFM algorithm ALG, there exists a submodular
function F : 2V — R such that ALG makes at least % log, (%)
evaluation oracle queries to minimize F.

Theorem 1.1 constitutes the first super-linear lower bound
on the number of evaluation queries for SFM. The previous
best lower bound was 2n, due to [21].

Theorem 1.2 (Parallel lower bound for randomized algo-
rithms). For any finite set V with n elements, constant C' > 2,
and (possibly randomized) parallel SFM algorithm ALG that
makes at most Q = n® queries per round, there exists a
submodular function F : 2V — R such that ALG takes at

least m rounds to minimize F with high probability.

Theorem 1.2 improves upon the previous best €2(n!/3)
parallel lower bound due to [23]. Further, Theorem 1.2 is
optimal up to logarithmic factors due to [15], which yields
an O(nlogn)-round, O(poly(n))-queries algorithm.>.

Both Theorem 1.1 and Theorem 1.2 are obtained by con-
structing a new family of submodular functions. This family
of submodular functions and the analysis of their properties
is our main technical contribution. At a high level, we glue
together simple submodular functions, each of which is defined
on a distinct part of a large partition of the ground set V' and
has a unique minimizer. The main novelty of our construction
is an approach to assemble these functions into a layered
structure in such a way that any SFM algorithm needs to
effectively find the minimizer of one layer before obtaining
any information about the functions in later layers. This forces

2This query bound is due to the fact that an algorithm in [15] solves SFM
with O(nlogn) computations of the subgradients of the Lovész extension.
Further, each computation of a subgradient can be implemented by making
n queries to an evaluation oracle for the submodular function in parallel, i.e.
a single round.

any parallel algorithm to have depth equal to the number
of parts, which implies our parallel lower bound. We also
show that minimizing a single part needs a number of queries
super-linear in the size of that part, implying the super-linear
query complexity lower bound for deterministic algorithms.
More insights into our construction and proofs are given in
Section I-B.

B. Our Techniques

Previous works on proving lower bounds for parallel SFM
[22], [23] apply the following generic framework. At a high
level, they design a family of hard submodular functions which
are parameterized using a partition (P, ..., Py) of the ground
set. The key property they show is that even after obtaining an-
swers to polynomially many queries in round ¢, any algorithm
(with high probability) doesn’t possess any information about
the elements in P;yq,..., P,. Further, the construction also
has the property that knowing which elements are in the final
part P, is crucial in obtaining the minimizer. These properties
prove an ¢ — 1 lower bound on the number of rounds for
parallel SFM.

Our paper also proceeds under the same generic frame-
work, but departs crucially from prior work in the design
of the family of hard submodular functions F, which is
the main technical innovation of this paper. With this new
construction, our query complexity lower bound follows by a
careful adversarial choice of function F' € F, and our parallel
round complexity lower bound follows by choosing a random
function uniformly at random from F.

Recap of Previous Constructions. Before we dive into a high-
level discussion of our construction, here we remind the reader
of the construction ideas in [22] and [23], and why they stop
short of proving a nearly-linear lower bound on the number
of rounds for parallel SFM. Both these works construct so-
called partition submodular functions F' where one is given
a partition (Py,...,P;), and the value of F'(S) depends only
on the cardinality of the sets |S N Py,...,|S N Py|. Note
that when the algorithm has no information about Py, ..., P,
for instance in the first round of querying, then for any
query set S, these cardinalities are roughly proportional to
the cardinalities of each part. The main idea behind the
constructions in [22], [23] is to come up with submodular
functions where this “roughly proportional” property is used to
hide any information about the parts P, ..., P,. However, the
fact that |S'N P;|’s can typically differ by a standard deviation
necessarily requires each part P; to be “sufficiently large” and
this, in turn, puts a o(n) bottleneck on the number of parts £.
As it stands, it is not clear how to obtain a better than n!/3-
lower bound on the round complexity of parallel SFM using
partition submodular functions.

Interestingly, a similar approach as above has also been
the main tool to prove lower bounds for parallel convex
optimization [24]-[27]. We defer to Section I-C for a more
detailed discussion of this broader context.

Ideas Behind our Construction. Our construction deviates
from the notion of partition submodular functions in that the
function value F'(S) crucially depends on the identity of the
set S N P; rather than the size, which helps us bypass the
bottleneck in previous constructions and obtain nearly-linear
lower bound on the number of rounds.

It is convenient to think of the family of functions we
construct in a recursive fashion. Pick a subset A C V of
size 2r, which corresponds to the first part P; in the partition
described above, and denote B := V \ A the remainder
parts P> U --- U P,. For notational convenience, we denote
Sy :=85NAand Sg := SN B for any set S C V. Let
R C A be a subset of size |R| = r = |A|/2, and consider the
following function I : 2V — R defined as

F(S):=hr(S)+8-1(Sa=R)-g(Sp), (Meta Definition)
where 1(-) is the indicator function, and g is a submodular
function which will recursively be the same as F' defined over
the smaller universe B. The parameter (3 is a small scalar, and
should be thought of as G(ﬁ) We aim to design the function
hgr(-) to have the following two properties:
(P1) Any set S C V is a minimizer of hg if and only if

Sa=R,
(P2) The function F' defined in (Meta Definition) is submod-

ular whenever ¢ is submodular.

We now claim that obtaining such a function hp suffices
to prove an %—lower bound on the number of rounds
required by any exact parallel SFM algorithm making < n¢
queries per round. In particular, the subsets R C A C V with
|R| = |A|/2 = Clogn, as well as the recursively defined
function g, will be chosen uniformly at random.

To see this, first observe that when f is sufficiently small,
if S; is a (unique) minimizer of the function g, then the set
S§* = RUS; is a (unique) minimizer of F'. This crucially
uses property (P1) which says that R U Sp is a minimizer of
hg for any Sp C B. Next, consider the first round of queries
Q',...,QT. Since R C A is chosen uniformly at random,
and because |R| = |A|/2 = Clogn, the probability that one
of these QQ = R is negligible if T < nC. Therefore, all the
answers to the queries in the first round are precisely hr(Q;),
revealing no information about the function g. On the other
hand, the minimizer of F' needs to minimize g. Therefore,
if we pick g randomly from the same family of F' but over
the smaller universe B, we could apply the above argument
recursively with 2C'log n fewer elements and one fewer round.
In this way, we prove an m—lower bound on the number
of rounds needed to exactly minimize the random submodular
function F'.

The big question left, of course, is whether one can construct
a function hp with the properties mentioned above. This is
what we discuss next.

Obtaining Submodularity. Let us first discuss an idea which
does not work, and then fix it. One way to define hpr is to
take a submodular function fr defined only over elements of

A, whose (unique) minimizer is the subset R, and then extend
it as hg(S) := fr(Sa). In particular,

F(S):= fr(Sa)+ B -1(Sa = R) - g(SB).

Note that it satisfies property (P1), i.e. S is a minimizer of hp
if and only if S4 = R. Unfortunately, the resulting function F'
may not be submodular even if both fr and g are submodular.
To see this, consider an element ¢ € B and consider the
marginal increase in F' when e is added to a set S. Since fr
only depends on S4 and e € B, in the marginal calculation
of F(S +e) — F(S5), the fr terms cancel out. In particular,
we get that

F(S4e)—F(S)=8-1(Sa=R) - (9(Sz +¢) — g(SB)).

Suppose the parenthesized term is positive for some Sp (e.g.
the maximal minimizer of g) and consider the sets .S := RUSp
and S’ := R'USp, where R’ is any strict subset of R. In this
case F'(S+e)— F(S) > 0 while F(S' +e)— F(S’) =0 and
since S’ C S, this violates submodularity.

(First Try)

To fix the above idea, we pad the function fr(S4) with
what we call a “submodularizer function” ¢(S). Think of ¢
as taking two sets (S, Sp) as input; the first set is a subset of
A the other is a subset of B. We define hg(S) := fr(Sa) +
#(Sa,Sp) and therefore,

F(S) := fr(Sa) + ¢(Sa,SB) + B8 -1(Sa = R) - g(SB).

(Layered Function)
What properties do we need from ¢? First, since (P1) requires
that when S, = R, the set S is a minimizer of f + ¢
irrespective of what Sp is, this suggests ¢(R,Sp) is the
same for any Sp C B. For simplicity, assume this is 0.
That is, when S4 = R, the ¢ function doesn’t have any
effect. However, considering the reason our first attempt failed,
when S’ is a strict subset of R, then ¢(S’,Sg) should
be so defined such that adding an element e € B to Sp
strictly increases the function value. This would make sure
that F(S’ + e) — F'(S") > 0 for the violating example in the
previous paragraph. Not only that, this strict increase should
be greater than the increase in F(S + e) — F(S), where
S = (R, Sp) is as in the previous paragraph, and this increase
is B times some marginal of g. To ensure that this occurs, we
choose [to be “small enough”; it suffices to choose a constant
factor less than the strict increase of the function ¢. A similar
argument also leads us to the conclusion that when S4 is a
strict superset of R, then ¢(S4,Sp) should strictly decrease
in value when an element is added to Sp. A definition of ¢
that works is the following:

+45|Sp| if Sy4 strict subset of R
#(Sa,SB) := < —48|Sp| if Sa strict superset of R
0 otherwise.

(Submodularizer)

Note we still have the parameter S unspecified, and we set it
soon.

The above discussion only considered marginals of an

element e € B to the function F. One also needs to be

careful about the case when the element e € A. This will
put a restriction on what fr and 3 are, and will form the last
part of our informal description.

Consider an element e € A\ R and consider the function
¢(R, Sp) for an arbitrary Sp C B. Note that, as defined, the
value of ¢(R,Sp) = 0 and ¢(R + e,Sp) = —45|Sp|. That
is, adding e to R U Sp can decrease the ¢ function value by
—45]Sp|. On the other hand, adding e to (A—e)U.Sp doesn’t
change the ¢-value. Indeed, ¢(A,Sp) = ¢(A —e,Sp) =
—4|Sp| since both A and A — e are strict supersets of R
(remember ¢ ¢ R). In short, the function ¢ is not submodular
and this endangers the submodularity of the sum function
hr = fr+¢.

To fix this, we make sure that the function fr has a “large
gap” between fr(R+e) and fr(R). In particular, we ensure
that fr(R +e) — fr(R) = (1) while 5 = O(1/n). In this
way, although adding e € A\ R to (R,Sp) can decrease
the ¢ value by —43|Sp|, since 3 = O(1/n) this decrease is
smaller than the increase caused by fr(R+e)— fr(R) when
the constants are properly chosen. In particular, we define the
function fr on the universe A as follows

0 ifS4=R
fR(SA) =<1

2 otherwise

if S4 is a strict superset or subset of R

1
It is not too hard to see that this function fr is submodular;
in fact, this function (or a scaled version if it) has been
considered before in the submodular function literature [19],
[20]. This completes the informal description and motivation
of our construction of hard functions; a formal presentation
of our construction and the full proof of its properties can be
found in Section III and the full version at https://arxiv.org/
pdf/2207.04342.pdf.

Query Complexity Lower Bound. While discussed and
motivated in terms of the number of parallel rounds for SFM,
our construction can also prove an (nlogn) lower bound
on the query complexity of any deterministic SFM algorithm.
Indeed, for this part, we consider the family where the size
of |[A] =2, and R is a singleton among these two elements.
Instead of selecting a random function from this family, we
adversarially choose a worst-case function depending on the
deterministic algorithm. Note that the function definition above
doesn’t require the size |A| to be large; we made it large in
the previous discussion since we were ruling out polynomial
query parallel algorithms.

The main observation is the strong property that until the
algorithm queries a set S with S4 = R, it obtains no
information about the function g. Therefore, if we can prove
a lower bound L(n,r) on the number of oracle queries any
algorithm needs to find such a set, with r being the size of
R, then we can obtain an (% - L(n,r)) lower bound on the
exact SFM query complexity.

It is actually not too hard to prove L(n,2) > |logon] — 1
for any deterministic algorithm. Note that R is a singleton

element, and we overload notation and call that element R
as well. First, note that for any query S, if S4 # R, then
the value of F'(.S) only reveals whether S contains “both” the
elements of A, “none” of the elements of A, or the “other”
element in A that is not R; in the first case, the ¢-function
is negative, the second case it is positive and the last case it
is 0. The lower bound can now be proved using an adversary
argument against the deterministic algorithm, by choosing the
function so that the oracle never answers “other.” Since the
algorithm is deterministic, the adversary can choose the set A
depending on the queries. The adversary maintains an “active
universe” U which initially contains all the elements. If the
first query S contains < |U|/2 active elements, then the
adversary puts both elements of A in V'\ S, answers “none”,
and removes U N S from U; if S contains > |U|/2 active
elements then the adversary puts both elements in S, answers
“both”, and removes U \ S from U. The algorithm can never
reach the desired set until the number of active elements goes
below 2. Since the number of active elements can at best be
halved each time, this proves a logyn — 1 lower bound on
the number of queries. Together with our construction, we
obtain an 2(nlogn) lower bound on the query complexity of
any deterministic SFM algorithm. This is the first super-linear
lower bound for this question.

Limitations and Open Questions. We end this overview
section by pointing out some limitations of our construction;
we believe bypassing them would require new ideas. The first
issue is the range of our submodular functions. Our current
way of constructing the submodularizer ¢ in (Submodularizer)
requires that the range of ¢ be distinctly smaller than the
marginal increase in the fr function. This is noted by the
parameter 3 which is set to ©(1/n). If there are £ = n/2r
parts to the function, then due to the recursive nature of our
construction, the smallest non-zero value our function takes is
as small as O(-;). When £ = ©(n/logn), as is the case in our
lower bound for parallel SEM, this is 2-°("), Put differently,
if we scale the function such that the range is integers, then
our function’s range takes exponentially large integer values.
Therefore, our lower bounds are more properly interpreted
in the strongly polynomial regime where the round/query-
complexity needs to be independent of the range of the
submodular function. In contrast, the submodular functions
constructed in [23] which proves an Q(nl/ 3) lower bound on
the number of rounds have range {—n, —n+1,...,n—1,n},
and thus also constitute a lower bound in the weakly poly-
nomial regime (its definition is deferred to Section I-C).
Interestingly, the lower bound construction in [22] also has a
large range; it remains an interesting open problem to prove a
nearly-linear lower bound on the number of rounds for query-
efficient parallel SFM for integer-valued submodular functions
with poly(n)-bounded range.

We prove an Q(nlogn) lower bound for the query com-
plexity of deterministic algorithms for SFM. Improving this to
an n'*T¢-lower bound for some constant ¢ > 0 is an important
open question. The collection of functions we construct can be

https://arxiv.org/pdf/2207.04342.pdf
https://arxiv.org/pdf/2207.04342.pdf

minimized in O(n) queries, and so one may need new ideas to
obtain a truly super-linear lower bound. The main idea behind
this algorithm is that in (Layered Function), an element of R
can be recognized in polylog(n) queries using a binary-search
style idea. Basically, given any set .S the function value F'(S)
gives the information whether S,4 is a subset/superset of R
(in which case it also gives the size |Sal), or it tells if S, is
neither a subset or superset of k. With some work this leads
to an O(r) query algorithm to find R (here r is the size of
R), and thus in n/2r rounds with a total query complexity of
O(n) one minimizes F.

A final limitation is that we fall short of proving an
Q(nlogn) query lower bound for randomized SFM algo-
rithms. Indeed, if one looks at the structure of our 2(nlogn)
proof, the “logn” arises from L(n,2) which is a lower bound
on the number of queries a deterministic algorithm needs to
make to find a set S such that S4 = R. With randomization,
this problem is trivially solved in O(1) queries; a random set
that contains each element with probability 1/2 would do. One
may wonder if » = |R| was increased, whether a super-linear
in r lower bound could be proved for L(n,r). Unfortunately
this is not possible; there is a randomized algorithm which
finds a set S with S4 = R in expected O(r) queries. We leave
proving a super-linear lower bound on the query complexity
of randomized algorithms for SFM as an open question. The
family we construct is a potential candidate for the lower
bound, just that a new technique would be needed to show
this.

C. Further Related Work

Other Regimes for SFM. Apart from the strongly-polynomial
regime, there have also been multiple recent improvements to
the complexity of SFM in other regimes that depend on M, the
range of the function, i.e. maxgscy |f(S)| when f is scaled to
have an integer range. In particular, we refer to an algorithm as
weakly-polynomial if the number of evaluation oracle queries
it makes is polynomial in n and log M, and pseudo-polynomial
if the number of queries is a polynomial in n and M. State-of-
the-art weakly-polynomial algorithms include O(n?log M)-
query, O(n? - poly(n, M))-time algorithms [16], [17], and
state-of-the-art pseudo-polynomial algorithms include O(n .

poly(M))-query, O(n - poly(M))-time algorithms [20], [28].

Query Lower Bounds and Cuts. As far as the query complex-
ity of SFM is concerned, lower bounds have been stagnating
at Q(n). The first known lower bound, of n queries, is due
to [19]. Motivated the problem of improving the lower bound,
[29] considered graph cut functions, which is a subclass of
submodular functions, and the problem of computing a global
minimum cut in a graph using cut queries. However, they
instead showed an upper bound of O(n) queries to find a
(non-trivial) global minimum cut in an undirected, unweighted
graph. [21] improve the lower bound for SFM to 2n using
an adversarial input technique, and also introduce a novel
concept, called the graph cut dimension, for proving lower
bounds for the min-cut settings. The main insight is that the cut

dimension of a graph, defined as the dimension of the span of
all vectors representing minimum cuts (binary vectors in RY),
is a lower bound on the number of cut queries needed. How-
ever, [30] has shown that the cut dimension of an unweighted
graph is at most 2n — 3, essentially eliminating the hope for
a super-linear lower bound using this measure. Further, the
recent work of [31] provides a randomized algorithm that
makes O(n) queries and computes the global minimum cut
in an undirected, unweighted graph with probability 2/3.

Parallel Convex Optimization. As far as parallel lower
bounds are concerned, the general framework described
in Section I-B and employed in [22], [23] is similar in
spirit to the approach taken in [24] to bound parallel non-
smooth convex optimization. More precisely, [24] considers
the problem of minimizing a non-smooth convex function f
(rescaled to be have range [—1,+1]) up to e-additive error in
an {.-ball, where one has access to first-order oracle and can
make poly(n) queries to it in each round. [24] shows that any
query-efficient algorithm with parallel depth O(n°log(1/¢))
must have ¢ > 1/3.

The proof relies on the idea of partitioning the universe V'
into = Q(n'/3log(1/e)) parts, and considering functions
f that are the maximum of functions f; defined on these
partitions.

[26] uses a similar framework to show that any query-
efficient algorithm achieving parallel depth O(n°log(1/e))
must have ¢ > 1/2. [24] hypothesises that such algorithms
must have ¢ > 1, but this is still open. The problem has also
been studied [25]-[27], [32] when the dependence on 1/¢ is
allowed to be a polynomial, and we refer the interested reader
to these works for more details.

Approximate SFM. Since the Lovasz extension of a submod-
ular function is a non-smooth convex function, the discussion
in the above paragraph is related to understanding the parallel
complexity of e-approximate SFM. In this problem, we assume
by scaling that the range of the function is in [—1,+1]
and the objective is to obtain an additive c-approximation
to the minimum value. The construction in [23] shows that
any query-efficient e-approximate SFM algorithm with depth
O(n¢log(1/¢)) must have ¢ > 1/3. Note the similarity with
the lower bound in [24] mentioned in the previous paragraph;
this is not an accident since the bottlenecks due to standard
deviation considerations are similar in both approaches. A
reader may wonder if the constructions in our paper also
prove that any query-efficient e-approximate SFM algorithm
with depth O(n°log(1/¢)) must have ¢ > 1. This is not
the case; the functions we consider can be e-approximated
in O(log(1/¢))-rounds. This stems from the limitation in our
construction that the “scale” of the functions we consider
across the layers decay geometrically, and thus one can get
e-close in O(log(1/¢))-rounds.

The e-approximate SFM question is also interesting when
the dependence of the depth on 1/e is allowed to be a
polynomial. In this setting, one can leverage the parallel con-
vex optimization works mentioned in the previous paragraph

to obtain query-efficient c-approximate SFM algorithms with
depth being truly sub-linear in n. For instance, the algorithm
in [26] implies a query-efficient e-approximate SFM algorithm
running in O(n?/3¢=2/3)-rounds. On the other hand, the con-
struction in [23] shows that any query-efficient e-approximate
SFM algorithm with depth (1/£)¢ must have ¢ > 1. Under-
standing the correct answer for query-efficient e-approximate
SEM, both when the dependence on ¢ is poly(1/¢) and when
it is log(1/¢), is an interesting open question.

II. PRELIMINARIES

Throughout, log denotes logarithm with base 2. For any two
sets X and Y, we use X C Y to denote that X is a subset of
Y with possibly X =Y; we use X C Y to denote that X is
a strict subset of Y, i.e. X C Y and there exists at least one
element e € Y such that e ¢ X. Further, supersets, 2O, and
strict supersets, 2, are defined analogously.

For any set X and element e ¢ X, we let X + ¢ denote the
set obtained by including e into X, i.e. X U {e}. Given two
sets X and Y, we define Y\ X = {e €Y : e ¢ X} to denote

the set of elements in Y but not in X.

Definition IL.1 (Marginals). Let f : 2 — R for finite set
V. Forany X CV and e € V\ X, we define 0.f(X) :=
f(X+e)— f(X), the marginal of f at X when adding element
e.

Definition IL2 (Submodular functions). A set function f :
2V — R for finite set V is submodular if 9. f(Y) < 0. f(X),
for any subsets X CY C V and e € [n]\'Y. An alternative
definition is that for any two subsets X,Y C 'V, the following
inequality holds

fX)+ (V) 2 f(XUY) + f(XNY). 2

III. OUR CONSTRUCTION

In this section, we describe our recursive construction of
the family of non-negative functions F,.(V') on subsets of a
given set of elements V, where r € Z, is an integer such
that 2r divides |V'|. We prove that any function F' € F,.(V) is
submodular and its unique minimizer takes a special partition
structure which is crucial to our proofs of lower bounds in
Section IV.

We define the main building block behind our construction
in Section III-A, and use it to recursively construct the function
family F,.(V') in Section III-B.

A. Main Building Block

We start by describing the main building block for our
construction, which relies on two components. The first com-
ponent is a standard submodular function corresponding to
the sum of the rank functions of two rank-1 matroids [19],
[20]. The second component is a “submodularizer” function
¢. Despite not being submodular itself, this submodularizer
function guarantees the submodularity of our main building
block function.

Component I: Sum of Two Rank-1 Matroids. For any sets
R C A, we define the function fa g : 24 5 R as

0 if S=R,
far(S) =41 if SCRorS2OR, 3)
2 otherwise.

As noted in [19], the function f4 r above corresponds to the
matroid intersection of two rank-1 matroids, and is therefore
submodular.

Lemma IIL1 ([19]). For any R C A, the function fa g :
24 5 R defined above is submodular.

In fact, the submodular function f4 g (appropriately scaled)
has previously been used in [19] to prove an n lower bound
on the number of evaluation oracle calls, and in [20] to show
an n/4 lower bound on the number of sub-gradients of the
Lovasz extension for SFM.

Component II: The Submodularizer. Let R C A C V be
subsets of the ground set V, and denote B := V' \ A. For any
subset S C V', we denote S4 :=SNA and S := SN B.
Ideally, we would like to recursively define a function on
V to be of the form f4 r(Sa)+ 1(Sa = R) - g(SB), where
g : 2B — R is a submodular function on B. However,
as mentioned in Section I-B, such a function may not be
submodular even when both fr 4 and g are submodular.
For our recursive construction to go through, we define the
following submodularizer function: ¢y 4z : 2V — R as

|SB] if S4 C R,
dv,a,r(S) == ¢ —|SB| if S4 DR, 4
0 otherwise.

Note that the function ¢y, 4, r defined above is not submod-
ular, as witnessed by the following violation of the marginal
property in Definition I1.2. To see this, let X C Y C V be any
two subsets such that X4 = R, A # Y4 2 X4, and Xp # (.
Note that Y, is a strict superset of X 4. Pick an element
e € A\ Y4. Then observe that J.¢v 4 r(X) = —|Xp| < 0
since oy 4 (X Ue) = —|Xp| and ¢y 4 r(X) = 0. On the
other hand, both ¢y 4 r(Y Ue) = ¢y, a4 r(Y) = —|Y5| im-
plying Ocpv,4,r(Y) = 0 > Oedv,a,r(X). This is a violation
of submodularity. However, these are the only cases where
submodularity is violated, and it turns out that this “almost
submodularity” property helps to guarantee the submodularity
of our main building block which we define next.

The main building block. Let R C A C V be non-empty
subsets of a finite set V' and denote B := V \ A. Let g :
2B 5 R be a set function on B and M > 0 be a parameter
such that maxgcp |g(S)| < M. Our main building block is
the function F‘I/Vzg r 12V = R defined as

FJ\I,g

var(S) = far(SNA)+ - ¢v,A,r(S)

2|v|

+ 1(Sa=R)-g(SNB). (5

AM|V|

The function F‘J,\fjf’{{ g Will be used in Section III-B to construct
a function family on V by choosing g from the function
family recursively defined on B. To show the submodularity
and structural properties of minimizers of this recursive con-
structed function family, we first prove the following properties
of the function F‘%‘g R

Lemma III.2 (Properties of main building block). Let V' be
a finite set of elements, R C A CV be non-empty subsets of
V, and denote B :=V \ A. Let g : 28 5 R be a submodular
function taking values in [0, M| that has a unique minimizer
S, C B. Then the function F := F‘J/\’{LSR defined in (5) satisfies
the following properties:

1) (Non-negativity and boundedness) For any subset S C

V, we have F(S) € [0, 2],
2) (Unique Minimizer) F' has a unique minimizer R U S;,
3) (Submodularity) F is submodular.

As mentioned in Section I-B, the main insight behind
the proof of Lemma III.2 is that the scale of the func-
tion gxpy - 1(Sa = R) - g(Sp) is smaller than that of
ﬁ : ¢V,A,R(S), and both are much smaller than that of

fa.r. As such, the minimizer S* and the range of Fj'7,

are dominantly determined by the function f4 g, enforcing
S% = R and thus fa r(S%) = ¢v,ar(S*) = 0. More-
over, most cases where submodularity fails to hold for the
function W -1(Sa = R) - g(Sp) can be corrected by
the submodularizer ﬁ - ¢v,a,r(S), and the very few cases
where submodularity fails to hold for 2|LV -¢v.4,r(S) can be
fixed by the dominant submodular function f4 r. A formal
proof of Lemma III.2 can be found in the full version at
https://arxiv.org/pdf/2207.04342.pdf.

B. The Function Family

Using our main building block described in Section III-A,
we now define the function family F,.(V') recursively for all
finite sets V' with |V| divisible by 2r.

The base case: when |V'| = 2r. In this case, we let F,.(V) :=
{fvr: RCV,|R[=r}.

Recursive definition. Suppose the function family F,.(V') has
been defined for all |[V| = 2r(k — 1) for integer k > 2, we
now define the family F,.(V') for |V| = 2rk as follows:

Fr(V) = {Féﬁw :RCACV,|R =|A/2=r,
geF(V\A)},

where we recall from (5) that

F\Z/Z%,R = fa,r(Sa) + v, a,r(S)

2|v|

1(Sa = R)-9(SB) (6)

TRV
This completes the recursive definition of the family of func-
tions F,.(V'), where |V is divisible by 2r. When |V] is not
a multiple of 2r, we may also naturally extend the definition
above by making |V| — 2r - L%J elements “dummy” in V.

More precisely, we let V! C V be an arbitrary subset with
size |[V'| = 2r- L%‘J, and define the function family to only
depend on elements in V.

Explicit Formula for Our Construction. We give more
explicit expressions for functions in F,.(V') recursively defined
above, assuming |V is divisible by 2r. Let ¢ := |V|/2r, and
consider any partition A of the universe V' = A;UA5U- - -UA,,
where |A4;| = 2r for all ¢ € [{]. Furthermore, we select
subsets R; C A; for each i € [¢] with size |R;| = r. Let
R denote the collection of these R;’s. We denote B; :=
Uil A =V \ (Uj;llAj) the remaining set of elements when
Ay,---,A;_ are removed from V. Given the partition A and
the family of subsets R, we define a function Fl4 : 2V 5 R
as follows. For any S C V, let kg be the smallest index k € [¢]
such that Sy, := SN Ay # Rg. If such an index ks does
not exist, that is SN Ay = Ry for all k£ € [¢], then we set
F 4% (S) := 0. Otherwise, we define its value

ks —2
T 1

paaor= (1] sgyrtgy) (e

=0

1
3B OBea e s (S5)) @)
where fa, g, and ¢p,_ a, R, as defined in (3) and (4).

We now claim that the function family F,.(V') defined above
coincides with the collection of all functions F4 », for all
partitions V' = A; U Ao U --- U Ay with |A;] = 2r, Vi € [{]
and subsets R; C A; with |R;| = r,Vi € [¢]. To see why
this is the case, note that in (6), the functions fa; r,(S4;) =
#B;,4;,r;(SB;) = 0 for all j < ks — 1, and the indicator
1(Sa,, = Rks) = 0. It follows that the functions fa,_ ks
and ¢p, _ A, R, are the only non-zero components when
we expand out the recursive part g in (6).

The explicit expression (7) reveals important insights into
why functions in F,.(V) take a large number of rounds to
minimize. Roughly speaking, any query S would only reveal
information about the subsets R; C A; for j < kg, but
nothing about subsets R; C A; for any j > kg + 1. If in
each round of queries, an algorithm advances kg by at most 1,
then obtaining full information about the function Fy4,} (r,}
requires at least n/2r rounds of queries.

1) Properties of Our Construction: The following lemma
collects properties of the function family ,.(V'). In particular,
any function F' € F.(V) is submodular, and its unique
minimizer admits a partition structure. These properties follow
from the corresponding properties of our main building block
proved in Lemma I11.2

Lemma IIL.3 (Properties of our construction). Let V' be a
finite set of elements and v € 7. satisfies 2r divides |V|. Then
any function F' € F,.(V) satisfies the following properties:
1) (Non-negativity and boundedness) For any subset S C
V, we have F(S) € [0,2],
2) (Unique Minimizer) F' has a unique minimizer of the
form S* = Ui_ | R;, where V. = A; U---U Ay forms a

https://arxiv.org/pdf/2207.04342.pdf

partition with £ = |V'|/2r and |A;| = 2r,Yi € [{], and
subsets R; C A; have size |R;| = r,Vi € [{],
3) (Submodularity) F is submodular.

Proof. We prove the lemma by induction based on the size of
the ground set V.

The base case. The base case is when |V| = 2r and the
statement in this case follows because the function fy r has
range {0, 1,2}, unique minimizer R and is submodular by
Lemma III.1.

The induction step. Suppose we have proven the three
properties of the lemma when the size of the ground set is
2r(k — 1) for some k > 2, we now prove the three properties
for |V| = 2rk.

Note that any function F' € F,.(V) takes the form

F(S) = Fy'4 p(S) = far(Sa) + m < dv,a,r(S)
+ BiGR 1(Sa = R) - g(Sp).
for some subsets R C A C V such that |R| = |A]/2 = r,

and function ¢ € F,.(B) with B = V \ A. By induction
hypothesis, g satisfies the three properties in the lemma. The
three properties for function F' then follows immediately from
applying Lemma III.2 with M = 2. O

IV. LOWER BOUNDS

In this section, we leverage our construction of the function
family F,.(V) from Section III to prove lower bounds for
SFM. In Section IV-A, we prove an 2(nlogn) evaluation
query complexity lower bound for any deterministic algorithm
that minimizes functions in F.(V), even when r = 1.
Then, in Section IV-B, we show that any randomized parallel
SFM algorithm that makes at most) = poly(n) evaluation
oracle queries per round, with high probability, takes at least
Q(n/logn) rounds to minimize a uniformly random function
F € F.(V) for r = ©(logn).

A. Query Complexity Lower Bound for Deterministic Algo-
rithms

In this subsection, we prove the query complexity lower
bound for deterministic SFM algorithms in Theorem 1.1, with
the function F' chosen adversarially from the function family
F1(V). More specifically, we prove the following theorem
which immediately implies Theorem I.1.

Theorem IV.1 (Query complexity lower bound for determinis-
tic algorithms). Let V' be a finite set with n elements. For any
deterministic SEFM algorithm ALG, there exists a submodular
function F' € F1(V') such that ALG makes at least 5 1ogy (%)
evaluation oracle queries to minimize F.

Let us fix a deterministic algorithm ALG. We prove that
there exists a function F' € F1(V') on which ALG must make
at least 3 log (%) evaluation oracle queries. From (6), recall
that any function F' € JF; (V) is specified by subsets R C A C
V where |A| = 2 and |R| = 1, and a function g € F1(B),

where B := V'\ A. As R contains only a single element and we
abuse notation and call that element R as well. The function
F is then given by F(S) := fa,r(Sa) + %V‘ -ov,a,r(S) +
8“,' 1(Sa = R)-g(Sp). Recall S4 is the shorthand for SN A
and Sp is the shorthand for SN B. By Lemma IIL.3, F'(S) has
a unique minimizer S* with S% = R and S} is the unique
minimizer of g(Sg).

By construction, until ALG queries a set S with Sy = R,
that is, S N A is precisely the singleton R, it obtains no
information about g. More precisely, the answers given to ALG
are the same no matter which g € F;(B) is picked. The heart
of the lower bound is the following lemma which asserts that
an adversary can always choose an (A, R) pair such that the
first O(logn)-queries of ALG “miss R”, that is, S; N A # R.

Lemma IV.2. Fix a deterministic algorithm ALG and let T :=
|logn| —1. There exist R C A C V with |R| =1 and \A| =2
such that the first T (possibly adaptive) queries S*,--- , ST
made by ALG to the evaluation oracle EO satisfy S # R for
all i € [T).

Before we prove the above lemma, let us first use it to
prove Theorem I.1.

Proof of Theorem I.1. Fix a deterministic algorithm ALG.
For any even integer n > 2, let h(n) denote the smallest inte-
ger such that ALG makes at most h(n) oracle calls to minimize
any submodular function F' € F; (V') with |[V| = n, even when
ALG is given the information that the submodular function is
picked from this family. We claim that h(n) > % log(%). Since
by Lemma IIL.3, any function F' € F7(V') is submodular, this
would imply Theorem I.1. We prove the claim by induction;
the base case of n = 2 holds vacuously.

Let T = |logn|—1. By Lemma IV.2, we can choose subsets
R C A C V such that |R| = 1, |A| = 2, and for the first
T (possibly adpative) queries S*,..., ST of ALG, we have
S% # R hold for all i € [T]. Now consider the function
F € 7 (V) defined as

F(S) = fa,r(Sa)+ 2|V|¢VA r(S)
+ ﬁ 1(S4 = R) - 9(Sp).

where (A, R) are these subsets, B = V \ A, and g, by
induction, is the function in F;(B) on which ALG takes
h(n — 2) queries (since |B| = |V| — 2) to find the unique
minimizer. By the choice of (4, R), since S% # R, the
evaluations of F(S?) are the same for all g € Fi(B). In
other words, in its first T = |logn| — 1 queries, ALG does
not obtain any information about the function g.

After T' queries, suppose we provide ALG with (A, R).
By Lemma III.3, ALG now needs to minimize g. Since the
answers received by ALG are consistent with any g € F; (B),
by induction, ALG takes at least h(n —2) queries to minimize
g. Therefore, we get the recursive inequality h(n) > h(n —
2) + [logn] — 1. This implies h(n) > % log(%). proving the
theorem statement. 0

Now we are left to prove Lemma IV.2.

Proof of Lemma IV.2. The proof is via an adversary argument
where the EQ is an adversary trying to foil the deterministic
algorithm ALG. In particular, EO can choose to not commit
to the sets (A, R) in the definition of the function F' € F;
at the beginning. Instead, at every query S°, the adversary
oracle EO gives an answer consistent with a function F'(S) =
far(Sa) + ﬁ - ov.ar(S)+ 1(Sa = R)g(Sp) for some
(A, R) such that S% # R and such that all previous query
answers are also consistent with .S. We now show that this is
possible for the first T queries.

It is in fact convenient to consider the following modified
evaluation oracle EQ’. When queried with a set S C V, EO’
returns the following information: (1) whether S4 = R, or
Sa C R,or R C Sy, orif Sy is neither a subset nor a superset
of R, and (2) the size of |S4|. Note that unless S4 = R, the
information returned by EQ’ is enough for the algorithm to
compute F'(S). Indeed, when S4 # R, the function F'(S) =
far(Sa) + ﬁ - ¢v,4,r(S) so the information in (1) and
(2), together with |S| determine the value of F'(.S). In short,
we can use EQ’ to simulate EO till a query S with Sy = R
is made. We now show how to construct the adversary EQ’
such that in the first T queries, it can give answers such that
S% # R for all i € [T] and there exists an R C A C V
consistent with all answers given so far.

The adversary EQ’ maintains an active set U! of elements
which is initialized to V. Consider the first query S! made
by ALG. If |[U N S| > |U'|/2, then EQ’ does the following:
(a) it sets U2 < U' N S', and (b) answers S} = A, that
is, R ¢ SY and |S}4| = 2. If [U' N S| < |U'/2, then
EO’ does the following: (a) it sets U? «+ U'\ S, and (b)
answers S}x = (), that is, R D Si and |S}4| = 0. In short, the
adversary EQ’ commits that A C U2, and for any such A and
any R C A, the answer given above would be consistent.

More generally, at the beginning of round ¢, the adversary
EQ’ has an active set U’ with > 4 elements. Upon query
St if |U' N SY| > |U?|/2, then EQ" answers R C S and
|S4| = 2, and modifies Ut < U N S%, otherwise, EO’
answers R 2 S% and |SY| = 0, and modifies Ut « U*\ S°.

Since the size of U? can at most halve, at the end of T =
|logs(n)] — 1 rounds, the adversary EQ" ends up with a set
UT+1 with > 2 elements. At this point, EO’ can choose any
subset R C A C UT*! with |A| =2 and |R| = 1, and (a) all
answers given above are consistent, and (b) qu # R for all
i € [T]. This completes the proof of the lemma. O

Remark IV.3. We note that Lemma IV.2 is false if ALG is
allowed to be randomized. Indeed, if |A| = 2 and R C A has
|R| = 1, then any query S which picks every element with
probability 1/2 will satisfy Sy = R with probability 1/4.
Therefore, the proof idea breaks down for randomized algo-
rithms. On the other hand, we do not know of a randomized
algorithm for minimize functions in F1(V') that makes O(n)
queries and succeeds with constant probability.

B. Parallel Lower Bound for Randomized Algorithms

In this subsection, we prove the 2(n/C logn)-lower bound
on the number of rounds for (possibly randomized) parallel
SEFM algorithms in Theorem 1.2. By Yao’s minimax principle,
Theorem 1.2 is implied by the following theorem where the
function F' is chosen uniformly at random from the family
Fr(V) with r = C'logn.

Theorem IV.4 (Parallel lower bound for randomized algo-
rithms). Let C' > 2 be any constant. Let V be a finite set
with n elements, and v > C'logn be an integer such that
2r divides n. Then any parallel algorithm that makes at most
Q := nY queries per round, and runs for < (n/2r) rounds,
fails to minimize a uniformly random submodular function

F € F.(V), with high probability.

Proof. By the recursive construction of the function family
F-(V) in Section III-B, we may view a random submodular
function F' drawn from the uniform distribution over F,.(V)
being obtained as follows. We first select a uniformly random
subset A; C V of size |A;| = 2r and a uniformly random
subset R; C A; with size |Ry| = r. Denoting B := V' \ Ay,
we then draw a uniformly random function g € f (B), and
let F(S) = fAl,Rl (SA1)+%W'¢V,A1,31 (S) 8|V\ (SA1
R1)-9(Sg). Coupled with FeS) in terms of the randomness of
the subsets A; and Ry, we also let F/(S) := fa, r,(Sa,) +
3] VAR (5)-

Since we have specified a distribution over submodular
functions, it suffices to prove that any deterministic algorithm
which runs in < 7% rounds and makes < n® queries per round,
fails to find the minimizer of F' with high probability. In the
remainder we prove this statement.

Consider the set of queries S7, -, S? made by a determin-
istic algorithm ALG in the first round. We start by showing
that with high probability, Si N A; # Ry for all i € [Q].
This is because for any Si and any fixed outcome of A,
since R; is a uniformly random subset of A; with size r,
there are () > 2 possible choices of R.

2C
2r+1 2 2Clogn+1
Therefore, for any query S¢ and any fixed outcome of A;, the

probability that S N A; = R is at most M It then
follows by a union bound over all Si that w1th probablllty at
least 1—2012#, the event &; := {S{ﬂAl # Ry,Vi € [Q]}
holds.

Now conditioning on the event &1, the output of the evalua-
tion oracle when queried with Si would be F(S%) = F'(S?),
for all i € [Q]. Note, however, that the function F’ does
not depend on the randomness of g € F,(B). Thus, even
when given the information of R and A after the first round
of queries, ALG does not obtain any information about the
uniformly random function g € F,(B). Therefore, we can
apply the argument in the previous paragraph to the set of
queries S3,.. .,SQQ in the second round of the algorithm.
In particular, with probability at least 1 — 1/n, the event
Ey = {S% N Ay # Ry, Vi € [Q]} holds.

More generally, if the algorithm makes k < n/2r rounds of

queries, then with probability > 1 — kQ2C fg b 51— —

all the events & occur. This implies that the answers ob-
tained by the algorithm are consistent with any function
in F,.(V) where the sets Aj,...,A; and Ry,..., Ry are
fixed, but the sets Agy1,...,Apj2r and Rgy1, ..., R, /o, are
completely random. Since the unique minimizer of F' is the set
(RiURyU---UR,,/5,), no matter which set the deterministic
algorithm returns, it will err with probability at least 1 — ——.

O

This completes the proof of the theorem.

V. ACKNOWLEDGEMENTS

We thank the anonymous reviewers of FOCS 2022 for help-
ful comments. Part of this work was done while Deeparnab
Chakrabarty, Haotian Jiang and Aaron Sidford were attending
the Discrete Optimization trimester program at the Hausdorff
Research Institute for Mathematics.

Deeparnab Chakrabarty is supported by NSF grant 2041920.
Andrei Graur is supported by NSF CAREER Award CCF-
1844855, NSF Grant CCF-1955039, and Stanford’s Nakagawa
Fellowship. Haotian Jiang is supported by NSF awards CCF-
1749609, DMS-1839116, DMS-2023166, CCF-2105772, and
a Packard Fellowship. Aaron Sidford is supported by a Mi-
crosoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research
award, and a Sloan Research Fellowship.

REFERENCES

[1]1 Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 23, no. 11, pp. 1222-1239, 2001.

[2] P. Kohli, M. P. Kumar, and P. H. Torr, “p3 & beyond: Move making
algorithms for solving higher order functions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1645—
1656, 2008.

[3] P. Kohli and P. H. Torr, “Dynamic graph cuts and their applications in
computer vision,” in Computer Vision. Springer, 2010, pp. 51-108.

[4] H. Lin and J. Bilmes, “Optimal selection of limited vocabulary speech
corpora,” in Twelfth Annual Conference of the International Speech
Communication Association, 2011.

[51 M. Grotschel, L. Lovasz, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169-197, 1981.

[6] W. H. Cunningham, “On submodular function minimization,” Combina-
torica, vol. 5, no. 3, pp. 185-192, 1985.

[71 M. Grotschel, L. Lovész, and A. Schrijver, Geometric algorithms and
combinatorial optimization. Springer, 1988.

[8] A. Schrijver, “A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time,” Journal of Combinatorial Theory,
Series B, vol. 80, no. 2, pp. 346355, 2000.

[9] L. Fleischer and S. Iwata, “Improved algorithms for submodular function

minimization and submodular flow,” in Proceedings of the thirty-second

annual ACM symposium on Theory of computing, 2000, pp. 107-116.

S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial strongly

polynomial algorithm for minimizing submodular functions,” Journal

of the ACM (JACM), vol. 48, no. 4, pp. 761-777, 2001.

S. Iwata, “A faster scaling algorithm for minimizing submodular func-

tions,” SIAM Journal on Computing, vol. 32, no. 4, pp. 833-840, 2003.

J. Vygen, “A note on Schrijver’s submodular function minimization

algorithm,” Journal of Combinatorial Theory, Series B, vol. 88, no. 2,

pp. 399-402, 2003.

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

J. B. Orlin, “A faster strongly polynomial time algorithm for submodular
function minimization,” Mathematical Programming, vol. 118, no. 2, pp.
237-251, 2009.

S. Iwata and J. B. Orlin, “A simple combinatorial algorithm for sub-
modular function minimization,” in Proceedings of the twentieth annual
ACM-SIAM symposium on Discrete algorithms. SIAM, 2009, pp. 1230—
1237.

H. Jiang, “Minimizing convex functions with integral minimizers,” in
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2021, pp. 976-985.

Y. T. Lee, A. Sidford, and S. C.-w. Wong, “A faster cutting plane method
and its implications for combinatorial and convex optimization,” in 2015
IEEE 56th Annual Symposium on Foundations of Computer Science.
IEEE, 2015, pp. 1049-1065.

H. Jiang, Y. T. Lee, Z. Song, and S. C. Wong, “An improved cutting
plane method for convex optimization, convex-concave games, and
its applications,” in Proceedings of the 52nd annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2020, pp. 944-953.

D. Dadush, L. A. Végh, and G. Zambelli, “Geometric rescaling algo-
rithms for submodular function minimization,” Mathematics of Opera-
tions Research, vol. 46, no. 3, pp. 1081-1108, 2021.

N. J. A. Harvey, “Matchings, matroids and submodular functions,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2008.

D. Chakrabarty, Y. T. Lee, A. Sidford, and S. C.-w. Wong, “Subquadratic
submodular function minimization,” in Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), 2017, pp.
1220-1231.

A. Graur, T. Pollner, V. Ramaswamy, and S. M. Weinberg, “New query
lower bounds for submodular function minimization,” 11th Innovations
in Theoretical Computer Science Conference, ITCS, pp. 64:1-64:16,
2020.

E. Balkanski and Y. Singer, “A lower bound for parallel submodular
minimization,” in Proceedings of the 52nd annual ACM SIGACT Sym-
posium on Theory of Computing (STOC), 2020, pp. 130-139.

D. Chakrabarty, Y. Chen, and S. Khanna, “A polynomial lower bound
on the number of rounds for parallel submodular function minimization
and matroid intersection,” in 202/ IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS). 1EEE, 2021.

A. Nemirovski, “On parallel complexity of nonsmooth convex optimiza-
tion,” Journal of Complexity, vol. 10, no. 4, pp. 451-463, 1994.

E. Balkanski and Y. Singer, “Parallelization does not accelerate convex
optimization: Adaptivity lower bounds for non-smooth convex mini-
mization,” arXiv preprint arXiv:1808.03880, 2018.

S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford, “Complexity of
highly parallel non-smooth convex optimization,” Advances in Neural
Information Processing Systems, 2019.

J. Diakonikolas and C. Guzmdn, “Lower bounds for parallel and
randomized convex optimization,” in Conference on Learning Theory.
PMLR, 2019, pp. 1132-1157.

B. Axelrod, Y. P. Liu, and A. Sidford, “Near-optimal approximate
discrete and continuous submodular function minimization,” in Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2020, pp. 837-853.

A. Rubinstein, T. Schramm, and S. M. Weinberg, “Computing Exact
Minimum Cuts Without Knowing the Graph,” in 9th Innovations in
Theoretical Computer Science Conference (ITCS 2018), 2018, pp. 39:1—
39:16.

T. Lee, T. Li, M. Santha, and S. Zhang, “On the cut dimension of
a graph,” in 36th Computational Complexity Conference (CCC 2021),
2021, pp. 15:1-15:35.

S. Apers, Y. Efron, P. Gawrychowski, T. Lee, S. Mukhopadhyay, and
D. Nanongkai, “Cut query algorithms with star contraction,” arXiv
preprint arXiv:2201.05674, 2022.

J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized smooth-
ing for stochastic optimization,” SIAM Journal on Optimization, vol. 22,
no. 2, pp. 674-701, 2012.

	Introduction
	Our Results.
	Our Techniques
	Further Related Work

	Preliminaries
	Our Construction
	Main Building Block
	The Function Family
	Properties of Our Construction

	Lower Bounds
	Query Complexity Lower Bound for Deterministic Algorithms
	Parallel Lower Bound for Randomized Algorithms

	Acknowledgements
	References

