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UNIT CAPACITY MAXFLOW IN ALMOST m?*/® TIME*

TARUN KATHURIA t, YANG P. LIU ¥, AND AARON SIDFORD §

Abstract. We present an algorithm which given any m-edge directed graph with positive
integer capacities at most U, vertices a and b, and an approximation parameter ¢ € (0,1) computes
an additive emU-approximate a-b maximum flow in time m1+0<1)/\ﬁ. By applying the algorithm
fore = (mU)_2/3, rounding to an integral flow, and using augmenting paths, we obtain an algorithm
which computes an exact a-b maximum flow in time m?/3+°(M)y1/3 and an algorithm which given
an m-edge bipartite graph computes an exact maximum cardinality matching in time ma/3+e(1),

Key words. maximum flow, optimization, interior point methods

AMS subject classifications. 68Q25, 68R10

1. Introduction. In this paper, we consider the mazflow problem of computing
a maximum a-b flow for vertices a and b in an m-edge, n-vertex capacitated directed
graph with integer capacities at most U. This problem is among the most funda-
mental problems in combinatorial optimization, and has been the subject of decades
of extensive research. It encompasses prominent problems like s-f minimum cut and
maximum bipartite matching. In recent years this problem has served as a proving
ground for algorithmic advances in optimization [6, 19, 35, 23, 28, 29, 33, 37, 36].

The main result of this paper is a deterministic m*/3T°(MW{U1/3 time algorithm
for solving maxflow. This runtime improves upon the previous best running times of
mM /8T M/ 127], O(my/nlogU) [23]," and O(mn) [32] when the graph is not too
dense and doesn’t have too large capacities.? To obtain this result, we provide a new
perspective on previous interior point method (IPM) based approaches to o(m?/?)
maxflow runtimes [28, 29, 27] and extend the method to leverage new subroutines.
Further, we show how to implement these subroutines efficiently by extending previous
iterative refinement based algorithms [21, 2] to solve a larger class of undirected flow
problems to high precision in almost linear time.

1.1. Motivation and Significance. To motivate our result and explain its
significance, throughout Subsection 1.1 we restrict our attention to the simplified
problem of computing maxflow on unit capacity sparse graphs, i.e. when U =1 and
m = O(n). This problem is equivalent, up to nearly linear time reductions, to the
problems of computing a maximum cardinality set of disjoint a-b paths in sparse graph
[22] and computing a maximum cardinality matching in a sparse bipartite graph [25].
_ Obtaining improved running times for this simple problem is notoriously difficult.
O(min(m3/2,mn?/?)) time algorithms for the problem were established in the 1970s
[12] and remained the state-of-the-art until the 2010s. Even for the easier problem
of computing an e-approximate maxflow, i.e. a feasible flow of value at least (1 — ¢)
times the optimum, in an undirected graph, no running time improvement was found
until the 2010s.3

*Merged version of accepted submissions to FOCS 2020.

TUC Berkeley, tarunkathuria@berkeley.edu

*Stanford University, yangpliu@stanford.edu

8Stanford University, sidford@stanford.edu

1Some algorithms discussed in the introduction, including the one in [23], are randomized. We
do not distinguish randomized versus deterministic algorithms in the introduction.

2Here and throughout the paper we use 5() to hide poly log(n, m,U) factors.

3Improved runtimes were obtained for dense graphs in the 1990s [15, 16, 18, 17].
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Energy Maximization Based Breakthroughs. This longstanding algorith-
mic efficiency barrier was broken by Christiano, Kelner, Madry, Spielman and Teng in
2011 [6]. This breakthrough provided an algorithm which computed an e-approximate
maxflow in unit-capacity sparse graphs in time O(mn'/3poly(1/e)), which is O(m*/3)
on sparse graphs with logarithmic e.

To achieve this result, [6] leveraged a seminal result of Spielman and Teng in
2004 [38] that Laplacian systems, class of linear systems associated with undirected
graphs, could be solved in nearly linear time. Solving Laplacian systems is equivalent

to computing (to high precision) a-b electric flows, the flow f € R that sends one
def

unit of flow and minimizes energy, E(f) = Y cpref? for input edge resistances
r € RE,. [6] demonstrated that this fact combined with an iterative method, known as
the multiplicative weights update (MWU), yields an O(m?®/2poly(1/e))-time maxflow
algorithm. They then introduced a new technique of energy mazimization to obtain
their improved runtime. More precisely, they noted that when MWU converged slowly,
a small number of edges could be removed to increase the energy of the electric flows
considered and developed methods which could trade-off the loss in approximation
quality from edge removal with possible energy increase.

Interestingly, earlier, in 2008, Daitch and Spielman [11] showed that another
powerful class of continuous optimization methods, IPMs, reduces the problem of
solving maxflow exactly on directed graphs to solving O(ml/ 2) Laplacian systems.
Consequently, [6] created an exciting possibility of combining energy maximization
techniques of [6] with IPMs to achieve faster running times for solving maximum flow

In 2013, Madry [28] provided a breakthrough result which showed that this was
possible; this paper provided an 5(m10/7) = 6(m3/2_1/14) time algorithm for directed
maxflow on sparse unit capacity graphs. This result was an impressive tour de force
that involved multiple careful modifications to standard IPM analysis. Leveraging
energy maximization techniques is more difficult in IPMs than in MWU, where there
is a type of monotonicity that does not occur naturally in IPMs. Additionally, several
aspects of IPMs are somewhat brittle and tailored to /5 and ¢4 norms, rather than /.,
as in maxflow. Consequently, [28] performed multiple modifications to carefully track
how both energy and IPM invariants changed during the IPM. This yielded the first
O(m?/?=¢) time maxflow algorithm for unit capacity graphs for some constant ¢ > 0,

though one slower than O(m?/3).

Efficient Energy Maximization. Since [6], energy maximization has been ap-
plied to a host of other problems [20, 5, 1]. Further [28] has been simplified and
improved [29], and its techniques have been extended and applied to related graph
problems such as minimum cost flows [10]. Further, the runtime was recently im-
proved by Liu-Sidford to m!/8+e() = y3/2=1/8+0(1) 127] and this in turn led to
faster algorithms for mincost flow and shortest paths with negative edge lengths [3].

To obtain this runtime improvement, [27] showed that instead of carefully tuning
the weights based on the electrical energy, one can consider the separate problem of
finding a new set of weights under a budget constraint to maximize the energy. They
showed that a version of this problem reduces to solving f»-f,, norm flow problems,
and leveraged recent results of [21, 2] to solve such problems in almost-linear time to
achieve their runtime. Although [27, 3] address IPM energy monotonicity issues in
novel ways, they do not run in time m*/? due to issues of maintaining IPM invariants
and working with ¢4, rather than £, (see Section 3).*

4Technically, in [27] and [3], weight changes are computed to reduce the £ norm of congestion
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of an electric flow vector. However, centrality depends on the £4 norm yielding slower than a m

Interestingly, there are IPMs for linear programming which only measure central-
ity in £o, norm as opposed to the ¢5 or ¢4 norm. In particular [9, 24, 41, 40] show
how to take a step with respect to a softmax function of the duality gap and trace
the central path only maintaining ¢, norm bounds. However, it is unclear how to
leverage these for faster maxflow algorithms and this paper takes a different approach.

Our Contributions: Beyond Energy Maximization. Building on the past
decade of maxflow research we obtain an m*/3+°(1) maxflow algorithm on sparse, unit-
capacity graphs. This closes the gap between the runtime achieved for approximately
solving maxflow using electrical flows and the best runtime known for solving maxflow
on directed graphs.®

We also shed light on the energy maximization frameworks that underlie previous
m3/2=90) exact maxflow algorithms and depart from it to achieve our bounds.® We
show that electric energy arises naturally when locally optimizing the second order
Taylor approximation of a Bregman divergence of the standard logarithmic barrier
arising in IPMs. We then show that by optimizing the entire function, instead of its
second order Taylor approximation, we can obtain improved convergence.

Further, we show that this divergence mazimization can be performed efficiently
for graphs. Whereas [27] showed that energy maximization could be performed effi-
ciently by solving smoothed ¢2-£,, flows of [21, 2], here we need to solve problems not
immediately representable this way. We show previous solvers can be applied to solve
a quadratic extension of the divergence maximization problem in Lemma 6.1, which
suffices for our algorithms. More generally, we show in Theorem 6.3 that a range
of undirected flow optimization problems, including divergence maximization, can be
solved efficiently using iterative refinement and smoothed ¢5-¢,, flows [21].

1.2. Our Results. The main result of this paper is the following theorem.

THEOREM 1.1 (Maximum Flow). There is an algorithm which for any € > 0
computes additive emU -approzimate solutions to the mazflow problem in m-edge, in-
teger capacitated graphs with maximum capacity at most U, in time m1+0(1)/ﬁ.

By choosing € = (mU)~2/3, rounding to an integral flow [8], and running augmenting

paths on the residual graph we obtain the following result.

THEOREM 1.2. There is an algorithm which solves mazflow in m-edge, integer
capacitated graphs with mazimum capacity at most U in m*/3+teMUL/3 time.

Theorem 1.2 yields an exact maxflow runtime matching the 6(mn1/ 3¢=11/3) runtime

of [6] for (1 — €)-approximate undirected maxflow on sparse graphs. Further, this
improves on the recent m!'*/8+e(M {1/ time algorithm of Liu-Sidford [27] as long as
U < m!/?79 for some § > 0. When U > m!/2, the result of Theorem 1.1 and all the
algorithms of [28, 29, 27] have runtime O(m?3/?), which is already known through [14].
Hence, we assume U < /m throughout the paper.

An immediate corollary of Theorem 1.2 is the following result on efficiently com-
puting bipartite matchings. It improves over the previous bounds of m!!/8+e(1) [27]
and O(m +n®/2) [40] on sparse graphs.

4/3
runtimes. Since the initial version of this paper [26] was released, [3] was updated to leverage the
techniques of this paper and achieved a m*/3+°(1) runtime for a broader range of problems.

5Since [6], faster runtimes for approximate maxflow on undirected graphs have been achieved
[22, 35, 19, 33, 36, 37| and the problem is now solvable in nearly linear time.

6Independently, [3] gives a perspective on energy maximization as regularized Newton steps.
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COROLLARY 1.3 (Bipartite Matching).  There is an algorithm which given an
m-edge bipartite graph computes a mazimum cardinality matching in time m*/3T0(1)

Note that Theorem 1.1, 1.2, and Corollary 1.3 are deterministic. This follows
from [7], which showed that algorithms for many flow algorithms, including Laplacian
system solvers [38], smoothed ¢2-¢, flow algorithms [21, 2], and some maxflow IPMs
[28, 29], may be derandomized with a m°") multiplicative runtime increase.

1.3. Previous Work. Here, for brevity, we cover several lines of research closely
related to our work. See Section 1.3 of [27] for further references.

Approximate undirected maxflow. An extensive line of work leveraging con-
tinuous optimization techniques to obtain faster maxflow algorithms stemmed from
[6]. [22] also presented a O(n'/3poly(1/¢)) iteration algorithm for unit-capacity graphs
also using electrical flows. Further, [19] and [35] presented algorithms for maxflow
achieving runtimes of O(m!'+°Mpoly(1/¢)), [33] improved this to nearly linear time,
and [36, 37| further improved the e dependence, and runtime in dense instances.

IPMs for maxflow. In order to obtain highly accurate solutions and improved
runtimes for directed maxflow, recent work has leveraged IPMs for linear programming
[31, 34]. As discussed, classic IPMs [11] and nearly linear time Laplacian systems
solvers [38] directly yield an O(m3/2 log(U))-time maxflow algorithm. In the case of
bounded U, this was improved by the sequence of works [28, 29, 27]. Beyond these
results, Lee and Sidford [23] also devised a faster IPM using weighted barriers to
achieve a O(m+/nlog(U))-runtime for maxflow. Further, [10] achieved a runtime for
minimum cost flow matching the runtimes of [28, 29] and this was recently improved by
[3], leveraging the techniques of this paper. Recently, [40, 39] also provided IPM-based
algorithms which yield 5(m +n3/2) runtimes for mincost flows. [13] also provided a
5(m3/ 2-1/ 328) time algorithm for maxflow on polynomially capacitated graphs.

¢,-flows and beyond. Essential to the results of this paper and [27] is recent
work on obtaining high-precision solvers for ¢, flow problems on graphs, i.e. sending
a specified amount of flow while minimizing a weighted ¢,-norm. These problems
interpolate between electrical flow problems p = 2, undirected maxflow problems
p = oo, and transshipment problems p = 1. The first improvement over the /m
iteration bound given by IPM theory was by [4]. [1] introduced iterative refinement
which reduces solving the problem to approximately solving smoothed f¢-£,, flows,

i.e. combinations of ¢, and ¢, norm pieces. This gave an Op(mlJrszﬂi_*22 log?(1/€)) time
algorithm, where O,(-) hides constants in p. The p-dependence has been improved
signficantly by [2|. Further, [21] showed that smoothed ¢5-£, flows could be solved
for unit £, norm weights and p € [w(1),0(logn)] in m'+°(M) time, and we apply this
result to solve our divergence maximization problem.

1.4. Paper Organization. In Section 2 we cover preliminaries. In Section 3
we give a high level overview of our algorithm, and in Section 4 we describe various
pieces in greater detail. We prove that our algorithm runs in m'/3+°(1) iterations in
Section 5, and present the final runtime bound in Section 6.

Missing proofs are deferred to Appendix A, and necessary lemmas for iterative
refinement of our objectives are given in Appendix B. In Appendix C we give addi-
tional convex optimization preliminaries and in Appendix D we prove Theorem 6.3,
which shows that a large class of flow problems on graphs may be efficiently solved
by reduction to smoothed ¢o-¢,, flows.

This manuscript is for review purposes only.
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2. Preliminaries.

General notation. We let RZ, denote the set of m-dimensional real vectors which
are entrywise at least .. For v € R™ and real p > 1 we define ||v||,,, the £,-norm of v, as
[oll, = (0, |vi\p)1/p7 and [|v]|oo = max??, |v;]. For symmetric positive semidefinite
(PSD) matrices My, My € R™ " we write My ~, My for r > 1 if r~laT Mz <
2T Myx < ra” M,z for all 2 € R™. For differentiable f : R” — R we define its induced
Bregman divergence as Dy (z|ly) = f(z) — f(y) — V()T (x —y) for all 2,y € R™

Graphs. Throughout this paper, in the graph problems we consider, we suppose
that there are both upper and lower capacity bounds on all edges. We let G be a
graph with vertex set V, edge set E, and upper and lower capacities uf > 0 and
uy > 0 respectively on edge e. We use U to denote the maximum capacity of any
edge, so that max{ul,u_ } < U for all edges e. We let n denote the number of vertices
|[V|, and let m denote the number of edges |E|. Further we view undirected graphs
as directed graphs with u} = u_ by arbitrarily orienting its edges.

The Mazimum Flow Problem. Given a graph G = (V, E) we call any assignment
of real values to the edges of E, i.e. f € RF, a flow. For a flow f € R¥, we view f.
as the amount of flow on edge e. If f. > 0 we interpret this as sending f. units in the
direction of the edge orientation and if f, < 0 we interpret this as sending |f.| units
in the direction opposite the edge orientation.

In this paper we consider ab-flows, where a € V is called the source, and b € V'
is called the sink. An ab-flow is a flow which routes ¢ units of flow from a to b for
some real number ¢ > 0. Define the unit demand vector X = 1, — 1,, a vector
with a 1 in position b and —1 in position a. When a and b are implicit, we write
X = Xgp. In this way, we also refer to an ab-flow which routes ¢ units from a to b
as a tX-flow. The incidence matriz for a graph G is the matrix B € RF*V where
the row corresponding to edge e = (u,v) has a 1 (respectively —1) in the column
corresponding to v (respectively u), i.e. is X,,. Note that f € RF is a tX-flow if and
only if BT f = tX. More broadly, we call any d € RV a demand vector if 17d = 0 and
we say f € R¥ routes d if BT f = d.

We say that a tX-flow f is feasible in G if —u; < f. < ul for all e € E, so that
f satisfies the capacity constraints. We define the mazimum flow problem (mazflow)
as the problem of given a graph G with upper and lower capacities u™ and ™, and
source and sink vertices a and b, to compute a maximum feasible ab-flow. We denote
the maximum value as t*. For a real number ¢ < t*, we let F}, © t* — ¢ denote the
remaining amount of flow to be routed.

3. Algorithm Derivation and Motivation. In this section we present a prin-
cipled approach for deriving our new method and the previous energy-based methods
[28, 29, 27| for maxflow from an IPM setup.

3.1. Interior Point Method Setup. The starting point for our method is the
broad IPM framework for maxflow of [27], which in turn was broadly inspired by [29].
We consider the setup described in Section 2 and design algorithms that maintain a
flow f € R¥, a parameter ¢t > 0, and weights w*,w~ € RZ, such that BT f = X and
[ is a high accuracy approximation to f;,, defined as a

(3.1) f7, ZagminV(f) for V(f) = =Y (wf log(ul — fo) +w, log(u; + f.)) -
BT f=tx ecE

V(f) is known as the weighted logarithmic barrier and penalizes how close f is to
breaking the capacity constraints and ¢ is the amount of flow f;,, sends from a to b.

5
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Broadly, IPMs proceed towards optimal solutions by increasing the parameter ¢
to iteratively improving the quality, and decreasing the proximity to the constraints
by decreasing V' (f). Previous maxflow IPMs [23, 28, 29, 27] all follow this template.
Specifically, [29, 27] alternate between Newton steps to improve the optimality of f
for (3.1) (called centering steps) and computing a new flow and weights to approx-
imately solve (3.1) for a larger value of ¢ (called progress steps). Applying such an
approach, while using Laplacian system solvers to implement the steps in nearly linear
time, coupled with a preliminary graph preconditioning step (Subsection 4.1) directly
yields an 5(m3/ 2) time algorithm. Recent advances [23, 28, 29, 27| were achieved by
additional modifications to the weights and flows used.

3.2. Progress steps via divergence minimization. To understand (and im-
prove upon) previous maxflow IPMs, here we explain how to view progress steps in
this framework as computing a divergence minimizing dX-flow for some § > 0. Note
that, without weight changes, the cumulative result of a progress and centering step
is essentially moving from f,, to ff,; , for a step size 6. The optimality conditions
of (3.1) give that the gradient of V' at the optimum f;,, of (3.1) is perpendicular to
the kernel of B”, so there is a vector y with By = VV(f;,,). Define

(3.2) f = argmin Dy (f;, + Il /i) = argmin V(7 + f) = V(fi) = VV (i)' 1,
BT f=6X BT f=6X

ie. the dX-flow with smallest divergence from f;,, against the barrier V. Again,
optimality conditions yield that there is a vector z with

Bz =VDy(ffy+ fllfiw) = VV(fiw+F) = VV(fi,) -

Therefore, B(y + z) = VV(ftfw + f) Since fy,, + fis a (t + d)X-flow, we must have
Jtw T f: Ji45.0 by optimality conditions, so that adding fto an optimal point f,,
lands us at the next point f 5 .

Now, a standard progress step in this framework may be computed by taking a
Newton step, i.e. minimizing the second order Taylor approximation of the divergence.
The second order Taylor expansion of Dy (ff,, + fll /i) is 37 V2V (ff,,)f, and the
resulting step is

1
(3.3) argmin §fTV2V(fZ‘,w)f = 6VAV(ff,) ' B(BTVV(f,) ' B)IX .
BT f=§X

This can be computed in O(m) time plus the time to solve a Laplacian system, i.e.
O(m) [38]. Choosing § that routes Q(m~1/2) fraction of the remaining flow, adding
the flow in (3.3) to our current point, and taking further Newton steps to re-center
yields an O(m?/2) time maxflow algorithm.

3.3. Energy-based improvements. [28, 29, 27| improve over the O(m3/?) time
algorithm by more carefully analyzing the largest possible step size ¢ of the Newton
step such that recentering may still be performed in O(m) time, and by leveraging
that the flow in (3.3) is an electric flow. Precisely, the size of the step we may take is
governed by the congestion of the flow we wish to add, which is defined edge-wise as
the ratio of flow on an edge to its residual capacity (see ¢, ¢ in Subsection 4.1). In

this way, the o norm of congestion of the X-electric flow governs the amount of flow
we may add before violating capacity constraints. On the other hand, because the

6
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X-electric flow was a minimizer to a second order approximation of the divergence,
the ¢4 norm of congestion of the X-electric flow instead governs the amount of flow
we may add so that centering can still be performed in O(m) time, whereas a bound
on the 5 norm of congestion suffices to achieve the 5(m3/ 2) time algorithm.

In this way, it is natural to attempt to compute weight changes that reduce the
¢4 norm of congestion induced by the X-electric flow. Madry [28, 29] achieves this by
increasing weights of edges with high congestion in the X-electric flow and trading off
against a potential function that is the energy of the X-electric flow with resistances
induced by the Hessian of the weighted logarithmic barrier at the current point.

To improve on the algorithm of [29], [27] instead views increasing energy via
budgeted weight change as its own optimization problem. Precisely, the optimization
problem was to maximize the energy of an electric flow in a graph G that originally
had resistances r under a resistance increase budget. Written algebraically, for a
weight budget W, this is

3.4 . -
( ) Hﬁﬂlla%{W 37(111‘1;15)( eeE(Te + re)fe

[27] showed that a smoothed version of this objective was solvable in m!*°() time
using smoothed ¢-£,, flows [21], and that the combinatorial edge boosting framework
of [28, 29] can essentially be viewed as greedily taking gradient steps against the
objective in (3.4).

3.4. Our new method: beyond electric energy. As discussed, while the £,
norm of congestion governs the amount of flow we may add and still have a feasible
flow, the algorithms in [28, 29, 27] all instead control the ¢4 norm of congestion. This
is done to allow for efficient centering; although £..-based steps can be taken without
breaking capacity constraints, there is sufficient loss in local optimality that O(1)
centering Newton steps cannot recenter it. This leads to the heart of our improvement
— we resolve this discrepancy between the ¢, and ¢4 norm of congestion by directly
augmenting via the divergence minimizing flow of (3.2). As a result, it suffices to
compute weight changes to minimize the ¢, norm of congestion of the divergence
minimizing flow.

A key challenge in this approach is to compute this divergence minimizing flow,
and compute weight changes to reduce the £, norm of its congestion. To approach
this, we consider the problem of moving from f;,, to f, s, for a step size J, assuming
that the residual capacities induced by f;,, and f/, 5, are within 1.05 multiplicatively.
This implies that V2V (f7,,) ~1.2 V2V(ft*+5’w). To solve this problem, for each piece
of the V(f) objective, i.e. (w] log(ul — fe) +w, log(u; + fe)), we replace it with
a quadratic extension, a function that agrees with it on some interval, and extends
quadratically outside. Our new objective will have a stable Hessian everywhere, hence
can be minimized by Newton’s method. By construction, the optimum of the quadrat-
ically extended problem and original are the same using convexity (see Observation 1).
Further details are provided in Subsection 4.2.

Finally, we wish to compute weights that reduce the ¢,, norm of congestion of
the divergence minimizing flow. As the approach of [27] computes weight changes
to maximize the electric energy, we instead compute weight changes to maximize
the divergence of the divergence minimizing flow. Doing this requires extending the
analysis of [29] and energy maximization framework of [27] to nonlinear objectives,
such as the quadratic extensions described above, and then generalizing the iterative
refinement framework introduced by [1, 21] to a large family of new objectives. We

7
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hope that both this unified view of energy and divergence maximization as well as the
methods we give for performing this optimization efficiently may have further utility.

4. Technical Ingredients. In this section, we elaborate on several technical
aspects discussed in Section 3. We give details for setting up the IPM in Subsec-
tion 4.1, discuss preconditioning in Subsection 4.1, elaborate on quadratic extensions
in Subsection 4.2, and discuss iterative refinement in Subsection 4.3.

4.1. TPM Details and Preconditioning. In this section, we give a detailed
description of our IPM setup. One can reduce directed maxflow to undirected maxflow
with linear time overhead and only O(1) capacity increase (see |25, 28] or [27] Section
B.4) and consequently, we assume our graph is undirected, so that ul = u .

Assuming that there is a feasible tX-flow, optimality conditions of (3.1) give that
the gradient of V' at the optimum f;",, of (3.1) is perpendicular to the kernel of BT ie.
there is a dual vector y € RV such that By = VV/( fiw)- Consequently, for parameter
t and weight vectors wt,w™ we say that a flow f is on the weighted central path if
and only if there exists a dual vector y € RV such that

+ w=

£ forallee E

we
ud — fo  uc + fe

(4.1) BTf=1tX and [Byl.=[VV(f)]. =

For simplicity, we write w = (w,w™) € R2E, where we define R2Z = RE x RZ .
We define residual capacities ¢ = ub — fe,co
ce > 0 for all e € E if and only if f is feasible.

We initialize wS = w; =1, t = 0, and f = 0, which is central. Previous IPM
based algorithms for maxflow [28, 29, 27| alternated between progress and centering
steps. Progress steps increase the path parameter ¢ at the cost of centrality, which is
the distance of f from satisfying (4.1) in the inverse norm of the Hessian of V(f) — see
[27] Definition 4.1. Centering steps improve the centrality of the current point without
increasing the path parameter ¢. Our algorithm more directly advances along the
central path — given parameter ¢, weights w, and central path point f;, we compute
new weights w"*", advance the path parameter to ¢ + 4, and compute [/, new-

The IPM will reduce the value of the residual flow F; = t* — t below a threshold,
at which point we may round and use augmenting paths [8]. We assume that the
algorithm knows F; throughout, as our algorithm succeeds with any underestimate of

the optimal flow value t*, and we can binary search for the optimal flow value.

= u. 4 f. and ¢, = min(cl, ;). Note

Preconditioning. To precondition our undirected graph G, we add m undi-
rected edges of capacity 2U between source a and sink b. This increases the maximum
flow value by 2mU. Throughout the remainder of the paper, we say that the graph G
is preconditioned if it is undirected and we have added these edges. Intuitively, pre-
conditioning guarantees that a constant fraction of the remaining flow in the residual
graph may be routed in its undirectification, i.e. G with capacities c.. We use the
following lemma from [27]

LEMMA 4.1. [[27], Section B.5.] Consider a preconditioned graph G. For param-
eter t and weights w let c. be the residual capacities induced by the flow f{,,. Then for

every preconditioning edge e we have that c, > ﬁ If |lw|)1 < 3m then ¢, > 2%71
At the start of the algorithm, as we initialized wt = w™ = 1, we have ||w||; = 2m. To

apply Lemma 4.1 we maintain the stronger invariant that ||w|; < 5m/2 before each
step, but may temporarily increase to ||w||; < 3m during the step.

8
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4.2. Advancing along the central path via quadratic smoothing. Let ¢ be

a path parameter, and let § be a step size. Let ¢, ¢, be the residual capacities induced

by fi., and let (cF)’, (co)" be those induced by f7, ;. We sketch an algorithm that

computes f;;,, to high accuracy from f7, in O(m) time under the assumption

e ~1.05 (¢F) and ¢, &5 (¢, ) for all e € E. Let f= fiys.w — ffw and define the
change in the value of the barrier V' when we add f as

B(f)EV(+ fiw) = V(i)

Je - fe
4.2 = - wi log | 1— = | +wg log | 14—
(42) Z};( : °g< ui—[ft*,w]e>+ : °g< +u;+[f;w]e>>’

so that f = argmingr ;_sy B(f). To compute f, we smooth (4.2) by replacing each

instance of log(+) with a function log(-) defined as

log(1 + x) for x| <n
log, (1+x) = ¢ log(1+n) +log'(1+ n)(x —n) + Iogu(%")(x —-n)? forz >
log(1 —n) +1log'(1 = n)(x +n) + 25D (z + ) for z < —.

Here, we fix 7 = 1/10 and write log(1 + ) & @1/10(1 + z). Note that @n(l +z) is
the natural quadratic extension of log(1 + z) outside the interval |z| < 7. Specifically,
the functions agree for || <7, and we log, (1+x) is the second order Taylor expansion
of log(1 + z) at n, —n for & > n, © < —n respectively. In this way, log(1 + z) is twice
differentiable everywhere. Define

— Y e _fe
B(f) = ;(we10g<l u:[f;w1e>*wel‘)g(”uguf;w]e))'

We now claim that f = argminpgr ;_sy B(f), and that it can be computed in O(m)
time. To argue the latter, note that by construction, all Hessians VQg( f) are within a
multiplicative factor of 2 of each other, hence we can compute argminpgr ;_sy B (f) in
O(m) time using Newton’s method and electric flow computations. Because cr =105
(¢F) and ¢ ~1.05 (c;), we know that B and B agree in a neighborhood of f,
SO f = argmingr y_sx E( f) by the following simple observation, which is similar to
aspects of [4]. For completeness, we provide a proof in Appendix A.1.

OBSERVATION 1. Let S C R™ be a convex set, and let f,g : R™ — R be convex

functions. Let z* = argmin g f(x), and assume that f,g agree on a neighborhood of
z* in R™. Then g(x*) = mingcg g(x).
We mention that we do not directly perform the procedure described here, and instead
apply quadratic smoothing in a different form in Section 5 for convenience. There we
smooth the function D & D_ 1og(1—z)($||0)7 the Bregman divergence of x to 0 with
respect to the function —log(1 — ), instead of directly smoothing log(1 + z). The
smoothed function D is shown in (5.1), (5.2).

4.3. Iterative refinement. The idea of iterative refinement was introduced in
[1, 21] to solve p-norm regression problems, such as mingr;_q || f||. Iterative refine-
ment solves such an objective by reducing it to approximately minimizing objectives

9
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426
427
428

429

430

431

which are combinations of quadratic and £, norm pieces. Specifically, Lemma B.2
shows that for a fixed flow f there is a gradient vector g such that for any circulation
A we have

(4.3) If+ Al = 1flE=9"A+6, (Z |[felP2A2 + IIAII£> ;

eclE

so that approximately minimizing (4.3) over circulations A suffices to make multiplica-
tive progress towards the optimum of mingr y_g || f||b. We show in Appendix B that a
general class of objectives may all be reduced to approximately minimizing objectives
which are combinations of quadratic and ¢, norm pieces. Specifically, any convex
function h with stable second derivative admits an expansion for h(z + A)? — h(x)P
similar to (4.3), which we show in Lemma B.3. We then combine this expansion with
the almost linear time smoothed ¢5-¢,, solver of [21] to show Theorem 6.3.

5. Iteration Complexity Analysis. In this section we present our divergence
maximization algorithm and prove the iteration bound of O(1/+/€) required to estab-
lish Theorem 1.1. In the following Section 6, we show how to implement each iteration
efficiently in almost linear time to achieve the desired runtime for Theorem 1.1.

The section is organized as follows. After introducing the algorithm’s invariants
and notational conventions, we define the divergence and smoothed divergence D, D,
and the regularized objectives val(f), val(f) induced by the divergence maximization
problem (see (5.7)). Our algorithm for taking a single step is given in Algorithm 1.
Given this, we bound the optimal value of the objective \;271( f) in Lemma 5.3. The
following Lemmas 5.4 to 5.6 bound various quantities relating to the amount of flow
on an edge, its congestion, and the total initial weight increase. Finally, Lemma 5.7
combines the previous pieces to show to formally show that Algorithm 1 goes from one
central path path to the next exact central path point, and bounds the total weight
increase from a reduced set of weights. The main pieces we require in Section 6 are
the pseudocode of Algorithm 1 and the guarantees of Lemma 5.7.

Algorithm invariants. We assume G is preconditioned (Subsection 4.1) and we
maintain the invariant ||w||; < 5m/2 before each step, 1 < 3m at all times.
We assume that our algorithm knows Fy, as discussed in Subsection 4.1. For p =
2[ITogm], we assume that that F; > 10em!'*t?/PU, since we wish to compute an
emU additive approximate flow. Further, we assume, without loss of generality, that
e < m=2/p,

Notational conventions. We largely adopt the same notation as used in Subsec-
tion 4.2. We use D to refer to functions which are a Bregman divergence, and for
a function h, we use h to denote a quadratic extension of h. For flows we use f
and f , the latter which refers to flows we wish to augment by. We use A and A for
circulations. The letters w, pu, v refer to weights and weight changes, and W refers to
a weight budget.

For n < 1 define the functions

(5.1) D(z) = D_ log(1—=) (7[|0) = —log(1 —z) —2 and
D(x) for |z| <n
(5:2)  Dylw) = { D(n)+ D'(n)x — ) + P52 (x — ) for x> 1

D(=n) + D'(=n)(z +1n) + 250 (2 )2 for 2 < —.

10
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459
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Throughout, we will omit 5 and write D(z) & D, s10(x). As discussed in Subsec-
tion 4.2 D(z) is such that it behaves as a quadratic around x = 0, and has second
derivatives in [1/2,2] (Lemma 5.1). We have defined D as the Bregman divergence
of —log(1 — z) from 0, and D is the quadratic extension of D as described in Sub-
section 4.2. Several useful properties of the derivatives and stability of D and D are
collected in Lemma 5.1, which we prove in Appendix B.

LEMMA 5.1 (Properties of D). We have that 1/2 < D"(z) < 2 for all z € R.
Also, for x > 0 we have that ©/2 < D'(z) < 2z and —x/2 > D'(—x) > —2x. We have
that 2% /4 < D(z) < 22 for all z.

Now we define the analog of electric energy which we maximize under a weight budget.
Below, we assume without loss of generality that ¢ < ¢ for all edges e, as the
orientation of each edge is arbitrary in the algorithm. In this way, ¢, = ¢ for all e.

eckE Ce
DV () &f +p (e ~p(_de
(5.4) Dw(f)_;E<weD(cj>+w6D< c;>>

While minimizing DY, (f) is sufficient (by its optimality conditions) to compute a new
flow which is central, provided the old flow is central and ¢ is increased by at most
a certain amount, if the weights w do not change. However, we change the weights
as well to prove better bounds on the congestion of the flow. This creates another
complication as our old flow may no longer be central with respect to the new weights.
We fix it by enforcing a constraint in our search for the new weights w + v such that
the old flow is central with respect to these new weights and we show that this can
still efficiently be minimized. .

Next, in (5.5) and (5.6) we define val and val, where p = 2[+/logm], and W =
e>m3/F? is a constant. For clarity, we express the vector inside the | - ||, piece of
(5.5), (5.6) coordinate-wise, where the coordinate corresponding to edge e is written.

(5.5)  val(f) & DY (f) + W||(ct)? (D (;i) + (;) D <—Z_>> and
o) =BY @) (B( %)+ (5) 5 ()|

These are defined so that for ¢ as the dual norm of p, i.e. 1/¢g+ 1/p = 1, we have

that val and val correspond to maximizing the minimum values of DY (f) and DY, (f)
under a weighted ¢, weight budget. Specifically, we can compute using Sion’s minimax

11
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496

theorem that

(5.7) max min DY, (f) = min max DY, (f)
+ +
e 2vtllg<w BT f=d 77 BTf=d || 2ufllg<sw U
veRLY veRry
vt oouT vtoouT
i =—2 for all eeF ﬁr =—-¢ for all ee K
s 1% 1%
(5.8) = min max D, (f)+ D) (f)
T D) w v
BT f=d |(ch)2vflla<W
VER2>%
vt v, -
- ——¢ for all eeFE

+
e

o

Ce

5.9 = 1 DV +D E g +D _E
(5:9) Bgl}gdu(c*)glffuﬁw () +2 (Ve (ce+ * e c
6V+€]§2>%— ecE

(5.10)

in val
pin va (f)

and similarly for DY (f) and val(f). As mentioned above, the objective requires
the constraint v} /¢t = v /co for alle € E to ensure that the weight increase v
maintains centrality of the old flow (and hence guarantees centrality of the new flow),
and the coefficient of (c¢I)~2 in the weight budget ||(cI)~?vF|, < W is chosen to

ensure that the ¢, piece in val(f) is ensured to have approximately unit weights on
the fe. Precisely, by Lemma 5.1 and ¢ < ¢, we have

(cf)’ (5 (i;) + (?) D (—f)) —o(f2).

We require this property to apply the smoothed ¢5-¢,, flow solvers in Theorem 6.2.
As minpgrs_gval(f) is the result of applying Sion’s minimax theorem to a saddle
point problem, there will be an optimal solution pair (f*, u*). Ultimately, f* will be
the flow which we add to our current flow to arrive at the next central path point,
and the weight change will be derived from applying a weight reduction to p*.
The remaining arguments in this section heavily use local optimality of convex
functions. For this reason, we show that val(f) and val(f) are convex in Appendix A.2.

LEMMA 5.2. val(f) and \/fgl(f) are convez.

. F .. . .
From now on, we fix a step size § = \{%;. This simplifies our analysis, as our

objectives are no longer linear in ¢, as is the case with electric flows. We now bound
the minimum value of DY (f) over all §X-flows, and show a congestion bound for the
minimizer, where we recall that congestion of a flow is the ratio of flow on an edge
to its residual capacity c.. Lemmas 5.3 and 5.4 generalize corresponding bounds for
electric flows shown in [29] and [27] Lemma 4.5 and 5.2.

LEMMA 5.3. Let 6 = YSEe . Then mingr ;s DY (f) < 5-10"Tem.

Proof. Let f’ be the flow which routes §/m units of flow on each of the m pre-
conditioning edges. For a preconditioning edge e,, Lemma 4.1 and the invariant
lwl]l1 < 3m tells us that

!/

e < é/m < 21,/e .
e, ~ Fy/T|lwl 10°
12
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Therefore, applying Lemma 5.1 to P (the set of m preconditioning edges added in
Lemma 4.1) and again applying that ||wl||; < 3m gives us the desired bound, as

-5 o () o (-£)

ecP

/ 2 2
e 21\/E
< e 3 + )< < 5. =7
< (Ce ) E (we —|—we) < ( 107 ) [lw]1 <5-10"em |

P ecP

The next lemma relates, using optimality conditions of the divergence maximization
subproblem, the Bregman divergence to the congestion of our flow and almost gets us
to our desired upper bound on the congestion.

LEMMA 5.4. |J/‘;|ce_2 < em/F; for d = ‘ﬁ? and [ = argmingr _ sy DY (f).

Proof. Local optimality implies that exist z € RY satisfying Bz = Vﬁx (f) This,
Lemma 5.3, and Lemma 5.1, specifically that 2D’(z) < 222 < 8D(x), yield

(5.11) X7z = fTB2 = fTVDY(f)

5.12) SR ( <f> Sty (—f>> < $BY ().

ecE

Note that the flow fis acyclic, i.e. there is no cycle where the flow is in the positive
direction for every cycle edge. This follows because decreasing the flow along a cycle
reduces the objective value, which is monotone and minimized at 0 for each edge.
Also, for all edges e = (u, v), we have z, — 2z, = [Bz]. = [VDV(f)]e, which has the
same sign as fe As fis acyclic, it can be decomposed into a-b paths. Since, some
path contains the edge e, we get that |[Bz].| = |2, — zu| < 25 — 24 = X 2. Using that
xD’(z) > 22/2 from Lemma 5.1 we get that

B2)] = VDY (P = Lelfe]

w; |fe
2 2Aer)

l\D_

Combining these observations with (5.11), (5.12) gives us
\fole? < 2|[Bz)e| < 2XT2 < 166" DY (f) < \/em/F,

VEry
o5 - O

after using Lemma 5.3 and § =

Now, we show that computing f = argminpgr ;_sy val(f) gives us weight changes to
control the congestion of the divergence maximizing flow. For clarity, the process is
shown in Algorithm 1.

Now, we analyze Algorithm 1. We first show that f = argminpr r_sy Dw+u(f)
for the weight change p in Line 6 of Algorithm 1, and that g has bounded ¢; norm.
This essentially follows from duality in our setup in (5.7).

LEMMA 5.5. Let parameters W,ct, c2 .6, flow f, and weight change 1 be defined
as in Algorithm 1. Assume that Fy, > 100em**t2/PU. Then we have that ||p||; < m/2,

ft*,u) = ft*,w+p,7 and f = argminBTf:§X Dl‘g+y,(f)

13
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Algorithm 1: AUGMENT(G, w, Fy, ff,,, €). Takes a preconditioned undirected
graph G with maximum capacity U, weights w € Rzﬁ with [|w|y < 5m/2,
residual flow Fy = t* — ¢, central path point f;,. Returns step size J, weights

v, and 0X-flow f with Jtwsr = fiw + 7.

10« \{;{:‘ > Step size.
2 c¢f —uf —[ff e co —ug + [ffule > Residual capacities.
3 W« 2m3/F? > Weight budget
4 f argminpr r_ sy Val(f) > val(f) implicitly depends on W, ¢, c; .

5 v € RF defined as v, < ( ( ) ( S:)IN)(—C—E)) for alle € E.

6 1 € R2E defined as puf + W( 2. i ﬁ:l and p; < %uj > Preliminary

welght change

oK vl v pd_pg
7 Initialize v € RS, > Reduced weight change, o il o
8 for e € E do
if - “,\>Oth
O i e e
10 L ”3 =0 (- ) v 0
11 else
~ + —
12 L l/(:r — 0, 1/; < —(Cg + fe) (cjﬂjfe - C;L—&e-)?e)
13 Return (6,]?1/).

Proof. Let v € R be the vector as defined in Line 5 in Algorithm 1. By local
optimality of f, we have that there is a vector z satisfying for all e € E that

(B2, = [Vval(f)]
(5.13)
_ <we+ T W)
+

c& el el

€

~/ J/C\e We
)D <ce+>_(ce i

For clarity, we rewrite Line 6 of Algorithm 1 here as

Ug_: ’ Wcjce_) D' —if .
lollz Ce Ce

- p-1

el

Note that uf /ct = pg /c;, hence ff, = fi,, by (4 1). Combining (5.13), (5.14)
and optimality conditions of the objective minpr ;_sx Dw +,(f) shows that

~

[ =argmingr;_sy Dw+u(f). Also, if g is the dual of p, i.e. 1/¢+ 1/p =1, then

2, vt
=W
p

(5.14) ut and p, = c—iuj =Wcte

-1 1/pm(emU)2

F?

P
Ve

[lvllp™

=2mY/PWU? = 2m
q

Il < m*Plully < 2mPWU?

<m/2

as F, > 10em'+2/PU by assumption. 0
We now show congestion bounds on f by imitating the proof of Lemma 5.3 and
applying Lemma 5.4. Recall that ¢, = min(c}, c).

e’ e
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LEMMA 5.6. Let parameters W,ct, c2 .6, flow f, and weight change 1 be defined

as in Algorithm 1. Then we have \fe| < 57(1)0\/?;71 and \fe| < g5¢e for all edges e. It

follows that f: argmingr ;_ sy val(f).

Proof. We first show \zsfl(j?) < 107 %em. Let f’ be the flow which routes % units
of flow on each of the m preconditioning edges. As in Lemma 5.3 we have that
DY (") <5-10""em. For a preconditioning edge e, using Lemma 5.1 and Lemma 4.1
gives that

@ 0(8) (3 ()= (5 (2) (4))

EFt
10°

2
<2(f)? <2(5/m)? < 2m™? ( > <107 %F? /m?.

For the choice W = €?m3/F? we get that

@ (0(%)+(5)2(-%))

3

val(f') < DY (f') + W‘

p
m2 Ft2
<5-10"em + 10 ?'mYPm < 10 %em

<5 10 7em + 10 9m!/

where we have used ||z, < m!/P||z||« for the choice p = 2 [ylogm], and e < m~%/P
to get m'/Pe? < 1.

We now show |fe| < ﬁ\gn for all e. Indeed, applying D(z) > 22/4 from

Lemma 5.1 yields
1 —
ZWJ? <val(f) < 10~ %em.

1 _F
500 Ve "

Let p be the weight increases given by Line 6 of Algorithm 1, and (5.14). As
f=mingr;_s Dy, ,(f) and |lw + plly < 5m/2 +m/2 < 3m by our invariant and
Lemma 5.5, using Lemma 5.4 gives us

~ ~ - 1/2 1 F,  \Jem 1z
-1 _ . —2 < ==t . < —.
|f€|ce (|f6| |fe|ce ) — <500 \/Em Ft > — 20

Using the choice W = e2m?/F? and rearranging gives us |fe| <

Using that the functions D(z) and D(z) agree for |z| < 5, and |f/‘;| < 55¢. for all e,

Observation 1 gives us that fis also a minimizer of mingr ;_sy val(f) as desired. O

We now show that applying weight change p and adding f to our current central
path point f/, stays on the central path, for path parameter ¢ + 6. This follows
from optimality conditions on the objective, which we designed to satisfy exactly the
desired property.

As the weight change p may be too large, we reduce the weight change u to a
weight change v after advancing the path parameter, and bound ||v||;. Intuitively,
this weight reduction procedure can never hurt the algorithm. It happens to help
because we carefully designed our objective to induce smoothed /¢3-¢, flow instances
with unit weights on the £, part, which are the only instances known to admit almost

15
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582 linear runtimes [21]. Later in Section 6, we use this fact to implement each iteration
583 of our algorithm in almost linear m!*°(!) time.” The following lemma is crucial to
584 our analysis as it allows us to keep the weight increase bounded which in turn allows
585 us to make significant progress on the central path, while keeping the congestion of
586 the flow small by Lemma 5.6 and Lemma 5.5.

587 LEMMA 5.7. Let parameters W, ct,c;, 8, flow f, and weight changes p,v be de-

588 fined as in Algorithm 1, and assume that F; > 10emt2/PU. Then we have that
520 vl < Vem~YP and f,%ww frw+ T

590 Proof. We first show f 5 ., = flwi, + f: Jtw+ f By Lemma 5.6, we have

591 f = argmingr ;_sy val(f). Let the vector v be defined as in Line 5 of Algorithm 1.
592 There exist vectors y, z € RF such that

593 [Bz]e = [Vval(f)}

€

» <w; ,W(cj)?)D/ A (we+ ,Wc:ce>D, A
| &t &)\ Tl e e

. Vﬁ+u6_wi+uﬂ__vg+g§_w;+uﬂ
&~ fe e ce + fe ce

596 [ SR = — — We T He — | — [BY]e.

597 ft w+#:| fe Ue + I:ft*,w+;¢:|e + fe

598 Here, the first line follows from local optimality of f = argmingr ;_sy val(f), the
599 third is explicit computation of D', and the fourth follows from centrality of f, u

600 Therefore, the (¢ + 6)X-flow which is f; ., + f satisfies

+ + - -
601 l we*+’ue - We e = [B(y + 2)],
Ue — [ft,w-i—u:le - fe uﬁ [ft w—‘,—u] + fe
602 hence is central for weights w + u. So ft*+6,w+u = ffwin Tt f: frw+ f
603 Now, note that v as defined in lines 7 to 12 of Algorithm 1 satisfies
R S

_fe C€3_+fe Cj_fe Ce—"’fe
605 and centrality conditions (4.1) tell us that f7 ;,,, = fte 8wt e

606 We now bound ||v||;. Line 12 of Algorithm 1 and p} /et = u_ /e, gives us that
- + -
607 u++y_:—(c_+f)( He _ MHe A>
©f CN\d - f a+f

o+ fo\ of ~
608 = —f¢ 17{6 - 1] <3c M felus
609 ce = fe) ce

610 where we have used that ¢;!|f.| < 1/20. A similar analysis of Line 10 gives that

~ + - + £\ e ~
m1¢+%—@3ﬂ(+%A_ﬁA)—@ T ot g I PP WSS
Ce _fe Ce +fe Ce +fe Ce

"Even with an oracle for smoothed ¢2-¢, flow that handles arbitrary weights, we do not know
how to achieve maxflow runtimes faster than those achieved by this paper.
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613

614

In both cases, we have that v + v < 3¢ fe|(ud + p7). Using the choice W =
2m3/F2, Fy > 10em!+2/PU, and (5.14), Lemma 5.6 yield

T ~ oot
vl < che 1|fe|(:ue +ud) < GWZ [felee - ep—l
eeE eeE ||UHZD
2,3 p—1 3/2,,2 p—1
<t L B ‘”1 G Sl P S
Fo 500 em ™ [ lof[p~ I, F oz~ I,

Overall, Lemma 5.7 shows that one step of Algorithm 1 decreases the residual flow
F; by a multiplicative (1 — §) = (1 — y/¢/10%), and moves from one central path
point f7 4 to f 5., Thus, the number of iterations is bounded by O(e~1/?). The

cost of each iteration is one call to a solver for mingr 4 \;a/l( f), which we show can
be computed in m'T°M time in Lemma 6.1. Additionally, the total weight increase
is at most \/em!'~1/P so long as F; > 10em'*t2/PU. For the choice € = (mlU)~%/3,
the number of iterations is 5(m1/ 3U1/3), and the amount of residual flow is at most
10em!+2/PU < m1/3+eMy1/3. Since that amount of residual flow can be routed in
that many iterations of augmenting paths, after running our IPM method, we can get
an exact maxflow in m!'/3+°(M /3 rounds of augmenting paths.

6. Runtime Analysis. In Subsection 6.1 we show how to implement a single
round of Algorithm 1 in almost linear m!'*°() time by making calls to a smoothed
ly-f, flow oracle. In particular, we show in Theorem 6.3, using the iterative refine-
ment framework of [1], that a more general class of flow problems can all be solved
using m°®) calls to a smoothed ly-£, flow oracle. Then in Subsection 6.2 we ap-
ply Lemma 5.7 to give our final maxflow algorithm which uses O(1//€) iterations
of Algorithm 1, which costs m!'t°(!) time per iteration, plus O(em!'+2/PU) rounds of
augmenting paths. For ¢ = (mU)~2/3 the total runtime is m*/3+°M U3, Also, in
the proof of Theorem 1.1 in Subsection 6.2, we verify that the total weight increase
over the iterations of our algorithm is bounded by m/2.

6.1. Efficient Divergence Maximization. Lemma 5.7 shows that our algo-
rithm just needs to compute argmingr;_sy val(f) in Line 4 of Algorithm 1, as all
other lines clearly take O(m) time. Here, we show how to do this in time m!+o(1),

LEMMA 6.1. There is an algorithm that in m*eW) time computes a flow f' with
BT f" = 6X and val(f') < mingr ;s val(f) + L

9gpoly(log m) *
To prove Lemma 6.1, we extend the following result of [21] and show the general
Theorem 6.3, which shows that flow problems that are combinations a quadratic
and ¢, norm of functions with stable Hessians may be solved to high accuracy in
almost linear time. This encompasses problems such as computing electric and ¢,
norm minimizing flows, smoothed ¢2-f,, flows, and the divergence maximizing flows
our algorithm must compute.

THEOREM 6.2 (Theorem 1.1 in [21], arXiv version). Consider
p € (w(1),(logn)?/3=°M) g c RF r ¢ Rgo, demand vector d € RV, real number

s >0, and initial solution fo € R such that all parameters are bounded by 2rP°y(logm)
and BT fo = d. For a flow f, define

Valg,r,s(f) = Z Jefe + <Z Tefe2> + 5||f||§ and OPTg,r,s = Br%liridValg,r,s(f)'
ecE ecE f=
17
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There is an algorithm that in m'*°1) time computes a flow f such that BT f = d and

1

1
Valg’rys(f) — OPT < 7(Valg’rys(f0) — OPTQ,T,S) + W.

g,ms — 2poly(logm)

THEOREM 6.3. For graph G = (V,E) and all e € E, let a, € [0,2P°Y108™)] pe

constants, q. : R — R be functions with |q.(0)],]q.(0)] < 2reyloem) gnd ¢ (z) €

[ac/4,4ac] for all z € R, and he : R — R be functions with he(0) = h.(0) = 0 and

R (x) € [1/4,4] for all x € R. For demand d € RV with entries bounded by 2P°y(1os™)
even integer p € (w(1), (logn)?/3=°W) and all flows f € RF define

1/p
val(f) £ > ge(fe) + (Z he(fe)p> and OPT ™ min val(f).

BT f=d
ecl eckE !

We can compute in time m'*t°1) o flow f' with BT ' = d and val(f') < OPT +
1
9gpoly(log m) *

The reason that we enforce that ac,|q.(0)],]q.(0)] < 2pP(°e™) i that [21, Theorem
1.1] requires quasipolynomially bounded inputs to achieve its m*T°M runtime. Also,
while [21, Theorem 1.1] is stated with m errors, it can be made t0 sy as
explained in [27] Appendix D.3.

Though the full proof of Theorem 6.3 is deferred to Appendix D, we give a brief
proof sketch here. Roughly, we first use Lemma B.3 of [27] to reduce optimizing the

objective val(f) in Theorem 6.3 to solving 6(1) problems of the following kind:

Valp,W(f) = Z qe(fe) +W Z he(fe)p and OPTP,W = BITr‘l]i‘rid Valp,W(f)
ecE ecE N

find a flow f’ with BT f’ = d and val, w (f') < OPT,w + Wllogm) This achieved
through careful binary search which is elaborated on Appendix D and proven formally
in Lemma D.1.

We then apply the iterative refinement framework to reduce the high accuracy
minimization of the objective val, w(f) to solving O(2°()) smoothed quadratic and
£, norm flow problems, which may be solved using Theorem 6.2. The main difference
from the analysis of [21] is that we show that any convex function h with stable second
derivatives admits an expansion for h(z + A)P — h(z)P, while [21] only considers the
function h(x) = 22. This is done formally in Lemma D.2.

Proof of Lemma 6.1. By scaling down by W, it suffices to check that \/f;l(f) sat-
isfies the constraints of Theorem 6.3 for

+ —_
def 1 =g x _ = x def 1 W, W,
o) W D(Z)+w;D(-Z d a 2w ),
e G O R G I (e =)
o @ (5 (55) + () 2 (-2))
(o) = (<) ce cd ce
To analyze ¢.(z), we compute that

w0 =w (e (&) + e ()
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by Lemma 5.1. A lower bound ¢/ (z) > §W ! ((;;)2 + %
alently. a, < 2pP°¥(°o8™) follows from the fact that resistances and residual capacities
are polynomially bounded on the central path — see [27] Lemma D.1.

To analyze he(x), we can compute using (5.2) that h.(0) = hL(0) = 0 and

~ + o
h(z) = D" (ﬁ) + % pr <—x_> <4
cd Ce Ce

by Lemma 5.1. We get h”(x) > 1/2 similarly. O

) = a./2 follows equiv-

6.2. Main Algorithm. We now combine Lemma 6.1 with Lemma 5.7 in Algo-
rithm 2 to prove Theorem 1.1. Our algorithm repeatedly takes steps computed with
Algorithm 1 until the remaining flow F; is at most em! T,

Algorithm 2: MAXFLOW(e, G). Takes a preconditioned undirected graph G
with maximum capacity U. Returns the maximum ab flow in G.

1 f+0,t+0,w<+ 1

2 while F; > 10em!*2/PU do
3 (6,f, v) < AUGMENT(G, w,t* —t, f).
4 fef+f,wew+l/,andtet+5.

5 Round to an integral flow [22, 28| and use augmenting paths until done.

Proof of Theorem 1.1. We show that MAXFLOW(G) computes a maximum flow
on G in time m't°M) / /e time. Correctness follows from Lemmas 5.7 and 6.1. It
suffices then to maintain upper bounds control the weights. Our choice of § guarantees
that we route Q(+/€) fraction of the remaining flow per iteration, hence Line 2 executes
O(1/\/€) times. |lv|y < /em*~'/? always by Lemma 5.7, hence at the end of the
algorithm we have

lwl < 2m+0 (1/ve- Vem!~1/7) < 5m/2.

To analyze the runtime, first note that by Lemma 6.1 which we will establish in the
next section, Line 3 takes m!'*t°(1) time, so the total runtime of these throughout the
algorithm is m!*°(1) /\/¢ as desired. Note that the total remaining flow at the end
is at most 10em'*2/PU. Now, we may take € — Tora7s to get the desired bounds in
Theorem 1.1. This completes our proof of Theorem 1.1. ]

7. Conclusion. We conclude by first stating the difficulties in going beyond an
m*/3 runtime for maxflow, and then discussing potential directions for future research
on the topic.

A Possible Barrier at m*/3. Here we briefly discuss why we believe that m*/3 is a
natural runtime barrier for IPM based algorithms for maxflow on sparse unweighted
graphs. All currently known weighted IPM advances satisfy the following two proper-
ties. First, weights only increase and do not become super linear. Second, the methods
step from one central path point to the next one in ©(m) time and the congestion of
this step is multiplicatively bounded. Our algorithm does both these pieces optimally
— we precisely compute weight changes under a budget to ensure that the congestion
to the next central path point is reduced significantly. In this sense, to break the
m*/3 barrier, one would either have to find a new way to backtrack on weight changes

19

This manuscript is for review purposes only.



w N

S Ot

~

oo

N 3 7 39 99

N D NN NN NN

©

=~

IS T T o B e B B |

i S e
T = W N

746
747
748
749

wt

b I B B B I |
(S [S1SNG, BNe, BI)
Do

ot
[S1 B SNV

ot

on the central path so that they are not additive throughout the algorithm, or show
better amortized bounds on weight change than shown here. Alternatively, one would
need a novel algorithm to step to faraway points on the central path, outside a ball
where the congestions are bounded.

Recent Progress and Future Directions. Since the original version of this paper was
published, there have been several exciting improvements to the runtimes of maxflow
and mincost in capacitated and dense graphs. The current fastest algorithms for
graphs with arbitrary polynomially bounded capacities (as opposed to the unit weight
case considered in this paper) have runtime O((m + n3/2)log?U) for mincost flow
[40, 39] and O(m?3/2-1/328 16g ) for maxflow [13]. The former algorithms are nearly
linear time on sufficiently dense graphs, and the latter is the first m3/2=%(1) log U time
algorithm for capacitated maxflow on sparse graphs. Interestingly, these algorithms
do not work by reducing the iteration complexity as is done in this paper, and instead
use dynamic data structures to speed up the runtime of implementing each iteration
of an IPM.

We believe that several exciting directions remain, in the context of this work
as well as the recent progress discussed. First, can we combine ideas from this work
and [40, 39] to achieve mn'/3+t°() or even m + n*/3+°(1) runtimes for unit capacity
maxflow? Also, can we design an m*/3+°() time algorithm for maxflow that only uses
Laplacian system solvers, as opposed to stronger ¢»-£, norm flows? Also, is there an
IPM for capacitated maxflow that runs in m!/2=21) 10g®M U iterations? Finally, on
the other hand, can we use stronger primitives such as smoothed ¢>-¢,, flows to design

even more efficient algorithms for unit capacity maxflow, potentially beyond the use
of IPMs?
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Appendix A. Missing proofs.
A.1. Proof of Observation 1.

Proof. Assume for contradiction that g(z) < g(z*) for some x € S. For all € > 0
we have

9((1 — €)™ +ex) < (1 - e)g(z7) + eg(x) < g(27).

Because f, g agree on a neighborhood of x*, we have for sufficiently small e that

f(A=ea” +ex) =g((1 —€e)a" +ex) < g(z") = f(z7),
a contradiction to f(z*) = mingeg f(x), as (1 — €)z* 4+ ex € S by convexity of S. 0O

A.2. Proof of Lemma 5.2.

LEMMA A.1. Let p > 1 be a real number. Let hy : R = R>¢ be convex functions.
Then the function h : R™ — R defined by h(z) = (31, hi(sci)p)l/p is a convex
function.

Proof. For any z,y € R™ and 0 <t <1 we have by Minkowski’s inequality and
convexity that

h(tz + (1 = t)y) = [lhi(t; + (L= yi)llp < (1t - hi(zs) + (L= 1) - hi(ys)llp
< tlhi(zollp + A =Olhi(y)lly = - h(x) + (1 —1)-h(y). O

Proof of Lemma 5.2. D and D are convex, hence DY (f) and ﬁg(f) are convex.
Also, the functions

31 () (5)o(-4)) (0 (4)+(2)7 (1)

are convex, hence val(f) and \Ta/l( f) are convex by Lemma A.1. |

Appendix B. Iterative Refinement. Here, D and D are defined as in (5.1).

LEMMA B.1. Let h: R — R be a function with h(0) = h'(0) = 0, and let c1,¢c2 > 0
be constants such that ¢y < h"(x) < co for all x. Then for x > 0 we have that
iz < KW(z) < cox and —cox < W (—z) < —cix. Also, %clxz < h(z) < %62x2 for all
T.

Proof. For z > 0 we have that #'(z) = [ b (y)dy and c1z < [ h"(y)dy < cox.
The proof for z < 0 is equivalent.

For > 0 we have that h(z) = [’ h/(y)dy and

1 xT xr T 1
70112:/ clydyé/ h’(y)dyS/ coydy = ~coa”.
2 0 0 0 2

The proof for z < 0 is equivalent. O
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Proof of Lemma 5.1. It suffices to show 1/2 < D”(z) < 2 and apply Lemma B.1.
For || < 1/10 we have that D (z) = (1—x)~2. Now, we can check that for || < 1/10
that 1/2 < (1—z)~2 < 2. For z > 1/10 we have D" () = D”(1/10) and for z < —1/10
we have D"(z) = D"(—1/10) as desired. |

LEMMA B.2 (Lemmas B.2 and B.3 from [21], arXiv version). Let p > 0 be an
even integer. For all real numbers x, A we have that

2—Pp (xp72A2 + Ap) <(r+ AP - (xp +p- 1’p71A) < p2p71 (xp72A2 + Ap) .
LEMMA B.3. Let h: R — R be a function and let co > ¢1 > 0 be constants such
that ¢; < h''(x) < ¢ for all x. Then for all A we have that
1 1
(B.1) 5(;1A2 < h(z+A) = (h(z) + M (2)A) < §cQA2.

If additionally h(0) = A'(0) = 0 and 1 < h''(x) < ¢ for all x then for all even
integers p > 0 and A we have that

(B.2) (802)_2%?” (pr_2A2 + A2p) < h(z+ AP — (h(m)p +p- h(x)p_lh’(w)A)
(B.3) < (16c2)P (272 A% + A?P)
Proof. The upper bound of (B.1) follows from

A

A
h(z + A) — (h(z) + B/ (z)A) = /0 (A =y)h"(z+y)dy < Cz/o (A —y)dy = 362A2

by Lemma B.1. The lower bound follows equivalently.
We show the upper bound of (B.2). Use Lemma B.2 with 2 — h(x), A —
h(z + A) — h(x) to get

h(z + A — (h(@)” +p- h@)~" (b + A) — h(x)))
B4 <p2 ! (A (hw+ A) = h@))” + (b + A) = h(2))")
Using the upper bound of (B.1) and h(z) < 1cp2? from Lemma B.1 yields
(B.5) h(z+ AP — (h(z)? +p-h(z)?'h (z)A)
(x4 A — (h(@)” +p- (@) (h(z + A) — hx))) + %p h(z)PLepA2
(@+ AP — (h(@)P +p- h(@)P~! (h(z + A) — h(z))) +p - BaP~2A2,

(B.6) <h
(B.7) <h
We now bound (B.4). (B.1) and Lemma B.1 gives us
|h(z 4+ A) — h(z)| < |V (2)A] + c2A% < co)|zA| + A%

Using this and Lemma B.1 gives us that (B.4) is at most

p2r~! (h(a:)p_2 (calzA| + CQA2)2 + (co|zAl + CQAQ)p)

< p2rt (me_4cg_2 (2c32° A% 4+ 2c5A") + 2P L BaP AP + 2”_1c§A2”)

<p2Pleh . (442071 207 L (2P T2A% 4 AT
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Collecting terms and combining this with (B.5), (B.6), (B.7) proves the upper bound
of (B.2).
Now we show the lower bound of (B.2). As above, we use Lemma B.2 to get
h(z + AP — (W(z)? +p- h(z)?" (h(z + A) — h(z)))
(B.8) > 9P (h(x)H (h(z + A) — h(z))? + (h(z + A) — h(x))p) .

Using the lower bound of (B.1) and h(z) > $c12? from Lemma B.1 gives us

(B.9) h(z+ A)P — (h(z)? +p- h(z)P"'H (z)A)
(B.10) > h(x + A)P —

(B.11) > h(z+ Ay —

h(z)? +p- h(m)l’—l (h(x+ A) — h(gj))) 4 %p . h(l‘)p_lclAQ
h(z)? +p - h(z)P~ (h(z + A) — h(z))) +p27P - aP72A%

(
(
If || > %ﬁl then

1 A\ P2
p27PCl g AN > 2 p2 P | 2N 4 (22 A?
1 -2 1 4co

> (8¢y) " 2PEP (2®P72 A% + AP)

as desired. If |z] < Ci‘cf‘ then applying the lower bound of (B.1) and Lemma B.1
gives us

h(z 4+ A) — h(z) > W (2)A + c1A%/2 > — |caxA| + 1A% /2 > 1 A? /4.
Therefore, we may lower bound (B.8) by
2—P (01A2/4)p _ 2_3PC€A21) > 2—31)—10;12 (pr—2A2 + A2p)

for |z| < <21 < A, Combining this with (B.9), (B.10), (B.11) gives the desired

4(;2

bound. 0

LEMMA B.4. Let p be an even positive integer. Let he(x) : R — R be convex func-
tions for e € E, and for x € RF let h(z) = Y, he(we). Let OPT = mingry_q h(f).
Let f be a flow satisfying BT f = d. Let C1,Co > 0 be constants such that for all
edges e, there are real numbers re,s. > 0 and g., depending on f, such that for all
A, eR

(B.12) (reAi + seA’e’) < he(fe+ Ae) — (he(fe) + gelAe) < Co (reAﬁ + SEAQ) .

Let

A= argmin g7 A + C4 (Z reAg + Z s€A§> .

BTA=0 ecE eckE

Then (h (f+ Clﬁ) B OPT) - <1 _ g;) (h(f) — OPT).
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Proof. Define f* = argmingr;_, h(f). Define A = f*— f. By the first inequality
of (B.12), we get

JTA + ¢, (Z reA2 4% se&g> <dTA+C (Z reAZ 4> seNg)

ecE ecE ecE ecE
< h(f+ A)—=h(f) =OPT — h(f).
This and the right side inequality of (B.12) give us

Cy ~ Cy ro o 2 ~ Ci\? ~
i _ < — . = p
h(f—|— CQA) h(f) < o9 A+ Cy <<02> g reAZ 4 o E s AP

2

eckE eckE
<& GTA+C Y A2+ s A gﬁ(opT_h(f)).
& c€E c€E Ca
Rearranging this gives the desired inequality. ]

Appendix C. Additional Preliminaries. In this section, we state some
preliminaries for convex optimization. These will be used in Appendix D. We assume
all functions in this section to be convex. We also work in the ¢ norm exclusively.
Proofs for the results stated can be found in [30].

Matrices and norms. We say that a m x m matrix M is positive semidefinite if
2T Mz > 0 for all z € R™. We say that M is positive definite if 27 Mz > 0 for all
nonzero x € R™. For m x m matrices A, B we write A = B if A — B is positive
semidefinite, and A > B is A — B is positive definite. For m x m positive semidefinite
matrix M and vector x € R™ we define ||z||py = VaTMz. For m x m positive
semidefinite matrices M7, My and C' > 0 we say that My, ~¢c Ms if %xTMlx <
2T Moz < CaxT Mz for all z € R™.

Lipschitz functions. Here we define what it means for a function f to be Lipschitz
and provide a lemma showing its equivalence to a bound on the norm of the gradient.

DEFINITION C.1 (Lipschitz Function). Let f : R®™ — R be a function, and let
X CR"™ be an open convex set. We say that f is Lq-Lipschitz on X (in the {2 norm)
if for all z,y € X we have that |f(z) — f(y)| < L1]|z — ]2

LEMMA C.2 (Gradient Characterization of Lipschitz Function). Let f: R™ — R
be a differentiable function, and let X C R™ be an open convex set. Then f is L1-
Lipschitz on X if and only if for all z € X we have that ||V f(z)|l2 < L.

Smoothness and strong converity. We define what it means for a function f to be
convex, smooth, and strongly convex. We say that a function f is convex on X if for
all z,y € X and 0 < ¢ < 1 that f(tz + (1 —t)y) < tf(x) + (1 —¢)f(y). We say that f
is La-smooth on X if |V f(z) — Vf(y)|l2 < La|lz — y||2 for all z,y € X. We say that
f is p-strongly convex on X if for all z,y € X and 0 <t <1 that

flz+ (1 =t)y) <tf(z)+ A=) f(y) -t —1)- gllx —yll3.

LEMMA C.3. Let f : R™ — R be a differentiable function, and let X C R™ be an
open convex set. Then f is p-strongly convexr on X if and only if for all x,y € X we
have that

F) = f(@) + V(@) (=) + Sy -l
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Also, f is La-smooth on X if and only if for all x,y € X we have that

Fl) < F@)+ V@) (g — ) + 2y — 2]}

We can equivalently view smoothness and strong convexity as spectral bounds on the
Hessian of f.

LEmMMA C4. Let f: R®™ — R be a twice differentiable function, and let X C R™
be an open conver set. Then f is p-strongly conver on a convex set X if and only if
V2f(x) = pl for allz € X. f is Ly-smooth on X if and only if V2 f(x) < Lol for all
rze k.

Smoothness allows us to relate function error and the norm of the gradient.

LemMmA C.5. Let X C R”™ be an open convex set, and let f : R™ — R be La-smooth
on X. Define v* = argmin,cp. f(z), and assume that «* exists and * € X. Then for
all ¢ € X we have that

IVf(@)]3 < 2La(f(x) — f(z*)).

Strong convexity allows us to relate function error and distance to the optimal point.

LEMMA C.6. Let X C R"™ be an open convex set, and let f : R™ — R be p-strongly
convex on X. Define * = argmin cp. f(z), and assume that x* exists and z* € X.
Then for all x € X we have that

2(f(x) — f(=7))
; :

Appendix D. Proof of Theorem 6.3. In this section we show Theorem 6.3
through a series of reductions, where we work with a more general space of regression
problems. Our first reduction is from smoothed quadratic and ¢, regression problems
with bounded entries to solving smoothed quadratic and £f regression, so that the £,
norm piece is instead raised to the p power. The latter formulation is more amenable
to iterative refinement inequalities shown in Appendix B. The proof of this reduction
is essentially a binary search on W to ensure that the desired KKT conditions of (D.1)
are satisfied to high precision, using [27, Lemma B.3| and carefully tracking errors.

lz — 2*|I3 <

LEMMA D.1. Let A € R™™™ be a matriz and d € R™ a vector, all with entries
bounded by 2P°(oe™) - Assume that all nonzero singular values of A are between
g—poly(logm) g gpoly(logm) ~ For 1 <4 < m let 0 < a; < opoly(log ™) pe constants and
¢i : R = R be functions such that |q;(0)],|q;(0)] < 2P°1oe™) gnd a;/4 < ¢/ (x) < 4a;
forallz e R, For1<i<mlet0<b < gpoly(log™m) po constants and h; :R— R be
functions such that h;(0) = hi(0) = 0 and b;/4 < h}(x) < 4b; for all z € R. For an
even integer p < logm define

m

m 1/p
det (o ()P i
(D.1) val(z) = ;ql(xz) + <; hi(z;) ) and OPT min val(x).

We can compute an x' with Az’ = d and val(z') < OPT +
calls which for 0 < W < grely(logm) gp g

5 in O(1) oracle

1
gpoly(log m

(D.2) valy, w E Z qi(z;)) + W Z hi(z;)? and OPT, w S fr‘nind valy w ()
i=1 i=1 =
27
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computes a x’' with Az’ = d and val, w(z') < OPT, w +

2poly(log m) *

Proof. We will apply [27, Lemma B.3]. Thus we must define the functions
f,g,h and choose constants Co,x,T1,Ts, pif, Ly, Ly, Z1, Z2, H1, Ha, €1 satisfying its
constraints. For simplicity, we assume that A has rank n, so that AAT is invert-
ible. In the case where A = BT, a graph incidence matrix, the nullspace is sim-
ply the 1 vector, and the analysis can proceed similarly. We pick Cy = 1 and
X = {z €R" : ||z]|o0 < 2P°WI°8™)} which is valid because all derivatives of ¢;, h; and
condition number of A are bounded by 2rely(logm)

Regularizing the objective. Set v = 27Poy(logm) 4 he some sufficiently small
parameter, and replace each ¢;(z) — ¢;(z) + va?. Clearly, for all z € x, the value of
the objective is affected by at most v||z||3 = 27P°V(°e™) for sufficiently small v. From
this point forwards, we assume that ¢}'(z) > 2v for all z. We also assume that the
demand d has all components at least v, as changing d — d + v1 affects the objective
value by at most 2~ Pely(logm)

Reduction to unconstrained problem and choice of f,g,h. We first reduce to the

unconstrained case by removing the constraint Az = d. Define ro = AT (AAT)~1d, so
that Azg = d, P € R™*("=7) be an isomorphism onto the nullspace of A, which may
be computed by inverting an arbitrary n x n minor of A. Specifically, if A = [X Y]
I,
Y- 1X
A = BT, we may take P to be determined by the case where Y corresponds to a tree.
Thus, we may replace the condition Az = d with z = Py + z¢ for some y € R™™".
Our choice of f, g, h are there

where X € R**(m=") and Y € R"*" is invertible, we set P = [ } In the case

m m 1/p
f@fg§jwqpy+wm)amig@ﬁg<§:mdPy+%hV> and  h(z) = 2.

i=1 i=1

Choice of remaining parameters. As we have regularized each ¢;(x), we have that
V2f(z) = 2PTyP = 2-polyllogam)[ a5 1 > 9-poly(loem) apnq pTp - g-polyllogm)y
by the condition number bound on A. Thus, we may set py = g—poly(logm)
Lemma C.4. As all entries of A are bounded by 2P°V(°8™) and all entries of d are at
least v in absolute value by our reduction, all z with Az = d are at least 2-Pely(logm)
in some coordinate. Thus f(y), g(y) > 27P°V°8™) 50 we may set T = 2-Poly(logm),
By our choice of x, f(y),g(y) < 2P°YUee™) for all y € x, so we set Ty = 2rely(logm),

We may set L, = 2P°W(1°e™) and for p < logm and our choice h(z) = zP
and Ty, T, we may set L, = 2ro(ogm) We set H; = h(Ty) > g-poly(logm) 414
Hy, = h(TQ) < gpoly(logm) “Rinally, we set ¢ = 27 Pov(ogm) We set Z; = 0 and
Zy = 4 (T ) < gpoly(logm) Thege parameters satisfy all desired properties, and

logmax{Lgy, Ly, Z2, Ha} = 6(1) and logmin{pyf, e} = —6(1).

So, [27, Lemma B.3] Equation (21) tells us it suffices to make O (log %) =
5(1) oracle calls with accuracy parameter ﬁ > 9~ poly(log m) as desired.
Finishing the proof. We now argue that the oracle described in Lemma D.1 satis-
fies Equations (19) and (20) of [27, Lemma B.3|. Equation (19) follows by definition,
and Equation (20) follows by Equation (19), 2P°Y(1°8™) smoothness of the objective,

and Lemma C.5. Thus, applying Lemma B.3 gives a y with

IVf(y) + Vg2 < er.
28
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Let y* = argmin, f(y) + g(y). By convexity we have that

(f(y) +g(y)) - (f(y*) +g(y*)) < (Vf(y) + vg(y))T (y . y*)
< ||vf( ) + Vg( )||2Hy _ y*||2 < 2—poly(logm)7

by our choice € = 27P(98™) that ||y — y* ||y < 2P°Y1°8™) from our choice of x. O
We now show that objectives as in (D.2) may be iteratively refined.

LEMMA D.2. Let A € R™™™ be a matriz and d € R™ a vector, all with entries
bounded by 2P°W(e™) - Assume that all nonzero singular values of A are between
g-poly(logm) g gpoly(logm) ~ For 1 <4 < m let 0 < a; < gpoly(logm) pe constants and
¢ : R = R be functions such that |q;(0)],|qi(0)] < 2P°Ioe™) gnd a;/4 < ¢/ (z) < 4a;
forallz e R. For1<i<mlet0<b; < opoly(logm) pe constants and h; : R — R be
functions such that h;(0) = h}(0) = 0 and b;/4 < hl!(z) < 4b; for all x € R. For an
even integer p < logm define val, w(z) and OPT,w as in (D.2). We can compute

a x" with Az" = d and val, w(2") < OPT, w + sportogmy With one call to a solver for

(AT A)td and O(2227) oracle calls which for g € R™,r € RZ,, all entries bounded by
2p01y(logm), and

m m
def 9 2 .
alg (@ E giT; + (g rixi> + E W, and OPTy,, zimnovalgmb(x)
r=
i=1 i=1

computes an x' with Az’ =0 and valg ;. ,(z") < OPTy . p, +

1
gpoly(logm) *

Proof. We use Algorithm 3, which reduces (D.2) to oracle calls to ORACLE2P.

Algorithm 3: REDUCET02P(A4,d, ¢, h,a,b). Takes matrix A € R"*™ vec-
tor d, constants a;,b;, and functions g;,h; for 1 < ¢ < m. Computes x
with Az = d and val, w(z) < OPT,w + svtesmy With O(2%%) calls to
ORACLE2P (A4, g, b), which computes an z with Az = 0 and valg,,(z') <
OPTgm b+

2p01y(log m) *

1 Initialize z < AT (AAT)td
2 forl1<t< 6(222p) do

3 Initialize r.
4
5

for 1 <i<mdo
L ri = a; + bPaP 2,
g < Vval, w(x).
7 A + ORACLE2P(A4, g, 27167y 2-16p),
8 T+ x+ 2-22P A

(=)

9 Return z.

Note that all entries of 2 = AT(AAT)td are bounded by 2P°Y(°e™) hecause all
nonzero singular values of A are between 2-Polv(logm) gnd gpely(loem)  Therefore,
val, w(z) < 2pely(losm),

We show that iteration in Line 8 decreases the value of the objective on x multi-
plicatively towards OPT. Applying Lemma B.3 and (B.1) to ¢; with ¢; = a;/4 and
co = 4a; gives

1
(D.3) g%A? < qixi + Ay) — qi(m) — q(z:) Ay < 20;A7.
29
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Applying Lemma B.3 and (B.2) to h; with ¢; = b;/4 and ¢y = 4b; gives
(D.4) 27 10rp? (xEP*QA? + A?P) < hi(wi 4+ AP = hi(2:)? — p - ha(:)P~ ()
(D.5) < 20PpP (m?p_QAf + A?p) .

Adding (D.3), (D.4), (D.5) for all ¢ and using our choice of g, in Line 6 and Line 5
gives that for A

(D.6) 2~ 1top <Z A7 + Z bfA?p> < val, w(z + A) —val, w(z) — g' A

i=1 i=1
(D.7) < 2P (Z P+ bJ;AfP>
i=1 i=1
Applying Lemma B.4 to (D.6), (D.7) gives us that
_ _ 1
valw (z + 27 A) = OPTyw < (1= 272) (valp,w (¢) = OPTyw) + iy

As valy, () < 2Pv(oe™) initially, performing this iteration O(2227) times as in line
2 results in val, w(z) < OPT, w + Wllogm) at the end, as desired. 0

Now, the proof of Theorem 6.3 follows from verifying the conditions of Lemmas D.1
and D.2 and applying Theorem 6.2.

Proof of Theorem 6.3. We check the conditions of Lemmas D.1 and D.2. By
Lemma D.1 of [27] all resistances and residual capacities are polynomially bounded,
hence all quantities encountered during the algorithm are 2Pe¥(ogm) For A = BT,
we have that AAT = BT B is a graph Laplacian, and hence has polynomially bounded
singular values. We may compute an initial point 2 = B(BTB)!d as in Line 1 by
computing an electric flow. All remaining conditions follow directly for the choice
b; = 1.

We now analyze the runtime. We set b; = 1 to apply Lemmas D.1 and D.2 to The-
orem 6.3. Theorem 6.2 allows us to solve objectives desired by ORACLE2P(B”, g, r,b)

in m'+°M) time for b = 1 and p = 2[logm|. Additionally, O(222?) = m°®") for

p=2 |—\/log mw, hence the total runtime is m!+°(1) as desired. ]
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