
UNIT CAPACITY MAXFLOW IN ALMOST m4/3 TIME∗1

TARUN KATHURIA † , YANG P. LIU ‡ , AND AARON SIDFORD §2

Abstract. We present an algorithm which given any m-edge directed graph with positive3
integer capacities at most U , vertices a and b, and an approximation parameter ε ∈ (0, 1) computes4
an additive εmU -approximate a-b maximum flow in time m1+o(1)/

√
ε. By applying the algorithm5

for ε = (mU)−2/3, rounding to an integral flow, and using augmenting paths, we obtain an algorithm6
which computes an exact a-b maximum flow in time m4/3+o(1)U1/3 and an algorithm which given7
an m-edge bipartite graph computes an exact maximum cardinality matching in time m4/3+o(1).8

Key words. maximum flow, optimization, interior point methods9

AMS subject classifications. 68Q25, 68R1010

1. Introduction. In this paper, we consider the maxflow problem of computing11
a maximum a-b flow for vertices a and b in an m-edge, n-vertex capacitated directed12
graph with integer capacities at most U . This problem is among the most funda-13
mental problems in combinatorial optimization, and has been the subject of decades14
of extensive research. It encompasses prominent problems like s-t minimum cut and15
maximum bipartite matching. In recent years this problem has served as a proving16
ground for algorithmic advances in optimization [6, 19, 35, 23, 28, 29, 33, 37, 36].17

The main result of this paper is a deterministic m4/3+o(1)U1/3 time algorithm18
for solving maxflow. This runtime improves upon the previous best running times of19
m11/8+o(1)U1/4 [27], Õ(m

√
n logU) [23],1 and O(mn) [32] when the graph is not too20

dense and doesn’t have too large capacities.2 To obtain this result, we provide a new21
perspective on previous interior point method (IPM) based approaches to o(m3/2)22
maxflow runtimes [28, 29, 27] and extend the method to leverage new subroutines.23
Further, we show how to implement these subroutines efficiently by extending previous24
iterative refinement based algorithms [21, 2] to solve a larger class of undirected flow25
problems to high precision in almost linear time.26

1.1. Motivation and Significance. To motivate our result and explain its27
significance, throughout Subsection 1.1 we restrict our attention to the simplified28
problem of computing maxflow on unit capacity sparse graphs, i.e. when U = 1 and29
m = Õ(n). This problem is equivalent, up to nearly linear time reductions, to the30
problems of computing a maximum cardinality set of disjoint a-b paths in sparse graph31
[22] and computing a maximum cardinality matching in a sparse bipartite graph [25].32

Obtaining improved running times for this simple problem is notoriously difficult.33
Õ(min(m3/2,mn2/3)) time algorithms for the problem were established in the 1970s34
[12] and remained the state-of-the-art until the 2010s. Even for the easier problem35
of computing an ε-approximate maxflow, i.e. a feasible flow of value at least (1 − ε)36
times the optimum, in an undirected graph, no running time improvement was found37
until the 2010s.338

∗Merged version of accepted submissions to FOCS 2020.
†UC Berkeley, tarunkathuria@berkeley.edu
‡Stanford University, yangpliu@stanford.edu
§Stanford University, sidford@stanford.edu
1Some algorithms discussed in the introduction, including the one in [23], are randomized. We

do not distinguish randomized versus deterministic algorithms in the introduction.
2Here and throughout the paper we use Õ(·) to hide poly log(n,m,U) factors.
3Improved runtimes were obtained for dense graphs in the 1990s [15, 16, 18, 17].

1

This manuscript is for review purposes only.

Energy Maximization Based Breakthroughs. This longstanding algorith-39
mic efficiency barrier was broken by Christiano, Kelner, Mądry, Spielman and Teng in40
2011 [6]. This breakthrough provided an algorithm which computed an ε-approximate41

maxflow in unit-capacity sparse graphs in time Õ(mn1/3poly(1/ε)), which is Õ(m4/3)42
on sparse graphs with logarithmic ε.43

To achieve this result, [6] leveraged a seminal result of Spielman and Teng in44
2004 [38] that Laplacian systems, class of linear systems associated with undirected45
graphs, could be solved in nearly linear time. Solving Laplacian systems is equivalent46
to computing (to high precision) a-b electric flows, the flow f ∈ RE that sends one47

unit of flow and minimizes energy, E(f) def
=
∑

e∈E ref
2
e for input edge resistances48

r ∈ RE
>0. [6] demonstrated that this fact combined with an iterative method, known as49

the multiplicative weights update (MWU), yields an Õ(m3/2poly(1/ε))-time maxflow50
algorithm. They then introduced a new technique of energy maximization to obtain51
their improved runtime. More precisely, they noted that when MWU converged slowly,52
a small number of edges could be removed to increase the energy of the electric flows53
considered and developed methods which could trade-off the loss in approximation54
quality from edge removal with possible energy increase.55

Interestingly, earlier, in 2008, Daitch and Spielman [11] showed that another56
powerful class of continuous optimization methods, IPMs, reduces the problem of57
solving maxflow exactly on directed graphs to solving Õ(m1/2) Laplacian systems.58
Consequently, [6] created an exciting possibility of combining energy maximization59
techniques of [6] with IPMs to achieve faster running times for solving maximum flow60

In 2013, Mądry [28] provided a breakthrough result which showed that this was61

possible; this paper provided an Õ(m10/7) = Õ(m3/2−1/14) time algorithm for directed62
maxflow on sparse unit capacity graphs. This result was an impressive tour de force63
that involved multiple careful modifications to standard IPM analysis. Leveraging64
energy maximization techniques is more difficult in IPMs than in MWU, where there65
is a type of monotonicity that does not occur naturally in IPMs. Additionally, several66
aspects of IPMs are somewhat brittle and tailored to `2 and `4 norms, rather than `∞67
as in maxflow. Consequently, [28] performed multiple modifications to carefully track68
how both energy and IPM invariants changed during the IPM. This yielded the first69
Õ(m3/2−c) time maxflow algorithm for unit capacity graphs for some constant c > 0,70

though one slower than Õ(m4/3).71

Efficient Energy Maximization. Since [6], energy maximization has been ap-72
plied to a host of other problems [20, 5, 1]. Further [28] has been simplified and73
improved [29], and its techniques have been extended and applied to related graph74
problems such as minimum cost flows [10]. Further, the runtime was recently im-75
proved by Liu-Sidford to m11/8+o(1) = m3/2−1/8+o(1) [27] and this in turn led to76
faster algorithms for mincost flow and shortest paths with negative edge lengths [3].77

To obtain this runtime improvement, [27] showed that instead of carefully tuning78
the weights based on the electrical energy, one can consider the separate problem of79
finding a new set of weights under a budget constraint to maximize the energy. They80
showed that a version of this problem reduces to solving `2-`p norm flow problems,81
and leveraged recent results of [21, 2] to solve such problems in almost-linear time to82
achieve their runtime. Although [27, 3] address IPM energy monotonicity issues in83
novel ways, they do not run in time m4/3 due to issues of maintaining IPM invariants84
and working with `4, rather than `∞ (see Section 3).485

4Technically, in [27] and [3], weight changes are computed to reduce the `∞ norm of congestion

2

This manuscript is for review purposes only.

Interestingly, there are IPMs for linear programming which only measure central-86
ity in `∞ norm as opposed to the `2 or `4 norm. In particular [9, 24, 41, 40] show87
how to take a step with respect to a softmax function of the duality gap and trace88
the central path only maintaining `∞ norm bounds. However, it is unclear how to89
leverage these for faster maxflow algorithms and this paper takes a different approach.90

Our Contributions: Beyond Energy Maximization. Building on the past91
decade of maxflow research we obtain an m4/3+o(1) maxflow algorithm on sparse, unit-92
capacity graphs. This closes the gap between the runtime achieved for approximately93
solving maxflow using electrical flows and the best runtime known for solving maxflow94
on directed graphs.595

We also shed light on the energy maximization frameworks that underlie previous96
m3/2−Ω(1) exact maxflow algorithms and depart from it to achieve our bounds.6 We97
show that electric energy arises naturally when locally optimizing the second order98
Taylor approximation of a Bregman divergence of the standard logarithmic barrier99
arising in IPMs. We then show that by optimizing the entire function, instead of its100
second order Taylor approximation, we can obtain improved convergence.101

Further, we show that this divergence maximization can be performed efficiently102
for graphs. Whereas [27] showed that energy maximization could be performed effi-103
ciently by solving smoothed `2-`p flows of [21, 2], here we need to solve problems not104
immediately representable this way. We show previous solvers can be applied to solve105
a quadratic extension of the divergence maximization problem in Lemma 6.1, which106
suffices for our algorithms. More generally, we show in Theorem 6.3 that a range107
of undirected flow optimization problems, including divergence maximization, can be108
solved efficiently using iterative refinement and smoothed `2-`p flows [21].109

1.2. Our Results. The main result of this paper is the following theorem.110

Theorem 1.1 (Maximum Flow). There is an algorithm which for any ε > 0111
computes additive εmU -approximate solutions to the maxflow problem in m-edge, in-112
teger capacitated graphs with maximum capacity at most U , in time m1+o(1)/

√
ε.113

By choosing ε = (mU)−2/3, rounding to an integral flow [8], and running augmenting114
paths on the residual graph we obtain the following result.115

Theorem 1.2. There is an algorithm which solves maxflow in m-edge, integer116
capacitated graphs with maximum capacity at most U in m4/3+o(1)U1/3 time.117

Theorem 1.2 yields an exact maxflow runtime matching the Õ(mn1/3ε−11/3) runtime118
of [6] for (1 − ε)-approximate undirected maxflow on sparse graphs. Further, this119
improves on the recent m11/8+o(1)U1/4 time algorithm of Liu-Sidford [27] as long as120
U ≤ m1/2−δ for some δ > 0. When U ≥ m1/2, the result of Theorem 1.1 and all the121
algorithms of [28, 29, 27] have runtime Õ(m3/2), which is already known through [14].122
Hence, we assume U ≤

√
m throughout the paper.123

An immediate corollary of Theorem 1.2 is the following result on efficiently com-124
puting bipartite matchings. It improves over the previous bounds of m11/8+o(1) [27]125

and Õ(m+ n3/2) [40] on sparse graphs.126

of an electric flow vector. However, centrality depends on the `4 norm yielding slower than a m4/3

runtimes. Since the initial version of this paper [26] was released, [3] was updated to leverage the
techniques of this paper and achieved a m4/3+o(1) runtime for a broader range of problems.

5Since [6], faster runtimes for approximate maxflow on undirected graphs have been achieved
[22, 35, 19, 33, 36, 37] and the problem is now solvable in nearly linear time.

6Independently, [3] gives a perspective on energy maximization as regularized Newton steps.

3

This manuscript is for review purposes only.

Corollary 1.3 (Bipartite Matching). There is an algorithm which given an127
m-edge bipartite graph computes a maximum cardinality matching in time m4/3+o(1).128

Note that Theorem 1.1, 1.2, and Corollary 1.3 are deterministic. This follows129
from [7], which showed that algorithms for many flow algorithms, including Laplacian130
system solvers [38], smoothed `2-`p flow algorithms [21, 2], and some maxflow IPMs131
[28, 29], may be derandomized with a mo(1) multiplicative runtime increase.132

1.3. Previous Work. Here, for brevity, we cover several lines of research closely133
related to our work. See Section 1.3 of [27] for further references.134

Approximate undirected maxflow. An extensive line of work leveraging con-135
tinuous optimization techniques to obtain faster maxflow algorithms stemmed from136
[6]. [22] also presented a O(n1/3poly(1/ε)) iteration algorithm for unit-capacity graphs137
also using electrical flows. Further, [19] and [35] presented algorithms for maxflow138
achieving runtimes of O(m1+o(1)poly(1/ε)), [33] improved this to nearly linear time,139
and [36, 37] further improved the ε dependence, and runtime in dense instances.140

IPMs for maxflow. In order to obtain highly accurate solutions and improved141
runtimes for directed maxflow, recent work has leveraged IPMs for linear programming142
[31, 34]. As discussed, classic IPMs [11] and nearly linear time Laplacian systems143

solvers [38] directly yield an Õ(m3/2 log(U))-time maxflow algorithm. In the case of144
bounded U , this was improved by the sequence of works [28, 29, 27]. Beyond these145
results, Lee and Sidford [23] also devised a faster IPM using weighted barriers to146

achieve a Õ(m
√
n log(U))-runtime for maxflow. Further, [10] achieved a runtime for147

minimum cost flow matching the runtimes of [28, 29] and this was recently improved by148
[3], leveraging the techniques of this paper. Recently, [40, 39] also provided IPM-based149

algorithms which yield Õ(m+ n3/2) runtimes for mincost flows. [13] also provided a150

Õ(m3/2−1/328) time algorithm for maxflow on polynomially capacitated graphs.151

`p-flows and beyond. Essential to the results of this paper and [27] is recent152
work on obtaining high-precision solvers for `p flow problems on graphs, i.e. sending153
a specified amount of flow while minimizing a weighted `p-norm. These problems154
interpolate between electrical flow problems p = 2, undirected maxflow problems155
p = ∞, and transshipment problems p = 1. The first improvement over the

√
m156

iteration bound given by IPM theory was by [4]. [1] introduced iterative refinement157
which reduces solving the problem to approximately solving smoothed `2-`p flows,158

i.e. combinations of `2 and `p norm pieces. This gave an Op(m
1+ p−2

3p−2 log2(1/ε)) time159
algorithm, where Op(·) hides constants in p. The p-dependence has been improved160
signficantly by [2]. Further, [21] showed that smoothed `2-`p flows could be solved161
for unit `p norm weights and p ∈ [ω(1), o(log n)] in m1+o(1) time, and we apply this162
result to solve our divergence maximization problem.163

1.4. Paper Organization. In Section 2 we cover preliminaries. In Section 3164
we give a high level overview of our algorithm, and in Section 4 we describe various165
pieces in greater detail. We prove that our algorithm runs in m1/3+o(1) iterations in166
Section 5, and present the final runtime bound in Section 6.167

Missing proofs are deferred to Appendix A, and necessary lemmas for iterative168
refinement of our objectives are given in Appendix B. In Appendix C we give addi-169
tional convex optimization preliminaries and in Appendix D we prove Theorem 6.3,170
which shows that a large class of flow problems on graphs may be efficiently solved171
by reduction to smoothed `2-`p flows.172

4

This manuscript is for review purposes only.

2. Preliminaries.173
General notation. We let Rm

≥α denote the set of m-dimensional real vectors which174
are entrywise at least α. For v ∈ Rm and real p ≥ 1 we define ‖v‖p, the `p-norm of v, as175

‖v‖p
def
= (
∑m

i=1 |vi|p)
1/p, and ‖v‖∞

def
= maxmi=1 |vi|. For symmetric positive semidefinite176

(PSD) matrices M1,M2 ∈ Rn×n we write M1 ≈r M2 for r ≥ 1 if r−1xTM1x ≤177
xTM2x ≤ rxTM1x for all x ∈ Rn. For differentiable f : Rn → R we define its induced178

Bregman divergence as Df (x‖y)
def
= f(x)− f(y)−∇f(y)T (x− y) for all x, y ∈ Rn.179

Graphs. Throughout this paper, in the graph problems we consider, we suppose180
that there are both upper and lower capacity bounds on all edges. We let G be a181
graph with vertex set V , edge set E, and upper and lower capacities u+

e ≥ 0 and182
u−
e ≥ 0 respectively on edge e. We use U to denote the maximum capacity of any183

edge, so that max{u+
e , u

−
e } ≤ U for all edges e. We let n denote the number of vertices184

|V |, and let m denote the number of edges |E|. Further we view undirected graphs185
as directed graphs with u+

e = u−
e by arbitrarily orienting its edges.186

The Maximum Flow Problem. Given a graph G = (V,E) we call any assignment187
of real values to the edges of E, i.e. f ∈ RE , a flow. For a flow f ∈ RE , we view fe188
as the amount of flow on edge e. If fe > 0 we interpret this as sending fe units in the189
direction of the edge orientation and if fe < 0 we interpret this as sending |fe| units190
in the direction opposite the edge orientation.191

In this paper we consider ab-flows, where a ∈ V is called the source, and b ∈ V192
is called the sink. An ab-flow is a flow which routes t units of flow from a to b for193
some real number t ≥ 0. Define the unit demand vector χab

def
= 1b − 1a, a vector194

with a 1 in position b and −1 in position a. When a and b are implicit, we write195
χ = χab. In this way, we also refer to an ab-flow which routes t units from a to b196
as a tχ-flow. The incidence matrix for a graph G is the matrix B ∈ RE×V , where197
the row corresponding to edge e = (u, v) has a 1 (respectively −1) in the column198
corresponding to v (respectively u), i.e. is χuv. Note that f ∈ RE is a tχ-flow if and199
only if BT f = tχ. More broadly, we call any d ∈ RV a demand vector if 1T d = 0 and200
we say f ∈ RE routes d if BT f = d.201

We say that a tχ-flow f is feasible in G if −u−
e ≤ fe ≤ u+

e for all e ∈ E, so that202
f satisfies the capacity constraints. We define the maximum flow problem (maxflow)203
as the problem of given a graph G with upper and lower capacities u+ and u−, and204
source and sink vertices a and b, to compute a maximum feasible ab-flow. We denote205

the maximum value as t∗. For a real number t ≤ t∗, we let Ft
def
= t∗ − t denote the206

remaining amount of flow to be routed.207

3. Algorithm Derivation and Motivation. In this section we present a prin-208
cipled approach for deriving our new method and the previous energy-based methods209
[28, 29, 27] for maxflow from an IPM setup.210

3.1. Interior Point Method Setup. The starting point for our method is the211
broad IPM framework for maxflow of [27], which in turn was broadly inspired by [29].212
We consider the setup described in Section 2 and design algorithms that maintain a213
flow f ∈ RE , a parameter t ≥ 0, and weights w+, w− ∈ Rm

≥1 such that BT f = tχ and214
f is a high accuracy approximation to f∗

t,w defined as215

(3.1) f∗
t,w

def
= argmin

BT f=tχ
V (f) for V (f)

def
= −

∑
e∈E

(
w+

e log(u+
e − fe) + w−

e log(u−
e + fe)

)
.216

V (f) is known as the weighted logarithmic barrier and penalizes how close f is to217
breaking the capacity constraints and t is the amount of flow f∗

t,w sends from a to b.218

5

This manuscript is for review purposes only.

Broadly, IPMs proceed towards optimal solutions by increasing the parameter t219
to iteratively improving the quality, and decreasing the proximity to the constraints220
by decreasing V (f). Previous maxflow IPMs [23, 28, 29, 27] all follow this template.221
Specifically, [29, 27] alternate between Newton steps to improve the optimality of f222
for (3.1) (called centering steps) and computing a new flow and weights to approx-223
imately solve (3.1) for a larger value of t (called progress steps). Applying such an224
approach, while using Laplacian system solvers to implement the steps in nearly linear225
time, coupled with a preliminary graph preconditioning step (Subsection 4.1) directly226

yields an Õ(m3/2) time algorithm. Recent advances [23, 28, 29, 27] were achieved by227
additional modifications to the weights and flows used.228

3.2. Progress steps via divergence minimization. To understand (and im-229
prove upon) previous maxflow IPMs, here we explain how to view progress steps in230
this framework as computing a divergence minimizing δχ-flow for some δ > 0. Note231
that, without weight changes, the cumulative result of a progress and centering step232
is essentially moving from f∗

t,w to f∗
t+δ,w for a step size δ. The optimality conditions233

of (3.1) give that the gradient of V at the optimum f∗
t,w of (3.1) is perpendicular to234

the kernel of BT , so there is a vector y with By = ∇V (f∗
t,w). Define235

(3.2) f̂
def
= argmin

BT f=δχ
DV (f

∗
t,w + f‖f∗

t,w) = argmin
BT f=δχ

V (f∗
t,w + f)−V (f∗

t,w)−∇V (f∗
t,w)

T f,236

i.e. the δχ-flow with smallest divergence from f∗
t,w against the barrier V . Again,237

optimality conditions yield that there is a vector z with238

Bz = ∇DV (f
∗
t,w + f̂‖f∗

t,w) = ∇V (f∗
t,w + f̂)−∇V (f∗

t,w) .239

Therefore, B(y + z) = ∇V (f∗
t,w + f̂). Since f∗

t,w + f̂ is a (t+ δ)χ-flow, we must have240

f∗
t,w + f̂ = f∗

t+δ,w by optimality conditions, so that adding f̂ to an optimal point f∗
t,w241

lands us at the next point f∗
t+δ,w.242

Now, a standard progress step in this framework may be computed by taking a243
Newton step, i.e. minimizing the second order Taylor approximation of the divergence.244
The second order Taylor expansion of DV (f

∗
t,w + f‖f∗

t,w) is 1
2f

T∇2V (f∗
t,w)f , and the245

resulting step is246

(3.3) argmin
BT f=δχ

1

2
fT∇2V (f∗

t,w)f = δ∇2V (f∗
t,w)

−1B(BT∇2V (f∗
t,w)

−1B)†χ .247

This can be computed in O(m) time plus the time to solve a Laplacian system, i.e.248

Õ(m) [38]. Choosing δ that routes Ω(m−1/2) fraction of the remaining flow, adding249
the flow in (3.3) to our current point, and taking further Newton steps to re-center250

yields an Õ(m3/2) time maxflow algorithm.251

3.3. Energy-based improvements. [28, 29, 27] improve over the Õ(m3/2) time252
algorithm by more carefully analyzing the largest possible step size δ of the Newton253
step such that recentering may still be performed in Õ(m) time, and by leveraging254
that the flow in (3.3) is an electric flow. Precisely, the size of the step we may take is255
governed by the congestion of the flow we wish to add, which is defined edge-wise as256
the ratio of flow on an edge to its residual capacity (see c+e , c

−
e in Subsection 4.1). In257

this way, the `∞ norm of congestion of the χ-electric flow governs the amount of flow258
we may add before violating capacity constraints. On the other hand, because the259

6

This manuscript is for review purposes only.

χ-electric flow was a minimizer to a second order approximation of the divergence,260
the `4 norm of congestion of the χ-electric flow instead governs the amount of flow261
we may add so that centering can still be performed in Õ(m) time, whereas a bound262

on the `2 norm of congestion suffices to achieve the Õ(m3/2) time algorithm.263
In this way, it is natural to attempt to compute weight changes that reduce the264

`4 norm of congestion induced by the χ-electric flow. Mądry [28, 29] achieves this by265
increasing weights of edges with high congestion in the χ-electric flow and trading off266
against a potential function that is the energy of the χ-electric flow with resistances267
induced by the Hessian of the weighted logarithmic barrier at the current point.268

To improve on the algorithm of [29], [27] instead views increasing energy via269
budgeted weight change as its own optimization problem. Precisely, the optimization270
problem was to maximize the energy of an electric flow in a graph G that originally271
had resistances r under a resistance increase budget. Written algebraically, for a272
weight budget W , this is273

(3.4) max
‖r′‖1≤W

min
BT f=δχ

∑
e∈E

(re + r′e)f
2
e .274

[27] showed that a smoothed version of this objective was solvable in m1+o(1) time275
using smoothed `2-`p flows [21], and that the combinatorial edge boosting framework276
of [28, 29] can essentially be viewed as greedily taking gradient steps against the277
objective in (3.4).278

3.4. Our new method: beyond electric energy. As discussed, while the `∞279
norm of congestion governs the amount of flow we may add and still have a feasible280
flow, the algorithms in [28, 29, 27] all instead control the `4 norm of congestion. This281
is done to allow for efficient centering; although `∞-based steps can be taken without282
breaking capacity constraints, there is sufficient loss in local optimality that Õ(1)283
centering Newton steps cannot recenter it. This leads to the heart of our improvement284
– we resolve this discrepancy between the `∞ and `4 norm of congestion by directly285
augmenting via the divergence minimizing flow of (3.2). As a result, it suffices to286
compute weight changes to minimize the `∞ norm of congestion of the divergence287
minimizing flow.288

A key challenge in this approach is to compute this divergence minimizing flow,289
and compute weight changes to reduce the `∞ norm of its congestion. To approach290
this, we consider the problem of moving from f∗

t,w to f∗
t+δ,w for a step size δ, assuming291

that the residual capacities induced by f∗
t,w and f∗

t+δ,w are within 1.05 multiplicatively.292

This implies that ∇2V (f∗
t,w) ≈1.2 ∇2V (f∗

t+δ,w). To solve this problem, for each piece293

of the V (f) objective, i.e. (w+
e log(u+

e − fe) + w−
e log(u−

e + fe)), we replace it with294
a quadratic extension, a function that agrees with it on some interval, and extends295
quadratically outside. Our new objective will have a stable Hessian everywhere, hence296
can be minimized by Newton’s method. By construction, the optimum of the quadrat-297
ically extended problem and original are the same using convexity (see Observation 1).298
Further details are provided in Subsection 4.2.299

Finally, we wish to compute weights that reduce the `∞ norm of congestion of300
the divergence minimizing flow. As the approach of [27] computes weight changes301
to maximize the electric energy, we instead compute weight changes to maximize302
the divergence of the divergence minimizing flow. Doing this requires extending the303
analysis of [29] and energy maximization framework of [27] to nonlinear objectives,304
such as the quadratic extensions described above, and then generalizing the iterative305
refinement framework introduced by [1, 21] to a large family of new objectives. We306

7

This manuscript is for review purposes only.

hope that both this unified view of energy and divergence maximization as well as the307
methods we give for performing this optimization efficiently may have further utility.308

4. Technical Ingredients. In this section, we elaborate on several technical309
aspects discussed in Section 3. We give details for setting up the IPM in Subsec-310
tion 4.1, discuss preconditioning in Subsection 4.1, elaborate on quadratic extensions311
in Subsection 4.2, and discuss iterative refinement in Subsection 4.3.312

4.1. IPM Details and Preconditioning. In this section, we give a detailed313
description of our IPM setup. One can reduce directed maxflow to undirected maxflow314
with linear time overhead and only O(1) capacity increase (see [25, 28] or [27] Section315
B.4) and consequently, we assume our graph is undirected, so that u+

e = u−
e .316

Assuming that there is a feasible tχ-flow, optimality conditions of (3.1) give that317
the gradient of V at the optimum f∗

t,w of (3.1) is perpendicular to the kernel of BT , i.e.318

there is a dual vector y ∈ RV such that By = ∇V (f∗
t,w). Consequently, for parameter319

t and weight vectors w+, w− we say that a flow f is on the weighted central path if320
and only if there exists a dual vector y ∈ RV such that321

BT f = tχ and [By]e = [∇V (f)]e =
w+

e

u+
e − fe

− w−
e

u−
e + fe

for all e ∈ E(4.1)322
323

For simplicity, we write w = (w+, w−) ∈ R2E
≥1, where we define R2E

≥α
def
= RE

≥α × RE
≥α.324

We define residual capacities c+e
def
= u+

e − fe, c
−
e

def
= u−

e + fe and ce = min(c+e , c
−
e). Note325

ce ≥ 0 for all e ∈ E if and only if f is feasible.326
We initialize w+

e = w−
e = 1, t = 0, and f = 0, which is central. Previous IPM327

based algorithms for maxflow [28, 29, 27] alternated between progress and centering328
steps. Progress steps increase the path parameter t at the cost of centrality, which is329
the distance of f from satisfying (4.1) in the inverse norm of the Hessian of V (f) – see330
[27] Definition 4.1. Centering steps improve the centrality of the current point without331
increasing the path parameter t. Our algorithm more directly advances along the332
central path – given parameter t, weights w, and central path point f∗

t,w we compute333
new weights wnew, advance the path parameter to t+ δ, and compute f∗

t+δ,wnew .334
The IPM will reduce the value of the residual flow Ft = t∗ − t below a threshold,335

at which point we may round and use augmenting paths [8]. We assume that the336
algorithm knows Ft throughout, as our algorithm succeeds with any underestimate of337
the optimal flow value t∗, and we can binary search for the optimal flow value.338

Preconditioning. To precondition our undirected graph G, we add m undi-339
rected edges of capacity 2U between source a and sink b. This increases the maximum340
flow value by 2mU. Throughout the remainder of the paper, we say that the graph G341
is preconditioned if it is undirected and we have added these edges. Intuitively, pre-342
conditioning guarantees that a constant fraction of the remaining flow in the residual343
graph may be routed in its undirectification, i.e. G with capacities ce. We use the344
following lemma from [27]345

Lemma 4.1. [[27], Section B.5.] Consider a preconditioned graph G. For param-346
eter t and weights w let ce be the residual capacities induced by the flow f∗

t,w. Then for347

every preconditioning edge e we have that ce ≥ Ft

7‖w‖1
. If ‖w‖1 ≤ 3m then ce ≥ Ft

21m .348

At the start of the algorithm, as we initialized w+ = w− = 1, we have ‖w‖1 = 2m. To349
apply Lemma 4.1 we maintain the stronger invariant that ‖w‖1 ≤ 5m/2 before each350
step, but may temporarily increase to ‖w‖1 ≤ 3m during the step.351

8

This manuscript is for review purposes only.

4.2. Advancing along the central path via quadratic smoothing. Let t be352
a path parameter, and let δ be a step size. Let c+e , c−e be the residual capacities induced353
by f∗

t,w, and let (c+e)
′, (c−e)

′ be those induced by f∗
t+δ,w. We sketch an algorithm that354

computes f∗
t+δ,w to high accuracy from f∗

t,w in Õ(m) time under the assumption355

c+e ≈1.05 (c+e)
′ and c−e ≈1.05 (c−e)

′ for all e ∈ E. Let f̂ = f∗
t+δ,w − f∗

t,w and define the356
change in the value of the barrier V when we add f as357

B(f) def
= V (f + f∗

t,w)− V (f∗
t,w)358

= −
∑
e∈E

(
w+

e log

(
1− fe

u+
e − [f∗

t,w]e

)
+ w−

e log

(
1 +

fe

u−
e + [f∗

t,w]e

))
,(4.2)359

360

so that f̂ = argminBT f=δχ B(f). To compute f̂ , we smooth (4.2) by replacing each361

instance of log(·) with a function l̃og(·) defined as362

l̃ogη(1 + x)
def
=


log(1 + x) for |x| ≤ η

log(1 + η) + log′(1 + η)(x− η) + log′′(1+η)
2 (x− η)2 for x ≥ η

log(1− η) + log′(1− η)(x+ η) + log′′(1−η)
2 (x+ η)2 for x ≤ −η.

363

Here, we fix η = 1/10 and write l̃og(1 + x)
def
= l̃og1/10(1 + x). Note that l̃ogη(1 + x) is364

the natural quadratic extension of log(1+x) outside the interval |x| ≤ η. Specifically,365

the functions agree for |x| ≤ η, and we l̃ogη(1+x) is the second order Taylor expansion366

of log(1 + x) at η,−η for x > η, x < −η respectively. In this way, l̃og(1 + x) is twice367
differentiable everywhere. Define368

B̃(f) def
= −

∑
e∈E

(
w+

e l̃og

(
1− fe

u+
e − [f∗

t,w]e

)
+ w−

e l̃og

(
1 +

fe

u−
e + [f∗

t,w]e

))
.369

We now claim that f̂ = argminBT f=δχ B̃(f), and that it can be computed in Õ(m)370

time. To argue the latter, note that by construction, all Hessians ∇2B̃(f) are within a371

multiplicative factor of 2 of each other, hence we can compute argminBT f=δχ B̃(f) in372

Õ(m) time using Newton’s method and electric flow computations. Because c+e ≈1.05373

(c+e)
′ and c−e ≈1.05 (c−e)

′, we know that B and B̃ agree in a neighborhood of f̂ ,374

so f̂ = argminBT f=δχ B̃(f) by the following simple observation, which is similar to375
aspects of [4]. For completeness, we provide a proof in Appendix A.1.376

Observation 1. Let S ⊆ Rn be a convex set, and let f, g : Rn → R be convex377
functions. Let x∗ = argminx∈S f(x), and assume that f, g agree on a neighborhood of378
x∗ in Rn. Then g(x∗) = minx∈S g(x).379

We mention that we do not directly perform the procedure described here, and instead380
apply quadratic smoothing in a different form in Section 5 for convenience. There we381

smooth the function D
def
= D− log(1−x)(x‖0), the Bregman divergence of x to 0 with382

respect to the function − log(1 − x), instead of directly smoothing log(1 + x). The383

smoothed function D̃ is shown in (5.1), (5.2).384

4.3. Iterative refinement. The idea of iterative refinement was introduced in385
[1, 21] to solve p-norm regression problems, such as minBT f=d ‖f‖pp. Iterative refine-386
ment solves such an objective by reducing it to approximately minimizing objectives387

9

This manuscript is for review purposes only.

which are combinations of quadratic and `p norm pieces. Specifically, Lemma B.2388
shows that for a fixed flow f there is a gradient vector g such that for any circulation389
∆ we have390

‖f +∆‖pp − ‖f‖pp = gT∆+Θp

(∑
e∈E

|fe|p−2∆2
e + ‖∆‖pp

)
,(4.3)391

392

so that approximately minimizing (4.3) over circulations ∆ suffices to make multiplica-393
tive progress towards the optimum of minBT f=d ‖f‖pp. We show in Appendix B that a394
general class of objectives may all be reduced to approximately minimizing objectives395
which are combinations of quadratic and `p norm pieces. Specifically, any convex396
function h with stable second derivative admits an expansion for h(x +∆)p − h(x)p397
similar to (4.3), which we show in Lemma B.3. We then combine this expansion with398
the almost linear time smoothed `2-`p solver of [21] to show Theorem 6.3.399

5. Iteration Complexity Analysis. In this section we present our divergence400
maximization algorithm and prove the iteration bound of Õ(1/

√
ε) required to estab-401

lish Theorem 1.1. In the following Section 6, we show how to implement each iteration402
efficiently in almost linear time to achieve the desired runtime for Theorem 1.1.403

The section is organized as follows. After introducing the algorithm’s invariants404
and notational conventions, we define the divergence and smoothed divergence D, D̃,405

and the regularized objectives val(f), ṽal(f) induced by the divergence maximization406
problem (see (5.7)). Our algorithm for taking a single step is given in Algorithm 1.407

Given this, we bound the optimal value of the objective ṽal(f) in Lemma 5.3. The408
following Lemmas 5.4 to 5.6 bound various quantities relating to the amount of flow409
on an edge, its congestion, and the total initial weight increase. Finally, Lemma 5.7410
combines the previous pieces to show to formally show that Algorithm 1 goes from one411
central path path to the next exact central path point, and bounds the total weight412
increase from a reduced set of weights. The main pieces we require in Section 6 are413
the pseudocode of Algorithm 1 and the guarantees of Lemma 5.7.414

Algorithm invariants. We assume G is preconditioned (Subsection 4.1) and we415
maintain the invariant ‖w‖1 ≤ 5m/2 before each step, and ‖w‖1 ≤ 3m at all times.416
We assume that our algorithm knows Ft, as discussed in Subsection 4.1. For p =417
2d
√
logme, we assume that that Ft ≥ 10εm1+2/pU , since we wish to compute an418

εmU additive approximate flow. Further, we assume, without loss of generality, that419
ε ≤ m−2/p.420

Notational conventions. We largely adopt the same notation as used in Subsec-421
tion 4.2. We use D to refer to functions which are a Bregman divergence, and for422
a function h, we use h̃ to denote a quadratic extension of h. For flows we use f423
and f̂ , the latter which refers to flows we wish to augment by. We use ∆ and ∆̂ for424
circulations. The letters w, µ, ν refer to weights and weight changes, and W refers to425
a weight budget.426

427
For η < 1 define the functions428

D(x)
def
= D− log(1−x)(x‖0) = − log(1− x)− x and(5.1)429

D̃η(x)
def
=


D(x) for |x| ≤ η

D(η) +D′(η)(x− η) + D′′(η)
2 (x− η)2 for x ≥ η

D(−η) +D′(−η)(x+ η) + D′′(−η)
2 (x+ η)2 for x ≤ −η.

(5.2)430

431

10

This manuscript is for review purposes only.

Throughout, we will omit η and write D̃(x)
def
= D̃1/10(x). As discussed in Subsec-432

tion 4.2 D̃(x) is such that it behaves as a quadratic around x = 0, and has second433
derivatives in [1/2, 2] (Lemma 5.1). We have defined D as the Bregman divergence434

of − log(1 − x) from 0, and D̃ is the quadratic extension of D as described in Sub-435

section 4.2. Several useful properties of the derivatives and stability of D and D̃ are436
collected in Lemma 5.1, which we prove in Appendix B.437

Lemma 5.1 (Properties of D̃). We have that 1/2 ≤ D̃′′(x) ≤ 2 for all x ∈ R.438

Also, for x ≥ 0 we have that x/2 ≤ D̃′(x) ≤ 2x and −x/2 ≥ D̃′(−x) ≥ −2x. We have439

that x2/4 ≤ D̃(x) ≤ x2 for all x.440

Now we define the analog of electric energy which we maximize under a weight budget.441
Below, we assume without loss of generality that c+e ≤ c−e for all edges e, as the442
orientation of each edge is arbitrary in the algorithm. In this way, ce = c+e for all e.443

DV
w (f)

def
=
∑
e∈E

(
w+

e D

(
fe

c+e

)
+ w−

e D

(
− fe

c−e

))
and(5.3)444

D̃V
w (f)

def
=
∑
e∈E

(
w+

e D̃

(
fe

c+e

)
+ w−

e D̃

(
− fe

c−e

))
.(5.4)445

446

While minimizing D̃V
w (f) is sufficient (by its optimality conditions) to compute a new447

flow which is central, provided the old flow is central and t is increased by at most448
a certain amount, if the weights w do not change. However, we change the weights449
as well to prove better bounds on the congestion of the flow. This creates another450
complication as our old flow may no longer be central with respect to the new weights.451
We fix it by enforcing a constraint in our search for the new weights w + ν such that452
the old flow is central with respect to these new weights and we show that this can453
still efficiently be minimized.454

Next, in (5.5) and (5.6) we define val and ṽal, where p = 2d
√
logme, and W =455

ε2m3/F 2
t is a constant. For clarity, we express the vector inside the ‖ · ‖p piece of456

(5.5), (5.6) coordinate-wise, where the coordinate corresponding to edge e is written.457

val(f)
def
= DV

w (f) +W

∥∥∥∥(c+e)2(D(fe

c+e

)
+

(
c−e
c+e

)
D

(
− fe

c−e

))∥∥∥∥
p

and(5.5)458

ṽal(f)
def
= D̃V

w (f) +W

∥∥∥∥(c+e)2(D̃(fe

c+e

)
+

(
c−e
c+e

)
D̃

(
− fe

c−e

))∥∥∥∥
p

.(5.6)459
460

These are defined so that for q as the dual norm of p, i.e. 1/q + 1/p = 1, we have461

that val and ṽal correspond to maximizing the minimum values of DV
w (f) and D̃V

w (f)462
under a weighted `q weight budget. Specifically, we can compute using Sion’s minimax463

11

This manuscript is for review purposes only.

theorem that464

max
‖(c+e)−2ν+

e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

min
BT f=d

DV
w+ν(f) = min

BT f=d
max

‖(c+e)−2ν+
e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

DV
w+ν(f)(5.7)465

= min
BT f=d

max
‖(c+e)−2ν+

e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

DV
w (f) +DV

ν (f)(5.8)466

= min
BT f=d

max
‖(c+e)−2ν+

e ‖q≤W

ν+∈R2E
≥0

DV
w (f) +

∑
e∈E

(
ν+e D

(
fe

c+e

)
+

c−e
c+e

ν+e D

(
− fe

c−e

))
(5.9)467

= min
BT f=d

val(f)(5.10)468
469

and similarly for D̃V
w (f) and ṽal(f). As mentioned above, the objective requires470

the constraint ν+e /c+e = ν−e /c−e for all e ∈ E to ensure that the weight increase ν471
maintains centrality of the old flow (and hence guarantees centrality of the new flow),472
and the coefficient of (c+e)

−2 in the weight budget ‖(c+e)−2ν+e ‖q ≤ W is chosen to473

ensure that the `p piece in ṽal(f) is ensured to have approximately unit weights on474
the fe. Precisely, by Lemma 5.1 and c+e ≤ c−e we have475

(
c+e
)2(

D̃

(
fe

c+e

)
+

(
c−e
c+e

)
D̃

(
− fe

c−e

))
= Θ(f2

e).476

We require this property to apply the smoothed `2-`p flow solvers in Theorem 6.2.477
As minBT f=d val(f) is the result of applying Sion’s minimax theorem to a saddle478

point problem, there will be an optimal solution pair (f∗, µ∗). Ultimately, f∗ will be479
the flow which we add to our current flow to arrive at the next central path point,480
and the weight change will be derived from applying a weight reduction to µ∗.481

The remaining arguments in this section heavily use local optimality of convex482

functions. For this reason, we show that val(f) and ṽal(f) are convex in Appendix A.2.483
484

Lemma 5.2. val(f) and ṽal(f) are convex.485

From now on, we fix a step size δ =
√
εFt

105 . This simplifies our analysis, as our486
objectives are no longer linear in δ, as is the case with electric flows. We now bound487
the minimum value of D̃V

w (f) over all δχ-flows, and show a congestion bound for the488
minimizer, where we recall that congestion of a flow is the ratio of flow on an edge489
to its residual capacity ce. Lemmas 5.3 and 5.4 generalize corresponding bounds for490
electric flows shown in [29] and [27] Lemma 4.5 and 5.2.491

Lemma 5.3. Let δ =
√
εFt

105 . Then minBT f=δχ D̃V
w (f) ≤ 5 · 10−7εm.492

Proof. Let f ′ be the flow which routes δ/m units of flow on each of the m pre-493
conditioning edges. For a preconditioning edge ep, Lemma 4.1 and the invariant494
‖w‖1 ≤ 3m tells us that495

f ′
ep

cep
≤ δ/m

Ft/7‖w‖1
≤ 21

√
ε

105
.496

12

This manuscript is for review purposes only.

Therefore, applying Lemma 5.1 to P (the set of m preconditioning edges added in497
Lemma 4.1) and again applying that ‖w‖1 ≤ 3m gives us the desired bound, as498

D̃V
w (f ′) =

∑
e∈P

(
w+

e D̃

(
f ′
e

c+e

)
+ w−

e D̃

(
− f ′

e

c−e

))
499

≤

(
f ′
ep

cep

)2∑
e∈P

(
w+

e + w−
e

)
≤
(
21
√
ε

105

)2

‖w‖1 ≤ 5 · 10−7εm500

501

The next lemma relates, using optimality conditions of the divergence maximization502
subproblem, the Bregman divergence to the congestion of our flow and almost gets us503
to our desired upper bound on the congestion.504

Lemma 5.4. |f̂e|c−2
e ≤

√
εm/Ft for δ =

√
εFt

105 and f̂ = argminBT f=δχ D̃V
w (f).505

Proof. Local optimality implies that exist z ∈ RV satisfying Bz = ∇D̃V
w (f̂). This,506

Lemma 5.3, and Lemma 5.1, specifically that xD̃′(x) ≤ 2x2 ≤ 8D̃(x), yield507

δχT z = f̂TBz = f̂T∇D̃V
w (f̂)(5.11)508

=
∑
e∈E

f̂e

(
w+

e

c+e
D̃′

(
f̂e

c+e

)
− w−

e

c−e
D̃′

(
− f̂e

c−e

))
≤ 8D̃V

w (f̂).(5.12)509

510

Note that the flow f̂ is acyclic, i.e. there is no cycle where the flow is in the positive511
direction for every cycle edge. This follows because decreasing the flow along a cycle512
reduces the objective value, which is monotone and minimized at 0 for each edge.513
Also, for all edges e = (u, v), we have zv − zu = [Bz]e = [∇D̃V

w (f̂)]e, which has the514

same sign as f̂e. As f̂ is acyclic, it can be decomposed into a-b paths. Since, some515
path contains the edge e, we get that |[Bz]e| = |zv − zu| ≤ zb − za = χT z. Using that516

xD̃′(x) ≥ x2/2 from Lemma 5.1 we get that517

|[Bz]e| = |[∇D̃V
w (f̂)]e| ≥

w+
e |f̂e|

2(c+e)2
+

w−
e |f̂e|

2(c−e)2
≥ 1

2
|f̂e|c−2

e .518

Combining these observations with (5.11), (5.12) gives us519

|f̂e|c−2
e ≤ 2|[Bz]e| ≤ 2χT z ≤ 16δ−1D̃V

w (f̂) ≤
√
εm/Ft520

after using Lemma 5.3 and δ =
√
εFt

105 .521

Now, we show that computing f̂ = argminBT f=δχ ṽal(f) gives us weight changes to522
control the congestion of the divergence maximizing flow. For clarity, the process is523
shown in Algorithm 1.524

Now, we analyze Algorithm 1. We first show that f̂ = argminBT f=δχ D̃V
w+µ(f)525

for the weight change µ in Line 6 of Algorithm 1, and that µ has bounded `1 norm.526
This essentially follows from duality in our setup in (5.7).527

Lemma 5.5. Let parameters W, c+e , c
−
e , δ, flow f̂ , and weight change µ be defined528

as in Algorithm 1. Assume that Ft ≥ 100εm1+2/pU . Then we have that ‖µ‖1 ≤ m/2,529

f∗
t,w = f∗

t,w+µ, and f̂ = argminBT f=δχ D̃V
w+µ(f).530

13

This manuscript is for review purposes only.

Algorithm 1: Augment(G,w, Ft, f
∗
t,w, ε). Takes a preconditioned undirected

graph G with maximum capacity U , weights w ∈ R2E
≥1 with ‖w‖1 ≤ 5m/2,

residual flow Ft = t∗ − t, central path point f∗
t,w. Returns step size δ, weights

ν, and δχ-flow f̂ with f∗
t,w+ν = f∗

t,w + f̂ .

1 δ ←
√
εFt

105 . Step size.
2 c+e ← u+

e − [f∗
t,w]e, c

−
e ← u−

e + [f∗
t,w]e. . Residual capacities.

3 W ← ε2m3/F 2
t . Weight budget.

4 f̂ ← argminBT f=δχ ṽal(f) . ṽal(f) implicitly depends on W, c+e , c
−
e .

5 v ∈ RE defined as ve ← (c+e)
2
(
D̃
(

f̂e
c+e

)
+
(

c−e
c+e

)
D̃
(
− f̂e

c−e

))
for all e ∈ E.

6 µ ∈ R2E
≥0 defined as µ+

e ←W (c+e)
2 · vp−1

e

‖v‖p−1
p

and µ−
e ←

c−e
c+e

µ+
e . . Preliminary

weight change.
7 Initialize ν ∈ R2E

≥0. . Reduced weight change, ν+
e

c+e −f̂e
− ν−

e

c−e +f̂e
=

µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e

8 for e ∈ E do
9 if µ+

e

c+e −f̂e
− µ−

e

c−e +f̂e
≥ 0 then

10 ν+e ← (c+e − f̂e)
(

µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e

)
, ν−e ← 0

11 else
12 ν+e ← 0, ν−e ← −(c−e + f̂e)

(
µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e

)
13 Return (δ, f̂ , ν).

Proof. Let v ∈ RE be the vector as defined in Line 5 in Algorithm 1. By local531
optimality of f̂ , we have that there is a vector z satisfying for all e ∈ E that532

[Bz]e =
[
∇ṽal(f̂)

]
e

533

=

(
w+

e

c+e
+

vp−1
e

‖v‖p−1
p

· W (c+e)
2

c+e

)
D̃′

(
f̂e

c+e

)
−
(
w−

e

c−e
+

vp−1
e

‖v‖p−1
p

· Wc+e c
−
e

c−e

)
D̃′

(
− f̂e

c−e

)
.

(5.13)

534
535

For clarity, we rewrite Line 6 of Algorithm 1 here as536

µ+
e = W (c+e)

2 · vp−1
e

‖v‖p−1
p

and µ−
e =

c−e
c+e

µ+
e = Wc+e c

−
e ·

vp−1
e

‖v‖p−1
p

.(5.14)537
538

Note that µ+
e /c

+
e = µ−

e /c
−
e , hence f∗

t,w = f∗
t,w+µ by (4.1). Combining (5.13), (5.14)539

and optimality conditions of the objective minBT f=δχ D̃V
w+µ(f) shows that540

f̂ = argminBT f=δχ D̃V
w+µ(f). Also, if q is the dual of p, i.e. 1/q + 1/p = 1, then541

‖µ‖1 ≤ m1/p‖µ‖q ≤ 2m1/pWU2

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
q

= 2m1/pWU2 = 2m1/pm(εmU)2

F 2
t

≤ m/2542

as Ft ≥ 10εm1+2/pU by assumption.543

We now show congestion bounds on f̂ by imitating the proof of Lemma 5.3 and544
applying Lemma 5.4. Recall that ce = min(c+e , c

−
e).545

14

This manuscript is for review purposes only.

Lemma 5.6. Let parameters W, c+e , c
−
e , δ, flow f̂ , and weight change µ be defined546

as in Algorithm 1. Then we have |f̂e| ≤ 1
500

Ft√
εm

and |f̂e| ≤ 1
20ce for all edges e. It547

follows that f̂ = argminBT f=δχ val(f).548

Proof. We first show ṽal(f̂) ≤ 10−6εm. Let f ′ be the flow which routes δ
m units549

of flow on each of the m preconditioning edges. As in Lemma 5.3 we have that550
D̃V

w (f ′) ≤ 5 · 10−7εm. For a preconditioning edge e, using Lemma 5.1 and Lemma 4.1551
gives that552

(
c+e
)2(

D̃

(
f ′
e

c+e

)
+

(
c−e
c+e

)
D̃

(
− f ′

e

c−e

))
≤
(
c+e
)2((f ′

e

c+e

)2

+

(
c−e
c+e

)(
f ′
e

c−e

)2
)

553

≤ 2(f ′
e)

2 ≤ 2(δ/m)2 ≤ 2m−2

(√
εFt

105

)2

≤ 10−9εF 2
t /m

2.554
555

For the choice W = ε2m3/F 2
t we get that556

ṽal(f ′) ≤ D̃V
w (f ′) +W

∥∥∥∥(c+e)2(D̃(f ′
e

c+e

)
+

(
c−e
c+e

)
D̃

(
− f ′

e

c−e

))∥∥∥∥
p

557

≤ 5 · 10−7εm+ 10−9m1/p εF
2
t

m2
· ε

2m3

F 2
t

558

≤ 5 · 10−7εm+ 10−9m1/pε3m ≤ 10−6εm559560

where we have used ‖x‖p ≤ m1/p‖x‖∞ for the choice p = 2
⌈√

logm
⌉
, and ε ≤ m−2/p561

to get m1/pε2 ≤ 1.562
We now show |f̂e| ≤ 1

500
Ft√
εm

for all e. Indeed, applying D̃(x) ≥ x2/4 from563

Lemma 5.1 yields564
1

4
Wf̂2

e ≤ ṽal(f) ≤ 10−6εm.565

Using the choice W = ε2m3/F 2
t and rearranging gives us |f̂e| ≤ 1

500
Ft√
εm

.566

Let µ be the weight increases given by Line 6 of Algorithm 1, and (5.14). As567

f̂ = minBT f=δχ D̃V
w+µ(f) and ‖w + µ‖1 ≤ 5m/2 + m/2 ≤ 3m by our invariant and568

Lemma 5.5, using Lemma 5.4 gives us569

|f̂e|c−1
e =

(
|f̂e| · |f̂e|c−2

e

)1/2
≤
(

1

500

Ft√
εm
·
√
εm

Ft

)1/2

≤ 1

20
.570

Using that the functions D(x) and D̃(x) agree for |x| ≤ 1
10 , and |f̂e| ≤ 1

20ce for all e,571

Observation 1 gives us that f̂ is also a minimizer of minBT f=δχ val(f) as desired.572

We now show that applying weight change µ and adding f̂ to our current central573
path point f∗

t,w stays on the central path, for path parameter t + δ. This follows574
from optimality conditions on the objective, which we designed to satisfy exactly the575
desired property.576

As the weight change µ may be too large, we reduce the weight change µ to a577
weight change ν after advancing the path parameter, and bound ‖ν‖1. Intuitively,578
this weight reduction procedure can never hurt the algorithm. It happens to help579
because we carefully designed our objective to induce smoothed `2-`p flow instances580
with unit weights on the `p part, which are the only instances known to admit almost581

15

This manuscript is for review purposes only.

linear runtimes [21]. Later in Section 6, we use this fact to implement each iteration582
of our algorithm in almost linear m1+o(1) time.7 The following lemma is crucial to583
our analysis as it allows us to keep the weight increase bounded which in turn allows584
us to make significant progress on the central path, while keeping the congestion of585
the flow small by Lemma 5.6 and Lemma 5.5.586

Lemma 5.7. Let parameters W, c+e , c
−
e , δ, flow f̂ , and weight changes µ, ν be de-587

fined as in Algorithm 1, and assume that Ft ≥ 10εm1+2/pU. Then we have that588
‖ν‖1 ≤

√
εm1−1/p and f∗

t+δ,w+ν = f∗
t,w + f̂ .589

Proof. We first show f∗
t+δ,w+µ = f∗

t,w+µ + f̂ = f∗
t,w + f̂ . By Lemma 5.6, we have590

f̂ = argminBT f=δχ val(f). Let the vector v be defined as in Line 5 of Algorithm 1.591

There exist vectors y, z ∈ RE such that592

[Bz]e =
[
∇val(f̂)

]
e

593

=

(
w+

e

c+e
+

vp−1
e

‖v‖p−1
p

· W (c+e)
2

c+e

)
D′

(
f̂e

c+e

)
−
(
w−

e

c−e
+

vp−1
e

‖v‖p−1
p

· Wc+e c
−
e

c−e

)
D′

(
− f̂e

c−e

)
594

=

[
w+

e + µ+
e

c+e − f̂e
− w+

e + µ+
e

c+e

]
−
[
w−

e + µ−
e

c−e + f̂e
− w−

e + µ−
e

c−e

]
595

=

[
w+

e + µ+
e

u+
e −

[
f∗
t,w+µ

]
e
− f̂e

− w−
e + µ−

e

u−
e +

[
f∗
t,w+µ

]
e
+ f̂e

]
− [By]e.596

597

Here, the first line follows from local optimality of f̂ = argminBT f=δχ val(f), the598
third is explicit computation of D′, and the fourth follows from centrality of f∗

t,w+µ.599

Therefore, the (t+ δ)χ-flow which is f∗
t,w+µ + f̂ satisfies600 [

w+
e + µ+

e

u+
e −

[
f∗
t,w+µ

]
e
− f̂e

− w−
e + µ−

e

u−
e +

[
f∗
t,w+µ

]
e
+ f̂e

]
= [B(y + z)]e601

hence is central for weights w + µ. So f∗
t+δ,w+µ = f∗

t,w+µ + f̂ = f∗
t,w + f̂ .602

Now, note that ν as defined in lines 7 to 12 of Algorithm 1 satisfies603

ν+e

c+e − f̂e
− ν−e

c−e + f̂e
=

µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e
604

and centrality conditions (4.1) tell us that f∗
t+δ,w+ν = f∗

t+δ,w+µ.605

We now bound ‖ν‖1. Line 12 of Algorithm 1 and µ+
e /c

+
e = µ−

e /c
−
e gives us that606

ν+e + ν−e = −(c−e + f̂e)

(
µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e

)
607

= −µ−
e

((
c−e + f̂e

c+e − f̂e

)
c+e
c−e
− 1

)
≤ 3c−1

e |f̂e|µ−
e ,608

609

where we have used that c−1
e |f̂e| ≤ 1/20. A similar analysis of Line 10 gives that610

ν+e +ν−e = (c+e −f̂e)
(

µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e

)
= µ+

e

(
1−

(
c+e − f̂e

c−e + f̂e

)
c−e
c+e

)
≤ 3c−1

e |f̂e|µ+
e .611

7Even with an oracle for smoothed `2-`p flow that handles arbitrary weights, we do not know
how to achieve maxflow runtimes faster than those achieved by this paper.

16

This manuscript is for review purposes only.

In both cases, we have that ν+e + ν−e ≤ 3c−1
e |f̂e|(µ+

e + µ−
e). Using the choice W =612

ε2m3/F 2
t , Ft ≥ 10εm1+2/pU , and (5.14), Lemma 5.6 yield613

‖ν‖1 ≤
∑
e∈E

3c−1
e |f̂e|(µ−

e + µ+
e) ≤ 6W

∑
e∈E

|f̂e|c−e ·
vp−1
e

‖v‖p−1
p

614

≤ 12
ε2m3

F 2
t

· 1

500

Ft√
εm

U

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
1

≤ ε3/2m2U

Ft
m1/p

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
q

≤
√
εm1−1/p.615

616

Overall, Lemma 5.7 shows that one step of Algorithm 1 decreases the residual flow617
Ft by a multiplicative (1 − δ) = (1 −

√
ε/105), and moves from one central path618

point f∗
t,w+ to f∗

t+δ,w+ν . Thus, the number of iterations is bounded by Õ(ε−1/2). The619

cost of each iteration is one call to a solver for minBT f=d ṽal(f), which we show can620

be computed in m1+o(1) time in Lemma 6.1. Additionally, the total weight increase621
is at most

√
εm1−1/p so long as Ft ≥ 10εm1+2/pU . For the choice ε = (mU)−2/3,622

the number of iterations is Õ(m1/3U1/3), and the amount of residual flow is at most623
10εm1+2/pU ≤ m1/3+o(1)U1/3. Since that amount of residual flow can be routed in624
that many iterations of augmenting paths, after running our IPM method, we can get625
an exact maxflow in m1/3+o(1)U1/3 rounds of augmenting paths.626

6. Runtime Analysis. In Subsection 6.1 we show how to implement a single627
round of Algorithm 1 in almost linear m1+o(1) time by making calls to a smoothed628
`2-`p flow oracle. In particular, we show in Theorem 6.3, using the iterative refine-629
ment framework of [1], that a more general class of flow problems can all be solved630
using mo(1) calls to a smoothed `2-`p flow oracle. Then in Subsection 6.2 we ap-631

ply Lemma 5.7 to give our final maxflow algorithm which uses Õ(1/
√
ε) iterations632

of Algorithm 1, which costs m1+o(1) time per iteration, plus O(εm1+2/pU) rounds of633
augmenting paths. For ε = (mU)−2/3, the total runtime is m4/3+o(1)U1/3. Also, in634
the proof of Theorem 1.1 in Subsection 6.2, we verify that the total weight increase635
over the iterations of our algorithm is bounded by m/2.636

6.1. Efficient Divergence Maximization. Lemma 5.7 shows that our algo-637

rithm just needs to compute argminBT f=δχ ṽal(f) in Line 4 of Algorithm 1, as all638

other lines clearly take O(m) time. Here, we show how to do this in time m1+o(1).639

Lemma 6.1. There is an algorithm that in m1+o(1) time computes a flow f ′ with640

BT f ′ = δχ and ṽal(f ′) ≤ minBT f=δχ ṽal(f) + 1
2poly(log m) .641

To prove Lemma 6.1, we extend the following result of [21] and show the general642
Theorem 6.3, which shows that flow problems that are combinations a quadratic643
and `p norm of functions with stable Hessians may be solved to high accuracy in644
almost linear time. This encompasses problems such as computing electric and `p645
norm minimizing flows, smoothed `2-`p flows, and the divergence maximizing flows646
our algorithm must compute.647

Theorem 6.2 (Theorem 1.1 in [21], arXiv version). Consider648
p ∈ (ω(1), (log n)2/3−o(1)), g ∈ RE, r ∈ RE

≥0, demand vector d ∈ RV , real number649

s ≥ 0, and initial solution f0 ∈ RE such that all parameters are bounded by 2poly(logm)650
and BT f0 = d. For a flow f , define651

valg,r,s(f)
def
=
∑
e∈E

gefe +

(∑
e∈E

ref
2
e

)
+ s‖f‖pp and OPTg,r,s

def
= min

BT f=d
valg,r,s(f).652

17

This manuscript is for review purposes only.

There is an algorithm that in m1+o(1) time computes a flow f such that BT f = d and653

valg,r,s(f)−OPTg,r,s ≤
1

2poly(logm)
(valg,r,s(f0)−OPTg,r,s) +

1

2poly(logm)
.654

Theorem 6.3. For graph G = (V,E) and all e ∈ E, let ae ∈ [0, 2poly(logm)] be655
constants, qe : R → R be functions with |qe(0)|, |q′e(0)| ≤ 2poly(logm) and q′′e (x) ∈656
[ae/4, 4ae] for all x ∈ R, and he : R → R be functions with he(0) = h′

e(0) = 0 and657
h′′
e (x) ∈ [1/4, 4] for all x ∈ R. For demand d ∈ RV with entries bounded by 2poly(logm),658

even integer p ∈ (ω(1), (log n)2/3−o(1)), and all flows f ∈ RE define659

val(f)
def
=
∑
e∈E

qe(fe) +

(∑
e∈E

he(fe)
p

)1/p

and OPT
def
= min

BT f=d
val(f).660

We can compute in time m1+o(1) a flow f ′ with BT f ′ = d and val(f ′) ≤ OPT +661
1

2poly(log m) .662

The reason that we enforce that ae, |qe(0)|, |q′e(0)| ≤ 2poly(logm) is that [21, Theorem663
1.1] requires quasipolynomially bounded inputs to achieve its m1+o(1) runtime. Also,664
while [21, Theorem 1.1] is stated with 1

poly(m) errors, it can be made to 1
2poly(log m) as665

explained in [27] Appendix D.3.666
Though the full proof of Theorem 6.3 is deferred to Appendix D, we give a brief667

proof sketch here. Roughly, we first use Lemma B.3 of [27] to reduce optimizing the668

objective val(f) in Theorem 6.3 to solving Õ(1) problems of the following kind:669

valp,W (f)
def
=
∑
e∈E

qe(fe) +W
∑
e∈E

he(fe)
p and OPTp,W

def
= min

BT f=d
valp,W (f)670

find a flow f ′ with BT f ′ = d and valp,W (f ′) ≤ OPTp,W + 1
2poly(log m) . This achieved671

through careful binary search which is elaborated on Appendix D and proven formally672
in Lemma D.1.673

We then apply the iterative refinement framework to reduce the high accuracy674
minimization of the objective valp,W (f) to solving Õ(2O(p)) smoothed quadratic and675
`p norm flow problems, which may be solved using Theorem 6.2. The main difference676
from the analysis of [21] is that we show that any convex function h with stable second677
derivatives admits an expansion for h(x+∆)p − h(x)p, while [21] only considers the678
function h(x) = x2. This is done formally in Lemma D.2.679

Proof of Lemma 6.1. By scaling down by W , it suffices to check that ṽal(f) sat-680
isfies the constraints of Theorem 6.3 for681

qe(x)
def
= W−1

(
w+

e D̃

(
x

c+e

)
+ w−

e D̃

(
− x

c−e

))
and ae

def
= W−1

(
w+

e

(c+e)2
+

w−
e

(c−e)2

)
,682

he(x)
def
=
(
c+e
)2(

D̃

(
x

c+e

)
+

(
c−e
c+e

)
D̃

(
− x

c−e

))
.683

684

To analyze qe(x), we compute that685

q′′e (x) = W−1

(
w+

e

(c+e)2
D̃′′
(

x

c+e

)
+

w−
e

(c−e)2
D̃′′
(

x

c−e

))
686

≤ 2W−1

(
w+

e

(c+e)2
+

w−
e

(c−e)2

)
= 2ae687

688

18

This manuscript is for review purposes only.

by Lemma 5.1. A lower bound q′′e (x) ≥ 1
2W

−1
(

w+
e

(c+e)2
+

w−
e

(c−e)2

)
= ae/2 follows equiv-689

alently. ae ≤ 2poly(logm) follows from the fact that resistances and residual capacities690
are polynomially bounded on the central path – see [27] Lemma D.1.691

To analyze he(x), we can compute using (5.2) that he(0) = h′
e(0) = 0 and692

h′′
e (x) = D̃′′

(
x

c+e

)
+

c+e
c−e

D̃′′
(
− x

c−e

)
≤ 4693

by Lemma 5.1. We get h′′
e (x) ≥ 1/2 similarly.694

6.2. Main Algorithm. We now combine Lemma 6.1 with Lemma 5.7 in Algo-695
rithm 2 to prove Theorem 1.1. Our algorithm repeatedly takes steps computed with696
Algorithm 1 until the remaining flow Ft is at most εm1+o(1)U .697

Algorithm 2: Maxflow(ε,G). Takes a preconditioned undirected graph G
with maximum capacity U . Returns the maximum ab flow in G.
1 f ← 0, t← 0, w ← 1.
2 while Ft ≥ 10εm1+2/pU do
3 (δ, f̂ , ν)← Augment(G,w, t∗ − t, f).
4 f ← f + f̂ , w ← w + ν, and t← t+ δ.

5 Round to an integral flow [22, 28] and use augmenting paths until done.

Proof of Theorem 1.1. We show that Maxflow(G) computes a maximum flow698
on G in time m1+o(1)/

√
ε time. Correctness follows from Lemmas 5.7 and 6.1. It699

suffices then to maintain upper bounds control the weights. Our choice of δ guarantees700
that we route Ω(

√
ε) fraction of the remaining flow per iteration, hence Line 2 executes701

Õ(1/
√
ε) times. ‖ν‖1 ≤

√
εm1−1/p always by Lemma 5.7, hence at the end of the702

algorithm we have703

‖w‖1 ≤ 2m+ Õ
(
1/
√
ε ·
√
εm1−1/p

)
≤ 5m/2 .704

To analyze the runtime, first note that by Lemma 6.1 which we will establish in the705
next section, Line 3 takes m1+o(1) time, so the total runtime of these throughout the706
algorithm is m1+o(1)/

√
ε as desired. Note that the total remaining flow at the end707

is at most 10εm1+2/pU . Now, we may take ε → ε
10m2/p to get the desired bounds in708

Theorem 1.1. This completes our proof of Theorem 1.1.709

7. Conclusion. We conclude by first stating the difficulties in going beyond an710
m4/3 runtime for maxflow, and then discussing potential directions for future research711
on the topic.712

A Possible Barrier at m4/3. Here we briefly discuss why we believe that m4/3 is a713
natural runtime barrier for IPM based algorithms for maxflow on sparse unweighted714
graphs. All currently known weighted IPM advances satisfy the following two proper-715
ties. First, weights only increase and do not become super linear. Second, the methods716
step from one central path point to the next one in Θ(m) time and the congestion of717
this step is multiplicatively bounded. Our algorithm does both these pieces optimally718
— we precisely compute weight changes under a budget to ensure that the congestion719
to the next central path point is reduced significantly. In this sense, to break the720
m4/3 barrier, one would either have to find a new way to backtrack on weight changes721

19

This manuscript is for review purposes only.

on the central path so that they are not additive throughout the algorithm, or show722
better amortized bounds on weight change than shown here. Alternatively, one would723
need a novel algorithm to step to faraway points on the central path, outside a ball724
where the congestions are bounded.725

Recent Progress and Future Directions. Since the original version of this paper was726
published, there have been several exciting improvements to the runtimes of maxflow727
and mincost in capacitated and dense graphs. The current fastest algorithms for728
graphs with arbitrary polynomially bounded capacities (as opposed to the unit weight729

case considered in this paper) have runtime Õ((m + n3/2) log2 U) for mincost flow730

[40, 39] and Õ(m3/2−1/328 logU) for maxflow [13]. The former algorithms are nearly731
linear time on sufficiently dense graphs, and the latter is the first m3/2−Ω(1) logU time732
algorithm for capacitated maxflow on sparse graphs. Interestingly, these algorithms733
do not work by reducing the iteration complexity as is done in this paper, and instead734
use dynamic data structures to speed up the runtime of implementing each iteration735
of an IPM.736

We believe that several exciting directions remain, in the context of this work737
as well as the recent progress discussed. First, can we combine ideas from this work738
and [40, 39] to achieve mn1/3+o(1) or even m + n4/3+o(1) runtimes for unit capacity739
maxflow? Also, can we design an m4/3+o(1) time algorithm for maxflow that only uses740
Laplacian system solvers, as opposed to stronger `2-`p norm flows? Also, is there an741

IPM for capacitated maxflow that runs in m1/2−Ω(1) logO(1) U iterations? Finally, on742
the other hand, can we use stronger primitives such as smoothed `2-`p flows to design743
even more efficient algorithms for unit capacity maxflow, potentially beyond the use744
of IPMs?745

8. Acknowledgements. Yang P. Liu was supported by the Department of De-746
fense (DoD) through the National Defense Science and Engineering Graduate Fel-747
lowship (NDSEG) Program. Aaron Sidford was supported by NSF CAREER Award748
CCF-1844855. Tarun Kathuria is supported by NSF Grant CCF 1718695. We thank749
Arun Jambulapati, Michael B. Cohen, Yin Tat Lee, Jonathan Kelner, Aleksander750
Mądry, and Richard Peng for helpful discussions. The first author would like to751
thank Jelena Diakonikolas and Daniel Spielman for helpful discussions. The second752
and third authors are extremely grateful to Yin-Tat Lee for the fruitful suggestion of753
using quadratic extensions. Finally, we would like to thank anonymous reviewers for754
helping us improve the presentation of the paper.755

REFERENCES756

[1] D. Adil, R. Kyng, R. Peng, and S. Sachdeva, Iterative refinement for `p-norm regression,757
in Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,758
SODA 2019, San Diego, California, USA, January 6-9, 2019, 2019, pp. 1405–1424, https:759
//doi.org/10.1137/1.9781611975482.86, https://doi.org/10.1137/1.9781611975482.86.760

[2] D. Adil and S. Sachdeva, Faster p-norm minimizing flows, via smoothed q-norm problems,761
in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,762
SIAM, 2020, pp. 892–910.763

[3] K. Axiotis, A. Mądry, and A. Vladu, Circulation control for faster minimum cost flow in764
unit-capacity graphs, in 2020 IEEE 61st Annual Symposium on Foundations of Computer765
Science (FOCS), IEEE, 2020, pp. 93–104.766

[4] S. Bubeck, M. B. Cohen, Y. T. Lee, and Y. Li, An homotopy method for `p regression767
provably beyond self-concordance and in input-sparsity time, in Proceedings of the 50th768
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,769
CA, USA, June 25-29, 2018, I. Diakonikolas, D. Kempe, and M. Henzinger, eds., ACM,770
2018, pp. 1130–1137, https://doi.org/10.1145/3188745.3188776, https://doi.org/10.1145/771

20

This manuscript is for review purposes only.

https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.1137/1.9781611975482.86
https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/3188745.3188776

3188745.3188776.772
[5] H. H. Chin, A. Mądry, G. L. Miller, and R. Peng, Runtime guarantees for regression773

problems, in Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA,774
January 9-12, 2013, R. D. Kleinberg, ed., ACM, 2013, pp. 269–282, https://doi.org/10.775
1145/2422436.2422469, https://doi.org/10.1145/2422436.2422469.776

[6] P. Christiano, J. A. Kelner, A. Mądry, D. A. Spielman, and S. Teng, Electrical flows,777
laplacian systems, and faster approximation of maximum flow in undirected graphs, in778
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,779
CA, USA, 6-8 June 2011, 2011, pp. 273–282, https://doi.org/10.1145/1993636.1993674,780
https://doi.org/10.1145/1993636.1993674.781

[7] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and T. Saranurak, A determin-782
istic algorithm for balanced cut with applications to dynamic connectivity, flows, and be-783
yond, CoRR, abs/1910.08025 (2019), http://arxiv.org/abs/1910.08025, https://arxiv.org/784
abs/1910.08025.785

[8] E. Cohen, Approximate max-flow on small depth networks, SIAM J. Comput., 24786
(1995), pp. 579–597, https://doi.org/10.1137/S0097539792236717, https://doi.org/10.787
1137/S0097539792236717.788

[9] M. B. Cohen, Y. T. Lee, and Z. Song, Solving linear programs in the current matrix789
multiplication time, in Proceedings of the 51st Annual ACM SIGACT Symposium on790
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., 2019, pp. 938–791
942.792

[10] M. B. Cohen, A. Mądry, P. Sankowski, and A. Vladu, Negative-weight shortest paths793
and unit capacity minimum cost flow in Õ(m10/7 logw) time (extended abstract), in Pro-794
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,795
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, 2017, pp. 752–771.796

[11] S. I. Daitch and D. A. Spielman, Faster approximate lossy generalized flow via interior797
point algorithms, in Proceedings of the fortieth annual ACM symposium on Theory of798
computing, ACM, 2008, pp. 451–460.799

[12] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput.,800
4 (1975), pp. 507–518, https://doi.org/10.1137/0204043, https://doi.org/10.1137/0204043.801

[13] Y. Gao, Y. P. Liu, and R. Peng, Fully dynamic electrical flows: sparse maxflow faster than802
goldberg-rao, arXiv preprint arXiv:2101.07233, (2021).803

[14] A. V. Goldberg and S. Rao, Beyond the flow decomposition barrier, J. ACM, 45804
(1998), pp. 783–797, https://doi.org/10.1145/290179.290181, https://doi.org/10.1145/805
290179.290181.806

[15] D. R. Karger, Using random sampling to find maximum flows in uncapacitated undirected807
graphs, in Annual ACM Symposium on Theory of Computing: Proceedings of the twenty-808
ninth annual ACM symposium on Theory of computing, vol. 4, 1997, pp. 240–249.809

[16] D. R. Karger, Better random sampling algorithms for flows in undirected graphs, in SODA,810
vol. 98, Citeseer, 1998, pp. 490–499.811

[17] D. R. Karger, Random sampling in cut, flow, and network design problems, Mathematics of812
Operations Research, 24 (1999), pp. 383–413.813

[18] D. R. Karger and M. S. Levine, Finding maximum flows in undirected graphs seems easier814
than bipartite matching, in STOC, vol. 98, Citeseer, 1998, pp. 69–78.815

[19] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, An almost-linear-time algorithm816
for approximate max flow in undirected graphs, and its multicommodity generalizations, in817
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,818
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, 2014, pp. 217–226, https://doi.819
org/10.1137/1.9781611973402.16, https://doi.org/10.1137/1.9781611973402.16.820

[20] J. A. Kelner, G. L. Miller, and R. Peng, Faster approximate multicommodity flow using821
quadratically coupled flows, in Proceedings of the 44th Symposium on Theory of Computing822
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, H. J. Karloff and823
T. Pitassi, eds., ACM, 2012, pp. 1–18, https://doi.org/10.1145/2213977.2213979, https:824
//doi.org/10.1145/2213977.2213979.825

[21] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, Flows in almost linear time via adaptive826
preconditioning, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory827
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., 2019, pp. 902–913,828
https://doi.org/10.1145/3313276.3316410, https://doi.org/10.1145/3313276.3316410.829

[22] Y. T. Lee, S. Rao, and N. Srivastava, A new approach to computing maximum flows using830
electrical flows, in Symposium on Theory of Computing Conference, STOC’13, Palo Alto,831
CA, USA, June 1-4, 2013, 2013, pp. 755–764, https://doi.org/10.1145/2488608.2488704,832
https://doi.org/10.1145/2488608.2488704.833

21

This manuscript is for review purposes only.

https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/3188745.3188776
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674
http://arxiv.org/abs/1910.08025
https://arxiv.org/abs/1910.08025
https://arxiv.org/abs/1910.08025
https://arxiv.org/abs/1910.08025
https://doi.org/10.1137/S0097539792236717
https://doi.org/10.1137/S0097539792236717
https://doi.org/10.1137/S0097539792236717
https://doi.org/10.1137/S0097539792236717
https://doi.org/10.1137/0204043
https://doi.org/10.1137/0204043
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/290179.290181
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/2213977.2213979
https://doi.org/10.1145/3313276.3316410
https://doi.org/10.1145/3313276.3316410
https://doi.org/10.1145/2488608.2488704
https://doi.org/10.1145/2488608.2488704

[23] Y. T. Lee and A. Sidford, Path finding methods for linear programming: Solving lin-834
ear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow, in 55th835

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,836
PA, USA, October 18-21, 2014, 2014, pp. 424–433, https://doi.org/10.1109/FOCS.2014.52,837
https://doi.org/10.1109/FOCS.2014.52.838

[24] Y. T. Lee, Z. Song, and Q. Zhang, Solving empirical risk minimization in the current839
matrix multiplication time, in Conference on Learning Theory, COLT 2019, 25-28 June840
2019, Phoenix, AZ, USA, A. Beygelzimer and D. Hsu, eds., vol. 99 of Proceedings of841
Machine Learning Research, PMLR, 2019, pp. 2140–2157, http://proceedings.mlr.press/842
v99/lee19a.html.843

[25] H. Lin, Reducing directed max flow to undirected max flow, Unpublished Manuscript, 4 (2009).844
[26] Y. P. Liu and A. Sidford, Faster divergence maximization for faster maximum flow,845

CoRR, abs/2003.08929 (2020), https://arxiv.org/abs/2003.08929, https://arxiv.org/abs/846
2003.08929.847

[27] Y. P. Liu and A. Sidford, Faster energy maximization for faster maximum flow, in Procced-848
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,849
Chicago, IL, USA, June 22-26, 2020, K. Makarychev, Y. Makarychev, M. Tulsiani, G. Ka-850
math, and J. Chuzhoy, eds., ACM, 2020, pp. 803–814, https://doi.org/10.1145/3357713.851
3384247, https://doi.org/10.1145/3357713.3384247.852

[28] A. Mądry, Navigating central path with electrical flows: From flows to matchings, and back,853
in 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-854
29 October, 2013, Berkeley, CA, USA, 2013, pp. 253–262, https://doi.org/10.1109/FOCS.855
2013.35, https://doi.org/10.1109/FOCS.2013.35.856

[29] A. Mądry, Computing maximum flow with augmenting electrical flows, in IEEE 57th Annual857
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt858
Regency, New Brunswick, New Jersey, USA, 2016, pp. 593–602, https://doi.org/10.1109/859
FOCS.2016.70, https://doi.org/10.1109/FOCS.2016.70.860

[30] Y. Nesterov, Introductory lectures on convex programming volume i: Basic course, Lecture861
notes, 3 (1998), p. 5.862

[31] Y. E. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex pro-863
gramming, vol. 13 of Siam studies in applied mathematics, SIAM, 1994.864

[32] J. B. Orlin, Max flows in O(nm) time, or better, in Symposium on Theory of Computing865
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, 2013, pp. 765–774, https:866
//doi.org/10.1145/2488608.2488705, https://doi.org/10.1145/2488608.2488705.867

[33] R. Peng, Approximate undirected maximum flows in O(mpolylogn) time, in Proceedings of868
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,869
Arlington, VA, USA, January 10-12, 2016, 2016, pp. 1862–1867, https://doi.org/10.1137/870
1.9781611974331.ch130, https://doi.org/10.1137/1.9781611974331.ch130.871

[34] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear programming,872
Math. Program., 40 (1988), pp. 59–93.873

[35] J. Sherman, Nearly maximum flows in nearly linear time, in 54th Annual IEEE Symposium874
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,875
USA, 2013, pp. 263–269, https://doi.org/10.1109/FOCS.2013.36, https://doi.org/10.1109/876
FOCS.2013.36.877

[36] J. Sherman, Area-convexity, `∞ regularization, and undirected multicommodity flow, in Pro-878
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC879
2017, Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 452–460, https://doi.org/10.880
1145/3055399.3055501, https://doi.org/10.1145/3055399.3055501.881

[37] A. Sidford and K. Tian, Coordinate methods for accelerating `∞ regression and faster882
approximate maximum flow, in 59th IEEE Annual Symposium on Foundations of Computer883
Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018, pp. 922–933, https://doi.org/884
10.1109/FOCS.2018.00091, https://doi.org/10.1109/FOCS.2018.00091.885

[38] D. A. Spielman and S. Teng, Nearly-linear time algorithms for graph partitioning, graph886
sparsification, and solving linear systems, in Proceedings of the 36th Annual ACM Sym-887
posium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, 2004, pp. 81–90,888
https://doi.org/10.1145/1007352.1007372, https://doi.org/10.1145/1007352.1007372.889

[39] J. van den Brand, Y. T. Lee, Y. P. Liu, T. Saranurak, A. Sidford, Z. Song, and890
D. Wang, Minimum cost flows, MDPs, and `1-regression in nearly linear time for dense891
instances, in STOC, ACM, 2021, pp. 859–869.892

[40] J. van den Brand, Y.-T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford,893
Z. Song, and D. Wang, Bipartite matching in nearly-linear time on moderately dense894
graphs, arXiv e-prints, (2020), pp. arXiv–2009.895

22

This manuscript is for review purposes only.

https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1109/FOCS.2014.52
http://proceedings.mlr.press/v99/lee19a.html
http://proceedings.mlr.press/v99/lee19a.html
http://proceedings.mlr.press/v99/lee19a.html
https://arxiv.org/abs/2003.08929
https://arxiv.org/abs/2003.08929
https://arxiv.org/abs/2003.08929
https://arxiv.org/abs/2003.08929
https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1145/3357713.3384247
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1109/FOCS.2016.70
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1109/FOCS.2013.36
https://doi.org/10.1109/FOCS.2013.36
https://doi.org/10.1109/FOCS.2013.36
https://doi.org/10.1109/FOCS.2013.36
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1145/1007352.1007372

[41] J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song, Solving tall dense linear programs896
in nearly linear time, in Proccedings of the 52nd Annual ACM SIGACT Symposium on897
Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, K. Makarychev,898
Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, eds., ACM, 2020, pp. 775–788,899
https://doi.org/10.1145/3357713.3384309, https://doi.org/10.1145/3357713.3384309.900

Appendix A. Missing proofs.901

A.1. Proof of Observation 1.902

Proof. Assume for contradiction that g(x) < g(x∗) for some x ∈ S. For all ε > 0903
we have904

g((1− ε)x∗ + εx) ≤ (1− ε)g(x∗) + εg(x) < g(x∗).905

Because f, g agree on a neighborhood of x∗, we have for sufficiently small ε that906

f((1− ε)x∗ + εx) = g((1− ε)x∗ + εx) < g(x∗) = f(x∗),907

a contradiction to f(x∗) = minx∈S f(x), as (1− ε)x∗ + εx ∈ S by convexity of S.908

A.2. Proof of Lemma 5.2.909

Lemma A.1. Let p ≥ 1 be a real number. Let hi : R→ R≥0 be convex functions.910

Then the function h : Rn → R defined by h(x) = (
∑n

i=1 hi(xi)
p)

1/p is a convex911
function.912

Proof. For any x, y ∈ Rn and 0 ≤ t ≤ 1 we have by Minkowski’s inequality and913
convexity that914

h(tx+ (1− t)y) = ‖hi(txi + (1− t)yi)‖p ≤ ‖t · hi(xi) + (1− t) · hi(yi)‖p915

≤ t‖hi(xi)‖p + (1− t)‖hi(yi)‖p = t · h(x) + (1− t) · h(y).916917

Proof of Lemma 5.2. D and D̃ are convex, hence DV
w (f) and D̃V

w (f) are convex.918
Also, the functions919

(
s+e
)2(

D

(
fe

s+e

)
+

(
s−e
s+e

)
D

(
− fe

s−e

))
and

(
s+e
)2(

D̃

(
fe

s+e

)
+

(
s−e
s+e

)
D̃

(
− fe

s−e

))
920

are convex, hence val(f) and ṽal(f) are convex by Lemma A.1.921

Appendix B. Iterative Refinement. Here, D and D̃ are defined as in (5.1).922
923

Lemma B.1. Let h : R→ R be a function with h(0) = h′(0) = 0, and let c1, c2 > 0924
be constants such that c1 ≤ h′′(x) ≤ c2 for all x. Then for x ≥ 0 we have that925
c1x ≤ h′(x) ≤ c2x and −c2x ≤ h′(−x) ≤ −c1x. Also, 1

2c1x
2 ≤ h(x) ≤ 1

2c2x
2 for all926

x.927

Proof. For x ≥ 0 we have that h′(x) =
∫ x

0
h′′(y)dy and c1x ≤

∫ x

0
h′′(y)dy ≤ c2x.928

The proof for x ≤ 0 is equivalent.929
For x ≥ 0 we have that h(x) =

∫ x

0
h′(y)dy and930

1

2
c1x

2 =

∫ x

0

c1ydy ≤
∫ x

0

h′(y)dy ≤
∫ x

0

c2ydy =
1

2
c2x

2.931

The proof for x ≤ 0 is equivalent.932

23

This manuscript is for review purposes only.

https://doi.org/10.1145/3357713.3384309
https://doi.org/10.1145/3357713.3384309

Proof of Lemma 5.1. It suffices to show 1/2 ≤ D̃′′(x) ≤ 2 and apply Lemma B.1.933

For |x| ≤ 1/10 we have that D̃′′(x) = (1−x)−2. Now, we can check that for |x| ≤ 1/10934

that 1/2 ≤ (1−x)−2 ≤ 2. For x ≥ 1/10 we have D̃′′(x) = D̃′′(1/10) and for x ≤ −1/10935

we have D̃′′(x) = D̃′′(−1/10) as desired.936

Lemma B.2 (Lemmas B.2 and B.3 from [21], arXiv version). Let p > 0 be an937
even integer. For all real numbers x,∆ we have that938

2−p
(
xp−2∆2 +∆p

)
≤ (x+∆)p −

(
xp + p · xp−1∆

)
≤ p2p−1

(
xp−2∆2 +∆p

)
.939

Lemma B.3. Let h : R → R be a function and let c2 ≥ c1 > 0 be constants such940
that c1 ≤ h′′(x) ≤ c2 for all x. Then for all ∆ we have that941

(B.1)
1

2
c1∆

2 ≤ h(x+∆)− (h(x) + h′(x)∆) ≤ 1

2
c2∆

2.942

If additionally h(0) = h′(0) = 0 and c1 ≤ h′′(x) ≤ c2 for all x then for all even943
integers p > 0 and ∆ we have that944

(8c2)
−2pc3p1

(
x2p−2∆2 +∆2p

)
≤ h(x+∆)p −

(
h(x)p + p · h(x)p−1h′(x)∆

)
(B.2)945

≤ (16c2)
p
(
x2p−2∆2 +∆2p

)
(B.3)946947

Proof. The upper bound of (B.1) follows from948

h(x+∆)− (h(x) + h′(x)∆) =

∫ ∆

0

(∆− y)h′′(x+ y)dy ≤ c2

∫ ∆

0

(∆− y)dy =
1

2
c2∆

2949

by Lemma B.1. The lower bound follows equivalently.950
We show the upper bound of (B.2). Use Lemma B.2 with x → h(x), ∆ →951

h(x+∆)− h(x) to get952

h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
953

≤ p2p−1
(
h(x)p−2 (h(x+∆)− h(x))

2
+ (h(x+∆)− h(x))

p
)
.(B.4)954

955

Using the upper bound of (B.1) and h(x) ≤ 1
2c2x

2 from Lemma B.1 yields956

h(x+∆)p −
(
h(x)p + p · h(x)p−1h′(x)∆

)
(B.5)957

≤ h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
+

1

2
p · h(x)p−1c2∆

2(B.6)958

≤ h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
+ p · cp2x2p−2∆2.(B.7)959960

We now bound (B.4). (B.1) and Lemma B.1 gives us961

|h(x+∆)− h(x)| ≤ |h′(x)∆|+ c2∆
2 ≤ c2|x∆|+ c2∆

2.962

Using this and Lemma B.1 gives us that (B.4) is at most963

p2p−1
(
h(x)p−2

(
c2|x∆|+ c2∆

2
)2

+
(
c2|x∆|+ c2∆

2
)p)

964

≤ p2p−1
(
x2p−4cp−2

2

(
2c22x

2∆2 + 2c22∆
4
)
+ 2p−1cp2x

p∆p + 2p−1cp2∆
2p
)

965

≤ p2p−1cp2 ·
(
4 + 2p−1 + 2p−1

)
·
(
x2p−2∆2 +∆2p

)
.966967

24

This manuscript is for review purposes only.

Collecting terms and combining this with (B.5), (B.6), (B.7) proves the upper bound968
of (B.2).969

Now we show the lower bound of (B.2). As above, we use Lemma B.2 to get970

h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
971

≥ 2−p
(
h(x)p−2 (h(x+∆)− h(x))

2
+ (h(x+∆)− h(x))

p
)
.(B.8)972

973

Using the lower bound of (B.1) and h(x) ≥ 1
2c1x

2 from Lemma B.1 gives us974

h(x+∆)p −
(
h(x)p + p · h(x)p−1h′(x)∆

)
(B.9)975

≥ h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
+

1

2
p · h(x)p−1c1∆

2(B.10)976

≥ h(x+∆)p −
(
h(x)p + p · h(x)p−1 (h(x+∆)− h(x))

)
+ p2−pcp1 · x2p−2∆2.(B.11)977978

If |x| ≥ c1|∆|
4c2

then979

p2−pcp1 · x2p−2∆2 ≥ 1

2
· p2−pcp1

(
x2p−2∆2 +

(
c1∆

4c2

)2p−2

∆2

)
980

≥ (8c2)
−2pc3p1 ·

(
x2p−2∆2 +∆2p

)
981982

as desired. If |x| ≤ c1|∆|
4c2

then applying the lower bound of (B.1) and Lemma B.1983
gives us984

h(x+∆)− h(x) ≥ h′(x)∆ + c1∆
2/2 ≥ − |c2x∆|+ c1∆

2/2 ≥ c1∆
2/4.985

Therefore, we may lower bound (B.8) by986

2−p
(
c1∆

2/4
)p

= 2−3pcp1∆
2p ≥ 2−3p−1cp1

(
x2p−2∆2 +∆2p

)
987

for |x| ≤ c1|∆|
4c2

≤ ∆. Combining this with (B.9), (B.10), (B.11) gives the desired988
bound.989

Lemma B.4. Let p be an even positive integer. Let he(x) : R→ R be convex func-990
tions for e ∈ E, and for x ∈ RE let h(x) =

∑
e∈E he(xe). Let OPT = minBT f=d h(f).991

Let f be a flow satisfying BT f = d. Let C1, C2 > 0 be constants such that for all992
edges e, there are real numbers re, se ≥ 0 and ge, depending on fe, such that for all993
∆e ∈ R994

(B.12) C1

(
re∆

2
e + se∆

p
e

)
≤ he(fe +∆e)− (he(fe) + ge∆e) ≤ C2

(
re∆

2
e + se∆

p
e

)
.995

Let996

∆̂ = argmin
BT∆=0

gT∆+ C1

(∑
e∈E

re∆
2
e +

∑
e∈E

se∆
p
e

)
.997

Then998 (
h

(
f +

C1

C2
∆̂

)
−OPT

)
≤
(
1− C1

C2

)
(h(f)−OPT) .999

25

This manuscript is for review purposes only.

Proof. Define f∗ = argminBT f=d h(f). Define ∆ = f∗−f . By the first inequality1000
of (B.12), we get1001

gT ∆̂ + C1

(∑
e∈E

re∆̂
2
e +

∑
e∈E

se∆̂
p
e

)
≤ gT∆+ C1

(∑
e∈E

re∆
2
e +

∑
e∈E

se∆
p
e

)
1002

≤ h(f +∆)− h(f) = OPT − h(f).10031004

This and the right side inequality of (B.12) give us1005

h

(
f +

C1

C2
∆̂

)
− h(f) ≤ C1

C2
gT ∆̂ + C2

((
C1

C2

)2∑
e∈E

re∆̂
2
e +

(
C1

C2

)p∑
e∈E

se∆̂
p
e

)
1006

≤ C1

C2

(
gT ∆̂ + C1

(∑
e∈E

re∆̂
2
e +

∑
e∈E

se∆̂
p
e

))
≤ C1

C2
(OPT − h(f)) .1007

1008

Rearranging this gives the desired inequality.1009

Appendix C. Additional Preliminaries. In this section, we state some1010
preliminaries for convex optimization. These will be used in Appendix D. We assume1011
all functions in this section to be convex. We also work in the `2 norm exclusively.1012
Proofs for the results stated can be found in [30].1013

Matrices and norms. We say that a m ×m matrix M is positive semidefinite if1014
xTMx ≥ 0 for all x ∈ Rm. We say that M is positive definite if xTMx > 0 for all1015
nonzero x ∈ Rm. For m × m matrices A,B we write A � B if A − B is positive1016
semidefinite, and A � B is A−B is positive definite. For m×m positive semidefinite1017
matrix M and vector x ∈ Rm we define ‖x‖M =

√
xTMx. For m × m positive1018

semidefinite matrices M1,M2 and C > 0 we say that M1 ≈C M2 if 1
CxTM1x ≤1019

xTM2x ≤ CxTM1x for all x ∈ Rm.1020
Lipschitz functions. Here we define what it means for a function f to be Lipschitz1021

and provide a lemma showing its equivalence to a bound on the norm of the gradient.1022

Definition C.1 (Lipschitz Function). Let f : Rn → R be a function, and let1023
X ⊆ Rn be an open convex set. We say that f is L1-Lipschitz on X (in the `2 norm)1024
if for all x, y ∈ X we have that |f(x)− f(y)| ≤ L1‖x− y‖2.1025

Lemma C.2 (Gradient Characterization of Lipschitz Function). Let f : Rn → R1026
be a differentiable function, and let X ⊆ Rn be an open convex set. Then f is L1-1027
Lipschitz on X if and only if for all x ∈ X we have that ‖∇f(x)‖2 ≤ L1.1028

Smoothness and strong convexity. We define what it means for a function f to be1029
convex, smooth, and strongly convex. We say that a function f is convex on X if for1030
all x, y ∈ X and 0 ≤ t ≤ 1 that f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). We say that f1031
is L2-smooth on X if ‖∇f(x)−∇f(y)‖2 ≤ L2‖x− y‖2 for all x, y ∈ X . We say that1032
f is µ-strongly convex on X if for all x, y ∈ X and 0 ≤ t ≤ 1 that1033

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t) · µ
2
‖x− y‖22.1034

Lemma C.3. Let f : Rn → R be a differentiable function, and let X ⊆ Rn be an1035
open convex set. Then f is µ-strongly convex on X if and only if for all x, y ∈ X we1036
have that1037

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖22.1038

26

This manuscript is for review purposes only.

Also, f is L2-smooth on X if and only if for all x, y ∈ X we have that1039

f(y) ≤ f(x) +∇f(x)T (y − x) +
L2

2
‖y − x‖22.1040

We can equivalently view smoothness and strong convexity as spectral bounds on the1041
Hessian of f .1042

Lemma C.4. Let f : Rn → R be a twice differentiable function, and let X ⊆ Rn1043
be an open convex set. Then f is µ-strongly convex on a convex set X if and only if1044
∇2f(x) � µI for all x ∈ X . f is L2-smooth on X if and only if ∇2f(x) � L2I for all1045
x ∈ X .1046

Smoothness allows us to relate function error and the norm of the gradient.1047

Lemma C.5. Let X ⊆ Rn be an open convex set, and let f : Rn → R be L2-smooth1048
on X . Define x∗ = argminx∈Rn f(x), and assume that x∗ exists and x∗ ∈ X . Then for1049
all x ∈ X we have that1050

‖∇f(x)‖22 ≤ 2L2(f(x)− f(x∗)).1051

Strong convexity allows us to relate function error and distance to the optimal point.1052
1053

Lemma C.6. Let X ⊆ Rn be an open convex set, and let f : Rn → R be µ-strongly1054
convex on X . Define x∗ = argminx∈Rn f(x), and assume that x∗ exists and x∗ ∈ X .1055
Then for all x ∈ X we have that1056

‖x− x∗‖22 ≤
2(f(x)− f(x∗))

µ
.1057

Appendix D. Proof of Theorem 6.3. In this section we show Theorem 6.31058
through a series of reductions, where we work with a more general space of regression1059
problems. Our first reduction is from smoothed quadratic and `p regression problems1060
with bounded entries to solving smoothed quadratic and `pp regression, so that the `p1061
norm piece is instead raised to the p power. The latter formulation is more amenable1062
to iterative refinement inequalities shown in Appendix B. The proof of this reduction1063
is essentially a binary search on W to ensure that the desired KKT conditions of (D.1)1064
are satisfied to high precision, using [27, Lemma B.3] and carefully tracking errors.1065

Lemma D.1. Let A ∈ Rn×m be a matrix and d ∈ Rn a vector, all with entries1066
bounded by 2poly(logm). Assume that all nonzero singular values of A are between1067
2−poly(logm) and 2poly(logm). For 1 ≤ i ≤ m let 0 ≤ ai ≤ 2poly(logm) be constants and1068
qi : R→ R be functions such that |qi(0)|, |q′i(0)| ≤ 2poly(logm) and ai/4 ≤ q′′i (x) ≤ 4ai1069
for all x ∈ R. For 1 ≤ i ≤ m let 0 ≤ bi ≤ 2poly(logm) be constants and hi : R→ R be1070
functions such that hi(0) = h′

i(0) = 0 and bi/4 ≤ h′′
i (x) ≤ 4bi for all x ∈ R. For an1071

even integer p ≤ logm define1072

val(x)
def
=

m∑
i=1

qi(xi) +

(
m∑
i=1

hi(xi)
p

)1/p

and OPT
def
= min

Ax=d
val(x).(D.1)1073

1074

We can compute an x′ with Ax′ = d and val(x′) ≤ OPT + 1
2poly(log m) in Õ(1) oracle1075

calls which for 0 ≤W ≤ 2poly(logm) and1076

(D.2) valp,W
def
=

m∑
i=1

qi(xi) +W

m∑
i=1

hi(xi)
p and OPTp,W

def
= min

Ax=d
valp,W (x)1077

27

This manuscript is for review purposes only.

computes a x′ with Ax′ = d and valp,W (x′) ≤ OPTp,W + 1
2poly(log m) .1078

Proof. We will apply [27, Lemma B.3]. Thus we must define the functions1079
f, g, h and choose constants C0, χ, T1, T2, µf , Lg, Lh, Z1, Z2, H1, H2, ε1 satisfying its1080
constraints. For simplicity, we assume that A has rank n, so that AAT is invert-1081
ible. In the case where A = BT , a graph incidence matrix, the nullspace is sim-1082
ply the 1 vector, and the analysis can proceed similarly. We pick C0 = 1 and1083
χ = {x ∈ Rn : ‖x‖∞ < 2poly(logm)}, which is valid because all derivatives of qi, hi and1084
condition number of A are bounded by 2poly(logm).1085

Regularizing the objective. Set ν = 2−poly(logm) to be some sufficiently small1086
parameter, and replace each qi(x) → qi(x) + νx2. Clearly, for all x ∈ χ, the value of1087
the objective is affected by at most ν‖x‖22 = 2−poly(logm) for sufficiently small ν. From1088
this point forwards, we assume that q′′i (x) ≥ 2ν for all x. We also assume that the1089
demand d has all components at least ν, as changing d→ d+ ν1 affects the objective1090
value by at most 2−poly(logm).1091

Reduction to unconstrained problem and choice of f, g, h. We first reduce to the1092
unconstrained case by removing the constraint Ax = d. Define x0 = AT (AAT)−1d, so1093
that Ax0 = d, P ∈ Rm×(m−n) be an isomorphism onto the nullspace of A, which may1094
be computed by inverting an arbitrary n×n minor of A. Specifically, if A =

[
X Y

]
1095

where X ∈ Rn×(m−n) and Y ∈ Rn×n is invertible, we set P =

[
Im−n

Y −1X

]
. In the case1096

A = BT , we may take P to be determined by the case where Y corresponds to a tree.1097
Thus, we may replace the condition Ax = d with x = Py + x0 for some y ∈ Rm−n.1098
Our choice of f, g, h are there1099

f(y)
def
=

m∑
i=1

qi([Py + x0]i) and g(y)
def
=

(
m∑
i=1

hi([Py + x0]i)
p

)1/p

and h(x) = xp.1100

Choice of remaining parameters. As we have regularized each qi(x), we have that1101
∇2f(x) � 2PT νP � 2−poly(logm)I, as ν ≥ 2−poly(logm) and PTP � 2−poly(logm)I1102
by the condition number bound on A. Thus, we may set µf = 2−poly(logm) by1103
Lemma C.4. As all entries of A are bounded by 2poly(logm) and all entries of d are at1104
least ν in absolute value by our reduction, all x with Ax = d are at least 2−poly(logm)1105
in some coordinate. Thus f(y), g(y) ≥ 2−poly(logm), so we may set T = 2−poly(logm).1106
By our choice of χ, f(y), g(y) ≤ 2poly(logm) for all y ∈ χ, so we set T2 = 2poly(logm).1107

We may set Lg = 2poly(logm), and for p ≤ logm and our choice h(x) = xp1108
and T1, T2 we may set Lh = 2poly(logm). We set H1 = h(T1) ≥ 2−poly(logm) and1109
H2 = h(T2) ≤ 2poly(logm). Finally, we set ε1 = 2−poly(logm). We set Z1 = 0 and1110
Z2 = C0

h′(T1)
≤ 2poly(logm). These parameters satisfy all desired properties, and1111

logmax{Lg, Lh, Z2, H2} = Õ(1) and logmin{µf , ε1} = −Õ(1).1112

So, [27, Lemma B.3] Equation (21) tells us it suffices to make O
(
log

H2Z2LgLh

µf ε1

)
=1113

Õ(1) oracle calls with accuracy parameter µf ε
2
1

100Z2
2L

4
gL

2
h
≥ 2−poly(logm), as desired.1114

Finishing the proof. We now argue that the oracle described in Lemma D.1 satis-1115
fies Equations (19) and (20) of [27, Lemma B.3]. Equation (19) follows by definition,1116
and Equation (20) follows by Equation (19), 2poly(logm) smoothness of the objective,1117
and Lemma C.5. Thus, applying Lemma B.3 gives a y with1118

‖∇f(y) +∇g(y)‖2 ≤ ε1.1119

28

This manuscript is for review purposes only.

Let y∗ = argminy f(y) + g(y). By convexity we have that1120

(f(y) + g(y))− (f(y∗) + g(y∗)) ≤ (∇f(y) +∇g(y))T (y − y∗)1121

≤ ‖∇f(y) +∇g(y)‖2‖y − y∗‖2 ≤ 2−poly(logm),11221123

by our choice ε = 2−poly(logm) that ‖y − y∗‖2 ≤ 2poly(logm) from our choice of χ.1124

We now show that objectives as in (D.2) may be iteratively refined.1125

Lemma D.2. Let A ∈ Rn×m be a matrix and d ∈ Rn a vector, all with entries1126
bounded by 2poly(logm). Assume that all nonzero singular values of A are between1127
2−poly(logm) and 2poly(logm). For 1 ≤ i ≤ m let 0 ≤ ai ≤ 2poly(logm) be constants and1128
qi : R→ R be functions such that |qi(0)|, |q′i(0)| ≤ 2poly(logm) and ai/4 ≤ q′′i (x) ≤ 4ai1129
for all x ∈ R. For 1 ≤ i ≤ m let 0 ≤ bi ≤ 2poly(logm) be constants and hi : R→ R be1130
functions such that hi(0) = h′

i(0) = 0 and bi/4 ≤ h′′
i (x) ≤ 4bi for all x ∈ R. For an1131

even integer p ≤ logm define valp,W (x) and OPTp,W as in (D.2). We can compute1132
a x′ with Ax′ = d and valp,W (x′) ≤ OPTp,W + 1

2poly(log m) with one call to a solver for1133

(ATA)†d and Õ(222p) oracle calls which for g ∈ Rm, r ∈ Rm
≥0, all entries bounded by1134

2poly(logm), and1135

valg,r,b(x)
def
=

m∑
i=1

gixi +

(
m∑
i=1

rix
2
i

)
+

m∑
i=1

bpi x
2p
i and OPTg,r,b = min

Ax=0
valg,r,b(x)1136

computes an x′ with Ax′ = 0 and valg,r,b(x
′) ≤ OPTg,r,b +

1
2poly(log m) .1137

Proof. We use Algorithm 3, which reduces (D.2) to oracle calls to Oracle2P.1138

Algorithm 3: ReduceTo2P(A, d, q, h, a, b). Takes matrix A ∈ Rn×m, vec-
tor d, constants ai, bi, and functions qi, hi for 1 ≤ i ≤ m. Computes x
with Ax = d and valp,W (x) ≤ OPTp,W + 1

2poly(log m) with Õ(222p) calls to
Oracle2P(A, g, r, b), which computes an x with Ax = 0 and valg,r,b(x

′) ≤
OPTg,r,b +

1
2poly(log m) .

1 Initialize x← AT (AAT)†d.
2 for 1 ≤ t ≤ Õ(222p) do
3 Initialize r.
4 for 1 ≤ i ≤ m do
5 ri = ai + bpi x

2p−2
i .

6 g ← ∇valp,W (x).
7 ∆̂← Oracle2P(A, g, 2−16pr, 2−16b).

8 x← x+ 2−22p∆̂.

9 Return x.

Note that all entries of x = AT (AAT)†d are bounded by 2poly(logm) because all1139
nonzero singular values of A are between 2−poly(logm) and 2poly(logm). Therefore,1140
valp,W (x) ≤ 2poly(logm).1141

We show that iteration in Line 8 decreases the value of the objective on x multi-1142
plicatively towards OPT . Applying Lemma B.3 and (B.1) to qi with c1 = ai/4 and1143
c2 = 4ai gives1144

(D.3)
1

8
ai∆

2
i ≤ qi(xi +∆i)− qi(xi)− q′i(xi)∆i ≤ 2ai∆

2
i .1145

29

This manuscript is for review purposes only.

Applying Lemma B.3 and (B.2) to hi with c1 = bi/4 and c2 = 4bi gives1146

2−16pbpi

(
x2p−2
i ∆2

i +∆2p
i

)
≤ hi(xi +∆i)

p − hi(xi)
p − p · hi(xi)

p−1h′
i(xi)(D.4)1147

≤ 26pbpi

(
x2p−2
i ∆2

i +∆2p
i

)
.(D.5)1148

1149

Adding (D.3), (D.4), (D.5) for all i and using our choice of g, r in Line 6 and Line 51150
gives that for ∆1151

2−16p

(
m∑
i=1

ri∆
2
i +

m∑
i=1

bpi∆
2p
i

)
≤ valp,W (x+∆)− valp,W (x)− gT∆(D.6)1152

≤ 26p

(
m∑
i=1

ri∆
2
i +

m∑
i=1

bpi∆
2p
i

)
(D.7)1153

1154

Applying Lemma B.4 to (D.6), (D.7) gives us that1155

valp,W (x+ 2−22p∆)−OPTp,W ≤ (1− 2−22p) (valp,W (x)−OPTp,W) +
1

2poly(logm)
.1156

As valp,W (x) ≤ 2poly(logm) initially, performing this iteration Õ(222p) times as in line1157
2 results in valp,W (x) ≤ OPTp,W + 1

2poly(log m) at the end, as desired.1158

Now, the proof of Theorem 6.3 follows from verifying the conditions of Lemmas D.11159
and D.2 and applying Theorem 6.2.1160

Proof of Theorem 6.3. We check the conditions of Lemmas D.1 and D.2. By1161
Lemma D.1 of [27] all resistances and residual capacities are polynomially bounded,1162
hence all quantities encountered during the algorithm are 2poly(logm). For A = BT ,1163
we have that AAT = BTB is a graph Laplacian, and hence has polynomially bounded1164
singular values. We may compute an initial point x = B(BTB)†d as in Line 1 by1165
computing an electric flow. All remaining conditions follow directly for the choice1166
bi = 1.1167

We now analyze the runtime. We set bi = 1 to apply Lemmas D.1 and D.2 to The-1168
orem 6.3. Theorem 6.2 allows us to solve objectives desired by Oracle2P(BT , g, r, b)1169

in m1+o(1) time for b = 1 and p = 2
⌈√

logm
⌉
. Additionally, Õ(222p) = mo(1) for1170

p = 2
⌈√

logm
⌉
, hence the total runtime is m1+o(1) as desired.1171

30

This manuscript is for review purposes only.

	Introduction
	Motivation and Significance
	Our Results
	Previous Work
	Paper Organization

	Preliminaries
	Algorithm Derivation and Motivation
	Interior Point Method Setup
	Progress steps via divergence minimization
	Energy-based improvements
	Our new method: beyond electric energy

	Technical Ingredients
	IPM Details and Preconditioning
	Advancing along the central path via quadratic smoothing
	Iterative refinement

	Iteration Complexity Analysis
	Runtime Analysis
	Efficient Divergence Maximization
	Main Algorithm

	Conclusion
	Acknowledgements
	References
	Appendix A. Missing proofs
	Proof of obs:convex
	Proof of lemma:valconvex

	Appendix B. Iterative Refinement
	Appendix C. Additional Preliminaries
	Appendix D. Proof of thm:mainopt

