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The mesospheric polar vortex (MPV) plays a critical role in coupling the
atmosphere-ionosphere system, so its accurate simulation is imperative for
robust predictions of the thermosphere and ionosphere. While the
stratospheric polar vortex is widely understood and characterized, the
mesospheric polar vortex is much less well-known and observed, a short-
coming that must be addressed to improve predictability of the ionosphere. The
winter MPV facilitates top-down coupling via the communication of high
energy particle precipitation effects from the thermosphere down to the
stratosphere, though the details of this mechanism are poorly understood.
Coupling from the bottom-up involves gravity waves (GWs), planetary waves
(PWs), and tidal interactions that are distinctly different and important during
weak vs. strong vortex states, and yet remain poorly understood as well.
Moreover, generation and modulation of GWs by the large wind shears at
the vortex edge contribute to the generation of traveling atmospheric
disturbances and traveling ionospheric disturbances. Unfortunately,
representation of the MPV is generally not accurate in state-of-the-art
general circulation models, even when compared to the limited
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observational data available. Models substantially underestimate eastward
momentum at the top of the MPV, which limits the ability to predict upward
effects in the thermosphere. The zonal wind bias responsible for this missing
momentum in models has been attributed to deficiencies in the treatment of
GWs and to an inaccurate representation of the high-latitude dynamics. In the
coming decade, simulations of the MPV must be improved.

KEYWORDS

polar vortex, gravity wave parameterization, mesospheric winds, atmosphere-
ionosphere coupling, energetic electron precipitation (EEP)

Introduction

While the stratospheric polar vortex has been extensively
studied since the 1950s (e.g., Labitzke & Naujokat, 2000 and
references therein), it was only recently documented that the
polar vortex also extends well into the mesosphere (Harvey et al.,
2018). Figure 1 shows that the polar vortex as depicted in the
2013 decadal survey only extends up to the stratopause. It is now
known that the polar vortex broadens with increasing altitude
into the upper mesosphere. High-top models such as the Whole
Atmosphere Community Climate Model (WACCM) properly
simulate the mesospheric polar vortex (MPV) up to middle
mesospheric altitudes, but fail to reproduce observations
above ~80km (Harvey et al, 2019; Hindley et al, 2022)
especially when the vortex is strong (Harvey et al., 2022). At
winter mesopause altitudes the upper-most reaches of the polar
vortex can manifest as troughs in traveling planetary waves
(PWs) (Harvey et al,, 2021). Descent in the longitude sectors
of these wave troughs into the top of the MPV can be 5 times
stronger than at other longitudes. While much progress has been
made in diagnosing and understanding the vortex in the
mesosphere, more work is needed to fully characterize both
its mean state and variability and how it is coupled to regions
both above and below.

The MPV often behaves differently than the vortex in the
stratosphere; the MPV can be strong when the stratospheric vortex
is weak, and vice versa. It is not yet known if MPV strength could
be a predictor for variability in the ionosphere and thermosphere
(IT) system, but sudden stratospheric warming (SSW)-induced
variability in the mesosphere has been associated with dynamical
variability at stratopause altitudes (e.g., Tweedy et al., 2013; Stray
et al., 2015; Limpasuvan et al.,, 2016; Ziilicke et al., 2018) rather
than at 10 hPa where SSWs are traditionally defined. This suggests
that dynamical proxies defined at the base of the MPV may be a
better predictor of IT variability than SSW definitions.

The energetic particle precipitation
“indirect effect”

The MPV plays an important role in coupling the

atmosphere-ionosphere system from the top-down. As
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depicted in Figure 1, the MPV acts to couple the atmosphere
via the transport of nitrogen oxides (NO,) produced by energetic
particle precipitation (EPP) from the mesosphere and lower
thermosphere (MLT) down to the stratosphere where the NO,
can destroy ozone. Understanding why models underestimate
this EPP “indirect effect” was identified as a priority in the last
decadal survey but has yet to be fully realized (Randall et al., 2015;
Pettit et al.,, 2019, 2021). Underestimates in simulated NOy are
likely due to a combination of erroneous transport (Siskind et al.,
2015) and electron source specifications.

Since the last decadal survey, studies have focused on
eliminating model underestimates in the descent of NOy in
the MPV. For example, Smith-Johnsen et al. (2022) modified
model dynamics by decreasing the amplitude of non-orographic
gravity waves (GWs) and decreasing the Prandtl number (a
measure of vertical mixing by GW breaking), both of which
resulted in better agreement with nitric oxide (NO) observations
in the polar winter mesosphere. In the mesosphere, NO, is
primarily comprised of NO. On the other hand, Pettit et al.
(2021) showed that including medium energy electron (MEE)
sources of ionization in WACCM resulted in better agreement
between simulated and observed NO concentrations in the polar
though midlatitude NO was still
underestimated in the model. A study that imposes both

winter mesosphere,

improved dynamics and MEE sources is long overdue.

Lower atmosphere impacts on the
ionosphere and thermosphere system
depend on vortex strength

It is well known that the polar vortex modulates GW and PW
fluxes and tidal amplitudes and that each of these waves behaves
differently during weak vs. strong polar vortex states (e.g.
Pedatella & Harvey, 2022). A weakening or reversal of the
polar night jet (PNJ) during SSWs leads to anomalous GW
propagation and dissipation that, in turn, modifies the global
residual circulation and can lead to cooling in the polar winter
mesosphere (Labitzke, 1972). Tides are strongly modified during
weak polar vortex states due to the changes in propagation
conditions related to zonal wind variations in the stratosphere
and mesosphere (Jin et al., 2012; Pedatella & Liu, 2013), due to
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FIGURE 1
Adapted from Figure 8.5 of the 2013-2022 Solar and Space
Physics decadal survey.

with  PWs
(Lieberman et al., 2015), and due to increases in ozone in the

modulation through nonlinear interactions
tropical stratosphere (Goncharenko et al., 2012; Siddiqui et al.,
2019). Goncharenko et al. (2010), Chau et al. (2012), and
Siddiqui et al. (2015) illustrate extreme ionospheric variability
during SSWs when the vortex is weak and demonstrate that
changes in the strength of the polar vortex are associated with
tidal modulation in the MLT region and large anomalous
variations in the equatorial electrojet, vertical ion drift, total
electron content and peak electron density. In the last decade,
many other studies have confirmed and expanded upon these
provocative results (Goncharenko et al., 2021). Variations in the
low-latitude IT system are well documented and better
understood; variations at middle latitudes are less studied and
understood as they are produced by different competing
mechanisms, and variations at high latitudes are understood
the least due to the relative shortage of data and high sensitivity of
polar regions to geomagnetic conditions. While much progress
has been made in understanding the far-reaching effects of weak
polar vortices on variability throughout the atmosphere-
ionosphere system (e.g., Pedatella et al., 2018), this is only the
tip of the iceberg.

The polar vortex is a source of gravity
waves that can lead to traveling
ionospheric disturbances

The geographic distribution of GWs in the polar winter

stratosphere depends strongly on the location, strength, and
stability of the PNJ that encircles the polar vortex. These
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waves are prevalent in the vortex jet region because 1)
persistent westerlies from the surface to the mid stratosphere
allow tropospheric GWSs to propagate vertically without
breaking, 2) GW propagation directions are focused toward
faster wind speeds (Sato et al., 2009), and 3) GWs are
refracted to longer vertical wavelengths, so they can grow to
larger amplitudes before breaking (Whiteway et al., 1997). These
provide ideal conditions for surface-generated GWs to reach the
mesosphere. GWs may also be generated in-situ in the PNJ by
local instabilities in the jet exit region (Plougonven and Snyder,
2007) or as secondary GWs (SGWs) generated by breaking
primary GWs above the jet core (Becker and Vadas, 2018).
Generation and modulation of GWs by the fast winds at the
polar vortex edge has been shown to give rise to traveling
ionospheric disturbances (TIDs) (Becker et al., 2022b). Frissell
etal. (2016) showed that TID activity depends on vortex strength
rather than geomagnetic activity, and is observable on two to 4-
week time scales; subsequent studies are consistent with these
results (Yasyukevich, et al., 2017; Nayak and Yigit, 2019). Since
the state of the polar vortex can be forecasted out 2 weeks with
some accuracy (Domeisen et al, 2020), the vortex-TID
relationship adds predictability to the ionosphere.

The problem

Unfortunately, representation of the polar vortex in the upper
mesosphere is generally not accurate in state-of-the-art global
models. In fact, in many models the zonal winds blow in the
wrong direction in the polar winter upper mesosphere (Harvey
et al, 2022 and references therein) compared to observations.
Important impacts of this easterly (westward) wind bias are 1) a
reduction in the vertical extent of the MPV (Harvey et al., 2019), 2)
an increase in the vertical wind shear, which alters the spectrum of
GWs and PWs (e.g., Chandran et al., 2013), 3) persistent negative
meridional potential vorticity gradients at mid-to-high latitudes,
which can generate PWs via baroclinic or barotropic instability (e.g.,
Charney and Stern, 1962), and 4) a reduction in the amplitude of the
migrating wavenumber two semidiurnal tide (SW2) in Arctic winter
(Zhang et al., 2021).

It is strongly suspected that the easterly wind bias is due to
inaccurate or incomplete treatment of parameterized GWs in
community models. This limits the use of such models to study
the role of the MPV in constituent transport, wave-mean flow
the
atmosphere-ionosphere system. An interesting aspect of the

interactions, and vertical coupling mechanisms in
model easterly wind bias is that it varies as a function of time
and is most egregious when the vortex is strong (Harvey et al.,
2022). Figure 2 illustrates the relevant zonal wind and GW
filtering processes during strong (left) and weak (right) polar
vortices. Between 80 and 100 km the modeled and observed zonal
winds blow in opposite directions when the vortex is strong,
whereas there is reasonable agreement between the model and
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FIGURE 2

Schematic illustrating zonal winds and GW processes that modulate the easterly model wind bias in the MLT when the vortex is strong (left) and
weak (right). Typical WACCM zonal wind profiles are given in thick black lines. Sounding of the Atmosphere using Broadband Emission Radiometry
(SABER) observed zonal wind profiles are given in blue dashed lines. GWs with phase speeds opposite to the zonal wind propagate upward and
dissipate. The red (blue) star denotes westward (eastward) GW drag due to the breaking of westward (eastward) primary GWs when the vortex is
strong (weak) and zonal winds in the stratosphere are eastward (westward). PGW = Primary Gravity Wave. SGW = Secondary Gravity Wave.

observations when the vortex is weak (during SSWs). Harvey
et al. (2022) provide a detailed discussion of the GW filtering
mechanisms, which is summarized in the caption of Figure 2.

One leading hypothesis for the model easterly wind bias in
the MLT is that it could be due to an incomplete representation of
GW effects, in particular SGWs. Becker and Vadas (2018)
showed that there is a significant eastward drag from SGWs
in the winter MLT (which cannot be due to primary GWs) that is
absent in models, and that the easterly wind bias during strong
polar vortex conditions is eliminated when SGW effects are
included. Thus, missing eastward forcing from SGWs may
account for the easterly wind bias in conventional high-top
models. Other factors that may contribute to the easterly wind
bias in the model include: the absence of oblique GW
propagation (e.g., Sato et al., 2009), the need for anisotropic
GW source spectra (e.g., Liu & Roble, 2002; Pramitha et al,
2020), the need to impose GW sources at all altitudes (e.g.,
Ribstein et al, 2022) including the tropospheric jets and the
stratospheric polar vortex (e.g., Sato & Yoshiki, 2008), and the
need to tune GW parameterizations according to simulated tidal
variability (e.g., Becker, 2017).

Discussion

In the coming decade, more extensive wind, temperature, and
constituent observations of the MPV are needed as well as scientific
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studies that utilize both ground-based and space-based observing
techniques. In addition to observations of the MPV, spaceborne
limb and nadir viewing GW observations (e.g., Kogure et al., 2020) at
mid-high latitudes would also be useful to validate simulated GW
distributions. Further, new frameworks of GW parameterizations
are required to properly simulate the zonal wind in the polar winter
upper mesosphere (e.g, Boloni et al, 2021). Indeed, sufficient
observations exist to know the modeled MPV is incorrect, but
there are not sufficient observations to determine why the models
are incorrect or how to fix them.

A full observational characterization of the MPV in the MLT
and at all longitudes with high temporal resolution (hours) is still
elusive. Typical sun-synchronous space-borne observations
provide only one to two soundings per day at a given location
at fixed local times (Livesey et al., 2022). This can determine the
mean wind and PW activity, but renders investigations of tidal
diurnal and day-to-day variability unfeasible. 24-h sampling is
needed to characterize tidal evolution in tandem with the MPV,
and to prevent tidal aliasing of zonal mean temperatures and
balanced wind calculations. Ground-based observations provide
sufficiently high time cadence to assess short-timescale variability
caused by the superposition of migrating and non-migrating
tides and GWs, but lack the spatial coverage to provide
unambiguous PW wavenumber identification.

We propose new satellite measurements to fully
characterize the MPV. Observations show that the MPV
can extend to ~30° latitude in the winter hemisphere,
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display a PW wavenumber one pattern in longitude, and
extend to at least 80 km (Harvey et al., 2018). Manifestations
of the vortex as troughs in traveling PWs also appear at 90 km
(Harvey et al., 2021) and vortex signatures in geopotential
height can appear as high as 100 km. Harvey et al. (2015)
defined the MPV using horizontal gradients in carbon
monoxide (CO) observed by the Microwave Limb Sounder
(MLS). However, if the vortex extends above the top of the
global residual circulation where descent and horizontal CO
gradients weaken, then horizontal winds become necessary to
identify the vortex edge. Therefore, both horizontal vector
winds and CO are required. We propose satellite observations
of these observables that span the winter hemisphere from
50-110 km with sufficient spatial and temporal sampling to
characterize diurnal and SW2 variations (every 4-6 h). This
temporal coverage will likely require a constellation of two or
more satellites similar to the DYNAMIC mission concept
outlined in the 2013 decadal survey. These new observations
will allow for the unambiguous identification of the MPV as a
function of longitude, latitude, altitude, and local time and
this will, in turn, support a wide range of scientific studies.

The MPV needs to be accurately simulated. Increased
model horizontal and vertical resolution, combined with
advanced methods to parameterize sub-grid scales and
SGWs, enables the explicit simulation of a new part of the
GW spectrum and can eliminate the easterly wind bias
(Becker & Vadas, 2018; Liu et al.,, 2022). However, these
models are computationally expensive and GWs remain
under-resolved, even at the highest model resolutions.
Therefore, it is critical to improve GW parameterizations
in the next decade by enhancing model physics related to
processes that govern the generation, propagation, and
of GWs. In addition to improved
representation of the MPV, GW
parameterizations would lead to better representation of

dissipation
improved

the mean circulation, chemistry, and large-scale wave
dynamics throughout the middle-upper atmosphere. Below
is a non-exhaustive list of proposed improvements to current
GW parameterizations.

1. Allow oblique GW propagation.

2. Test the impact of anisotropic GW source spectra on polar
winter mesopause winds.

3. Include tropospheric jet exit regions and the polar vortex as
GW sources.

4. Develop a new framework to better simulate the generation,
propagation, and dissipation of higher order GWs.

5. Improve the simulation of GW-tidal interactions.

Model underestimates in the downward transport of EPP-NO,
need to be understood and corrected. Precipitating electron source
specification in  models with
energies >30 keV. Further, we need to understand the role of the

needs to include electrons
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MPV in the containment of nitric oxide, how efficient it is, and over
what altitude range. While there has been progress in characterizing
the mean state of the MPV, more needs to be done to understand its
hourly, daily, seasonal, and interannual variability. A full
characterization of local and remote effects during weak and
strong vortex events needs to be undertaken. Measurements and
models need to be used in conjunction to fully appreciate the
GW-TID
vortex

mechanisms governing the relationship and its

strength. A
exhaustive list of recommended science studies is given below.

dependence  on  polar non-

1. Evaluate the sensitivity of the easterly wind bias to model horizontal

resolution, vertical resolution, and physics-based sub-grid-scale
high-resolution
models to models with parameterized GWs to understand how

parameterizations. Compare GW-resolving
polar winter mesopause zonal winds are related to GW effects. Test
the hypothesis that eastward momentum deposition from SGWs is
necessary to bring models closer to observations.

2. Use simulations from high-resolution global models to
identify discrepancies between resolved and parameterized
GWs and their impacts on the vortex.

3. Compare observed to modelled GW momentum flux. Because
observations can only observe a limited part of the GW
spectrum, it is essential to sample model outputs as the
observations to make like-for-like comparisons.

4. Combine new satellite observations of the MPV with
observations made by ground-based array systems such as
SuperDARN meteor radars to understand how the small and
large scales evolve together and separately.

5. Identify the MPV as a function of longitude, latitude, altitude,
and local time. When and how often does the MPV extend
into the lower thermosphere? How predictable is it?

6. Determine the extent to which MPV strength is a predictor for
variability in the IT system. Use long-term ionospheric
records to quantify daily/weekly ionospheric predictability.

7. In current GW schemes, rapid vertical wave mixing in the
MLT is likely underestimated by over an order of magnitude
(Liu, 2021). Include this rapid vertical mixing due to higher
order GWs into chemistry climate models (e.g., WACCM)
and quantify the extent to which the EPP-NO, underestimate
is alleviated.

8. Determine how the polar vortex contributes as a source of
primary GWs during strong vortex states. For example, Liu
(2017) and Becker et al. (2022a) observed/simulated in-situ
generation of GWs by a disturbed polar vortex.

9. Quantify diffusive vs. non-local advective transport of EPP-NOy in
the polar winter upper mesosphere. Resolve the controversy
whereby Smith et al. (2011) showed eddy diffusion to be
dominant whereas Meraner & Schmidt (2016) concluded that
transport by molecular diffusion and vertical advection dominated.

How will the advances outlined above prepare the aecronomy
community for future decades?
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1. MLT wind measurements at 6 + local times per day will
provide sufficient temporal resolution to characterize day-to-
day tidal winds within which the MPV is embedded. These
measurements will also provide a much-needed constraint on
models in the MLT.

2. Model improvements to the representation of the MPV will have
far-reaching impacts. They will enable a wide variety of scientific
studies involving GWs, PWs, and tides, atmosphere-ionosphere
vertical coupling and teleconnections, and constituent transport.

3. Characterization of the MPV will elucidate vertical transport
of trace gases from the MLT to the stratosphere and
mesosphere, will be useful for studies of wave-mean flow
interaction, and will provide a meteorological context for
GWs generated and modulated by wind shears at the
vortex edge that lead to TID activity.

Given the need to both observe and accurately simulate the
MPV, and the current inability to do so, we summarize the
following plan for moving forward:

1. Solicit mission proposals to measure temperature, winds, and
trace gases in the MLT. NASA critically needs a follow-on to MLS
and SABER to observe MLT dynamics and chemistry, especially
at high latitudes beyond the scope of ICON. Such a mission
should consist of a constellation of satellites that provide
sufficient sampling to quantify daily tidal variations.

2. Encourage international participation in the deployment of
more ground-based observing platforms to complement
satellite-based observations and provide high temporal and
spatial resolution measurements of the MLT.

3. Solicit studies that explicitly simulate more of the GW
spectrum, or more realistic GW generation, propagation,
dissipation and higher order GW generation processes in
general circulation models. Evaluate model results by
comparing to available observations.
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