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a b s t r a c t

Multi-dimensional tensor data appear in diverse settings, including multichannel signals, spectrograms,
and hyperspectral data from remote sensing. In many cases, these data are directionally correlated, i.e.
the correlation between variables from different dimensions is significantly weaker than the correlation
between variables from the same dimension. Convolutional neural networks are readily applicable to
directionally correlated data but are often inefficient, as they impose many unnecessary connections
between neurons. Here we propose a novel architecture, SepNet, specifically for directionally correlated
datasets. SepNet uses directional operators to extract directional features from each dimension
separately, followed by a linear operator along the depth to generate higher-level features from the
directional features. Experiments on two representative directionally correlated datasets showed that
SepNet improved network efficiency up to 100-fold while maintaining high accuracy comparable with
state-of-the-art convolutional neural network models. Furthermore, SepNet can be flexibly constructed
with minimal restriction on the output shape of each layer. These results reveal the potential of
data-specific architecting of neural networks.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Many successful neural network architectures have been de-
veloped in recent years, such as convolutional neural networks
(CNNs) (Fukushima, 2004), recurrent neural networks (RNNs)
(Rumelhart, Hinton, & Williams, 1986) and graph neural networks
(GNNs) (Wu et al., 2021). Generally speaking, CNNs perform well
on natural images and videos, RNNs are commonly used in speech
recognition and natural language processing, while GNNs fit bet-
ter for crystallographic information files (Sanyal et al., 2018; Xie
& Grossman, 2018; Zhang, Wang and Gao, 2021) and large molec-
ular structures (Cho & Choi, 2018; Schmidt, Pettersson, Verdozzi,
Botti, & Marques, 2021; Zhang, Zhou, Wu, & Gao, 2022). The per-
formance of neural network models depends heavily on the data
and their representations to which the models are applied. Data
can have many different representations. While Fourier (Minami,
Nakajima, & Toyoshima, 1999) and wavelet (Zhang & Benveniste,
1992) representations have traditionally been used for captur-
ing global spectral features, recently, methods for local feature
extraction have received a great deal of attention. For example,
discriminant locality preserving projections (DLPP) have been
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proposed to find the subspace that best discriminates between
different classes and reduces noise (Yu, Teng, & Liu, 2006), and
by using fuzzy set theory, Wan et al. (2021) (see also Wan et al.,
2016; Wan, Yao, Zhan, & Yang, 2022) solved the problem of
sensitivity to outliers in DLPP. Another popular approach is to
use attention and transformer (Bahdanau, Cho, & Bengio, 2015;
Mnih, Heess, Graves, & Kavukcuoglu, 2014; Vaswani et al., 2017;
Weston, Chopra, & Bordes, 2015; Xu et al., 2015) to extract local
features. These local features can be used in either a stand-alone
manner, or more often, together with RNNs, CNNs or GNNs.

Here we consider the case when local features have been
extracted and the data are represented as a multidimensional
tensor. These data could be original data such as images or
videos, or data where local features or local attentions have been
extracted and stored in their relative spatial locations. This is of
course not the most general case, but nonetheless covers a large
class of real-world data. Currently, a common practice is to feed
such data directly into neural networks such as CNNs.

Many well-known CNN models have been developed, such as
VGGNet (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017), GoogleNet
(Simonyan & Zisserman, 2014), Inception (Xia, Xu, & Nan, 2017;
Xie, Girshick, Dollár, Tu, & He, 2017), ResNet (He, Zhang, Ren,
& Sun, 2016b), DenseNet (Huang, Liu, Van Der Maaten, & Wein-
berger, 2017), MobileNet V1/V2 (Chollet, 2017; Sandler, Howard,
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Zhu, Zhmoginov, & Chen, 2018), and EfficientNet (Lee, Bang, &
Yang, 2017). VGGNet designed the architecture with many lay-
ers and very small kernels based on the developers’ experience.
GoogleNet and Inception designed their architectures based on
the Hebbian principle and intuition of multi-scale processing.
ResNet introduced skip connections in the architecture based on
optimal information propagation within the network (He, Zhang,
Ren, & Sun, 2016a), essentially solving the problem of vanishing
gradient. DenseNet strengthened the feature propagation and
reduced parameters in ResNet by generalizing the skip connec-
tions. MobileNet introduced depth-wise separable convolutions
to build light-weight deep neural networks for better efficiency.
EfficientNet introduced model scaling to balance network depth,
width, and resolution for better performance. These state-of-
the-art models were all built without using specific structural
information of the multidimensional tensor data.

In this paper, we propose a neural network architecture based
on the specific correlation structure of multidimensional tensor
data. Our idea is motivated by the observation that many multi-
dimensional tensor data have some distinct correlation structure
that allows for the construction of much more efficient neural
network models. Consider multichannel signals that are gener-
ated by different types of sensors. Such data are often expressed
as multi-dimensional tensors in which each dimension corre-
sponds to one type of sensor. When there are only two types of
sensors, the data may appear as a table in which the information
in entry (i, j) is collaboratively collected by ith Type-A sensor
and jth Type-B sensor. At first glance, these data may look like
simple gray-scale images. However, analysis of the correlation
structure can often reveal characteristic patterns showing that
the variables within the same row or column are more corre-
lated, while variables from different dimensions are much less
correlated. This is understandable on a practical level, as the
information collected by the same type of sensor may bear similar
marks, such as precision. One typical pattern is that the Pearson
correlation coefficients (to be detailed in the next section) are
high on a narrow horizontal or vertical band, or on a cross.
This is very different from natural images, in which for each
pixel, the highly correlated pixels typically lie in a small circular
neighborhood surrounding that pixel (Fig. 1a). We call the data
directionally correlated if the correlation between variables from
different dimensions is significantly weaker than the correlation
between variables from the same dimension.

Directionally correlated data are not limited to multichannel
signals and are in fact very common. For example, the spending
history of m people on n types of merchandise can be represented
as a sequence of m × n matrices, resulting in two naturally-
occurring dimensions (rows and columns). Data points in the
same row or column are likely to be highly correlated, wheres
those from different rows or columns are likely to be less cor-
related, as the result of habitual or stereotyped spending or
retail behavior. Hyperspectral data cubes from remote sensing are
another example of directionally correlated data.

In addition to data describing natural processes, distinct di-
mensions can also be introduced during data representation. For
example, audio waves are time series data of one dimension,
but in applications such as music, linguistics, speech recogni-
tion, and seismology, they are often expressed as spectrograms,
which have two dimensions: time and frequency. The time di-
mension appears naturally, whereas the frequency dimension is
introduced during data representation. We will show in later
Experiment 1 that spectrograms tend to be directionally corre-
lated. Finally, we note that discrete Fourier transforms or wavelet
transforms are commonly applied to signals of any dimension.
Such representations are likely to create high-dimensional tensor
data which are directionally correlated.

Most existing neural networks are readily applicable to direc-
tionally correlated data and may perform well. However, without
taking advantage of the specific correlation structure of the data,
these models will impose many unnecessary connections be-
tween neurons, leading to inefficiencies that not only impose
extra computational cost but may also affect the model’s perfor-
mance. Here we introduce a novel neural network architecture,
called SepNet, which leverages the special correlation structure
within the data to design neuron connectivity, significantly in-
creasing network efficiency. In our experiments on two repre-
sentative directionally correlated datasets, SepNet was up to 100
times more efficient than current CNNs models while maintaining
comparable or better performance.

2. Related work

This work is motivated by a recent study of Gao (2021), which
describes a quantitative relation between the Pearson correlation
coefficients of variables and their connectivity in state-of-the-
art neural network architectures. Indeed, qualitative relations
between correlation and connectivity can be seen from the early
development of CNNs (Fukushima, 2004), and were probably
the main reason behind the introduction of sliding windows in
convolutional kernels (Lecun, Bottou, Bengio, & Haffner, 1998).
For digital images, the sliding window centered at any given pixel
is a good approximation to the (circular) region with highly cor-
related pixel signal intensities. In CNNs, these pixels are directly
connected through a convolutional kernel. The remaining pixels
are connected to the pixel of interest through later layers, roughly
in the order of their correlation strengths. Comparing with fully
connected neural networks in which all neurons are connected,
CNNs are more efficient because they do not directly connect
neurons that are not correlated.

Increasing network efficiency is of key importance. It is also
the main achievement of MobileNet (Sandler et al., 2018), in
which the usual convolutional operators are decomposed into
depthwise convolutional operators and pointwise convolutional
operators. Depthwise convolution utilizes different filters for each
input channel. A single filter corresponds to one input channel, so
depthwise convolution is a depth-level operation. The pointwise
convolution is a usual 1×1×· · ·×1 convolution filter and creates
a linear combination from the output of depthwise convolution.

In the two-dimensional case, the usual convolutional kernel
has a receptive field of size c × h × w. In other words, the
signals at nearby locations from all channels are connected. In the
depthwise convolutional kernel of MobileNet, the receptive field
is 1×h×w, meaning that only the signals at nearby locations from
the same channel are connected. For pointwise convolutional
operators, the receptive field is c × 1 × 1, meaning that only
signals from different channels at each location are connected.
Thus, MobileNet avoids a direct connection between signals at
different locations from different channels.

In the d-dimensional case, MobileNet decomposes a receptive
field of size c × m1 × m2 × · · · × md into two fields of sizes
1×m1×· · ·×md and c×1×· · ·×1, reducing the number of neuron
connections from c×m1×m2×· · ·×md to c+m1×m2×· · ·×md.

The SepNet we build in this paper uses a different factorization
strategy. Instead of performing depth-level operations for all di-
mensions, we perform operations on each dimension separately.
In the d-dimensional case, we decompose the usual convolutional
kernel of the receptive field c×m1×m2×· · ·×md to d+1 kernels
of receptive fields c×m1×1×· · ·×1, . . ., c×1×· · ·×1×md, and
c × 1× · · ·× 1, reducing the total number of neuron connections
from c × m1 × m2 × · · · × md to c + m1 + m2 + · · · + md.
Thus, SepNet is more efficient than MobileNet. The assumption
of directional correlation ensures the proposed factorizations can
well approximate the original operators.
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Fig. 1. Correlation matrices at an arbitrary location near the center of the images: (a) Natural images (CIFAR-10 images); (b) spectrograms of human voices saying

simple words.

3. Visualization of directional correlation

In this section, we present a visual comparison of non-

directionally correlated data and directionally correlated data. We

use natural images (CIFAR10) and spectrograms as examples.

First, let us be more precise about the correlation of pixels in

images. For two pixels at locations Pi = (xi, yi) and Pj = (xj, yj)

in a stack of N gray-scale images of the same size m × n, let vi

and vj be the signal intensity of the N images at these two pixels.

Thus, vi and vj are two N-dimensional vectors. We can compute

the Pearson correlation coefficient ρij of the vectors vi and vj as

ρij =

N
∑

k=1

[vi(k) − vi][vj(k) − vj]







√

N
∑

k=1

[vi(k) − vi]2






√

N
∑

k=1

[vj(k) − vj]2
,

where vi = 1
N

∑N

k=1 vi(k). For convenience, we call ρij the correla-

tion between the points Pi and Pj. The coefficients ρij form an (m×
n)× (m×n) matrix, which we call the Pearson correlation matrix.

For most images, negative coefficients are rare and insignificant.

Nevertheless, we take the absolute value cij := |ρij|, and call the

resulting matrix (cij) the correlation matrix.

For RGB images, we can either calculate the correlation matrix

for each color, and take the average, or treat an RGB image as 3

separate gray-scale images and calculate the correlation matrix

using 3N gray-scale images.

We could visualize the correlation matrix by showing it as an

(m×n)×(m×n) image. Doing so, however, would make it difficult

to interpret. Thus, we choose to visualize each row separately.

Pick an arbitrary row, say the kth row, where k can be expressed

as xkn+ yk with 1 ≤ xk < m and 1 ≤ yk ≤ n. We reshape the kth

row of the correlation matrix into an m× n matrix. In this m× n

matrix, the entry at (xi, yi) is the correlation between the pixels

at (xk, yk) and (xi, yi). Fig. 1a shows the correlations between the

pixel at the center of the bright circle and other pixels in the

image window of the CIFAR dataset.

If we chose a different row, the center (xk, yk) will move,

and the bright circle will move. However, the circular pattern is

largely conserved.

In comparison, Fig. 1b shows the local correlation of the spec-

trograms of 4000+ human voices saying 20 simple words (see the

second experiment for details). Directional correlation is clearly

visualized in the bright horizontal band.

Horizontal bands, vertical bands and crosses are typical fea-

tures of directionally correlated data. Generally speaking, the

bright region could be a product set of the form {(x1, x2, . . . , xd) :
x1 ∈ A1, x2 ∈ A2, . . . , xd ∈ Ad}. However, multiple bands in

a given direction would imply some remote correlation (called

teleconnection in geoscience). In this paper, we will focus on

the following three cases: (1) a narrow band or a narrow cross

across the entire dimension; (2) a long narrow strip; (3) a thin

cross. We will design a neural network model, called SepNet,

specifically for such data. Our experiment 2 showed that SepNet

may also applicable to multiple bands. However, we believe data

with more genera remote connections are better handled using

graph neural networks.

4. Design and method

The guiding principle of our design is that highly correlated

variables should be more directly connected in neural networks.

To make this point clear, we consider the popular benchmark

image classification dataset CIFAR10. Each image has a total of

1024 pixels, which we view as 1024 variables. Considering the

signal intensities for all N RGB images at each pixel, we have

1024 sequences of length 3N . The Pearson correlation coefficients

of these 1024 sequences form a 1024 × 1024 matrix which is

visualized in Fig. 2-left. For comparison, we look at the pairwise

graph distance D of the 1024 pixels in VGGNet (Szegedy et al.,

2017). D is a matrix of size 1024 × 1024. The graph of the

normalized matrix e−D/8 is visualized in Fig. 2-right.

As we can see from Fig. 2, highly correlated variables are more

directly connected in VGGNet. In fact, the same connections can

be observed in other well-performing neural networks.

Now, we use this guiding principle to design our neural net-

work architecture for directionally correlated multidimensional

tensor data.

The distinct feature of directional correlation is that the highly

correlated region is a union of some narrow bands across an

entire dimension, or narrow strips widely spread out along a

specific dimension. To better connect pixels from such regions,

we introduce directional linear operators and directional group

convolutional operators. These operators extract directional fea-

tures from each dimension. Then, we introduce two types of basic

operators to generate high-level features from these directional

features. Finally, we present an overall architecture of putting

these basic operators together.

Given a d-dimensional data tensor X of the shape m1 × m2 ×
· · ·×md, we express X as a tensor of shape m0×m1×m2×· · ·×md

with m0 = 1. The added channel dimension m0 is reserved for

storing extracted directional features.
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Fig. 2. Relationship between the correlation of variables and their connectivity in neural networks. Left: correlation of variables. Right: connectivity of nodes in

VGGNet.

4.1. Directional linear operator

Given an m0 × m1 × m2 × · · · ×md tensor X , for k = 1, . . . , d,
we define a directional linear operator in kth dimension of X as
a linear (affine) operator that maps each mk-dimensional column
vector to an m′

k-dimensional new vector. If we denote by Lk(X)
the image of X under this operator, then Lk(X) is of shape m0 ×
m1×· · ·×mk−1×m′

k×mk+1×· · ·×md. Moreover, if we denote by
Sk the linear operator that swaps the kth index of X with the last
index, then we can express Lk(X) = Sk(Sk(X)W + b) using matrix
products, where W is a matrix so that the product Sk(X)W makes
sense, and b is the bias of the affine operator.

If Lk is a directional linear operator that maps a tensor X to
Y , an r-fold directional linear operator Lrk maps X to r indepen-
dent copies of Y and concatenates them in the reserved channel
dimension. Since each copy of Y is of the shape m0 × m1 × · · · ×
mk−1 × m′

k × mk+1 × · · · × md, the image of X under Lrk will have
shape rm0 × m1 × · · · × mk−1 × m′

k × mk+1 × · · · × md. When
we need to specify the size of the operator, we will denote Lrk by
Lrk[mk,m

′
k].

We also introduce a directional linear operator in the channel
dimension, and denote it by L0. This is just the usual 1 × 1 ×
· · · × 1 d-dimensional convolutional operator. We reserve L0 for
generating high-level features.

4.2. Directional group convolutional operator

In 2D CNNs, a convolutional operator is defined as

T : (xcij)m0×m×n ↦→ (ycij)m′
0
×p×q,

where

ycij =
∑

s,t∈R(i,j)

m0
∑

r=1

(wrstxrst + bc)

for a rectangular region R(i, j) which is centered at (i, j) with fixed
size; and

∑

s,t∈R(i,j) denotes summing over the set

{(s, t) : s, t ∈ R(i, j), s ∈ {1, 2, . . . ,m}, t ∈ {1, 2, . . . , n}} .

For the m0 ×m1 ×m2 ×· · ·×md tensor X , and for k = 1, 2, . . . , d,
we introduce a directional group convolutional operator Ck as
a two-dimensional convolutional operator applied to each two-
dimensional slice of X along the channel dimension and the
dimension k. Each slice is of the shape m0 × mk. If g is an
integer which divides m0, and w, s are positive integers such that
s divides mk − w, then the m0 × mk rectangle can be covered by
sliding windows of size g × w with stride (g, s). After applying
Ck to each slice along the channel dimension and the dimension
k, Ck(X) will have the shape (m0/g) × m1 × · · · × mk−1 × [(mk −
w)/s + 1] × mk+1 × · · · × md.

Two extreme cases are when g = 1 or g = m0. Clearly,
if g = m0, then this directional group convolutional operator
is just the usual convolutional operator applied to the channel
dimension and dimension k. If g = 1, then Ck is the depthwise
convolutional operator of kernel size (1, . . . , 1, w, 1 . . . , 1). When
m0 is small, we suggest using g = m0; when m0 is large, we may
use g ≈ √

m0 for efficiency.
An r-fold directional group convolutional operator C r

k is an
operator that concatenates the images of r independent copies of
Ck in the channel dimension. If the output of Ck has m channels,
then the output of C r

k will have r ×m channels, and total number
of output channels from g groups of operators C r

k is gr . When we
need to specify w, s, and g , we will denote C r

k by C r
k [w, s, g].

4.3. Basic operators

Both the directional linear operators and directional group
convolutional operators act on each dimension separately. In
order to mix the information from different dimensions, these
operators need to be composed with a directional linear operator
in the channel dimension. Thus, after the operator Lrk or C r

k , we
apply an activation function, followed by the operator L0. We
denote the composition operator by L0 ◦ C r

k and L0 ◦ Lrk respec-
tively, and call them the basic operators. These compositions also
provide flexibility for changing the shape of the output tensor.
Fig. 3 illustrates the basic operator L0 ◦ Lrk when d = 2.

4.4. Overall architecture

Starting from an input tensor, SepNet transforms the shape of
the tensor through a sequence of basic operators L0 ◦ Lrk or L0 ◦C r

k ,
which are determined by the correlation structure of the dataset.
Fig. 4 illustrates the overall architecture of the neural network.

5. Selecting operators based on correlation

SepNet can flexibly change the shape of the tensors in the
middle layers. The main decision is choosing Lrk or C r

k for each
k. The general guideline is that if the high correlation region
is spread cross the entire kth dimension, then Lrk or C r

k with
a large kernel should be used. If the high correlation region is
localized in the kth dimension, then C r

k with small kernels are
more appropriate.

If C r
k is used, we also need to choose the size of the con-

volutional kernel. Here we introduce a general approach. For
clarity, we present the method for the case of two-dimensional
tensors of shape m × n, but the method naturally extends to
higher-dimensional cases.

Using the method described in §3, for each location (x, y) in
m × n images, we can compute the m × n correlation matrix
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Fig. 3. The basic operators L0 ◦ Lrk in SepNet. The operator Lrk acts on the directional dimension k; the operator L0 acts on the channel dimension.

Fig. 4. The overall architecture of SepNet. In each step, though a basic operator, the size in one of the dimensions decreases, while the number of channels increases.

Finally, the tensor is flatted to a vector and fed to a fully-connected layer.

Fig. 5. The process of determining the rectangular region.

at (x, y). The high correlation region of the matrix is a narrow
band/strip/cross (cf. Fig. 1b) centered at (x, y). As (x, y) moves
over the m×n image, the narrow band/strip/cross moves with it.
The bands/strips/crosses for different (x, y) are not identical but
nonetheless have a high level of similarity. In order to compute
the average of these bands across different (x, y), we take a
(m/2)× (n/2) window centered at (x, y), where only (x, y) values
with corresponding windows that are contained entirely within
the image are considered. The average of these (m/2) × (n/2)
windows approximates the overall correlation structure of the
data. Next, we select a rectangular region that best represents
the high-correlation region within this average (m/2) × (n/2)
window (Fig. 5). The size of this rectangular region determines
what operators we will use.

Suppose the rectangular region is of size a × b. If a < m/2,
we use a directional convolutional operator in dimension 1 with
kernel size a/2. If a ≈ m/2, then we use either a directional
convolutional operator with kernel size m/4 in dimension 1, or
a directional linear operator in dimension 1. A similar approach
is used for dimension 2.

Finally, while Pearson correlation coefficients are commonly
used and easy to compute, other correlations could also be used.
For example, one may replace Pearson correlation with distance
correlation (Székely & Rizzo, 2009; Székely, Rizzo, & Bakirov,
2007), which is applicable to vectors of any dimension, as well
as to categorical variables.

6. Experiments

In this section, we use two representative datasets to demon-
strate the effectiveness of SepNet, and we compare SepNet with

other popular baseline models. We also use these experiments to

explain how to choose directional linear operators or directional

convolutional kernels based on correlation structures.

6.1. Voice recognition data

Data preparation. Spectrograms are commonly used in speech

recognition. The dataset we used contains spectrograms gener-

ated from the wave files of the Kaggle TensorFlow Speech Recog-

nition Challenge Dataset (Warden, 2018). The original dataset

contains wave files of human voices speaking 30 simple words,

and some background noises. To minimize the influence caused

by data imbalance and noise, we selected the wave files of 20

representative words: ‘yes’, ‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’,

‘off’, ‘stop’, ‘go’, ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, ‘five’, ‘six’, ‘seven’,

‘eight’, and ‘nine’. This gave a total of 47,348 wave files, each of

length 1 s with sample rate of 16,000 per second. These files were

roughly evenly distributed among the 20 classes. After convert-

ing each wave file into logarithmic spectrograms, using segment

lengths of 320 with an overlap 160 between adjacent segments,

we transformed each wave into a 99 × 161 gray-scale image, with

99 dimensions in time and 161 dimensions in frequency. After

this preparation, the input tensor is of the shape 1 × 99 × 161.

Determining kernel size. To construct the SepNet model for this

dataset, we first examined the Pearson correlation coefficients

among the pixels. As is typical for spectrograms, the correlation

matrix at any given point in the image reveals the presence of

directional correlation. Along the frequency dimension, the pixels
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Fig. 6. The waveform and spectrogram of a voice of the word ‘‘yes’’.

Table 1

SepNet-L1 architecture.

Layer Basic operator Additional operator Output shape

1 L0[84, 81] ◦ L42[161, 21] 81 × 99 × 21

2 L0[81, 100] ◦ C9
1 [9, 3, 9] 100 × 31 × 21

3 L0[100, 200] ◦ C10
1 [7, 2, 10] 200 × 13 × 21

4 L0[300, 300] ◦ L3002 [21, 1] 300 × 13 × 1

5 L0[300, 400] ◦ C15
1 [4, 1, 15] AvgPool1d(2) 400 × 5 × 1

6 L0[400, 512] ◦ C20
1 [4, 1, 20] AvgPool1d(2) 512 × 1 × 1

Table 2

SepNet-C1 architecture.

Layer Basic operator Additional operator Output shape

1 L0[81, 81] ◦ C81
2 [41, 4, 1] Dropout(0.4) 81 × 99 × 31

2 L0[81, 100] ◦ C9
1 [4, 1, 9] MaxPool1d(2) 100 × 48 × 31

3 L0[100, 200] ◦ C10
1 [4, 2, 10] 200 × 23 × 31

4 L0[200, 300] ◦ C10
2 [4, 1, 10] AvgPool1d(2) 300 × 23 × 14

5 L0[300, 400] ◦ C10
1 [4, 1, 10] AvgPool1d(2) 400 × 10 × 14

6 L0[400, 500] ◦ C20
2 [5, 1, 20] MaxPool1d(2) 500 × 10 × 5

7 L0[500, 500] ◦ C20
1 [3, 1, 20] AvgPool1d(2) 500 × 4 × 5

8 L0[500, 512] ◦ C20
2 [3, 1, 20] 512 × 4 × 3

9 L0[512, 512] ◦ C32
1 [3, 1, 32] MaxPool1d(2) 512 × 1 × 3

10 L0[512, 512] ◦ C32
2 [3, 1, 32] Dropout(0.5) 512 × 1 × 1

at the same segment but different frequencies were highly corre-
lated across almost all 160 dimensions, whereas along the time
dimension, pixel intensities were highly correlated only locally.
In fact, at almost any location, the highly correlated pixels were
distributed in a narrow band parallel to the frequency dimension.
Fig. 6a illustrates the waveform of a human voice speaking the
word ‘‘yes’’, which only has a time dimension. Fig. 6b illustrates
its spectrogram, which adds the frequency dimension (horizontal
dimension). Fig. 1b in Section 3 indicates it is indeed directionally
correlated.

With the method discussed in Section 5, we found the high-
correlation rectangular region is of size about 6 × 80. This sug-
gested that in dimension 1, we should use directional convo-
lutional operators with smaller kernels of size 3 or 4. It also
suggested that in dimension 2, we use either directional con-
volutional operators with larger kernels of size close to 40, or
directional linear operators.

Architecture and hyperparameters. For comparison, we designed
two SepNet models. The first model (SepNet-L1) uses directional
linear operators in frequency dimension with the architecture in
Table 1:

The second model (SepNet-C1) uses directional group convo-
lutional operators with larger kernel in the frequency dimension.
Table 2 gives the architecture of SepNet-C1.

In both models, the activation function used in the basic oper-
ator was ReLU. Batch normalization and Softplus activation were
used between the basic operator and the additional operator (if

Table 3

Comparison of SepNet with state-of-the-art models on spectrograms.

Model Accuracy Parameters FLOP

MobileNet-v2 93.15% 3.5 M 0.31 G

VGG16 94.86% 138.4 M 15.52 G

ResNet50 96.22% 25.6 M 4.14 G

EfficientNetB0 92.4% 5.3 M 0.41

SepNet-L1 94.81 0.77 M 0.06 G

SepNet-C1 95.43% 1.47M 0.18 G

applicable). Finally, a fully-connected layer was applied at the end
to output a 20-dimensional vector.

We trained the SepNet-L1 and SepNet-C1 using batch size 32
for 30 epochs with 5-fold cross-validation. The RMSprop opti-
mizer at learning rate 0.0003 was used to minimize the cross-
entropy loss. The learning rate was scheduled to reduce by a
factor of 0.5 every 8 epochs.

Results. We next compared the performance of SepNet with
four state-of-the-art image classification models: MobileNetV2,
Vgg16, ResNet50, and EffienctNetB0. Among these models, Mo-
bileNetV2 was most efficient and converged fastest, but Effi-
cientNetB0, which was based on the inverted bottleneck residual
blocks of MobileNetV2, unexpectedly did not converge as quickly.
VGG16 and ResNet50 had better performance but used sub-
stantially more parameters. These results suggested that the
performance of SepNet was comparable with the best of these
models, while having the simplest architecture and the fewest
parameters (Table 3).

What if. In both SepNet-L1 and SepNet-C1, the sizes of the direc-
tional convolutional kernels in dimension 1 were small and were
based on the width of the high-correlation band. While the band
width could vary several pixels depending on the threshold we
picked, we found that the performance of the networks were not
particularly sensitive to the kernel sizes as long as the sizes were
reasonably close to the estimate. However, we also found that if
the sizes of the kernel were way off, the performance could be
very poor. In SepNet-L1, we tested the opposite strategy of using
directional linear operator in dimension 1, and directional con-
volutional operators with small kernels in dimension 2, resulting
in a network that performed poorly and converged very slowly.
In fact, with the same hyperparameters, the test accuracy only
reached 69% after 30 epochs.

6.2. Physical activity dataset

Our second experiment used the PAMAP2 Physical Activity
Monitoring dataset (Reiss & Stricker, 2012). PAMAP2 describes 18
different physical activities performed by 9 different subjects (one
female and eight males) wearing 3 inertial measurement units
and a heart rate monitor. These data were represented as 3D-time
series.
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Fig. 7. The PAPAM2 data reveals relatively high correlation in three horizontal bands.

Table 4

SepNet-L2 architecture.

Layer Basic operator Output shape

1 L0[4, 4] ◦ L22[52, 40] ◦ L21[256, 40] 4 × 40 × 40

2 L0[4, 8] ◦ L22[40, 30] ◦ L21[40, 30] 8 × 30 × 30

3 L0[8, 16] ◦ L22[30, 16] ◦ L21[30, 16] 16 × 16 × 16

4 L0[16, 32] ◦ L22[16, 8] ◦ L21[16, 8] 32 × 8 × 8

5 L0[32, 64] ◦ L22[8, 4] ◦ L21[8, 4] 64 × 4 × 4

6 L0[64, 128] ◦ L22[4, 2] ◦ L21[4, 2] 128 × 2 × 2

Data preparation. In order to directly compare our results with
the best-known model for this dataset, MC-DNN (Zheng, Liu,
Chen, Ge, & Zhao, 2014), we limited our analysis to a subset of the
data to match that used in MC-DNN. In particular, we (1) chose
the same 4 physical activities (among the 18 total) for analysis:
‘standing’, ‘walking’, ‘ascending stairs’, and ‘descending stairs’; (2)
excluded the same two subjects previously excluded (e.g. on the
basis of using a different dominant hand or foot); and (3) reduced
the sampling rate of each time series from the original 10 ms to
2.56 s via averaging. The resulting data subset consisted of 52
reduced 3D-time series. For each physical activity, we normalized
the data using the transform: x ↦→ (x−µ)/σ , where µ and σ are
the mean and standard deviation, respectively. Finally, these time
series were divided into smaller-sized batches to facilitate model
training. After this preparation, the input tensor for SepNet is of
the shape 1 × 256 × 52.

Determining kernel size. A correlation analysis of the input ten-
sor revealed a stereotypical banding pattern (Fig. 7). The high-
correlation region roughly consists of three sets of bands. Along
dimension 1 (the horizontal direction in the figure), these bands
spread out across almost the entire dimension. Thus, we use
directional linear operators. In dimension 2 (the vertical direction
in the figure), they roughly occupy three distinct zones, indicating
the presence of teleconnections. For this dimension, we evaluated
two different strategies: (1) directional linear operators, as in
dimension 1, and (2) alternating use of directional convolutional
operators and directional linear operators. These two models
were named SepNet-L2 and SepNet-C2, respectively, and their
architectures are specified below.

Architecture and hyperparameters. SepNet-L2 uses directional lin-
ear operators, permuted among the two dimensions and the
channel dimension, with the following architecture (see Tables 4
and 5): ReLU activation was used before each composition op-
erator and after each layer. Finally, a maximal pooling is used,
followed by a fully-connected layer.

By contrast, SepNet-C2 uses linear operators in dimension 1,
but mixes use of linear and convolutional layers in dimension 2,
with the following architecture: In layers 1, 4, and 5, the Seag-
ull (Gao & Zhang, 2022) activation function log(1 + x2) was used
before the composition operator. In layers 2–3, ReLU activation
was used before the composition operator, and batch normal-
ization and Softplus were used after the composition operator.
Finally, a fully connected layer was used at the end.

We trained both models using batch size 1 for 100 epochs,
with early stopping and 20-fold cross validation. Cross entropy

Table 5

SepNet-C2 architecture.

Layer Basic operator Additional operator Output shape

1 L0[81, 81] ◦ L811 [256, 20] Dropout(0.1) 81 × 20 × 52

2 L0[81, 100] ◦ C9
2 [4, 1, 9] 100 × 20 × 49

3 L0[100, 100] ◦ C10
2 [6, 1, 10] 200 × 20 × 44

4 L0[100, 300] ◦ L1001 [20, 1] MaxPool2d(2) 300 × 1 × 22

5 L0[300, 400] ◦ L3002 [22, 1] 400 × 1 × 1

loss and an Adam optimizer with learning rate 0.0001 were used.
For SepNet-L2, we used the consecutive weight regularization
strategy introduced in Gao (2022) with weight decay patience 10.
For SepNet-C2, we used L2 weight regularization with patience
10. The early stopping patience for SepNet-C2 was adjusted to 20
such that the training process stopped around 50 epochs for both
models.

Results. SepNet-L2 achieved a 98.10% test accuracy, and SepNet-
C2 achieved a 96.16% test accuracy. Both models performed
significantly better than all models discussed in MC-DNN (Zheng
et al., 2014), in which the five best models 1-NN-DTW-%5, MLP,
1-NN-ED, MC-DCNN1, and MC-DCNN2 have accuracies of 83.61%,
84.83%, 82.28%, 90.53%, and 93.36%, respectively. The model 1-
NN-ED was built based k-Nearest Neighbor classification (Batista,
Wang, & Keogh, 2011), and 1-NN-DTW-%5 combined k-Nearest
Neighbor classification with Dynamic Time Warping (Rakthan-
manon, Campana, Mueen, Batista, Westover, Zhu, Zakaria, & Keogh,
2012). Thus, we could not evaluate the efficiency of the models by
simply comparing the number of parameters with SepNet models.
MPL was a multi-layer perceptron model, and it did have simpler
architecture than SepNet, but it performed the worst. The MC-
DCNN1 and MC-DCNN2 (Zheng et al., 2014) were multi-channels
deep convolution neural networks models in which each channel
of which takes a single dimension of multivariate time series as
input and learns features individually. Then the MC-DCNNmodels
combined the learnt features of each channel and feeds them into
a MLP to perform classification finally. The construction was a
bit more complicated than SepNet. The number of parameters in
MC-DCNNs would be comparable to that of SepNet, but we had
difficulties to accurately estimate these numbers for the models
in Zheng et al. (2014). Thus, instead of comparing the number of
parameters and FLOP as we did in Experiment 1, we report our
the learning curve in Fig. 8, as comparison to Figure 5 of Zheng
et al. (2014).

7. Discussion

SepNet uses an empirical correlation matrix to design a neural
network architecture that enables substantially improved effi-
ciency for applications of practical interest. Our results suggest
a general guideline for best performance: (1) use of directional
linear operators or directional group convolutional operators with
larger kernels in the dimensions where the region of high correla-
tion is spread out, and (2) use of directional group convolutional
operators with small kernels in the dimensions where the corre-
lation is localized. A violation of this guideline will generally lead
to poor performance.
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Fig. 8. Learning curve of SepNet-L2 in experiment 2 on PAMAP2 data.

SepNet performs well for data in which the high-correlation
region is a union of vertical or horizontal bands (cf Experiment
2). It may also work well when the high-correlation region is
more generally of the form {(x1, x2, . . . , xd) : xi ∈ Ai, 1 ≤
i ≤ d}, where Ai are one-dimensional sets. However, for data
with more complicated teleconnections, SepNet is not likely to
perform well, and in this case, we believe that better perfor-
mance can be achieved using GNNs that are designed according
to the correlation structure of the specific data. Finally, as SepNet
requires correlation information, it will be valuable to develop
a variant of SepNet that can dynamically adapt its architecture
during training, so that it can be used for online learning where
empirical correlation is not accessible at the beginning, but can
be better estimated during training.

8. Conclusion

Current deep neural network models have high computational
complexity. Our method develops the most efficient deep neural
network framework (SepNet) for multidimensional tensor data,
which performs well on directionally correlated data, a special yet
very common type of data. The efficiency improvement enabled
by SepNet highlights the potential of architecting neural networks
according to specific structure information within the data.
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