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Abstract
High-performance Li-ion battery significantly impacts modern society, and materials with high conductivity play critical 
roles in battery development. Machine learning (ML) technologies have rapidly changed the field in recent years. However, 
it is still challenging to predict the high conductors directly due to the lack of validated conductor samples. This paper pre-
sents a succinct but effective metric-learning framework for high conductor screening. The material structures are mapped 
to an optimized feature space using a Siamese network, and an instance-based method is used to classify the input sample. 
The experiments demonstrate that the proposed method could effectively extract knowledge from imbalanced data and has 
good performance and generalization ability.

Keywords  Metric learning · Contrastive learning · Graph neural network · Material science · Conductor screening

Introduction

Electrode and electrolyte materials with high room-tem-
perature Li-ion conductivity play key roles in developing 
high-performance batteries. Accurate prediction of material 
conductivity has significant scientific interest and techno-
logical importance. Due to the high computational cost of 
the first principle (viz., ab initio) methods, it is essential to 
develop high-efficiency ML technologies to screen candidate 
materials. The noticeable progress in machine learning has 

benefited a wide range of areas of chemistry, such as the 
prediction of new materials and the calculation of material 
properties. In this paper, we investigate the prediction of 
materials with high Li-ion conductivity using deep learning.

Several machine learning technologies have been applied 
to predict materials with high conductivity. For example, 
Ahmad et al. [1] used a graph convolution neural network [2] 
to predict a series of mechanical properties of inorganic sol-
ids and fed these properties into a theoretical framework [3, 
4] to check whether the solids quantify the dendrite initiation 
with Li metal anode. The screened candidates present an 
opportunity to obtain both desirable mechanical properties 
and fast ion conduction. Cubuk et al. [5] embedded atoms 
to feature vectors and developed an algorithm to screen 
potential solid lithium-ion conductors using transfer learn-
ing. There was one notable advantage that their method is 
based on formulas, which allowed them to screen billions of 
candidates in a short period.

However, two major open questions remain in the area. 
On the one hand, modeling and computational simulation 
are still challenging for materials due to their inherent com-
plexity. Unlike the fix-sized, two-dimensional image data, 
the material structures vary in three-dimensional space with 
an indefinite number of atoms. The varied structures sig-
nificantly decelerate the applications of advanced machine 
learning technologies in the area. On the other hand, the 
percentage of validated materials with high conductivity 
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compared to the overall number of candidate materials is 
minuscule. It is difficult to extract meaningful knowledge 
from such imbalanced data, and the learned model could 
be biased due to poor generalization capability. This paper 
tackles the above problems with a metric-learning frame-
work that transforms the material structures to an optimized 
latent feature space using k-Nearest Atom Graph Neural Net-
work (k-NAGCN) [6], which is an adaptive Graph Convolu-
tion Neural Network (GCNN) for material modeling. The 
k-NAGCN is trained under the Siamese Network setup to 
ensure the expected feature space maximizes the distance 
between the validated fast Li-ion conductors and the rest 
of the materials and minimizes the distances within both 
groups. From the feature selection perspective, the training 
strategy forces the network to focus on the features (local 
environments) related to conductivity, thus improving the 
generalization and convergence. A similar strategy has been 
widely applied to biology identification, such as face rec-
ognition, where the data is imbalanced. However, such a 
method has not been applied to material prediction to our 
knowledge. After that, a potential candidate could be evalu-
ated using instance-based learning, such as the k-NN algo-
rithm [7], with a group of validated fast Li-ion conductors.

Our contributions are summarized as follows.

–	 We propose a generic metric-learning framework for fast 
Li-ion conductor screening. The proposed method could 
effectively extract knowledge from the imbalanced data-
set.

–	 We introduce the k-NAGCN model to describe the com-
plex material structures and simulate the interatomic 
interaction.

–	 We present a comprehensive experiment on a crystal 
conductivity dataset. The experiment results demonstrate 
that our method achieves satisfactory performance, even 
when only a small number of validated fast Li-ion con-
ductors are available.

Related Work

Structure descriptors In material science, an ideal descrip-
tion should be able to capture all the relevant information 
that is necessary to distinguish materials from others [8]. 
Generally, the descriptors’ quality decides the performance’s 
upper bound. Using the ML perspective, existing features 
could be categorized into knowledge-guided and data-driven 
descriptions. The former category usually involves elabo-
rate design by specialists in the field of quantum chemistry. 
For instance, the Coulomb matrix representation and its 
extensions [9–11], which are based on Coulomb repulsion 
between atoms and a polynomial fit of atomic energies to the 
nuclear charge, have been frequently used. One could find 

these descriptions reflect higher-level characteristics of the 
materials. The latter category represents the distribution of 
each atom and its local structural environment based on the 
detailed atom distribution. The extracted knowledge is kept 
in the models and the restrictions. Typical descriptions in 
this category include atom-centered description [12–16] and 
graph-based descriptions [2, 11, 17–21]. For these methods, 
no high-level knowledge is needed when constructing the 
descriptions, but the knowledge could be learned from the 
available data samples. The extracted knowledge is implicit 
in the computational models.

Metric learning Metric learning has been extensively 
researched in the past decades [22–24]. The core idea of 
metric learning is to transform the original samples, which 
are usually more complex, into a new feature space that is 
optimized for the specific task. Metric learning could be both 
supervised and unsupervised, based on different target prob-
lems. Typical unsupervised metric learning methods involve 
Principle Component Analysis (PCA) [25], Multiple Dimen-
sion Scaling (MDS), Local Linear Embedding (LLE) [26], 
and so on. The metric learning research involves a series 
of optimization methods such as Support Vector Machine 
(SVM) [27], kernel methods [28], and Deep Learning. One 
successful application of metric learning is face verification 
[29]. The proposed Siamese network structure that shares 
parameters that could effectively handle the imbalanced data 
and its deep learning extension, the ‘Deepface’ model [30], 
has been recognized as a major landmark of the develop-
ment of artificial intelligence (AI) technology. Moreover, 
the structure has been successfully applied on a series of 
problems such as signature verification [31], object tracking 
[32], and one-shot image recognition [33].

In this paper, our framework combines the metric-learn-
ing methodology with the graph-based structure descrip-
tion. The former could help us to extract desired knowledge 
from the extremely imbalanced data, and the latter could 
effectively describe the complex structures and simulate the 
interatomic interaction.

Material Screening Framework

The proposed high conductor screening framework has two 
major stages, i.e., the metric learning and the instance-based 
learning stage. In this section, we first illustrate the archi-
tecture of the Siamese network with the k-NAGCN back-
bone for metric learning. Then we go into the details of the 
instance-based algorithm for material classification. A brief 
discussion is provided at the end of this section.
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Siamese Network for Metric‑Learning

Metric learning aims to find an optimized mapping function 
that projects the materials from a high-complexity structure 
space to a task-related latent feature space. For high conduc-
tor screening, the latent features are expected to capture the 
distinguishing characteristics of the materials. And thus, the 
high conductivity materials could be easily distinguished from 
the other lithium crystals and compounds. The task-related 
metric learning algorithm is effective when the positive sample 
are rare.

This paper uses Siamese network structure with contrastive 
loss [34] to find the optimized mapping function.

The architecture of the Siamese network is presented in 
Fig. 1.

As the name implies, the Siamese network contains two 
network branches that share the parameters. It needs a pair of 
input samples, xi and xj , to get a pair of latent vectors during 
the training process. In practice, each sample goes through 
the network G separately and gets the feature vector G(xi) and 
G(xj) . Since the prediction of high conductivity materials is 
an information retrieval or binary classification problem, the 
contrastive loss is calculated as follows.

where Dw is the distance between G(xi) and G(xj) , and m is 
an empirical parameter. Y = 0 means xi and xj belong to the 

(1)L = (1 − Y) ×
1

2

(

DW

)2
+

Y

2
×max

(

0,m − Dw

)2
,

same category. That is, both samples are fast Li-ion conduc-
tors or neither. Y = 1 means one of the two samples is high 
conductivity material, and the other is not. Conceptually, 
when the two input samples belong to the same category, 
they should be clustered as near as possible; otherwise, they 
should be separated to a distance m. By minimizing the loss 
L, the network G will be able to map the sample into an 
embedded feature space in which fast Li-ion conductors 
could be easily distinguished from the rest of the materials 
(see Fig. 2).

Graph‑Based Description

The above framework could work in concert with most 
description methods we mentioned in Section “Related 
Work”. This paper uses an improved graph convolution neu-
ral network (k-NAGCN) as the base network in the metric 
learning framework, considering the characteristics of the 
crystal structures.

The k-NAGCN model treats the unit cell as a 3D point 
cloud and describes the atoms using the 3D graph. The prior 
knowledge extracted from existing materials is summarized 
in the initial atom features attached to the vertices in the 
graph. The convolution mechanism in the k-NAGCN model 
involves the k nearest atoms simultaneously, which is dif-
ferent from the adding up over the pairwise convolution, 
which could be found in most previous GCNN models. The 
new convolution mechanism, which involves the 3D atomic 
positions, could better simulate the atomic interactions and 

Fig. 1   Siamese network for high 
conductor prediction

Fig. 2   The structure of 
k-NAGCN model
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achieves superior performance on a series of property pre-
diction tasks. More details about the k-NAGCN model could 
be found in [6].

Instance‑Based Material Screening

High conductors are rare. Only a hand full of validated lith-
ium crystals and compounds are fast conductors. Moreover, 
only a small portion of all lithium materials have been vali-
dated. Therefore, flexibility and generalization capacity are 
two of the most expected features of the screening methods.

The instance-based method is used in this paper. The 
effectiveness of the instance-based approach depends on 
the validity of the previously learned mapping function and 
the representativeness of the validated sample. The posi-
tive sample set (a.k.a., the high conductors) is extremely 
small, and a complex classification model will overfit eas-
ily. The instance-based approach is less prone to overfitting 
than more complex classification models, such as ANN and 
SVM. Moreover, the performance of the instance-based 
approach is expected to improve along with the discovery 
of new high conductors.

For new material, if it is closer to the verified high con-
ductivity materials in the hidden space and further away 
from the other materials, the probability that the material 
has a high conductivity rate is higher. Note the set of veri-
fied materials as X = {Xh,Xl} , where Xh is the set of high 
conductivity materials, and Vl is the set of other verified 
materials. Then for an input material xq , the ratio of the 
distances is used to evaluate the potential of xq , as follows.

where dist(a, b) is the distance between vector a and b, G(⋅) 
is the graph model. And thus, G(xq) is the corresponding 
feature vector of material xq in the latent feature space. The 
materials with higher R values are more likely to have high 
conductivities.

Experiments and Results

To validate the proposed framework, we collected experi-
mental data from previous publications. The verified high 
conductivity materials were reported by He et  al. [35]. 
Besides, the materials that had been proven incapable of 
being used to develop lithium-ion batteries were used as 
negative samples.

In detail, 23 materials were identified from [35] according 
to the common industry standard (room temperature conduc-
tivity higher than (1 × e−4) . Similarly, 264 negative samples 
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were identified from the previous publications. The negative 
samples are unqualified for different reasons, including con-
ductivity lower than threshold (1 × e−4) , containing specific 
elements, and so on. The material index in ICSD and the 
room temperature conductivity of the experimental materi-
als were given in Appendix 1. The method used to verify 
materials could be found in [35].

As the first step, we verify the effectiveness of the graph-
based model (k-NAGCN) in the metric learning process. 
With the total 287 training samples, we created 82, 369 
sample pairs available for training because the Siamese net-
work takes pairwise input. The generated sample pairs were 
shuffled and split into training (80%), validation (10%), and 
testing (10%). The model was trained on the training set and 
evaluated on the validation set for each epoch, and the model 
was tested on the testing set after the training was finished.

For the hyperparameters in the k-NAGCN, we referred to 
the conclusion in [6], and set the number of graph convolu-
tion layers as three, the number of fully-connected layers as 
two, feature-length as 96, and the number of atoms involved 
in the convolution k as 12. The k-NAGCN with the above 
configuration successfully predicted three conductivity-
related properties and was expected to be effective for con-
ductivity prediction.

Figure 3 presents the proposed model’s converge curve of 
the contrastive loss. The k-NAGCN with the above hyper-
parameters presents good convergence on the experimental 
data. The training process effectively reduced the contrastive 
loss, which means the latent feature space maximizes the 
distances between high conductivity materials and the rest 
materials and minimizes the distances within high conduc-
tivity materials.

Fig. 3   The training curve using the contrastive loss. The solid red line 
is the loss of training data, the yellow dash-dot line is the loss of vali-
dation data, and the blue dot line is the value of contrastive loss for 
testing data
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The proposed framework was tested for the classification 
task with the latent feature space learned. ’leave-one-out’ 
cross-validation was used in the experiment. In detail, the 
experiment was repeated N +M times, where N and M are 
the number of positive and negative samples, respectively. 
For each time, one material was ‘leave-out’ as the testing 
sample, and the rest of the samples were used to train a 
k-NAGCN model. The training process used 90% pairs as 
training and the rest 10% pairs as validation. The training 
process stopped when the contrastive loss did not reduce 
for 15 epochs, or the total training epochs reached 50. Then 
the instance-based method described in Section “Instance-
Based Material Screening” was used to predict the label of 
the testing sample.

The performance was evaluated with three metrics, accu-
racy, sensitivity, and specificity.

The proposed method could work with most distance meas-
urements. During our experiments, we tested Cosine dis-
tance and Euclidean distance. We also tested the impact of 
hyperparameter k, which represents the number of neighbor 
atoms involved in calculating graph convolution. It could be 
found in Table 1 that the proposed method has satisfactory 
performance for the fast Li-ion conductor screening, with 
both high specificity and sensitivity. For the instance-based 
method, the Euclidean distance performed better than the 
Cosine distance on sensitivity and overall accuracy. Moreo-
ver, the impact of k is significant. In general, increasing the 
number of involved atoms benefited the performance, where 
the model with k = 12 outperformed the model with k = 4 
and k = 8 . However, the larger k will significantly increase 
the computational cost and over smooth the atom features, 
reducing the performance.

The results in Table 1 prove that the learned network can 
map the structures to an optimized latent feature space where 

(3)Acc =
TP + TN

TP + TN + FP + FN
,

(4)Sens =
TP

TP + FN
,

(5)Spec =
TN

TN + FP
.

high conductors have a smaller distance from each other. 
Considering the graph-based description and convolution 
mechanism, we presume the conductivity of the materials 
is highly correlated with specific local structures in the unit 
cell. However, due to the graph-based model’s pooling pro-
cess, the model lacks explainability, and we could not iden-
tify the local structure that contributed to the conductivity. 
Increasing the explainability of the model will be one of the 
most critical parts of our future work. To a certain extent, the 
above results support the idea in [35], which claims the con-
ductivity is related to some local topology features, includ-
ing the Li sites’ size and percolation radius, and minimum 
bond length.

Conclusion and Future Work

In this paper, we propose a succinct but effective metric-
learning framework for screening lithium materials with 
high conductivity. The proposed Siamese network frame-
work, which contains two k-NAGCN that share parameters 
and perform in parallel, could effectively map the high-
complexity material structures into an optimized latent 
feature space. Then, the instance-based method is used to 
distinguish the high conductors from the rest of the materi-
als. The experiments demonstrate the effectiveness of the 
graph-based description and metric learning algorithm. It 
also proves that the conductivity of the materials is related to 
specific local structures. In future research, we will continue 
the study from two directions. First, we will screen materials 
in the larger dataset using the proposed method and validate 
the candidates. Second, we will enhance the explainability 
of the model by introducing an attention mechanism into 
the graph-based model and investigating the relationship 
between specific local structures and material conductivity.

Appendix A: Experimental materials

See Table 2.

Table 1   The performance of 
high conductor prediction using 
different measurements

Euclidean Cosine

k = 4 k = 8 k = 12 k = 4 k = 8 k = 12

Accuracy (%) 84.17 86.54 87.11 82.19 85.76 86.76
Sensitivity (%) 86.34 89.42 91.30 83.26 86.96 86.96
Specificity (%) 82.06 85.50 86.74 81.04 83.58 86.74



	 SN Computer Science (2022) 3:465465  Page 6 of 12

SN Computer Science

Table 2   Materials used in 
experiments

ICSD Index Comp SigmaRT

182963 Containing: Ti, Fe
83501 Li

5.2
Hf

12.2
P
18

O
72

Containing: Hf
85714 LiPO

3
Li–P–O

411410 Li
2
B

2
Se

5
Selenide

78030 Li sharing sites with: Ca, Na
241135 Containing: Mo, Fe
248315 Containing: Mo, Fe
169477 Containing: Fe
186520 LiFeSiO

4
Containing: Fe

188009 Li–Se–O, Li–S–O, Li sharing sites with: Zn
290033 Containing: Fe
81857 LiLaTiO

4
small radius

18313 Li
2
TiF

6
9.20E–01

100324 Li–C–O
68463 Li

4
Ge

5
O
12

Melting
39604 LiKBaZnF

6
Small radius

186519 Li
2
FeSiO

4
Containing: Fe

157430 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
39610 Containing: V
16175 Containing: Mo, Fe
184019 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
51754 Li

3
Al(BO

3
)
2

3.60E–01
92395 Li

4
SeO

5
Low D

202500 Containing: Mn
55717 Containing: V
84602 Li

4
Mo

3
O

8
Containing: Mo

246132 Li
2
FeSiO

4
Containing: Fe

201959 Li(MoO
3
)
3

Containing: Mo
75900 Containing: Mo, Fe
16176 Containing: Mo, Fe
58 Li–S–O
59742 Li

0.1
Mg

1.6
Cu

4.3
O6 Li sharing sites with: Mg

84943 Li
3
Mo

3
P
3
O
17

Containing: Mo
169799 Li–Se–O, Li–S–O, Li sharing sites with: Zn
51033 Li

1.1
Ti

5.7
O
12

Containing: Ti
162953 Li

2
MgSi

5
O
12

Mg blocking
262643 Li

2
In

2
GeS

6
4.50E–02

189825 LiTiS
2

2D network
34256 LiBO

2
4.50E–01

155721 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
16713 Li–C–O
188761 LiMg

4
Al(MoO

4
)
6

Containing: Mo
9987 Li

3
Ga(BO

3
)
2

3.00E–02
39669 Li

1.39
K

2
Y

0.87
F
6

Small radius
66941 Li–C–O
247557 Containing: Mo, Fe
93650 Li

2
Mn

2
(SO

4
)
3

Containing: S, Mn
184018 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
187706 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
200222 LiEu(SO

4
)
2

Containing: Eu
89903 LiSb

3
O

8
1D network
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Table 2   (continued) ICSD Index Comp SigmaRT

62359 Li
2
MgTi

9
O

20
Containing: Ti

167775 Containing: Mo, V
409384 Li

3
GaF

6
2.40E+00

191532 Li
7
Mn

4.2
O
12

Containing: Mn
65176 Li–Si–O, Li–Ge–O, Containing: Co
21026 Li–Si–O, Li–Ge–O, Containing: Co
245516 Li

2
Si

3
O

7
Li–Si–O

191593 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
261830 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
402111 LiNa

2
GaAs

2
Pnictide

186498 Containing: Fe
200984 K

1.2
Li

10.8
Sb

12
O
36

Li sharing sites with: K
180318 Li

6
P
2
S
7.8

Li–P–S
20403 Containing: Eu, Mo, Ho
151759 Li sharing sites with: Na
164080 Li

8
Ti

21
Zn

4
O
32

Containing: Ti
262048 Containing: Fe
161794 LiFe

3
SiPO

8
Containing: Fe

9430 LiBe
2
Na

2
F
7

Melting
9129 Containing: V
202439 LiAlLa

4
O

8
Small r

416278 Containing: Mo, Fe
186451 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
280108 LiGaSi

2
O

6
Bad network

69300 Li–Si–O
263140 Na

5
Li(Mo

3
O
10

)3 Containing: Mo
184023 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
87414 LiSrN 8.10E–07
188749 Li

4
Zr

8
V
3.2

P
8.8

O
48

Containing: V
159316 Containing: Ti
23723 Li–S–O
163706 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
236294 Li

2
MgBa(PO

4
)
2

Mg blocking
400552 LiIO

4
Li–I–O

290325 Na
23.3

Li
0.7

Mo
44

O
144

Containing: Mo
2512 Li–S–O
248310 Li–Ge–O
26297 Li

6
TeO

6
Melting

241136 Containing: Mo, Fe
169864 Containing: Ti, Fe
16689 Containing: V
20558 Containing: V
35728 LiFeSnO

4
Containing: Fe

37118 LiReO
4

Containing: Re
51188 Containing: Ti, Fe
161187 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
156058 Containing: Mo, Fe
247985 Li

2
MnP

2
O

7
Containing: Mn

245699 Containing: V
66942 Li–C–O
85439 Li

4
Mo

5
O
17

Containing: Mo
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Table 2   (continued) ICSD Index Comp SigmaRT

419061 LiAsS
2

1.10E–01
152282 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
30982 LiAlSiO

4
2D network

41199 Li–I–O
55718 Containing: V
421130 Li–P–S
67535 LiGeBO

4
5.10E–08

42701 Containing: Mo, V
81249 Li–Si–O
71471 Li

4
VAs

2
O

9
Containing: V

401208 LiK
2
GaAs

2
Pnictide

51332 Li
8
Ti

7.4
Fe

8.6
P
24

O
96

Containing: Fe, Ti
410714 Li–O–Se
71058 Li

5
P
2
N

5
8.24E+01

100516 LiBa
3
Ti

5
Sb

3
O

21
Small r

247556 Containing: Mo, Fe
188866 Li sharing sites with: Ca, Na
67845 Containing: V
27672 LiK

2
AlF

6
Small radius

27008 Li
3
Na

3
In

2
F
12

Small radius
92312 Li

3
Na

3
N

2
8.10E+00

245933 Containing: Mo, Fe
248309 Li–Ge–O
162961 Containing: Mo, Fe
69133 Li–C–O
86167 Li

4
Co

2
Ge

9
O
16

Containing: Co
51443 Containing: V
416695 Li

2
Mo

4
O
13

Containing: Mo
424700 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
416279 Li

26.9
Ta

4.3
Mo

2
4O

96
Containing: Mo

84775 Li
3
Cu

2
SbO

6
Li sharing sites with: Cu

174132 Containing: Mo, V
202897 Containing: Ti, Fe
93540 Li

2
Ti

3
Bi

4
O

1
2 Bad network

608360 LiAlS
2

5.00E–02
200926 LiIn(MoO

4
)
2

Containing: Mo
241134 Containing: Mo, Fe
88458 Li

2
V

2
(SO

4
)
3

Containing: S, V
30276 Li–S–O
249456 Containing: Eu, Mo
2899 Containing: V
8262 Containing: Ti, Fe
21012 Containing: V
165579 Li–Cl–O
183763 Containing: Fe
78819 Li

10
BrN

3
3.60E–01

59243 Li–P–O
245389 Li–C–O
401169 Containing: Mo, Fe
27318 LiBa

4
Sb

3
O
12

Small radius
4185 Containing: Mo
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Table 2   (continued) ICSD Index Comp SigmaRT

246757 Containing: Mo, Fe
424835 Li

3
AsS

3
Low D

184016 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
85171 Li

3
AlF

6
2.00E–02

94530 Containing: Fe
20559 Containing: V
245847 Containing: V
99503 Li

4
CaB

2
O

6
2D network

249455 Containing: Eu, Mo
40457 LiSbS

2
1.40E–01

39849 Containing: Mo, Fe
402147 LiK

2
InAs

2
Pnictide

186040 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
32713 LiPN

2
Low D

246302 Li
2
SeO

4
Low D

50993 Li
4.5

Y
3.3

O
8

Li sharing sites with: Y
186041 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
48106 Li

2
SeO

4
Li–O–Se

424698 Containing: Fe
87774 LiMn

2
O

4
Containing: Mn

281292 Containing: Mo, Fe
30249 Li–Al–O
262642 Li

2
In

2
SiS

6
1.40E+00

15642 Li
2
BaSi Silicide

172581 LiTiOAsO
4

Low D
16215 Containing: Mo, Fe
201816 Li–I–O
261829 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
170956 Containing: Mo, Fe
638 Li–P–O
67264 Li

7
Br

3
O

2
1.40E–03

248311 Li–Ge–O
63519 LiMgIn(MoO

4
)
3

Containing: Mo
25105 Li

3
Ba

2
Ti

9.25
O

22
Ti blocking

34361 Li
4
Ge

9
O

20
Li–Ge–O

67536 LiSiBO
4

3.10E–01
65126 LiAlGeO

4
2D network

186450 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
35676 LiGeTe

2
Telenide

184022 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
28388 LiGaO

2
2D network

39814 Li–P–O
171375 LiBF

4
Melting

84763 Li
5
Cl

2
N 7.00E–02

187059 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
27007 Li

3
Na

3
Sc

2
F
12

Small radius
169478 Containing: Fe
182966 Li

2
Ti

6
O
13

1D network
59640 Li

4
ZnP

2
O

8
Low D

67110 Li–Si–O
201817 Li–I–O



	 SN Computer Science (2022) 3:465465  Page 10 of 12

SN Computer Science

Table 2   (continued) ICSD Index Comp SigmaRT

416101 Li
7.23

B
7
Se

15
Selenide

71035 Li
6
KBiO

6
1.10E+01

30253 Li
3
Na

3
Al

2
F
12

Small radius
402083 LiNa

2
AlP

2
Pnictide

246756 Li
2
Zn

2
(MoO

4
)
3

Containing: Mo
425095 Li

7
Mn(BO

3
)
3

Containing: Mn
186497 Containing: Fe
98615 Li

4
SiO

4
Li–Si–O

182259 Containing: Mo, V
262370 Containing: Eu, Mo, Ho
65127 LiGaGeO

4
2D network

54021 Li
8
Bi

2
(MoO

4
)
7

Containing: Mo
81074 LiMo(PO

4
)
2

Containing: Mo
186042 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
20032 Li–I–O
51630 Li–P–O
246250 Li

1.5
Ta

10.5
P
18

O
72

Li sharing sites with: Ta
247558 Containing: Mo, Fe
6134 Containing: Mo
94490 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
94491 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
31050 Li

6
Ge

2
O

7
Li–Ge–O

8222 Li–Si–O
200947 Li

2
Zr(MoO

4
)
3

Containing: Mo
180011 Li

0.5
TiO

2
High Ea

4155 Containing: Mo
424697 Containing: Fe
20346 Containing: Lu
246758 Containing: Mo, Fe
185582 Containing: Fe
14360 Li

2
BeF

4
2D network

18004 Li
6
ZrBeF

12
1.00E–02

261831 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
246859 Li

4
P
2
O

7
Li–P–O

23406 Li
2
GeF

6
4.00E–04

32028 LiYSi silicide
246133 Li

2
V(PO

4
)
2

Containing: V
201390 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
247255 Li

8
N

2
Se 1.09E+01

84703 NaLi
2
Mo

2
P
3
O
14

Containing: Mo
32029 LiYGe Ge anion
418488 Li–P–S
245392 Li–C–O
39580 Containing: Mo, Lu, Ho. Li sharing sites with: Y, La, Gd
20557 Containing: V
415120 Li

2
TeS

3
Bad network

245393 Li
4
CO

4
Li–C–O

156006 LiMoIO6 Containing: Mo
413238 Li–Cl–O
261832 Containing: Mo, Eu, Li sharing sites with: Tb, Nd, La, Gd, Sm
65175 Li–Si–O, Li–Ge–O, Containing: Co
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