

A Method for Imaging Energetic Particle Precipitation with Subionospheric VLF Signals

Forrest Gasdia^{1*} and Robert A. Marshall¹

¹Ann and H.J. Smead Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA.

Key Points:

- VLF propagation is more strongly influenced by the flux of precipitating particles than the energy distribution
- A Kalman filter is applied to observations simulated at an array of VLF receivers to estimate the underlying disturbed ionospheres
- The estimation method identifies the size and location of precipitation patches during daytime but is less effective at nighttime

^{*}Current address, Arlington, VA, USA.

Corresponding author: Forrest Gasdia, forrest.gasdia@colorado.edu

12 **Abstract**

13 Energetic particle precipitation (EPP) is a key loss mechanism for radiation belt par-
 14 ticles. Quantification of the precipitation loss rate feeds into the electron lifetimes used
 15 by radiation belt models and is needed to improve understanding of radiation belt dy-
 16 namics. EPP deposits most of its energy in the D-region ionosphere, a layer so weakly
 17 ionized that it is not observed using standard ionosphere measurement techniques. How-
 18 ever, very low frequency (VLF) radio signals propagate great distances because of the
 19 naturally occurring waveguide formed by Earth's surface and the D-region. If the ground
 20 conductivity is known along the propagation path to a receiver, then the amplitude and
 21 phase of a VLF transmitter signal can be used to infer the average conductivity of the
 22 D-region ionosphere. This article simulates the propagation of narrowband VLF signals
 23 through realistic ionosphere profiles enhanced by EPP. By using a distributed array of
 24 VLF receivers, the observations can be simultaneously inverted to estimate the spatial
 25 extent of a precipitation patch. These images of the ionosphere are generated using the
 26 local ensemble transform Kalman filter (LETKF). We demonstrate this method with sev-
 27 eral simulated observation experiments, including four EPP events. Precipitation patches
 28 are identified in daytime, but accurate estimation of nighttime ionospheres remains a chal-
 29 lenge.

30 **1 Introduction**

31 One of the many phenomena that disturbs the D-region ionosphere is energetic par-
 32 ticle precipitation (EPP). Radiation belt particles traversing Earth's magnetic field en-
 33 counter an increasingly dense neutral atmosphere as they near Earth. Through inter-
 34 action with neutral molecules, these precipitating particles are effectively lost from the
 35 radiation belts. Energy deposited through inelastic collisions and bremsstrahlung of higher
 36 energy electrons affects the chemistry of the lower ionosphere and neutral atmosphere
 37 (Krause, 1998; Randall et al., 2005, 2007).

38 EPP is just one of several competing processes that enhance or deplete electron pop-
 39 ulations of the radiation belts during and after solar storms (Reeves et al., 2003; Blum
 40 & Breneman, 2020). Quantifying the characteristics, relative significance, and relation-
 41 ships between the various source and loss mechanisms will improve forecasting of space
 42 weather (Millan & Thorne, 2007; Tu et al., 2010). In particular, uncertainty in the the-
 43 oretical loss rate due to precipitation is responsible for differences between modeled and
 44 observed electron lifetimes (Marshall & Cully, 2020).

45 Several techniques have been used to observe precipitating energetic electrons. Par-
 46 ticle detectors can directly monitor EPP from low Earth orbit, but most missions have
 47 not observed the entirety of the loss cone because of limited pitch angle resolution (Rodger
 48 et al., 2013). The ELFIN mission, consisting of a pair of CubeSats launched in 2018, is
 49 the first mission to accurately measure the energy and pitch angle of relativistic precip-
 50 itating particles (Angelopoulos et al., 2020). Analysis and publication of ELFIN obser-
 51 vations is ongoing, but other CubeSat missions have produced a range of estimates of
 52 the spatial scale of precipitation patches. Crew et al. (2016) found microbursts at least
 53 as small as 11 km, as limited by the nearest separation distance of the FIREBIRD satel-
 54 lites, and maximum sizes of about 120 km when mapped to the equator. Shumko et al.
 55 (2018) also analyzed FIREBIRD observations and found a spatially large microburst with
 56 radial and azimuthal scale sizes of at least (500 ± 10) km and (530 ± 10) km at the mag-
 57 netic equator. The pair of AeroCube-6 CubeSats observed precipitating structures at sev-
 58 eral spatial scales (Blake & O'Brien, 2016). These observations seem to indicate there
 59 is both fine structure and broader areas of precipitation.

60 Below the ionosphere, balloon payloads observe X-rays emitted by bremsstrahlung
 61 which can be mapped back to the precipitating electron spectra. Dozens of flights of the
 62 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) missions have

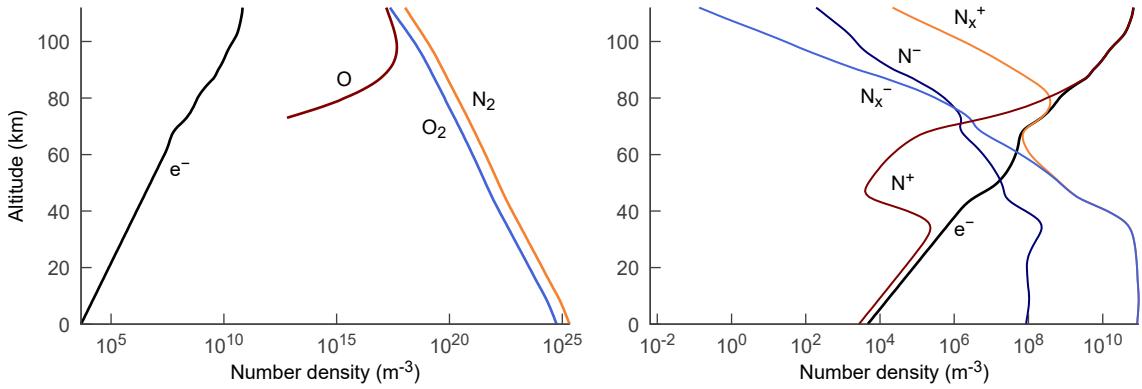
been flown (Millan et al., 2013; Woodger et al., 2015). Anderson et al. (2017) analyzes data from BARREL, FIREBIRD, and AeroCube-6 during the same EPP event and finds the precipitation region extends at least 4 h in local time, from $L = 5$ out to $L = 10$, and was present for nearly 9 hours. Electron density in the D-region is sufficiently enhanced by EPP to influence the propagation of subionospheric very low frequency (VLF) radio waves. Unlike other methods, stationary VLF receivers can monitor large spatial regions continuously. The Array for Broadband Observations of VLF/ELF Emissions (ABOVE) incorporates VLF receivers across Canada that monitor electromagnetic waves including the narrowband minimum-shift keying (MSK) signals of U.S Navy VLF transmitters (Cully et al., 2014). Forty energetic electron injection events observed by the Van Allen Probes mission were correlated with ABOVE receiver measurements to characterize the typical response of VLF propagation (Mauk et al., 2013; Ghaffari et al., 2020). The different propagation paths of the array were used to estimate bounds on the size of the detectable precipitation region as between 200 and 1000 km along one path and above $L = 6$. Similarly, the Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortia (AARDDVARK) network consists of VLF receivers specifically for monitoring VLF transmitter signals across the polar regions (Clilverd et al., 2009). Clilverd et al. (2017) combines simultaneous BARREL and AARDDVARK observations of two events and finds precipitation regions having longitudinal dimensions of approximately 20° and 50° – 70° . They were also able to reproduce the observed AARDVARK amplitude perturbations using mono-energetic electron precipitation fluxes based on the BARREL observations.

Monitoring of VLF narrowband radio transmissions has long provided indirect insight into the D-region ionosphere and its response to perturbing phenomena (Wait, 1958; Clilverd et al., 1999; Silber & Price, 2017). The propagation of VLF waves is influenced by the conductivity of the ground and lower ionosphere, which together form the “Earth-ionosphere waveguide”. Because changes in ionosphere conductivity change the field pattern in the waveguide, monitoring the electromagnetic field at a radio receiver is a form of remotely sensing the D-region. In D-region estimation, we assume the ground conductivity is perfectly known from published global conductivity maps, e.g. Morgan (1968); ITU-R (2015). If the ionosphere were also known, a propagation model could be used to compute the electric field that would be measured by a radio receiver in the waveguide. In estimation theory, this is called the forward modeling problem. The inverse problem reconstructs the ionosphere required to reproduce the field measured by real radio receivers, and the typical method of solution iteratively runs the forward model with different proposed ionospheres until the modeled and real observations match to within some tolerance.

Work has recently been undertaken to generate spatially-varying estimates or “images” of the D-region ionosphere over a large geographic region using arrays of VLF receivers (McCormick & Cohen, 2018; Gasdia & Marshall, 2019). Rather than inverting receiver observations to produce a path-average estimate of the D-region along individual propagation paths, these new estimation techniques leverage the underlying spatial correlation of the ionosphere to spread measurement information between paths. This is a difficult, ill-conditioned, nonlinear inverse problem, but the solution space can be reduced by weighting the problem towards physically likely ionospheres based on expectations from prior knowledge of the ionosphere.

These techniques appear promising for estimation of the D-region under typical conditions, but this article examines the imaging problem for realistic ionospheres that are strongly disturbed by EPP. We link together a series of models to generate a realistic ionosphere for simulating observations of narrowband VLF signals. Next, EPP-disturbed ionospheres are compared to the Wait exponential ionosphere from the perspective of subionospheric VLF propagation along the ground (Wait & Spies, 1964). Finally, we de-

115 scribe a D-region imaging methodology that builds upon Gasdia (2021) and apply it to
 116 VLF observations simulated under a variety of realistic EPP and undisturbed ionospheres.


117 2 Modeling EPP-Disturbed Ionospheres

118 The propagation of VLF waves through the Earth-ionosphere waveguide depends
 119 on a number of factors, including: ground conductivity, number density and collision fre-
 120 quency profiles of each constituent of the ionosphere, the curvature of Earth, the mag-
 121 nitude and direction of Earth’s magnetic field, and the transmitter frequency. Several
 122 of these parameters vary along the propagation paths of VLF receiver networks, which
 123 are often greater than 1000 km in length. The Long-Wavelength Propagation Capabil-
 124 ity (LWPC) is a commonly used forward model that can generate receiver observations
 125 for user-specified ionospheres (McRae & Thomson, 2000; Chakraborty et al., 2016; Phaniku-
 126 mar et al., 2018). Other propagation models, such as finite-difference time-domain (FDTD)
 127 and finite-difference frequency-domain (FDFD) methods, require orders of magnitude
 128 more computation time (Marshall et al., 2017; Xu et al., 2019). For nonlinear inverse prob-
 129 lems like D-region estimation, the forward model must be run many times, making a mode
 130 theory propagation model, like LWPC, the obvious choice. This work uses LWPC in the
 131 inversion process and the Longwave Mode Propagator (LMP) to simulate “real” obser-
 132 vations of VLF signals through perturbed ionospheres (Gasdia & Marshall, 2021). LMP
 133 is also a mode theory propagation model, but it is more robust than LWPC and easily
 134 accommodates complicated multi-species ionosphere profiles. This section describes the
 135 models and process used to simulate realistic VLF observations through typical and EPP-
 136 disturbed ionospheres.

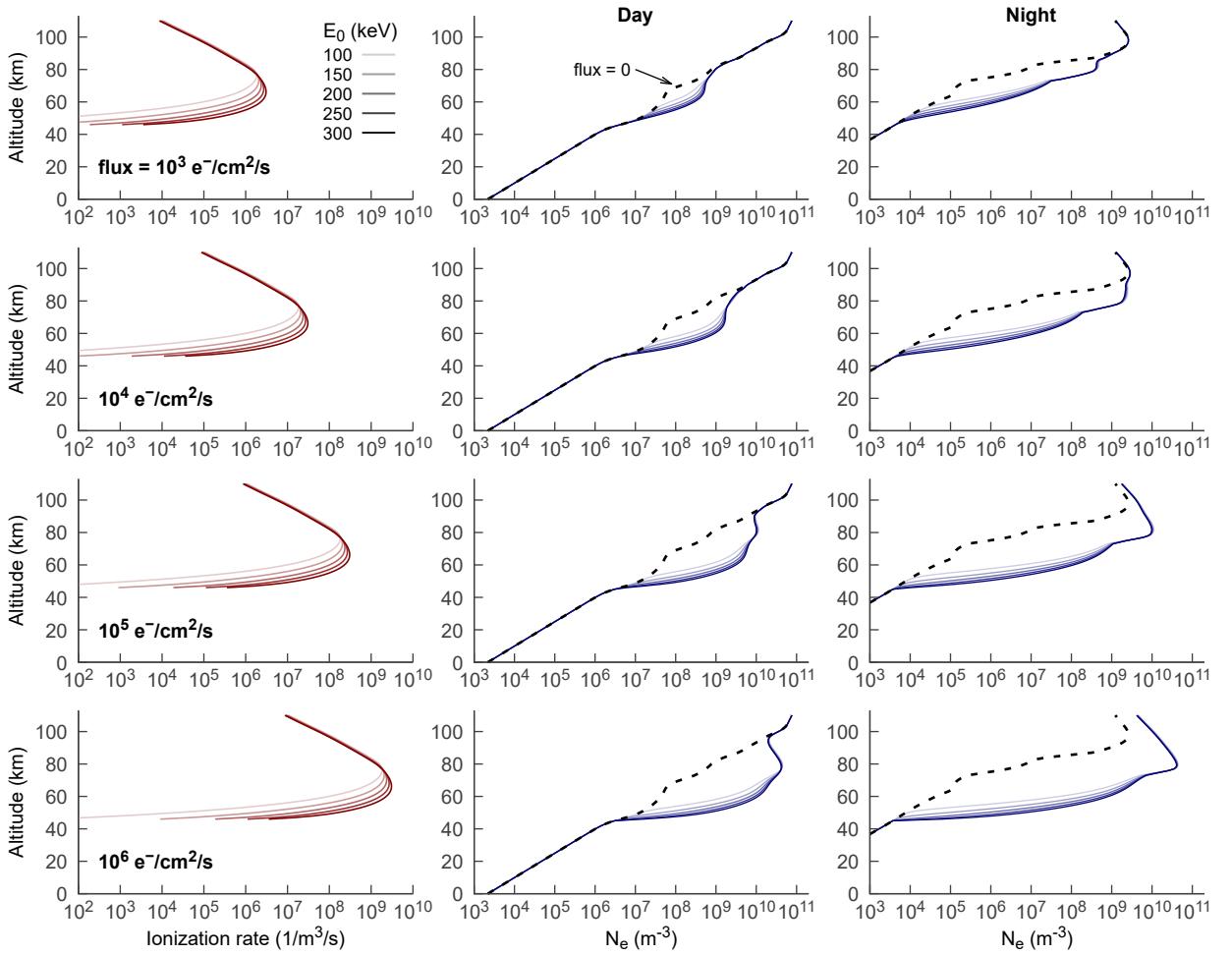
137 2.1 Ionosphere Profiles

138 The Glukhov, Pasko, and Inan (GPI) model is a basic chemical model for the lower
 139 ionosphere that consists of four kinds of charged particles: electrons, negative ions (e.g. O_2^- ,
 140 CO_3^- , NO_2^-), light positive ions (e.g. O_2^+ , NO^+), and heavy positive ion clusters (e.g. $H^+(H_2O)_n$),
 141 where the number densities of each are referred to as N_e , N^- , N^+ , and N_x^+ (Glukhov
 142 et al., 1992). Lehtinen and Inan (2007) separated the negative ion category into light neg-
 143 ative ions (e.g. O_2^-) and heavy negative ions (e.g. NO_3^-), denoted by N^- and N_x^- , to
 144 improve accuracy at heights below 50 km. The model simultaneously solves a set of four
 145 time-differential equations for the number density of each species at each altitude. The
 146 density of the fifth species is calculated from the charge neutrality condition. An ion-
 147 ionization source Q is calculated as the source necessary to produce a steady state solution
 148 of the equations from initial background density profiles of e^- , O , O_2 , and N_2 , which are
 149 provided by other models. After establishing the equilibrium density profiles for each con-
 150 stituent, GPI can be run once more with an additional imposed ionization source, such
 151 as EPP. For this work, a custom implementation of GPI was written in the Julia pro-
 152 gramming language for improved performance using the default parameters from GPI
 153 version 5.4 of Lehtinen and Inan (2007).

154 NRLMSISE-00, accessed through the software package SatelliteToolbox.jl, provides
 155 the neutral number density, mass density, and temperature profiles for the GPI model
 156 and EPP ionization lookup table (discussed below) (Picone et al., 2002; Chagas et al.,
 157 2019). We use the Faraday International Reference Ionosphere (FIRI-2018) for the ini-
 158 tial electron density profile. FIRI is a semi-empirical model of the undisturbed ionosphere
 159 based on an ion-chemical model adjusted for consistency with sounding rocket profiles
 160 (Torkar & Friedrich, 1983; Friedrich & Torkar, 2001; Friedrich et al., 2018). It effectively
 161 extends the International Reference Ionosphere (IRI) for the D-region down to about 60 km
 162 altitude or $10^6 e^- / m^3$ (Bilitza et al., 2017). FIRI-2018 consists of 1980 profiles across 11
 163 solar zenith angles between 0° and 130° , latitudes 0° , 15° , 30° , 45° , and $60^\circ N$, and three
 164 solar activity levels for the middle of each month of the year. We have developed a tool

Figure 1. Left: NRLMSISE-00 neutral species and interpolated FIRI-2018 density profiles for 2020-03-01 2000Z at 60° N, 102° W (local daytime) (Picone et al., 2002; Friedrich et al., 2018). Right: Charge density profiles output from the GPI model using the profiles on the left as input (Lehtinen & Inan, 2007). Note the difference in scale along the horizontal axis.

165 that performs multidimensional linear interpolation across the solar zenith angle and lat-
 166 itude parameters to generate profiles that vary continuously over geographic latitude and
 167 longitude (Gasdia, 2022b).


168 Figure 1 shows profiles of the undisturbed daytime neutral atmosphere and iono-
 169 sphere constituents before and after application of the GPI model. The FIRI profile uses
 170 a log-linear extrapolation from 60 km altitude down to the ground. These profiles are
 171 an example of those used by the Longwave Mode Propagator to simulate observations
 172 of narrowband VLF signals with a realistic undisturbed ionosphere.

173 2.2 Precipitation Modeling

174 Precipitating electrons deposit most of their energy between 40 and 100 km alti-
 175 tude, causing marked enhancements in the electron density of the D-region (Rees, 1963;
 176 Marshall & Bortnik, 2018). Recent studies have demonstrated that both the pitch an-
 177 gle and energy of radiation belt electrons have an important role in determining the ion-
 178 ization production of precipitation into the atmosphere (Randall et al., 2015; Tyssøy et
 179 al., 2016). Xu et al. (2020) applies the first-principles Energetic Precipitation Monte Carlo
 180 (EPMC) model to calculate ionization rate profiles produced by monoenergetic electrons
 181 with discrete pitch angles. EPMC was originally developed by Lehtinen et al. (1999) and
 182 extended over several years to simulate energetic electron precipitation effects (Marshall
 183 et al., 2014; Xu et al., 2018). The lookup table published by Xu et al. (2020) and im-
 184 plemented in Gasdia (2022a) produces an EPP-ionization rate profile with interpolation
 185 across altitude, precipitating electron energy and pitch angle distribution, and arbitrary
 186 neutral mass density profiles. The ionization rate profile (pairs/e⁻/cm) can be multi-
 187 plied by the precipitating electron flux (e⁻/cm²/s) for the ionization (pairs/cm³/s) as
 188 a function of altitude.

189 Whittaker et al. (2013) used data from the electron flux instrument on the DEME-
 190 TER spacecraft, sensitive from 90 keV to 2.2 MeV, to show that most distributions of
 191 precipitating electrons fit well to exponential or power-law energy distributions. In this
 192 work we assume the precipitating electrons have a uniform pitch angle distribution over
 193 0° to 90° and an energy distribution modeled by the exponential function

$$194 f(E) = C_e \exp(-E/E_0). \quad (1)$$

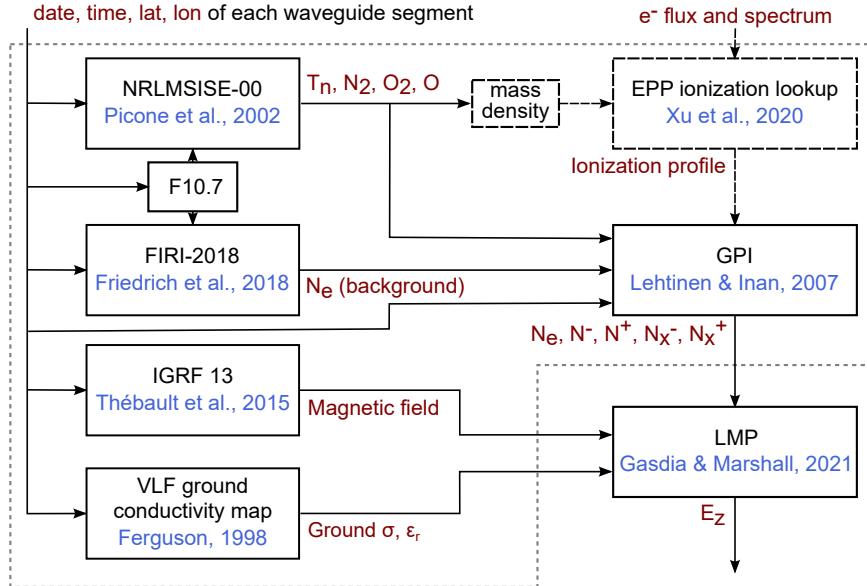


Figure 2. Ionization rate (left column) and electron density profiles for several exponential energy distributions and fluxes at day (middle column) and night (right column). The shade of each line corresponds to E_0 of the exponential energy distribution of the precipitating electrons (Whittaker et al., 2013). The black dashed line represents the undisturbed ionosphere.

Depending on the L -shell and K_p index, Whittaker et al. (2013) found the shape parameter E_0 varied between 100 and 300 keV. Examples of ionization and the electron density profiles output from GPI for typical day and night ionospheres are shown in Fig. 2 for several precipitating fluxes and values of E_0 .

2.3 Defining the Earth-Ionosphere Waveguide

Each of the models discussed above are linked together to generate ionosphere profiles and simulated observations of transmitted narrowband VLF signals in the Earth-ionosphere waveguide. A flow chart of the process is shown in Fig. 3. In addition to the models previously discussed, the magnetic field vector at 60 km altitude is obtained from IGRF-13 for the appropriate time and location along the propagation path (Thébault et al., 2015). The ground conductivity map is the same one used by LWPC (Ferguson, 1998).

Figure 3. Diagram of the the process used to generate simulated VLF observations of realistic ionospheres, including when disturbed by energetic particle precipitation. The boxes contained in the gray dotted box provide output every 50 km along each propagation path to construct a segmented waveguide for the LMP propagation model. The two boxes drawn with black dashed lines are only active when EPP is present.

The mode theory propagation models LWPC and LMP define the Earth-ionosphere waveguide along a propagation path using a series of homogeneous segments and apply full-wave mode conversion at the boundaries between segments (Pappert & Smith, 1972). In this work each propagation path is split into 50 km segments. Therefore, all of the models contained inside the gray dashed bounding box in Fig. 3 are run every 50 km along the great circle path from transmitter to receiver. The complete segmented waveguide is then passed to LMP to generate the E_z field along the propagation path to the receiver.

3 Propagation Through EPP-Disturbed Ionospheres

This section presents simulations of subionospheric narrowband VLF propagation when the ionosphere is disturbed by energetic particle precipitation. First we examine propagation under an ionosphere defined by a constant conductivity profile along the entire path. Then we provide an example of simulated VLF receiver observations for spatially localized precipitation. This section provides context for understanding the requirements and limitations of inversion methods that can be used to image precipitation patches with real VLF data.

3.1 Effective Exponential Profiles

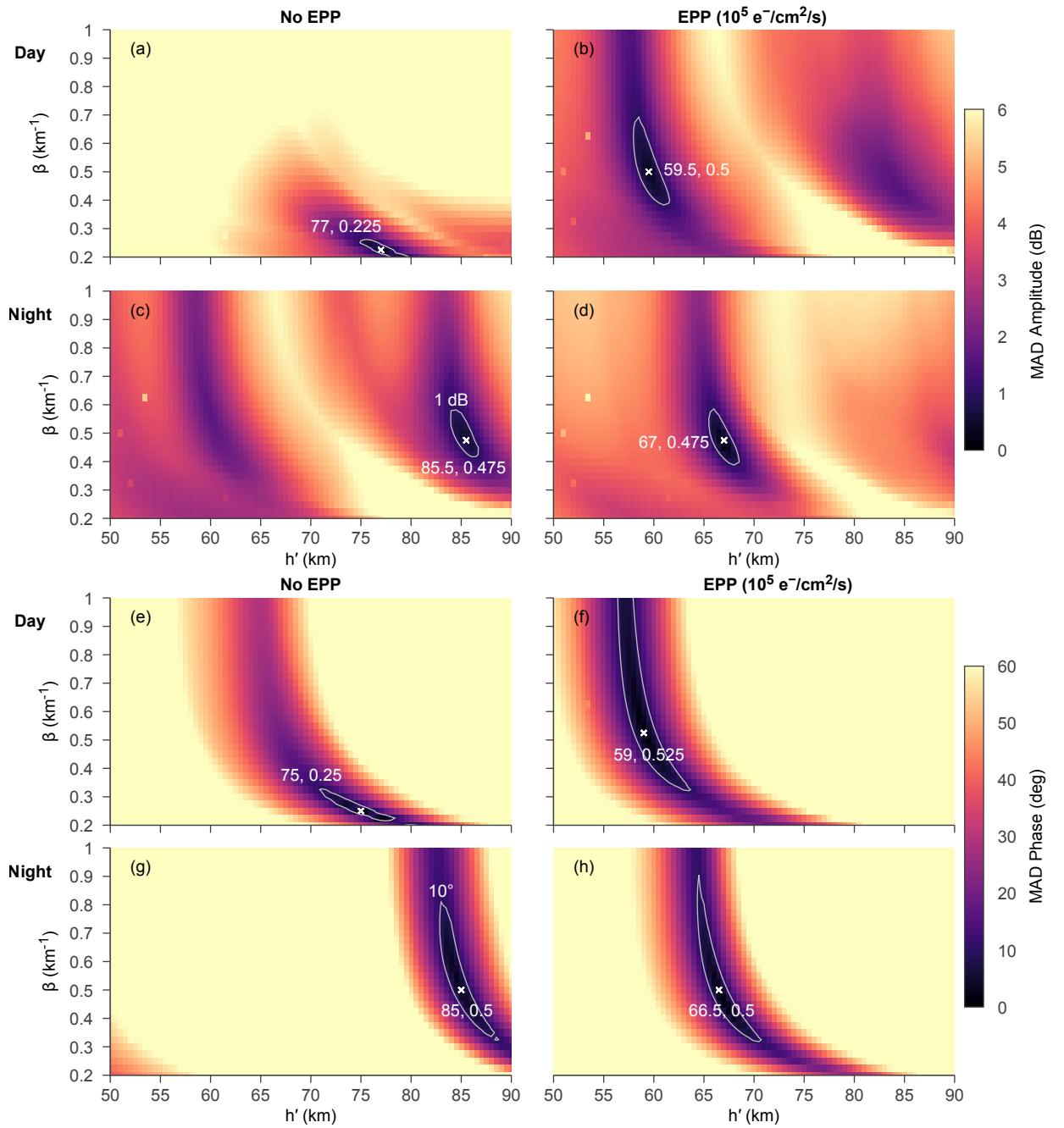
The VLF community commonly represents the D-region electron density using a profile derived from Wait and Spies exponential conductivity profile (Wait & Spies, 1964). The electron density N_e (e^-/m^3) as a function of height z (km) can be expressed as

$$N_e(z) = 1.43 \times 10^{13} \exp(-0.15h') \exp((\beta - 0.15)(z - h')) \quad (2)$$

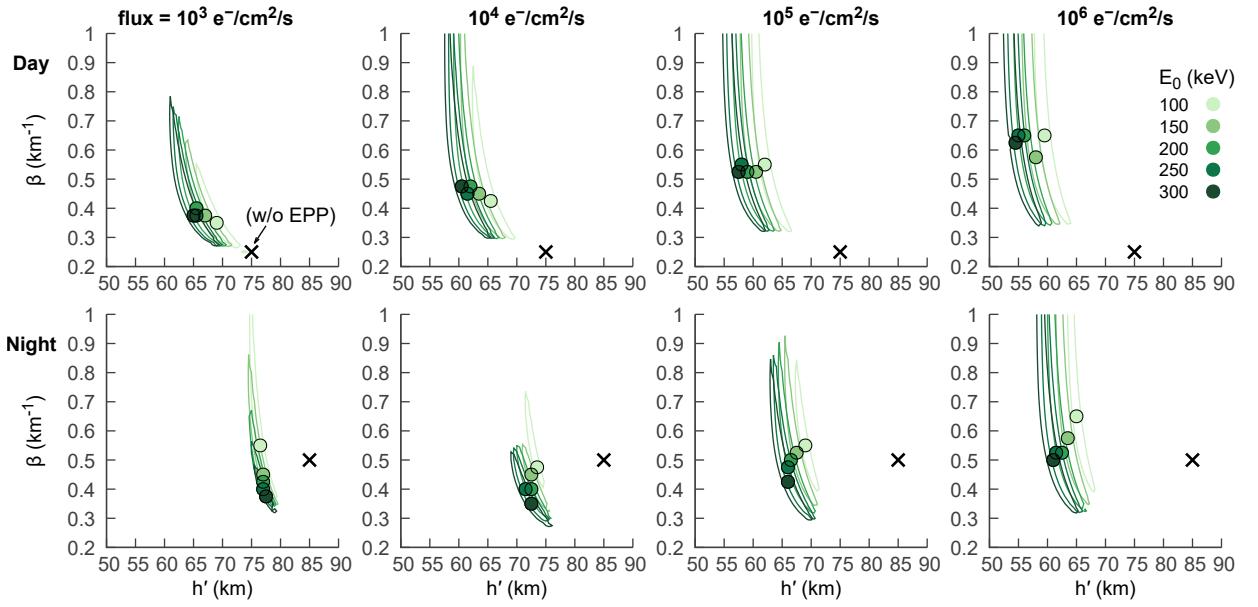
where h' is a reference height (km) and β is a slope term (km^{-1}). Although this profile fails to capture the complex shape of the true D-region (e.g. Fig. 1), its use in prop-

agation models matches real VLF data to within a few decibels under typical day and night conditions (Ferguson, 1980, 1992). Four-parameter models have recently been proposed to better fit observations of lightning-emitted VLF signals and narrowband signals along a rocket trajectory (McCormick & Cohen, 2021; Xu et al., 2021), but representing the altitude variation of ionosphere conductivity with only two parameters (h' and β) is useful for ionosphere estimation because it reduces the parameter space. Therefore, we estimate the ionosphere as defined using the two Wait ionosphere parameters, h' and β . In practice there are a relatively small number of VLF observations available when trying to estimate an ionosphere that varies spatially over a large geographic area. The inversion problem becomes increasingly ill-posed as the specification of the electron density with height is given additional degrees of freedom. This can be countered by regularization of the solution, but more experience applying this technique to real data is desired before investigating estimation with more complex representations of the ionosphere.

This section identifies the h' and β parameters that provide the best fit to VLF signals propagating under a completely EPP-disturbed ionosphere. In other words, we are seeking the exponential ionosphere that would be retrieved from VLF observations for an ionosphere disturbed by EPP. The E_z field of a 24 kHz transmitter is computed along the ground every 5 km out to 3000 km with a constant ocean-like ground ($\sigma = 4 \text{ S m}^{-1}$, $\epsilon_r = 81$) and a vertical 50 μT magnetic field. The propagation model is run using a homogeneous (single segment) ionosphere defined by combinations of Wait parameters from an h' of 50 to 90 km every 0.5 km and a β of 0.2 to 1 km^{-1} every 0.05 km^{-1} . These values bracket the typical parameters of $h' = 70$ to 78 km and $\beta = 0.25$ to 0.4 km^{-1} at day and $h' = 83$ to 89 km and $\beta = 0.4$ to 0.7 km^{-1} at night with consideration for the lower altitude and steeper electron density profiles resulting from EPP (McRae & Thomson, 2000; Thomson et al., 2007; Thomson & McRae, 2009). The propagation model is run with a realistic EPP-disturbed ionosphere and compared to the Wait ionospheres using the mean absolute difference (MAD) of the signal amplitude and phase along the propagation path. For example, the amplitude MAD is computed as


$$A_{\text{MAD}} = \frac{1}{n} \sum_{i=1}^n |A_{\text{Wait},i} - A_{\text{EPP},i}| \quad (3)$$

over a total of n signal amplitudes simulated every 5 km along the propagation path.


Figure 4 shows heatmaps of the amplitude and phase MAD for realistic unperturbed and EPP-perturbed daytime and nighttime ionospheres at 2020-03-01 2000Z and 2020-03-02 0500Z, respectively. The precipitating electron flux is $10^5 \text{ e}^-/\text{cm}^2/\text{s}$ along the entire propagation path and the precipitating electrons have an exponential energy distribution with $E_0 = 200 \text{ keV}$.

The lowest MAD (best fit) in Fig. 4 is located at approximately the same h' and β for both the amplitude and phase fits. Comparing the unperturbed and EPP-perturbed ionospheres, the EPP-perturbed ionosphere has shifted to a lower h' . This is expected because the EPP increases ionization at lower altitudes than the undisturbed ionosphere (Fig. 2). Although the amplitude maps exhibit multiple local minima, this can be resolved by incorporating phase information. At least for this particular configuration of transmitter and Earth-ionosphere waveguide, there is a unique representation of the EPP ionosphere by an exponential ionosphere within the range of reasonable h' and β . The local minima can also be excluded as a solution in estimation problems by exploiting the *a priori* expectation that the typical daytime D-region ionosphere has an h' around 75 km and the nighttime ionosphere has an h' around 85 km. This is discussed further in Section 4.

It is evident from Fig. 4 that long-path narrowband VLF observations have decreasing sensitivity to β as β increases. There is almost no sensitivity to β above approximately

Figure 4. Mean absolute difference of the E_z amplitude (a–d) and phase (e–h) between Wait and Spies exponential ionospheres and a realistic undisturbed ionosphere (left) and EPP-perturbed ionosphere (right) along a 3000 km path. The precipitating electrons have an exponential energy distribution with $E_0 = 200$ keV and a constant flux of $10^5 \text{ e}^-/\text{cm}^2/\text{s}$. The white \times 's mark the h' and β parameters that result in the amplitude and phase curves most similar to the curve produced by the realistic ionosphere profile. Contour lines showing 1 dB amplitude and 10° phase difference are also drawn.

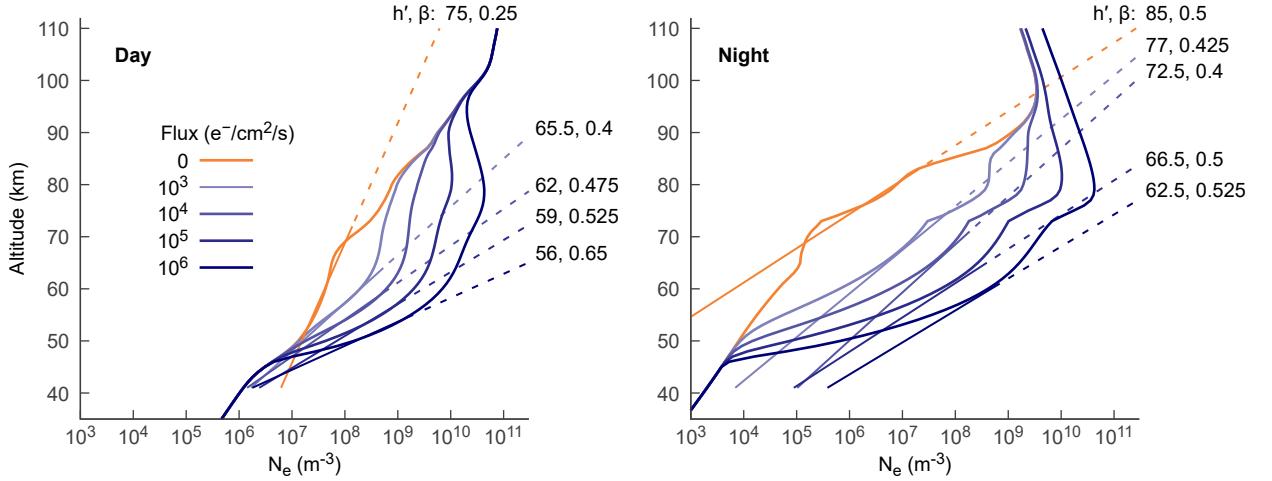


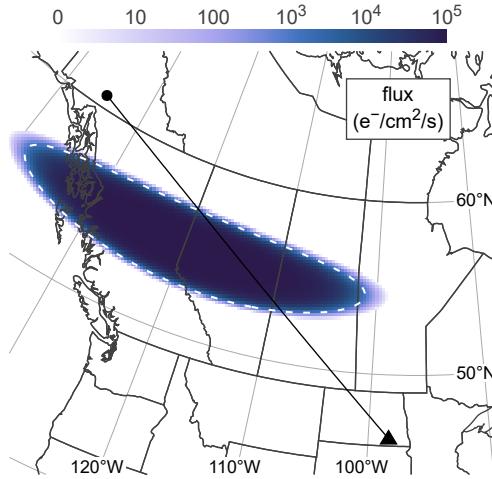
Figure 5. VLF phase-equivalent Wait and Spies ionospheres for a variety of EPP fluxes and energy distributions. The \circ symbols mark the h' , β MAD fit of each EPP ionosphere and are surrounded by 10° phase contours. The \times symbol indicates the MAD fit of the undisturbed ionosphere. Local day is 2020-03-01 2000Z and night is 2020-03-02 0500Z.

0.6 km^{-1} at the 24 kHz transmitter frequency used to produce this figure. High β values represent rapid increases in electron density with altitude, trending towards a sharp waveguide boundary between free space below and the ionosphere above. Because the Wait ionosphere profile is exponential, higher β values have decreasing influence on the slope of the electron density, so a change from $\beta = 0.25 \text{ km}^{-1}$ to $\beta = 0.35 \text{ km}^{-1}$ is more significant than a change from $\beta = 0.55 \text{ km}^{-1}$ to $\beta = 0.65 \text{ km}^{-1}$.

This simulation and MAD calculation process was repeated for daytime and nighttime with several combinations of precipitating electron flux and energy distribution. The resulting best-fit exponential ionospheres and phase difference contours are shown in Fig. 5. Increasing flux is correlated with a decrease in h' relative to the undisturbed ionosphere, which is marked by \times on the plot. Increasing flux is also correlated with an increase in β , but this effect is stronger in daytime than nighttime. The EPP ionospheres have a β of approximately 0.35 km^{-1} or higher, which is greater than some typical daytime ionospheres. There is a weak correlation between higher E_0 values and lower h' ionospheres, but this trend does not extend to the nighttime ionosphere when there is low precipitating flux. Although there is also a trend between increasing E_0 and decreasing β at nighttime, the low sensitivity of the VLF observations to β may make E_0 difficult to retrieve in real data.

Realistic electron density profiles for daytime and nighttime are plotted in Fig. 6 with their corresponding exponential Wait profiles found by the best-fit phase MAD. Each daytime exponential profile accurately captures the electron density of their realistic profile from the base of the ionosphere up to the reflection height. The exponential profiles are plotted with dashed lines above the altitude at which Wait's conductivity parameter ω_r is equal to the angular transmitter frequency ω (Wait & Spies, 1964). This approximates the altitude at which the bulk of the wave reflection occurs (Ratcliffe, 1959). VLF observations have limited sensitivity to the ionosphere above this height and therefore we cannot estimate the ionosphere profile above this height. The nighttime expo-

Figure 6. Realistic electron density profiles (curves) simulated using the process shown in Fig. 3 and the best-fit Wait profiles (lines) found from the MAD E_z phase along a 3000 km propagation path. Daytime ionospheres are shown on the left and nighttime are shown on the right. The Wait profiles are labeled with their h' , β values and are dashed above the approximate reflection height at which $\omega_r = \omega$ (Wait & Spies, 1964).


306 nential profiles best fit the true profile just below the reflection height. A different iono-
 307 sphere model than the Wait profile would be required to simultaneously fit the lower night-
 308 time ionosphere and the altitudes near the reflection height.

309 The presence of EPP has a significant effect on the best-fit h' in Fig. 6. Lower lev-
 310 els of precipitation with a flux of $10^3 e^-/cm^2/s$ decreases h' by about 10 km from the undis-
 311 turbed ionosphere. Strong precipitation with a flux of $10^6 e^-/cm^2/s$ decreases h' by 19 km
 312 in day and 24 km at night. In fact, the best-fit $h' = 62$ km retrieved at night would be
 313 low for a typical *daytime* ionosphere. Any VLF inversion method used to estimate an
 314 EPP-disturbed ionosphere must consider this large range of h' and β parameters. This
 315 is challenging because of the nonlinear relationship between the ionosphere parameters
 316 and the forward model “observation.” Figure 4 shows there can be multiple minima even
 317 when the ionosphere parameters are constant along the propagation path and the sig-
 318 nal amplitude is sampled every 5 km along the path. D-region estimation with real data
 319 often only has a single receiver measurement on each path and estimation of a segmented
 320 ionosphere significantly increases the parameter space. For example, a brute force esti-
 321 mation of a single 1000 km propagation path with five 200 km segments using the Wait pa-
 322 rameter grid from Fig. 4 could require up to $\mathcal{O}(10^{15})$ forward model runs.

323 3.2 Precipitation Patch

324 In this section we look at VLF amplitude and phase with propagation through a
 325 localized region of EPP. Using the model shown in Fig. 3, we construct the segmented
 326 propagation paths by varying the precipitating flux as a function of geographic latitude
 327 and longitude. The precipitation patch used in this section is shown in Fig. 7. The patch
 328 flux F at longitude λ and latitude ϕ is defined by a two-dimensional super-Gaussian with
 329 a flat peak of flux p :

$$330 F(\lambda, \phi) = p \exp \left(- (a(\lambda - \lambda_0)^2 + 2b(\lambda - \lambda_0)(\phi - \phi_0) + c(\phi - \phi_0)^2)^n \right) \quad (4)$$

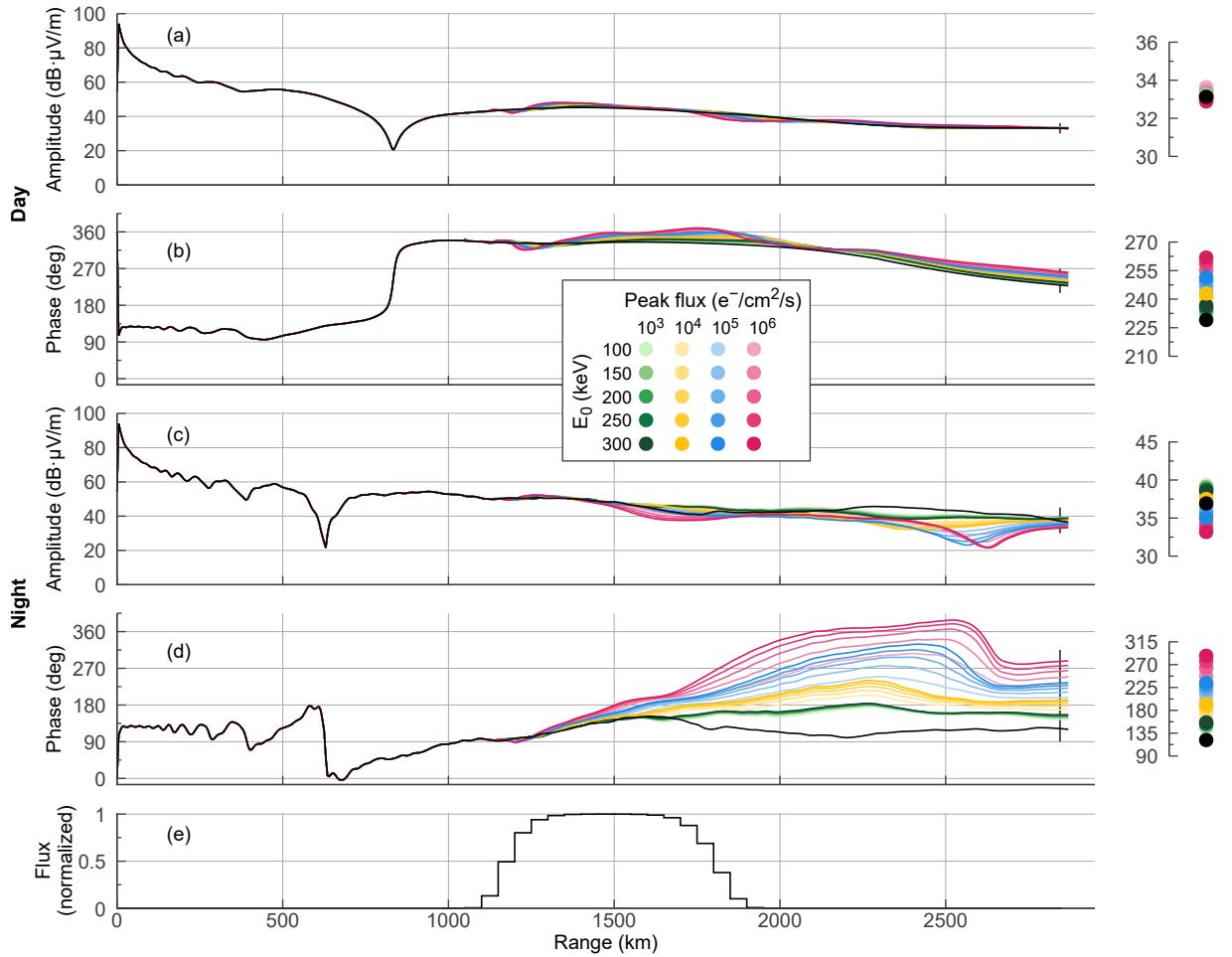
Figure 7. A precipitation region modeled as a two-dimensional super-Gaussian having a peak flux of $10^5 \text{ e}^-/\text{cm}^2/\text{s}$. The white dashed line contours a flux of $10^3 \text{ e}^-/\text{cm}^2/\text{s}$. The propagation path shown is from the NML transmitter in LaMoure, North Dakota to a receiver in Whitehorse, Yukon.

331 where

$$a = \cos^2 \theta / (2\sigma_\lambda^2) + \sin^2 \theta / (2\sigma_\phi^2) \quad (5)$$

$$b = -\sin(2\theta) / (4\sigma_\lambda^2) + \sin(2\theta) / (4\sigma_\phi^2) \quad (6)$$

$$c = \sin^2 \theta / (2\sigma_\lambda^2) + \cos^2 \theta / (2\sigma_\phi^2) \quad (7)$$


332 and power $n = 4$, $\lambda_0 = 120^\circ \text{W}$, $\phi_0 = 55^\circ \text{N}$, $\sigma_\lambda = 11^\circ$, $\sigma_\phi = 1.3^\circ$, and $\theta = 1.5^\circ$.

333 Figure 8 shows the E_z signal amplitude and phase along the ground between the
 334 NML transmitter in LaMoure, North Dakota and Whitehorse, Yukon. The patch shape
 335 remains the same while the peak flux and energy distribution is varied. When the pre-
 336 precipitation occurs during daytime there is a small, but measurable, change in amplitude,
 337 and the change in phase is a minimum of 5 times the typical phase noise of approximately
 338 1° . During nighttime, there is a significant change in both amplitude and phase. This
 339 corresponds with the relatively larger $\Delta h'$ for precipitation at night seen in Section 3.1.

340 In general, the magnitude of precipitating flux has a much larger influence on the
 341 amplitude and phase curves than the precipitating energy distribution, i.e. E_0 . The curves
 342 of identical precipitating flux are usually grouped together in Fig. 8, but there are sev-
 343 eral regions along the path at which the amplitude and/or phase curves cross one an-
 344 other. Even if the shape of the precipitation patch were known, it would be difficult to
 345 separate precipitating energy distribution and flux in a retrieval from a real VLF receiver
 346 if it happens to be located in one of these regions. An array of distributed receivers is
 347 likely to include amplitude and phase measurements that are outside of these regions and
 348 distinctly associated with a magnitude of precipitating flux. In practice, the simultane-
 349 ous fit of receiver array observations generates an ionosphere estimate that balances the
 350 size, shape, energy, and intensity of precipitation (see Section 4).

351 4 Ionosphere Imaging Methodology

352 An array of geographically distributed VLF transmitters and receivers can be used
 353 to image the spatial extent of an EPP patch. Each propagation path in a VLF array ob-
 354 serves a unique “slice” through the observation region, which may intersect a precipi-

Figure 8. Signal amplitude (a, c) and phase (b, d) curves along the path from the NML transmitter to Whitehorse, Yukon for the propagation path shown in Fig. 7. EPP with several different fluxes and energy distributions E_0 are shown in color over a daytime (a, b) and nighttime (c, d) background ionosphere. Curves without EPP are shown in black. Subfigure (e) is a normalized trace of the precipitating flux along the propagation path.

355 tation patch. The full set of propagation paths used in this work is shown in Fig. 9 (c)
 356 and (d). The goal of the imaging algorithm is to combine the information from each slice
 357 to produce a continuous estimate of the spatially varying ionosphere across the region.
 358 The retrieved ionosphere should be consistent with all of the receiver observations and
 359 have a reasonably realistic spatial correlation.

360 Imaging of the D-region ionosphere using VLF signals is an ill-posed, nonlinear in-
 361 verse problem. To solve it we apply an ensemble Kalman filter (EnKF) algorithm called
 362 the local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007). This algorithm
 363 was previously presented as a method to estimate undisturbed ionospheres (Gasdia &
 364 Marshall, 2019), but a brief overview will be given here. In this work we use an ensem-
 365 ble of $k = 100$ ionospheres \mathbf{x}_b that statistically represent the best estimate of the true
 366 ionosphere prior to any observations being made. The covariance matrix of the ensem-
 367 ble of prior ionospheres is \mathbf{P}_b where subscript b indicates “prior”. The Kalman filter com-
 368 pares real, noisy receiver observations \mathbf{y}_o to LWPC model “observations” $\mathbf{y} = \mathcal{H}(\mathbf{x})$ us-
 369 ing the ensemble ionospheres. Under the assumption that the system can be modeled
 370 with a multivariate Gaussian distribution, the ensemble is adjusted to reduce the mea-
 371 surement residuals according to the relative uncertainty between the prior estimate and
 372 the measurement noise. If \mathbf{X}_b and \mathbf{Y}_b are the zero-mean vectors $\mathbf{x}_b - \bar{\mathbf{x}}_b$ and $\mathbf{y}_b - \bar{\mathbf{y}}_b$,
 373 and the measurement noise covariance is \mathbf{R} , then the LETKF estimate for the ionosphere
 374 \mathbf{x}_a with covariance \mathbf{P}_a after assimilating observations from the receiver array is

$$\mathbf{x}_a = \mathbf{x}_b + \mathbf{X}_b \tilde{\mathbf{P}}_a \mathbf{Y}_b^\top \mathbf{R}^{-1} (\mathbf{y}_o - \mathcal{H}(\mathbf{x}_b)) \quad (8)$$

$$\tilde{\mathbf{P}}_a = ((k-1)\mathbf{I} + \mathbf{Y}_b^\top \mathbf{R}^{-1} \mathbf{Y}_b)^{-1} \quad (9)$$

$$\mathbf{P}_a = \mathbf{X}_b \tilde{\mathbf{P}}_a \mathbf{X}_b^\top. \quad (10)$$

375 The LETKF can also step the state estimate and covariance through time, but this would
 376 require a forecast model describing the time dynamics of both the undisturbed ionosphere
 377 and an unknown disturbance, such as EPP. Instead, this work iterates the measurement
 378 update over a series of noisy array observations to converge to a solution. To prevent the
 379 filter from becoming overconfident, the estimate covariance is inflated by 10% at each
 380 iteration.

381 The state of the ionosphere is represented by a flattened vector of h' and β values
 382 defined at points across a geographic map. Unlike in Gasdia and Marshall (2019), the
 383 points are defined as a grid with 300 km spacing on the North America equidistant conic
 384 projection plane known as ESRI:102010. This projection preserves distance between the
 385 grid points along all meridians and along the 20°N and 60°N parallels. Other projec-
 386 tions could have been chosen; the intent is to distribute the grid points more uniformly
 387 than if they were defined on a grid of geographic latitude and longitude. For input to
 388 LWPC, h' and β values are interpolated from the grid points onto the propagation paths
 389 using a first order polynomial interpolator (Ljungskog, 2021). The interpolator is also
 390 used to produce an estimated ionosphere map at high resolution. Additional discussion
 391 of this technique is given in Gasdia (2021). To localize the influence of receiver measure-
 392 ments on the ionosphere estimate, grid points are only updated using propagation paths
 393 that pass within 600 km. Therefore, grid points near the edge of the map are updated
 394 using only a couple of observations, while grid points near the center of the map use a
 395 large number of observations.

396 The LETKF requires computation of the pre-fit residual amplitude and phase for
 397 each propagation path, $\mathbf{y}_o - \mathcal{H}(\mathbf{x}_b)$. To meaningfully calculate the difference between
 398 real receiver measurements and the LWPC forward model, the model and receivers must
 399 be calibrated so that if the true conditions in the Earth-ionosphere waveguide were per-
 400 fectly known, there would be no difference between the model and the measurements.
 401 In practice this is a challenging requirement for several reasons: we have imperfect knowl-
 402 edge of the waveguide parameters, the forward model has limited resolution and makes
 403 simplifying assumptions about the physics of propagation, and we have limited informa-

404 tion about the VLF transmitters. However, we are actively investigating techniques to
 405 calibrate VLF measurements. The receivers can be cross-calibrated to have the same rel-
 406 ative amplitude response and GPS time signals allow all of them to be synchronized in
 407 phase. The receivers are placed in remote areas away from man-made interference, and
 408 we can measure the transmitted phase by placing an additional reference receiver close
 409 to each transmitter. Recent models for Earth's magnetic field, such as CHAOS (Finlay
 410 et al., 2020), are sufficiently accurate that they no longer introduce significant error into
 411 the forward model during undisturbed conditions (Gasdia, 2021). Analysis of stable day-
 412 time data on each path may enable correction of constant biases due to errors in the ground
 413 conductivity map. There are multiple physical phenomena that cause variability in VLF
 414 propagation besides EPP, particularly at nighttime. Demirkol et al. (1999) correlated
 415 the effect of nighttime EPP on VLF propagation with satellite-borne energetic electron
 416 detectors, and to reduce the influence of other phenomena they averaged the VLF sig-
 417 nal amplitude over three-hour intervals. Similar data averaging could be applied before
 418 assimilation with the LETKF, especially to remove nighttime flutter.

419 Estimating an EPP-disturbed ionosphere without prior knowledge that EPP is oc-
 420 ccurring is difficult and time consuming because of the size of the parameter space that
 421 must be considered (see Section 3). The prior estimate of the ionosphere must be suf-
 422 ficiently close to the truth that the assumptions under which the LETKF ensemble up-
 423 date was derived are not strongly violated. If the state and measurement noise distri-
 424 butions are highly non-Gaussian or the system too nonlinear, then the ensemble adjust-
 425 ment may not decrease the measurement residuals and the ensemble estimate will diverge.
 426 In practice, VLF receiver arrays continuously record transmitter signals, so an estimate
 427 of the undisturbed ionosphere can be made before precipitation begins. This estimate
 428 is already close to the truth across much of the region at the onset of a precipitation event.
 429 The filter is more likely to converge to the correct estimate of the disturbed region if the
 430 pre-precipitation estimate is used as the prior. Although in Section 5 we only use a sin-
 431 gle pre-precipitation estimate as the prior for an ionosphere perturbed by moderate pre-
 432 precipitating flux, future work could make estimates in small time steps as the ionosphere
 433 is perturbed more and more from the initial background.

434 5 Simulated Observation Experiments

435 This section uses simulated VLF observations to demonstrate D-region imaging with
 436 an array of VLF transmitters and receivers. The simulation includes 11 receivers across
 437 the western half of Canada with amplitude and phase observations of both the NML (25.2 kHz)
 438 and NLK (24.8 kHz) transmitters in LaMoure, North Dakota and near Oso, Wash-
 439 ington. Each estimate assimilates six noisy observations and iterates over the LETKF mea-
 440 surement update. Simulated receiver observations are generated using the LMP prop-
 441 agation model. Not only does LMP include electrons and the four ion density profiles
 442 output from GPI, but Gaussian noise with a standard deviation of 0.1 dB in amplitude
 443 and 1° in phase is added to each observation to simulate realistic receiver measurement
 444 noise. It may be necessary to adjust these values to model the noise from real individ-
 445 ual receivers, but in our experience these values are typical of daytime observations. Night-
 446 time data is much more variable, but through temporal averaging it may be reduced to
 447 these levels. LWPC is used as the forward model \mathcal{H} in the LETKF estimate and assumes
 448 an electrons-only Wait and Spies exponential ionosphere parameterized by h' and β .

449 5.1 Exponential Daytime Ionosphere

450 This scenario simulates the truth ionosphere as a geographically-varying Wait and
 451 Spies exponential ionosphere. This is the only scenario presented in this article in which
 452 the state estimate can perfectly capture the true ionosphere and the state estimate er-
 453 ror can be directly quantified. This is because we are estimating the ionosphere as pa-

454 ramentized by h' and β , but the simulations later in this section use a realistic profile
 455 that is not defined as a Wait ionosphere profile. Therefore, although we know the truth
 456 in all of these simulations, this is the only one in which the estimated ionosphere and
 457 truth ionosphere are both defined by h' and β and we can calculate the difference be-
 458 tween them.

459 The geographic variation in this simulation's truth ionosphere is defined by a Fourier
 460 disturbance on top of an ionosphere model presented by Ferguson (1980):

$$h'_F(\phi, \chi, m) = 74.37 - 8.097 \cos \chi + 5.779 \cos \phi - 1.213 \cos(2\pi(m - 0.5)/12) \quad (11)$$

$$\beta_F(\phi, \chi, m) = 0.3849 - 0.1658 \cos \chi - 0.08584 \cos \phi + 0.1296 \cos(2\pi(m - 0.5)/12) \quad (12)$$

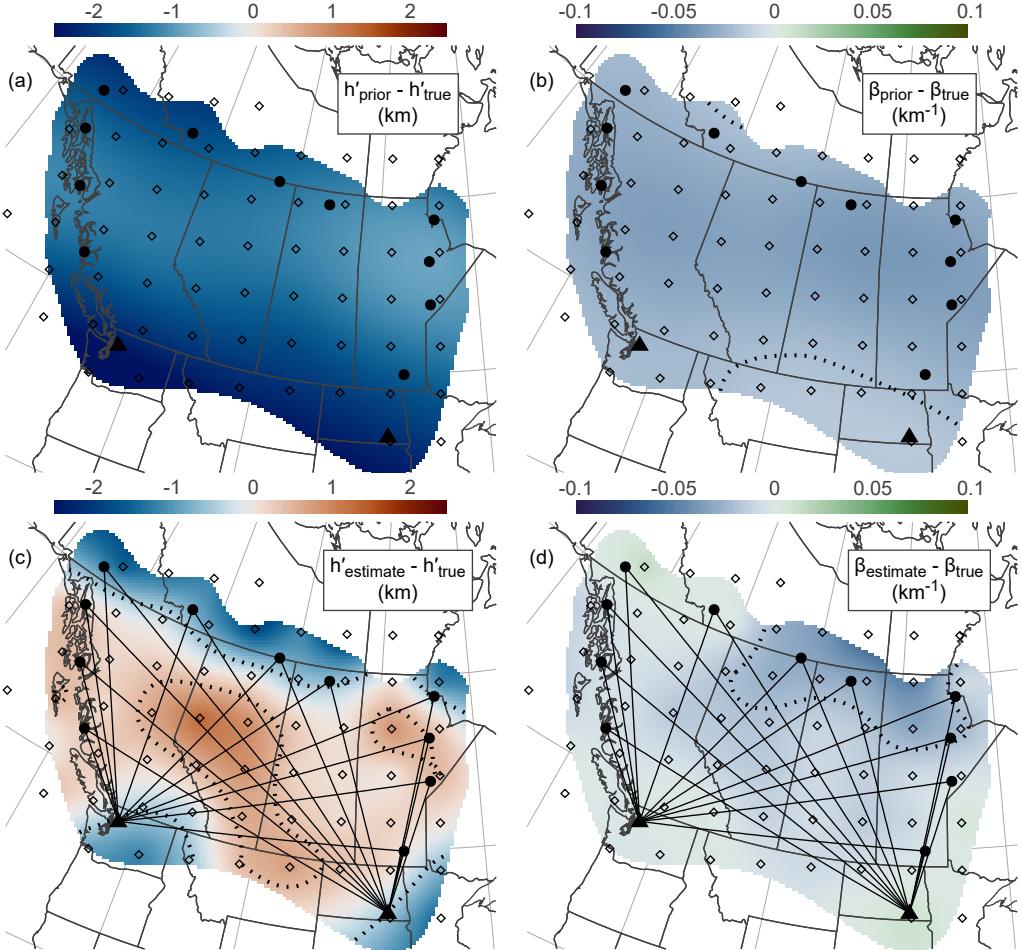
$$h'_d(\chi) = 2.35 + 0.98 \cos(8\chi) - 0.17 \cos(16\chi) - 0.28 \sin(8\chi) + 0.1 \sin(16\chi) \quad (13)$$

$$\beta_d(\chi) = 0.03 + 0.01 \cos(8\chi) + 0.008 \cos(16\chi) - 0.002 \sin(8\chi) - 0.008 \sin(16\chi) \quad (14)$$

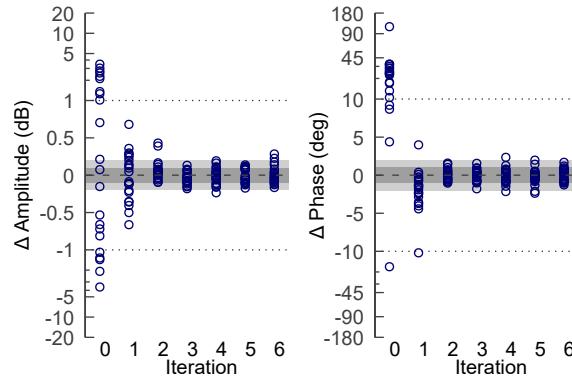
$$h'_{\text{true}}(\phi, \chi, m) = h'_F(\phi, \chi, m) + h'_d(\chi) \quad (15)$$

$$\beta_{\text{true}}(\phi, \chi, m) = \beta_F(\phi, \chi, m) + \beta_d(\chi) \quad (16)$$

461 for geographic latitude ϕ , solar zenith angle χ , and month-of-the-year number m . These
 462 equations are used to compute h' and β every 50 km along each propagation path to build
 463 segmented waveguides for LMP to simulate real observations. They are also used to pro-
 464 duce a map of the ionosphere for comparison with the estimated ionosphere.


465 The prior estimate for the undisturbed ionosphere used in this scenario and else-
 466 where in this work is the Ferguson ionosphere, described by Eqs. (11) and (12). The en-
 467 semble is generated by sampling from a multivariate Gaussian distribution with the Fer-
 468 guson ionosphere as the mean and a standard deviation of 2 km in h' and 0.04 km⁻¹ in
 469 β . Additionally, the covariance matrix has a Gaussian-like spatial correlation with a length-
 470 scale of 600 km, independent between h' and β (Gaspari & Cohn, 1999). This provides
 471 unique spatial structure in each ionosphere of the ensemble. See Gasdia and Marshall
 472 (2019) for additional details.

473 Figure 9 shows the error in the prior and VLF-estimated ionospheres. The prior
 474 h' and β are both biased low across the region and also have some variability across lat-
 475 itude. The estimate removes the overall bias, but the h' map has localized regions of higher
 476 error. The β estimate has low error across the map. Some of this difference is due to the
 477 use of two different propagation models, LMP and LWPC, to generate simulated truth
 478 measurements and LETKF forward model observations. In particular, LMP includes 4
 479 ion species when LWPC assumes an electrons-only ionosphere. This will drive a slight
 480 difference between the estimated and truth ionospheres, even if the forward model runs
 481 match the simulated truth observations.

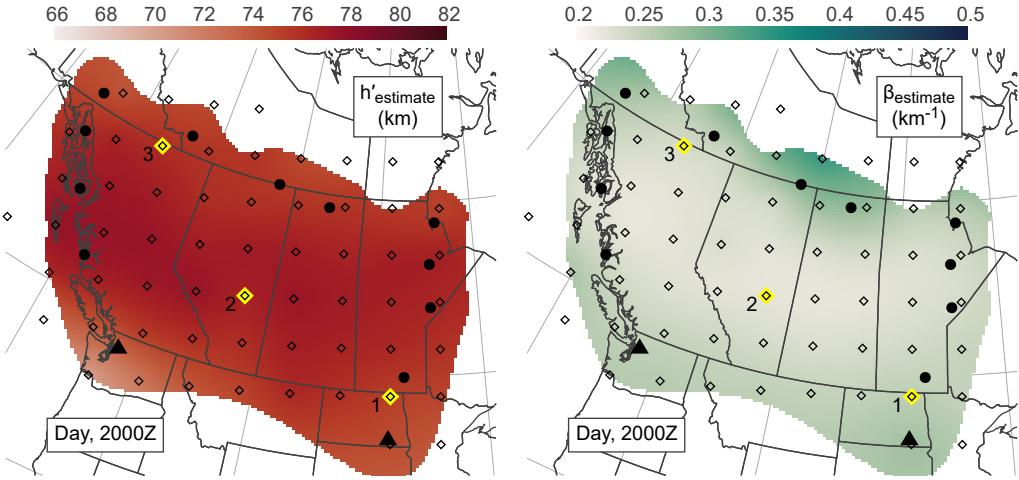

482 Figure 10 shows residuals between the modeled and “true” amplitude and phase
 483 observations for each iteration of the LETKF. Each circle (○) represents the measure-
 484 ment residual for a single propagation path. Iteration 0 is the difference between the ob-
 485 servations modeled with the prior ionosphere and the first observation. All other iter-
 486 ations have post-fit residuals such that iteration 6 is the difference between the obser-
 487 vations modeled with the estimate after six iterations of the LETKF and the sixth “real”
 488 observation. By the third iteration of the LETKF, both the amplitude and phase resid-
 489 uals are within about 2σ of the measurement noise, meaning the filter estimate is con-
 490 sistent with the observations down to the Gaussian noise that was added to the simu-
 491 lated truth observations. This same analysis can be performed with real data, when the
 492 truth is unknown, to determine if the real observations can be reproduced with the es-
 493 timated ionosphere.

494 5.2 Realistic Daytime Ionosphere

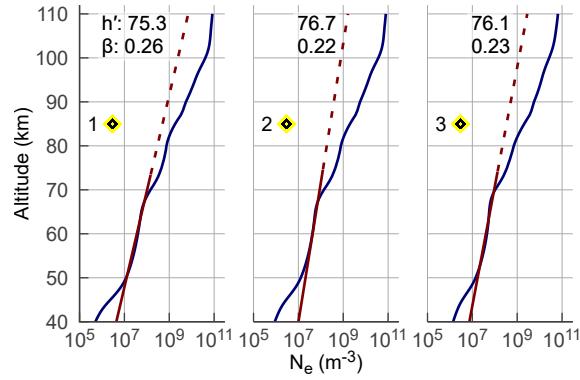
495 The first step to imaging an EPP precipitation patch is to estimate the undisturbed
 496 ionosphere before precipitation begins. This estimate is then used as the prior estimate

Figure 9. Top: difference between the prior and true ionosphere h' (a) and β (b) when the truth is defined using Wait's exponential ionosphere profile. Dotted lines on the error maps are $0.5 \text{ km } h'$ and $0.05 \text{ km}^{-1} \beta$ contours. Bottom: error in the LETKF estimated ionosphere. The black lines crisscrossing the map represent each of the VLF propagation paths from transmitters (\blacktriangle) to receivers (\bullet) with observations assimilated into the LETKF. The open diamonds (\diamond) are the geographic points at which h' and β values are specified. The rest of the map is constructed by interpolation between those points.

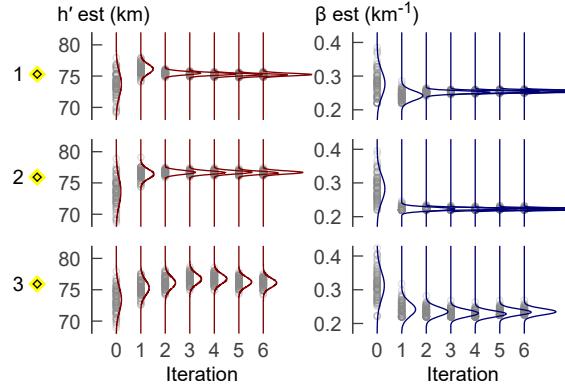
Figure 10. Signal amplitude (left) and phase (right) residuals between model observations of the estimated ionospheres and simulated truth observations for each propagation path using the daytime Wait and Spies truth ionosphere. The vertical axis of both plots is linear inside the horizontal dotted lines and logarithmic outside to better display the wide range of values. The gray shaded regions represent $\pm 1\sigma$ and $\pm 2\sigma$ of typical measurement noise.


for data with a precipitation event. In this section we estimate an undisturbed daytime ionosphere at 2020-03-01 2000Z, but unlike the previous section, the simulated truth observations are generated using realistic ionosphere profiles from the process shown in Fig. 3. The LETKF estimate parameterizes the ionosphere using h' and β defined at grid points across the map. As such, it is not possible to quantify the error in the same way as Fig. 9, since there is no “truth” map in h' and β .

Beginning with the same Ferguson prior as used in Section 5.1 and iterating the LETKF over six noisy observations results in the estimate shown in Fig. 11. Both h' and β vary slowly across the map and have typical daytime values of about $77\text{ km } h'$ and $0.23\text{ km}^{-1} \beta$. Although the propagation paths are not plotted on the maps, there is a difference in the estimate along the edge of the map, where information is provided by only one or two receivers, and the middle of the array, where the estimate must be consistent with several receiver observations. A map of the statistical confidence based on the state covariance would reflect this lower level of information around the edge of the map by showing greater uncertainty in the estimate there.


Plots of the true and estimated electron density profile at three locations across the map are shown in Fig. 12. The Wait and Spies estimate at all three locations is a close fit to the true profile between 50 km and 70 km altitude. The Wait profile is dashed in Fig. 12 above the height at which much of the wave reflection has occurred (Ratcliffe, 1959). It is not expected to be a close match to the true profile above this height, which is approximately 75 km in Fig. 12.

The h' and β ensemble distributions at those same locations numbered 1, 2, and 3, are plotted in Fig. 13. The prior ensemble was chosen to have a high standard deviation because there is a large uncertainty that the Ferguson ionosphere accurately represents the truth. The ensemble distribution narrows as observations are assimilated into the estimate by the LETKF, signifying greater confidence in the estimate. The ensemble distributions at location 3 are relatively wide compared to locations 1 and 2 because fewer propagation paths provide information to the measurement update there.


A more robust way of assessing the accuracy of the filter estimate is to examine the measurement residuals, shown in Fig. 14. As in the Wait and Spies exponential truth scenario, the residuals are within two standard deviations of both the amplitude and phase

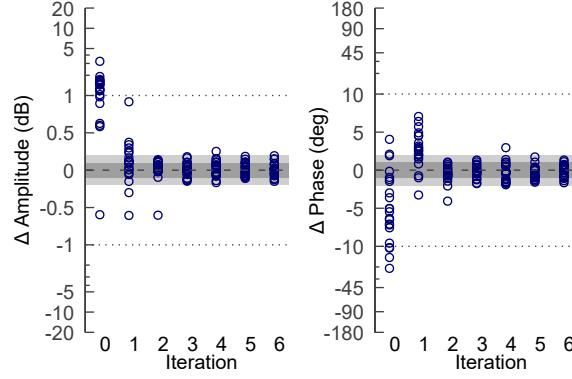

Figure 11. Realistic daytime ionosphere estimate after six LETKF iterations.

Figure 12. True and estimated (exponential) profiles at the locations labeled 1, 2, and 3 and highlighted yellow in Fig. 11. The estimated profiles are plotted with dashed lines above the approximate wave reflection height. The h' and β parameters of the estimated profiles are indicated at the top of each plot.

Figure 13. Ensemble distributions of h' (left) and β (right) at each iteration of the LETKF sampled at the locations marked 1, 2, and 3 in Fig. 11.

Figure 14. Measurement residuals between the estimated ionosphere model observations and simulated daytime truth observations at each iteration of the LETKF.

Table 1. Super-Gaussian parameters from Eq. (4) used to describe the daytime EPP patches in scenarios (a)–(d).

	Scenario			
	(a)	(b)	(c)	(d)
p ($e^-/cm^2/s$)	10^5	10^5	10^4	10^4
ϕ_0	55° N	55° N	58° N	52° N
λ_0	110° W	120° W	125° W	100° W
σ_ϕ	1.5°	1.3°	1.5°	0.6°
σ_λ	3°	11°	12°	6°
θ	0°	1.5°	-3°	0°

measurement noise by the third iteration of the filter. This demonstrates that the estimated ionosphere is consistent with the observations.

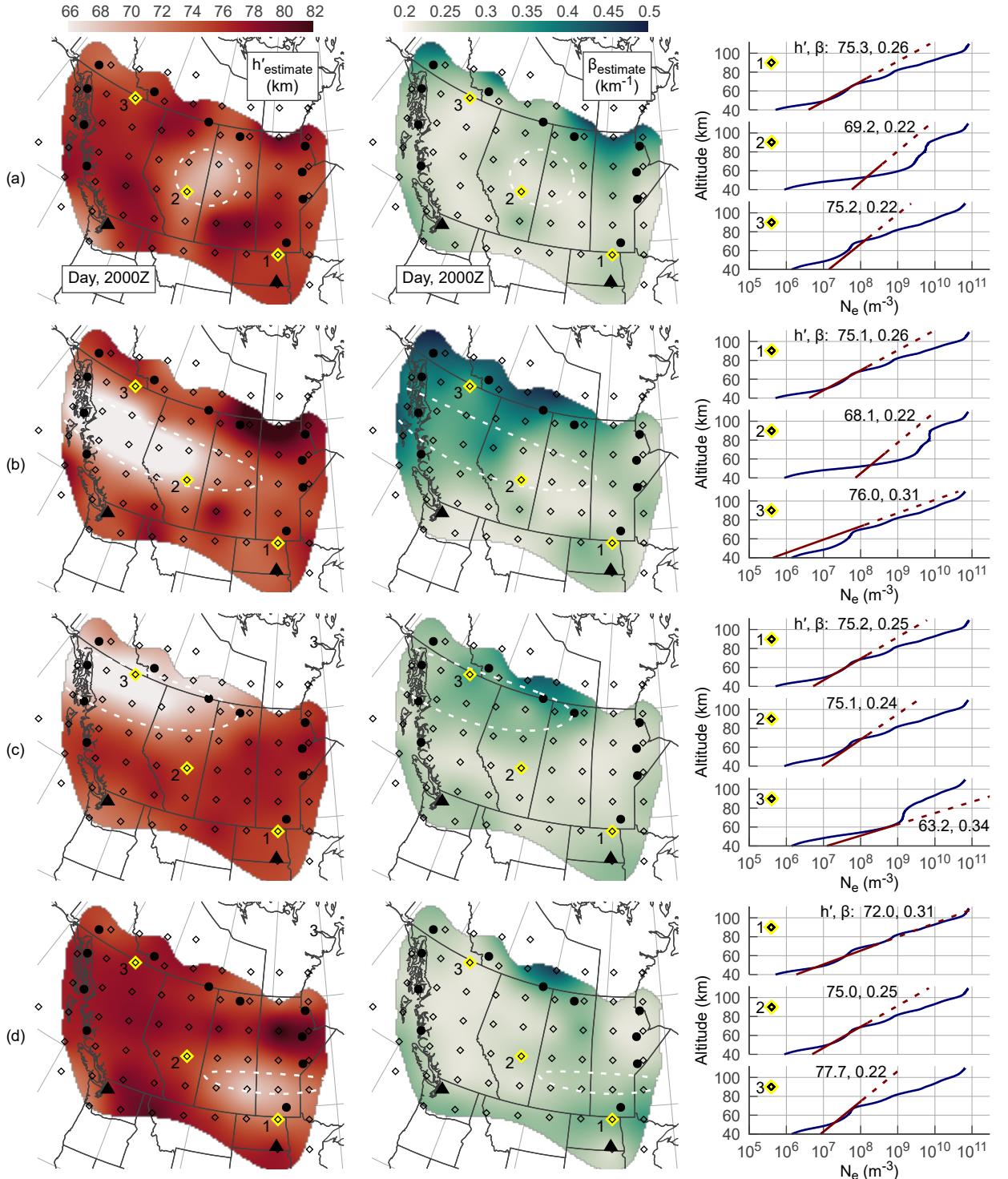
5.3 EPP-Disturbed Daytime Ionosphere

In this section we present four scenarios with EPP occurring in local daytime at 2020-03-01 2000Z. Each precipitation patch is modeled as a super-Gaussian (Eq. (4)) with parameters summarized in Table 1. All of the scenarios use precipitation with an exponential energy distribution having $E_0 = 200$ keV. Truth ionosphere profiles are generated using the process described in Section 3.2. The LETKF prior ionosphere is the estimate of the nighttime ionosphere without EPP, shown in Fig. 11, and the filter has no *a priori* knowledge that EPP is occurring. The covariance matrix used to generate the ensemble is the same one used in Section 5.1 and Section 5.2.

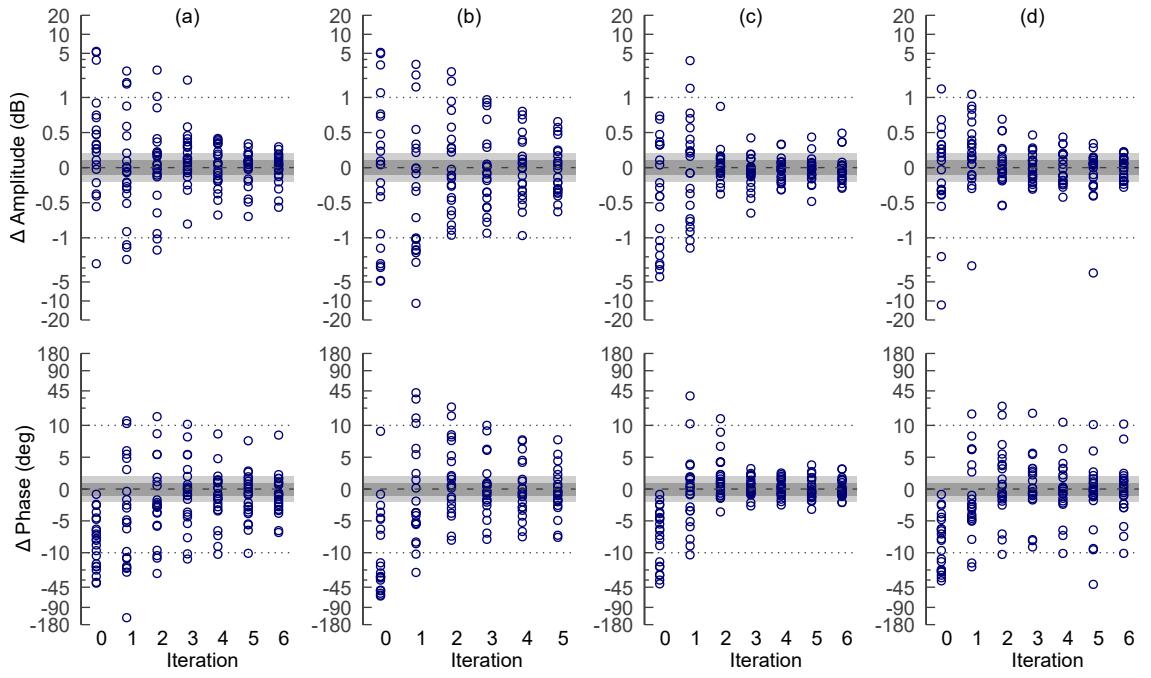
The results of iterating the LETKF over six noisy array observations for each of the precipitation scenarios (a)–(d) are shown in Fig. 15. The dashed white line on the h' and β estimate maps is the true $10^3 e^-/cm^2/s$ precipitating flux contour for each scenario. In all four of the h' estimate maps, the h' estimate in the precipitation region is lower than the surrounding h' estimate, indicating the presence of a significant ionospheric disturbance in that location. Based on the results of Section 3.1, precipitating flux of 10^4 to $10^5 e^-/cm^2/s$ produces an ionosphere with an effective h' of about 60 km and an effective β of $0.5 km^{-1}$. The LETKF estimate approaches this low h' value for the two largest precipitation patches in scenarios (b) and (c). The β estimates, however, show little structure that is consistent with a precipitation patch. Estimates for scenarios (b)

549 and (c) may have a slight increase in β in the patch region, but there is variation of β
 550 across the map. This is at least partially explained by the relatively low sensitivity of
 551 subionospheric VLF observations to β , previously shown in Section 3.

552 Also shown in Fig. 15 are the true and estimated ionosphere profiles at three ge-
 553 ographic locations for each of the precipitation scenarios. In every scenario, location 1
 554 is outside of the precipitation region and the estimated profile is a good match to the
 555 true profile between at least 50 to 70 km altitude. In scenarios (a) and (b), location 2
 556 is inside the precipitation region, and in scenario (c), location 3 is inside the precipita-
 557 tion region. Although the h' estimate maps indicate a disturbed ionosphere, the estimated
 558 exponential profiles are not a very good match to the true EPP-disturbed profiles. The
 559 profile mismatch is dominated by the difference between the estimated and “true” β , as-
 560 suming that the estimated profile should fit the true profile between a number density
 561 of 10^7 and $10^9 \text{ e}^-/\text{m}^3$, where it fit in Section 3.2. The scenario (c) location 3 estimate
 562 is closest to the true profile, but only just below the reflection height at 60 km.


563 Measurement residuals for each of the precipitation scenarios are shown in Fig. 16.
 564 The residuals decrease with each iteration, but unlike the estimates made in Sections 5.1
 565 and 5.2, none of the estimates result in both amplitude and phase residuals fitting the
 566 measurement noise level. This suggests there is some error in the estimates, which is con-
 567 sistent with the maps shown in Fig. 15. Although it may be possible to run the LETKF
 568 for additional iterations, the filter diverged for scenario (b) after only 5 iterations. This
 569 may have been the result of the filter estimate becoming statistically overconfident rel-
 570 ative to the magnitude of the measurement residuals, or one of the ensemble ionospheres
 571 may not have been suitable for LWPC. Underestimation of the state covariance by en-
 572 semble Kalman filters is an active research area, but may be improved in future work
 573 by implementing additive covariance inflation between iterations or cross validation of
 574 the ensemble members in the LETKF measurement update (Houtekamer & Zhang, 2016;
 575 Buehner, 2020). If LWPC is the problem, it could be replaced with LMP as the LETKF
 576 forward model because LMP is more robust to atypical ionosphere profiles.

577 5.4 Realistic Nighttime Ionosphere


578 This section is the nighttime counterpart to Section 5.2. Realistic ionosphere pro-
 579 files are generated for 2020-03-02 0500Z and no EPP is present. The prior ionosphere
 580 is the Ferguson model and the same covariance is used to generate the ensemble mem-
 581 bers as in the other simulated observation experiments. The h' and β estimate maps af-
 582 ter iterating the LETKF over six array observations are shown in Fig. 17.

583 Unlike the daytime estimate, the nighttime estimate maps for h' and β have a sig-
 584 nificant amount of spatial structure and variation. The truth profiles were generated us-
 585 ing the process shown in Fig. 3 and include no other disturbances, so the estimate maps
 586 should have very little variation. Instead, the h' estimate ranges from 76 to 95 km and
 587 the β estimate ranges from 0.27 to 0.7 km^{-1} . Additionally, the spatial structure between
 588 the h' and β maps is not correlated.

589 If this estimate were produced using real measurements and the true state of the
 590 ionosphere was unknown, the measurement residuals would be used to validate the es-
 591 timate. Residuals for this scenario are shown in Fig. 18. The residuals at the final iter-
 592 ation are well outside of the measurement noise, indicating that the final estimate is not
 593 a good fit to the observations. In fact, the residuals improve very little at each iteration.
 594 The LETKF updates did not move the ensemble much closer to the true ionosphere. Sim-
 595 ilarly poor estimates were obtained when the simulated truth observations were gener-
 596 ated for different times throughout the night. Estimates made for additional realistic night-
 597 time ionospheres are shown in Appendix A. The high residuals associated with these undis-
 598 turbed nighttime estimates makes them unsuitable as a prior for estimating EPP at night-

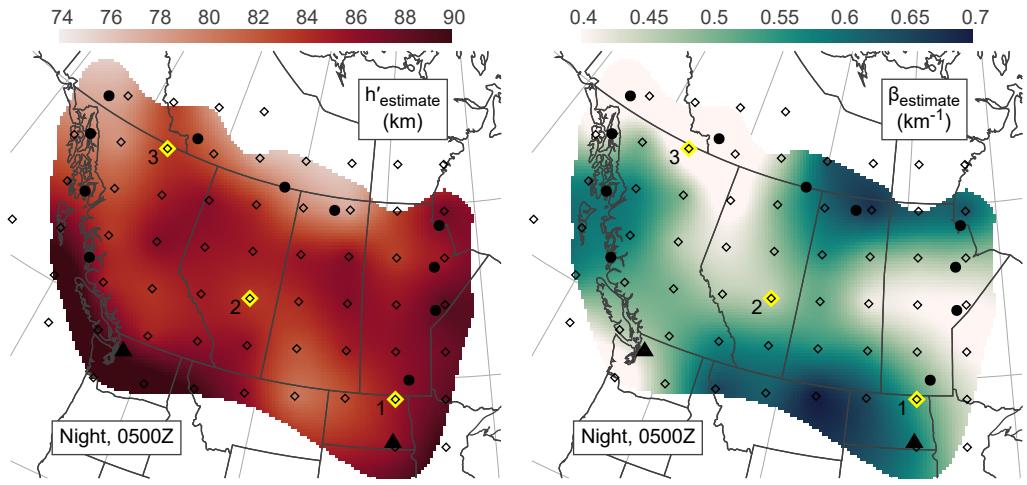


Figure 15. Estimated ionosphere h' (left column) and β (middle column) for 4 different EPP patches labeled (a) through (d). The $10^3 \text{ e}^-/\text{cm}^2/\text{s}$ precipitating flux contour is traced with a dashed white line. The right column shows the true electron density in blue and estimated profile in red at the points labeled 1, 2, and 3 and highlighted yellow on the maps.

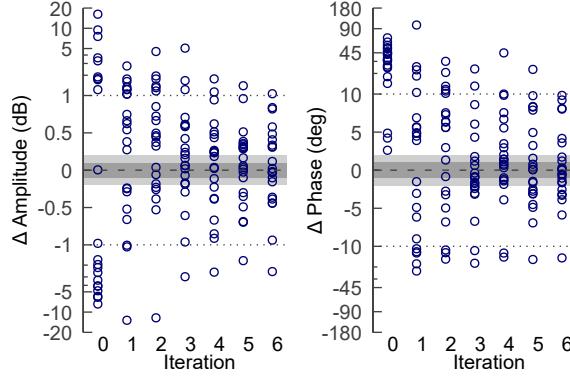


Figure 16. Signal amplitude (top) and phase (bottom) residuals between the estimated ionosphere model observations and simulated truth observations at each iteration of the LETKF.

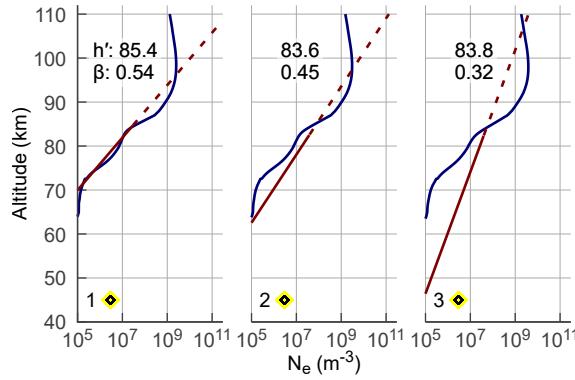

Columns (a)–(d) correspond to precipitation scenarios (a)–(d).

Figure 17. Estimated h' (left) and β (right) after six LETKF iterations over observations simulated with a realistic nighttime ionosphere.

Figure 18. Measurement residuals between the estimated ionosphere model observations and simulated nighttime truth observations at each iteration of the LETKF.

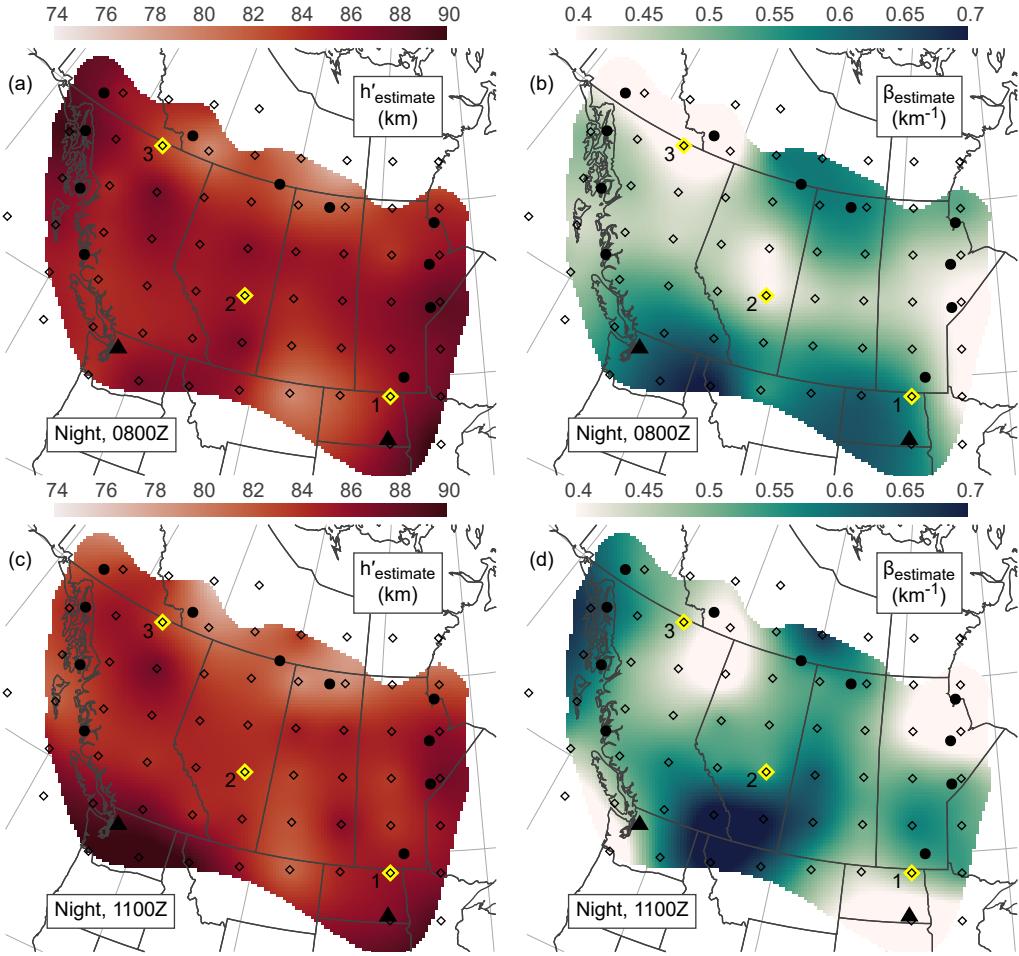
Figure 19. True electron density profile in blue and Wait exponential ionosphere estimates in red at locations 1, 2, and 3 marked with yellow diamonds in Fig. 17.

time. Although not shown, the LETKF frequently diverged at the first or second iteration for nighttime EPP scenarios.

Figure 19 shows the true and estimated ionosphere profiles at the three locations marked 1, 2, and 3 on Fig. 17. The true nighttime profile is significantly different from the daytime profile. Whereas the daytime profile is approximately exponential between 10^7 and $10^8 \text{ e}^-/\text{m}^3$ at 50 to 70 km altitude, the nighttime profile has a sharp knee at $10^7 \text{ e}^-/\text{m}^3$. The LETKF estimate is attempting to fit the nighttime profile between 10^5 and $10^7 \text{ e}^-/\text{m}^3$. This region of the profile has some structure, but is roughly fit by an exponential with a β of 0.5 km^{-1} , which is approximately the mean of the prior ionosphere. Because the prior ensemble is generated with a standard deviation of $\sigma_\beta = 0.04 \text{ km}^{-1}$, the β estimate is weighted towards staying near 0.5 km^{-1} . The slope of the true profile between 10^7 and $10^9 \text{ e}^-/\text{m}^3$ has a β of about 1 km^{-1} . This is too many standard deviations away from the prior ensemble distribution for the filter to consider.

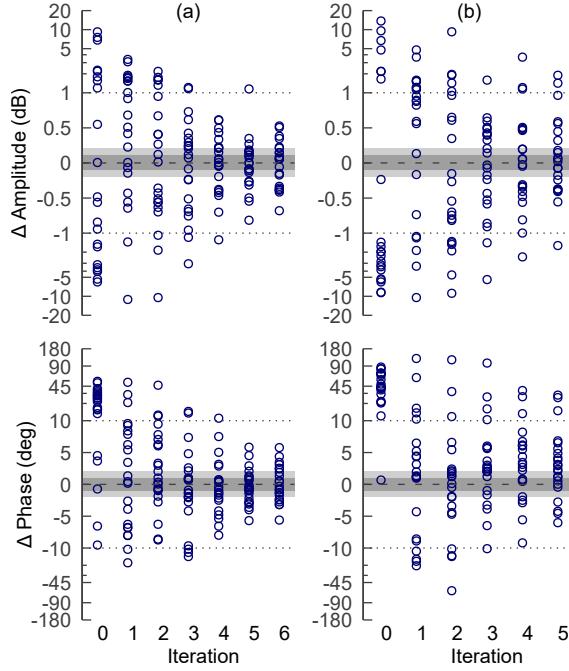
In a separate experiment (see Appendix B), we adjusted the prior so that h' used the Ferguson model, Eq. (11), but β used a mean of 0.9 km^{-1} . The estimate generated using this alternative prior was no better than the fully Ferguson prior. The β estimate decreased from 0.9 km^{-1} to about 0.5 km^{-1} across much of the map. This suggests that the exponential Wait and Spies profile may not sufficiently capture the true ionosphere profile as observed by subionospheric VLF signals. Future work should consider explor-

618 ing the feasibility of representing the ionosphere profile with a higher fidelity model, such
 619 as the four-parameter models of McCormick and Cohen (2021) or Xu et al. (2021) to pro-
 620 vide better fits.


621 6 Conclusions

622 In this article we have simulated the subionospheric propagation of narrowband VLF
 623 signals through ionospheres disturbed by energetic particle precipitation (EPP). High
 624 precipitating flux can significantly lower the effective height of the D-region ionosphere.
 625 When fit to an exponential Wait ionosphere profile, the h' of an ionosphere disturbed
 626 by EPP can decrease by 20 km compared to the undisturbed ionosphere. Fits of VLF
 627 amplitude and phase between realistic ionospheres disturbed by EPP and Wait ionospheres
 628 suggest that it may be possible to identify the magnitude of precipitating flux but not
 629 the energy distribution. We have applied the local ensemble transform Kalman filter (LETKF)
 630 to image four simulated EPP patches with a distributed array of VLF receivers. This
 631 method shows promise for identifying the presence and spatial extent of particle precip-
 632 itation in daytime. This is primarily indicated by the estimation of regions with signif-
 633 icantly perturbed h' . The estimated β maps do not strongly correlate with regions of pre-
 634 cipitation. Although we only explored four precipitation scenarios, the estimates did not
 635 clearly retrieve the two different precipitating flux levels that were used across the sce-
 636 narios. This is likely because the inversion problem is underdetermined and the retrieval
 637 balances the size of the precipitation region with the degree of disturbance. Nonethe-
 638 less, application of the LETKF technique to real VLF array data could be used to au-
 639 tomatically determine when and where energetic particle precipitation is occurring. We
 640 used an estimate of the undisturbed ionosphere as the prior for an estimate with mod-
 641 erate precipitating flux, but future work could estimate the ionosphere in several steps
 642 as the precipitating flux increases from the background. This would result in the filter
 643 making smaller adjustments to the estimate update and remain closer to the linear pro-
 644 cess assumptions under which the Kalman filter was originally derived.

645 Estimation of the Wait and Spies parameters for nighttime ionospheres is challeng-
 646 ing using narrowband subionospheric VLF signals. VLF observations are less sensitive
 647 to the high β , rapid increases in electron density with altitude that are typical of night-
 648 time ionospheres. Additionally, nighttime ionosphere profiles have structure that are not
 649 well captured by a single exponential Wait and Spies profile. Higher fidelity represen-
 650 tations of the estimated ionosphere and temporal averaging of VLF receiver measure-
 651 ments should be considered to improve estimation of the nighttime D-region. Applica-
 652 tion of the LETKF to real data is further complicated by the requirement that the for-
 653 ward model be calibrated to the measurements. The receiver array must be referenced
 654 to the transmitter signal amplitude and phase. Errors in the ground conductivity map
 655 and magnetic field model also corrupt the estimate. In future experiments to test this
 656 methodology, we plan to overcome these challenges by placing reference receivers nearby
 657 the transmitters and by incorporating high fidelity auxiliary models into the forward prop-
 658 agation model. The approach taken in this work to simulate realistic ionosphere profiles
 659 begins to demonstrate a procedure that could be used to generate a realistic prior, or
 660 be used by the forward model when estimating with real data.


661 Appendix A Additional nighttime estimates

662 Section 5.4 applied the LETKF to observations simulated for a typical undisturbed
 663 ionosphere at 2020-03-02 0500Z, early nighttime on the west coast of British Columbia.
 664 The measurement residuals of the estimate are above the measurement noise and the es-
 665 timated h' and β maps exhibit significant spatial variation. This section presents the re-
 666 sults of applying the LETKF to observations simulated at two different times of night:
 667 (a) 2020-03-02 0800Z, midnight on the west coast, and (b) 2020-03-02 1100Z. The es-

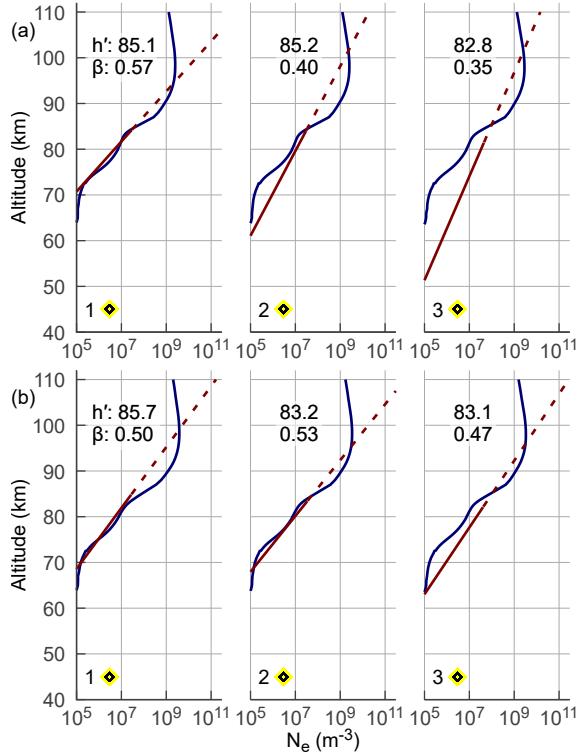
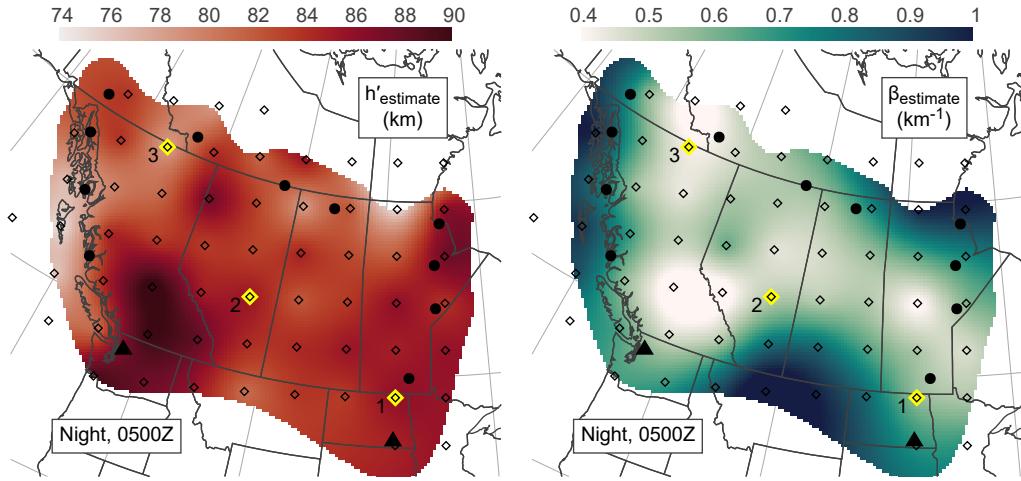


Figure A1. Estimated h' and β after six iterations of the LETKF. Subfigures (a) and (b) are for data simulated at 2020-03-02 0800Z and subfigures (c) and (d) are for data simulated at 2020-03-02 1100Z.


668 estimates at these times continue to exhibit spatial variability (Fig. A1) and relatively high
 669 measurement residuals (Fig. A2). The true nighttime profiles have structure that is not
 670 captured by the exponential Wait profile estimated by the LETKF (Fig. A3).

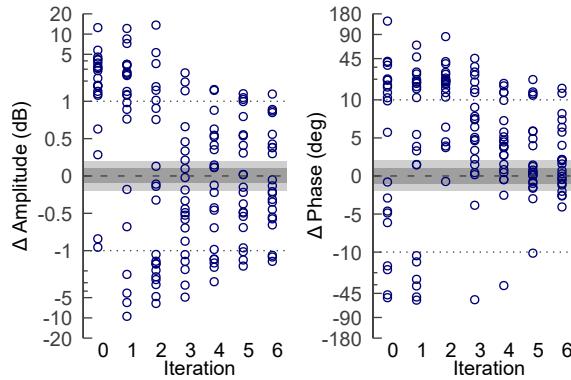

Figure A2. Amplitude (top) and phase (bottom) measurement residuals at each iteration of the LETKF for nighttime observations simulated at (a) 2020-03-02 0800Z and (b) 2020-03-02 1100Z.

Figure A3. True and exponential estimated electron density profiles at the locations marked 1, 2, and 3 on Fig. A1 for observations simulated at (a) 2020-03-02 0800Z and (b) 2020-03-02 1100Z.

Figure B1. Estimated h' and β after six LETKF iterations of the nighttime ionosphere using a prior with constant $\beta = 0.9 \text{ km}^{-1}$. Note the expanded color scale used in the β map compared to the other nighttime β maps.

Figure B2. Measurement residuals at each iteration of the nighttime LETKF estimate using a prior with constant $\beta = 0.9 \text{ km}^{-1}$.

671 Appendix B Alternative nighttime prior

672 Realistic nighttime ionosphere profiles are fit by an exponential profile with $\beta \approx$
 673 1 km^{-1} between electron densities of 10^7 and $10^9 \text{ e}^-/\text{m}^3$. In this section we present LETKF
 674 estimates for nighttime at 2020-03-02 0500Z that use a prior h' defined by the Ferguson
 675 model, Eq. (11), and a constant $\beta = 0.9 \text{ km}^{-1}$. Figure B1 shows that the estimated h'
 676 has spatial structure that is not in the truth. The β estimate across the middle of the
 677 map decreases to approximately 0.5 km^{-1} . The residuals, shown in Fig. B2, remain high.

678 Open Research

679 Data used to generate the figures in this article are available from Gasdia and Mar-
 680 shall (2022) at <https://zenodo.org/record/6549156>. Software to run the simulated
 681 observation experiments is available primarily in Gasdia (2022b) at <https://github.com/>
 682 [fgasdia/Imaging-EPP-with-VLF](https://github.com/fgasdia/Imaging-EPP-with-VLF) and uses libraries in Gasdia (2022d, 2022a, 2022c, 2022e).
 683 For additional questions regarding the code, please contact the corresponding author at
 684 Forrest.Gasdia@colorado.edu.

685 **Acknowledgments**

686 This project was supported in part by a fellowship award through the National Defense
 687 Science and Engineering (NDSEG) Graduate Fellowship Program, sponsored by the Air
 688 Force Research Laboratory (AFRL), the Office of Naval Research (ONR), and the Army
 689 Research Office (ARO), and by NSF CAREER award AGS 2044846.

690 **References**

691 Anderson, B. R., Shekhar, S., Millan, R. M., Crew, A. B., Spence, H. E., Klumpar,
 692 D. M., ... Turner, D. L. (2017, June). Spatial scale and duration of one mi-
 693 croburst region on 13 August 2015. *Journal of Geophysical Research: Space
 694 Physics*, 122(6), 5949–5964. doi: 10.1002/2016ja023752

695 Angelopoulos, V., Tsai, E., Bingley, L., Shaffer, C., Turner, D. L., Runov, A., ...
 696 Zhang, G. Y. (2020, July). The ELFIN mission. *Space Science Reviews*,
 697 216(5), 103. doi: 10.1007/s11214-020-00721-7

698 Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang,
 699 X. (2017). International Reference Ionosphere 2016: From ionospheric cli-
 700 mate to real-time weather predictions. *Space Weather*, 15(2), 418–429. doi:
 701 10.1002/2016sw001593

702 Blake, J. B., & O'Brien, T. P. (2016, April). Observations of small-scale latitudinal
 703 structure in energetic electron precipitation. *Journal of Geophysical Research: Space
 704 Physics*, 121(4), 3031–3035. doi: 10.1002/2015ja021815

705 Blum, L. W., & Breneman, A. W. (2020). Observations of radiation belt losses due
 706 to cyclotron wave-particle interactions. In *The Dynamic Loss of Earth's Radia-
 707 tion Belts* (pp. 49–98). Elsevier. doi: 10.1016/b978-0-12-813371-2.00003-2

708 Buehner, M. (2020, June). Local ensemble transform Kalman filter with cross vali-
 709 dation. *Monthly Weather Review*, 148(6), 2265–2282. doi: 10.1175/mwr-d-19
 710 -0402.1

711 Chagas, R. A. J., de Sousa, F. L., Louro, A. C., & dos Santos, W. G. (2019, March).
 712 Modeling and design of a multidisciplinary simulator of the concept of opera-
 713 tions for space mission pre-phase A studies. *Concurrent Engineering*, 27(1),
 714 28–39. doi: 10.1177/1063293X18804006

715 Chakraborty, S., Palit, S., Ray, S., & Chakrabarti, S. K. (2016, February). Modeling
 716 of the lower ionospheric response and VLF signal modulation during a total
 717 solar eclipse using ionospheric chemistry and LWPC. *Astrophysics and Space
 718 Science*, 361(2), 72. doi: 10.1007/s10509-016-2660-0

719 Clilverd, M. A., Rodger, C. J., McCarthy, M., Millan, R., Blum, L. W., Cobbett,
 720 N., ... Halford, A. J. (2017, January). Investigating energetic electron
 721 precipitation through combining ground-based and balloon observations.
 722 *Journal of Geophysical Research: Space Physics*, 122(1), 534–546. doi:
 723 10.1002/2016ja022812

724 Clilverd, M. A., Rodger, C. J., Thomson, N. R., Brundell, J. B., Ulich, T., Licht-
 725 enberger, J., ... Turunen, E. (2009). Remote sensing space weather
 726 events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF At-
 727 mospheric Research Konsortium network. *Space Weather*, 7(4). doi:
 728 10.1029/2008sw000412

729 Clilverd, M. A., Thomson, N. R., & Rodger, C. J. (1999). Sunrise effects on VLF
 730 signals propagating over a long north-south path. *Radio Science*, 34(4), 939–
 731 948. doi: 10.1029/1999rs900052

732 Crew, A. B., Spence, H. E., Blake, J. B., Klumpar, D. M., Larsen, B. A., O'Brien,
 733 T. P., ... Widholm, M. (2016, June). First multipoint in situ observations
 734 of electron microbursts: Initial results from the NSF FIREBIRD II mission.
 735 *Journal of Geophysical Research: Space Physics*, 121(6), 5272–5283. doi:
 736 10.1002/2016ja022485

737 Cully, C. M., Chaddock, D., Daniel, C., Davis, E., Galts, D., McGuffin, N., ... Wil-

738 son, C. (2014, December). Early results on energetic particle precipitation
 739 observed by the ABOVE instrument array. *AGU Fall Meeting Abstracts, 2014*,
 740 SA13B-3997.

741 Demirkol, M. K., Inan, U. S., Bell, T. F., Kanekal, S. G., & Wilkinson, D. C. (1999).
 742 Ionospheric effects of relativistic electron enhancement events. *Geophysical Re-
 743 search Letters*, 26(23), 3557–3560. doi: 10.1029/1999GL010686

744 Ferguson, J. A. (1980, February). *Ionospheric profiles for predicting nighttime
 745 VLF/LF propagation* (techreport No. NOSC/TR-530). San Diego, CA: Naval
 746 Ocean Systems Center.

747 Ferguson, J. A. (1992, November). *A review of the ionospheric model for the Long
 748 Wave Prediction Capability* (techreport No. NCCOSC/RDT/E-TD-2393). San
 749 Diego, CA: Naval Command, Control, and Ocean Surveillance Center.

750 Ferguson, J. A. (1998, May). *Computer programs for assessment of long-wavelength
 751 radio communications, version 2.0: User's guide and source files* (techreport
 752 No. 3030). San Diego, CA: Space and Naval Warfare Systems Center.

753 Finlay, C. C., Kloss, C., Olsen, N., Hammer, M. D., Tøffner-Clausen, L., Grayver,
 754 A., & Kuvshinov, A. (2020, December). The CHAOS-7 geomagnetic field
 755 model and observed changes in the South Atlantic Anomaly. *Earth, Planets
 756 and Space*, 72(1), 1–31. doi: 10.1186/s40623-020-01252-9

757 Friedrich, M., Pock, C., & Torkar, K. (2018, August). FIRI-2018, an updated em-
 758 pirical model of the lower ionosphere. *Journal of Geophysical Research: Space
 759 Physics*, 123(8), 6737–6751. doi: 10.1029/2018ja025437

760 Friedrich, M., & Torkar, K. M. (2001). FIRI: A semiempirical model of the lower
 761 ionosphere. *Journal of Geophysical Research: Space Physics*, 106(A10), 21409–
 762 21418. doi: 10.1029/2001ja900070

763 Gasdia, F. (2021). *Imaging the D-region ionosphere with subionospheric VLF signals*
 764 (phdthesis). University of Colorado Boulder.

765 Gasdia, F. (2022a). *EPPIonization.jl* [Software]. Zenodo. Retrieved from <https://github.com/fgasdia/EPPIonization.jl> doi: 10.5281/zenodo.6549109

766 Gasdia, F. (2022b). *FaradayInternationalReferenceIonosphere.jl* [Soft-
 767 ware]. Zenodo. Retrieved from <https://github.com/fgasdia/FaradayInternationalReferenceIonosphere.jl> doi: 10.5281/zenodo
 768 .6544857

769 Gasdia, F. (2022c). *Imaging-EPP-with-VLF.jl* [Software]. Zenodo. Retrieved from
 770 <https://github.com/fgasdia/Imaging-EPP-with-VLF> doi: 10.5281/zenodo
 771 .6549121

772 Gasdia, F. (2022d). *LongwaveModePropagator.jl* [Software]. Retrieved from
 773 <https://github.com/fgasdia/LongwaveModePropagator.jl>

774 Gasdia, F. (2022e). *SubionosphericVLFInversionAlgorithms.jl* [Soft-
 775 ware]. Zenodo. Retrieved from <https://github.com/fgasdia/SubionosphericVLFInversionAlgorithms.jl> doi: 10.5281/zenodo.6549127

776 Gasdia, F., & Marshall, R. A. (2019). Assimilating VLF transmitter ob-
 777 servations with an LETKF for spatial estimates of the D-region iono-
 778 sphere. *IEEE Transactions on Geoscience and Remote Sensing*, 1–18. doi:
 779 10.1109/TGRS.2019.2957716

780 Gasdia, F., & Marshall, R. A. (2021, June). A new longwave mode propagator for
 781 the Earth-ionosphere waveguide. *IEEE Transactions on Antennas and Propa-
 782 gation*, 1–14. doi: 10.1109/tap.2021.3083753

783 Gasdia, F., & Marshall, R. A. (2022). *A method for imaging energetic particle pre-
 784 cipitation with subionospheric VLF signals* [Dataset]. Zenodo. doi: 10.5281/
 785 ZENODO.6549156

786 Gaspari, G., & Cohn, S. E. (1999, January). Construction of correlation functions in
 787 two and three dimensions. *Quarterly Journal of the Royal Meteorological Soci-
 788 ety*, 125(554), 723–757. doi: 10.1002/qj.49712555417

789 Ghaffari, R., Cully, C. M., Turner, D. L., & Reeves, G. D. (2020, November). Char-
 790

acteristics of electron precipitation during 40 energetic electron injections inferred via subionospheric VLF signal propagation. *Journal of Geophysical Research: Space Physics*, 125(LA-UR-20-24385). doi: 10.1029/2019ja027233

Glukhov, V. S., Pasko, V. P., & Inan, U. S. (1992). Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. *Journal of Geophysical Research: Space Physics*, 97(A11), 16971–16979. doi: 10.1029/92ja01596

Houtekamer, P. L., & Zhang, F. (2016, June). Review of the ensemble Kalman filter for atmospheric data assimilation. *Monthly Weather Review*, 144(12), 4489–4532. doi: 10.1175/mwr-d-15-0440.1

Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007, June). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. *Physica D: Nonlinear Phenomena*, 230(1), 112–126. doi: 10.1016/j.physd.2006.11.008

ITU-R. (2015, July). *World atlas of ground conductivities* (techreport No. P.832-4). Geneva: International Telecommunication Union. Retrieved from <https://www.itu.int/rec/R-REC-P.832/en>

Krause, L. H. (1998). *The interaction of relativistic electron beams with the near-Earth space environment* (phdthesis). University of Michigan.

Lehtinen, N. G., Bell, T. F., & Inan, U. S. (1999). Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes. *Journal of Geophysical Research: Space Physics*, 104(A11), 24699–24712. doi: 10.1029/1999ja900335

Lehtinen, N. G., & Inan, U. S. (2007). Possible persistent ionization caused by giant blue jets. *Geophysical Research Letters*, 34(8). doi: 10.1029/2006gl029051

Ljungskog, E. (2021, July). *ScatteredInterpolation.jl*. Retrieved from <https://github.com/eljungsk/ScatteredInterpolation.jl>

Marshall, R. A., & Bortnik, J. (2018). Pitch angle dependence of energetic electron precipitation: energy deposition, backscatter, and the bounce loss cone. *Journal of Geophysical Research: Space Physics*, 123(3), 2412–2423. doi: 10.1002/2017ja024873

Marshall, R. A., & Cully, C. M. (2020, January). Chapter 7 - Atmospheric effects and signatures of high-energy electron precipitation. In A. N. Jaynes & M. E. Usanova (Eds.), *The Dynamic Loss of Earth's Radiation Belts* (pp. 199–255). Elsevier. doi: 10.1016/B978-0-12-813371-2.00007-X

Marshall, R. A., Nicolls, M., Sanchez, E., Lehtinen, N. G., & Neilson, J. (2014). Diagnostics of an artificial relativistic electron beam interacting with the atmosphere. *Journal of Geophysical Research: Space Physics*, 119(10), 8560–8577. doi: 10.1002/2014ja020427

Marshall, R. A., Wallace, T., & Turbe, M. (2017, December). Finite-difference modeling of very-low-frequency propagation in the earth-ionosphere waveguide. *IEEE Transactions on Antennas and Propagation*, 65(12), 7185–7197. doi: 10.1109/tap.2017.2758392

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2013, November). Science objectives and rationale for the Radiation Belt Storm Probes mission. *Space Science Reviews*, 179(1), 3–27. doi: 10.1007/s11214-012-9908-y

McCormick, J. C., & Cohen, M. B. (2018, March). D region ionospheric imaging using VLF/LF broadband sferics, forward modeling, and tomography. In *25th International Lightning Detection Conference & 7th International Lightning Meteorology Conference*.

McCormick, J. C., & Cohen, M. B. (2021, December). A new four-parameter D-region ionospheric model: Inferences from lightning-emitted VLF signals. *Journal of Geophysical Research: Space Physics*, 126(12). doi: 10.1029/2021JA029849

848 McRae, W. M., & Thomson, N. R. (2000, May). VLF phase and amplitude: Day-
 849 time ionospheric parameters. *Journal of Atmospheric and Solar-Terrestrial*
 850 *Physics*, 62(7), 609–618. doi: 10.1016/s1364-6826(00)00027-4

851 Millan, R. M., McCarthy, M. P., Sample, J. G., Smith, D. M., Thompson, L. D.,
 852 McGaw, D. G., ... Hudson, M. K. (2013, November). The balloon array for
 853 RBSP relativistic electron losses (BARREL). *Space Science Reviews*, 179(1),
 854 503–530. doi: 10.1007/978-1-4899-7433-4_15

855 Millan, R. M., & Thorne, R. M. (2007, March). Review of radiation belt relativistic
 856 electron losses. *Journal of Atmospheric and Solar-Terrestrial Physics*, 69(3),
 857 362–377. doi: 10.1016/j.jastp.2006.06.019

858 Morgan, R. R. (1968, January). *World-wide VLF effective-conductivity map* (techre-
 859 port No. WEST-80133F-1). Westinghouse Electric Corporation.

860 Pappert, R. A., & Smith, R. R. (1972). Orthogonality of VLF height gains in the
 861 Earth ionosphere waveguide. *Radio Science*, 7(2), 275–278. doi: 10.1029/
 862 rs007i002p00275

863 Phanikumar, D. V., Maurya, A. K., Kumar, K. N., Venkatesham, K., Singh, R.,
 864 Sharma, S., & Naja, M. (2018, June). Anomalous variations of VLF sub-
 865 ionospheric signal and mesospheric ozone prior to 2015 Gorkha Nepal earth-
 866 quake. *Scientific Reports*, 8(1), 1–9. doi: 10.1038/s41598-018-27659-9

867 Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002, December).
 868 NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and
 869 scientific issues. *Journal of Geophysical Research: Space Physics*, 107(A12),
 870 1–16. doi: 10.1029/2002ja009430

871 Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke, B.,
 872 & Bernath, P. F. (2015). Simulation of energetic particle precipitation effects
 873 during the 2003–2004 Arctic winter. *Journal of Geophysical Research: Space*
 874 *Physics*, 120(6), 5035–5048. doi: 10.1002/2015ja021196

875 Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris,
 876 C., ... Russell, J. M. (2005). Stratospheric effects of energetic parti-
 877 cle precipitation in 2003–2004. *Geophysical Research Letters*, 32(5). doi:
 878 10.1029/2004gl022003

879 Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Co-
 880 drescu, M., ... Russell III, J. M. (2007). Energetic particle precipitation
 881 effects on the Southern Hemisphere stratosphere in 1992–2005. *Journal of*
 882 *Geophysical Research: Atmospheres*, 112(D8). doi: 10.1029/2006jd007696

883 Ratcliffe, J. A. (1959). *The magneto-ionic theory & its applications to the iono-
 884 sphere*. Cambridge: Cambridge University Press.

885 Rees, M. H. (1963, October). Auroral ionization and excitation by incident energetic
 886 electrons. *Planetary and Space Science*, 11(10), 1209–1218. doi: 10/ctqn6t

887 Reeves, G. D., McAdams, K. L., Friedel, R. H. W., & O'Brien, T. P. (2003). Accel-
 888 eration and loss of relativistic electrons during geomagnetic storms. *Geophys-
 889 ical Research Letters*, 30(10). doi: 10.1029/2002gl016513

890 Rodger, C. J., Kavanagh, A. J., Clilverd, M. A., & Marple, S. R. (2013). Com-
 891 parison between POES energetic electron precipitation observations and ri-
 892 ometer absorptions: Implications for determining true precipitation fluxes.
 893 *Journal of Geophysical Research: Space Physics*, 118(12), 7810–7821. doi:
 894 10.1002/2013ja019439

895 Shumko, M., Sample, J., Johnson, A., Blake, B., Crew, A., Spence, H., ... Handley,
 896 M. (2018). Microburst scale size derived from multiple bounces of a microburst
 897 simultaneously observed with the FIREBIRD-II CubeSats. *Geophysical Re-
 898 search Letters*, 45(17), 8811–8818. doi: 10.1029/2018gl078925

899 Silber, I., & Price, C. (2017, March). On the use of VLF narrowband measurements
 900 to study the lower ionosphere and the mesosphere–lower thermosphere. *Sur-
 901 veys in Geophysics*, 38(2), 407–441. doi: 10.1007/s10712-016-9396-9

902 Thomson, N. R., Clilverd, M. A., & McRae, W. M. (2007). Nighttime ionospheric D

903 region parameters from VLF phase and amplitude. *Journal of Geophysical Research: Space Physics*, 112(A7), 1–14. doi: 10.1029/2007JA012271

904 Thomson, N. R., & McRae, W. M. (2009, August). Nighttime ionospheric D region:
905 Equatorial and nonequatorial. *Journal of Geophysical Research: Space Physics*, 114(A8), A08305. doi: 10.1029/2008JA014001

906 Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O.,
907 ... Zvereva, T. (2015, December). International Geomagnetic Reference
908 Field: The 12th generation. *Earth, Planets and Space*, 67(1), 1–19. doi:
909 10.1186/s40623-015-0228-9

910 Torkar, K. M., & Friedrich, M. (1983, June). Tests of an ion-chemical model of the
911 D- and lower E-region. *Journal of Atmospheric and Terrestrial Physics*, 45(6),
912 369–385. doi: 10.1016/s0021-9169(83)81097-6

913 Tu, W., Selesnick, R., Li, X., &Looper, M. (2010). Quantification of the precipi-
914 tation loss of radiation belt electrons observed by SAMPEX. *Journal of Geo-
915 physical Research: Space Physics*, 115(A7). doi: 10.1029/2009ja014949

916 Tyssøy, H. N., Sandanger, M. I., Ødegaard, L.-K. G., Stadsnes, J., Aasnes, A.,
917 & Zawedde, A. E. (2016). Energetic electron precipitation into the mid-
918 dle atmosphere—Constructing the loss cone fluxes from MEPED POES.
919 *Journal of Geophysical Research: Space Physics*, 121(6), 5693–5707. doi:
920 10.1002/2016ja022752

921 Wait, J. R. (1958, September). A study of VLF field strength data: Both old and
922 new. *Geofisica pura e applicata*, 41(1), 73–85. doi: 10.1007/bf01981861

923 Wait, J. R., & Spies, K. P. (1964, December). *Characteristics of the earth-ionosphere
924 waveguide for VLF radio waves* (techreport No. 300). Boulder, CO: U.S. Na-
925 tional Bureau of Standards. doi: 10.6028/nbs.tn.300

926 Whittaker, I. C., Gamble, R. J., Rodger, C. J., Clilverd, M. A., & Sauvaud, J.-
927 A. (2013). Determining the spectra of radiation belt electron losses: Fit-
928 ting DEMETER electron flux observations for typical and storm times.
929 *Journal of Geophysical Research: Space Physics*, 118(12), 7611–7623. doi:
930 10.1002/2013ja019228

931 Woodger, L. A., Halford, A. J., Millan, R. M., McCarthy, M. P., Smith, D. M., Bow-
932 ers, G. S., ... Liang, X. (2015). A summary of the BARREL campaigns:
933 Technique for studying electron precipitation. *Journal of Geophysical Research:
934 Space Physics*, 120(6), 4922–4935. doi: 10.1002/2014ja020874

935 Xu, W., Marshall, R. A., Bortnik, J., & Bonnell, J. W. (2021). An electron density
936 model of the D- and E-region ionosphere for transitionospheric VLF propaga-
937 tion. *Journal of Geophysical Research: Space Physics*, 126(7), e2021JA029288.
938 doi: 10.1029/2021ja029288

939 Xu, W., Marshall, R. A., Fang, X., Turunen, E., & Kero, A. (2018). On the effects
940 of bremsstrahlung radiation during energetic electron precipitation. *Geophysi-
941 cal Research Letters*, 45(2), 1167–1176. doi: 10.1002/2017gl076510

942 Xu, W., Marshall, R. A., Kero, A., Turunen, E., Drob, D., Sojka, J., & Rice, D.
943 (2019, October). VLF measurements and modeling of the D-region response
944 to the 2017 total solar eclipse. *IEEE Transactions on Geoscience and Remote
945 Sensing*, 57(10), 7613–7622. doi: 10.1109/tgrs.2019.2914920

946 Xu, W., Marshall, R. A., Tyssøy, H. N., & Fang, X. (2020). A generalized
947 method for calculating atmospheric ionization by energetic electron pre-
948 cipitation. *Journal of Geophysical Research: Space Physics*, 125(11). doi:
949 10.1029/2020ja028482

950