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Abstract—The unmanned aerial vehicle (UAV) based communi-

cation is expected to play an important role in enabling a variety

of applications in future cellular networks. However, because of

the mobility of the UAVs, the communications links involving

UAVs undergo large-scale temporal variations in the received

signal quality, which may affect the quality-of-service of the

underlying application. Therefore, it is crucial to characterize the

time-varying process of signal quality observed by the UAVs. In

this paper, we consider a scenario in which a cellular-connected

UAV acts as a user equipment (UAV-UE), where the locations

of base stations (BSs) follow a Poisson point process (PPP)

and the UAV-UE is moving along a 3GPP-inspired straight-

line trajectory. For this setting, we study the properties of the

time-varying successful transmission process that is defined in

terms of the time-varying signal-to-noise ratio (SNR) observed

at the UAV. In particular, we show that this process is a wide

sense stationary (WSS) process and derive its first- and second-

order statistics. Finally, we establish an equivalence between the

successful transmission processes observed by a UAV-UE served

by terrestrial BSs and a terrestrial user served by UAV mounted

BSs (UAV-BSs) each moving along an independent straight-line

trajectory.

Index Terms—Cellular networks, unmanned aerial vehicle,

handover, SNR process, wide sense stationary.

I. INTRODUCTION

Owing to their flexible deployment, UAVs are quickly be-
coming an integral component of the next generation cellular
architecture for enhancing network performance and support-
ing new applications [1]. For instance, UAV-BSs are useful
in enhancing network coverage, improving link reliability and
providing additional capacity wherever needed. Besides, UAV-
UEs connected with terrestrial BSs are useful for enabling a
variety of services such as goods delivery, traffic surveillance,
and public safety. In both these cases, the mobility of the
UAVs may cause the serving link distance to vary with time,
which leads to large-scale variations in the received signal
strength. Therefore, it is essential to understand the time-
varying performance of the wireless links involving UAVs.
Since SNR is one the most fundamental performance measures
for wireless links (important on its own right and also an
important input for other metrics, such as transmission rate),
the primary objective of this paper is to characterize the SNR
process for such UAV-assisted communication networks.

Related Works: Owing to their realism in capturing spatial
randomness as well as their analytical tractibility, tools from
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stochastic geometry have been used to study numerous aspects
related to the modeling and analysis of UAV-assisted cellular
networks over the past few years, e.g., see [2]–[5]. The authors
of [2] presented the coverage analysis for a ground user served
by the UAV-BSs modeled as a Binomial point process (BPP).
The probability of line-of-sight of UAV links in a PPP modeled
urban environment is studied in [3]. In [4], the downlink non-
orthogonal multiple access of UAV-BSs for the PPP distributed
ground users is investigated. Further, a disaster scenario is
considered in [5] wherein the UAV-BSs are used in groups
for filling voids created by the failure of terrestrial BSs. The
coverage probability is analyzed for this setup while assuming
that the UAV-BSs follow a clustered point process and the
surviving BSs follow a PPP (with reduced density). These
analyses provide useful insights into the mean link performance
such as coverage probability and spectral efficiency. However,
they do not characterize the higher-order properties of the
statistical variations in the link quality resulting due to the
mobility of UAVs.

Because of mobility, the UAV’s serving link distance (thus,
the link quality) may exhibits large-scale variations in time
which naturally depends on their mobility pattern (or trajectory
models). In the literature, a variety of trajectory models have
been proposed to accurately model UAV mobility [6]–[8].
Some of the commonly used trajectory models are straight-
line, random walk, random waypoint, and Brownian motion
[6]. Among these models, straight-line mobility model is the
most popular, which has also found applications in the 3GPP
studies [9], [10]. The large-scale temporal variations (because
of mobility) in link quality give rise to new challenges such as
frequent handovers, random sojourn time between handovers,
random session rate, time-varying packet service rate, and
large-scale variations in received signal strength. The authors
of [11] derived the probability of handovers observed by a
ground user while assuming that its serving UAV-BSs follow
random straight-line trajectories independently of each other.
The same authors derived the session rate, defined as the mean
rate received in a session time, seen by a ground user in [6]
for various trajectory models of UAV-BSs. The authors of [12]
derived the sojourn time and handover rate for the straight-line
trajectories of UAV-BSs. The rate of handovers with received
signal strength based time-to-trigger policy (for avoiding un-
necessary handovers due to channel fading) was investigated
in [13]. Besides, the authors of [14] derived the association
and handover probabilities for 3D multi-tier scenario of UAV-
BSs. Most of the works in this direction are focused on the
analysis of handover probability and session rate. However,



it is surprising to see that the analysis of the time-varying
received signal quality of the wireless links involving UAVs
remains relatively sparse in the literature. In fact, such analyses
are somewhat limited even for the terrestrial networks [15].
This is mainly because of the difficulty in jointly determining
the distributions of serving nodes seen by a receiver at two
time instances. The authors of [16] presented a joint coverage
analysis for a user moving along a straight-line in a terrestrial
cellular network modeled as a PPP. For the same setting,
the authors of [17] studied the SNR level crossings process

observed by the moving users and showed that it resembles
an alternating-renewal process. In [18], the probability of
transmission failure resulting due to the handovers is derived
for a terrestrial heterogeneous network with tier-wise biased
cell association. Nevertheless, it is important to understand the
temporal variations of the SNR process (as a result of the
mobility of the UAVs) to gain useful design insights, which
is the main topic of this paper.

Contributions: In this paper, we analyze the impact of
mobility of a UAV on the SNR-induced transmission process
for a cellular-enabled UAV network using stochastic geometry.
In particular, we derive the mean and autocorrelation function
(ACF) of the successful transmission process while assuming
that the locations of the terrestrial BSs follow homogeneous
PPP and the UAV-UE follows a straight-line trajectory. We
first derive the exact joint distribution of the link distances
observed by the UAV at a given time-lag, which is then used to
obtain the ACF in the successful transmission process. Using
these results, we establish the wide sense stationarity of the
successful transmission process. Finally, using the arguments
given in [11, Theorem 1], we show that the successful trans-
mission processes observed by a UAV-UE (being served by
the terrestrial BS) and a ground UE (being served by UAV-
BSs moving along straight lines) are equivalent.

II. SYSTEM MODEL

We consider a cellular-enabled UAV network wherein the
UAV-UE is being served by the terrestrial BSs. The locations
of BSs are assumed to follow a homogeneous PPP � of
density � and the UAV-UE is assumed to move at height
h (from the ground level) with velocity v in a straight-line
oriented in a uniformly random direction ✓. We consider the
strongest received signal strength based association policy,
where the UAV-UE is connected to its nearest BS at any
given time. We denote the UAV-UE location using ũt and
its orthogonal projection on the ground using ut. Thus, the
serving link distance at time t becomes R̃t = (h2 + R2

t )
1
2

where Rt = minx2� kx�utk. Further, we assume the standard
power law pathloss model. The SNR at time t is

SNRt =
R̃�↵

t P

�2
n

, (1)

where ↵ is pathloss exponent, P is the transmission power,
and �2

n is the noise power.
The coverage probability is defined as the probability of

observing SNRt above threshold � and is given by
Pcov = P[SNRt > �]. (2)

As Pcov is a spatio-temporally averaged quantity [19], it
does not provide information on the higher-order properties
of the SNR observed by a UAV-UE while moving along its
trajectory. The mobility causes UAV-UE to experience different
success probabilities at different times due to the change in its
serving link distance. This manifests in temporal variations in
the successful transmissions. In order to better understand the
impact of these temporal variations on the performance of a
UAV-UE, we focus on the statistical characterization of the
successful transmission process, which is defined next.

Definition 1. Successful transmission process is defined as

Xt = (SNRt > �), (3)
where (·) is the indicator function.

We will focus on determining the first- and second-order
statistics of Xt. The mean of Xt is simply the coverage
probability, i.e.,

X̄ = E[ (SNRt > �)] = Pcov, (4)
and the ACF of Xt is

⇢XX (⌧ ; t) =
Cov(Xt,Xt+⌧ )

(Var(Xt)Var(Xt+⌧ ))
1
2

, (5)

where Var(X) is the variance of X and Cov(X,Y ) is the
covariance of X and Y .

III. CHARACTERIZATION OF Xt

In Section III-B, we will show that the successful transmis-
sion process Xt is a stationary process which in turn allows
us to study the behaviour of Xt at any given time instance,
say t = 0. For this purpose, we fix the location of the UAV
at ũo = (o, o, h) for t = 0, without any loss of generality.
Further, by its definition, it is evident that Xt is completely
characterized by the time-varying process of the serving link
distance R̃t. From (1) and (3), it is evident that the correlation
coefficient of Xo and X⌧ depends on the joint distribution of
R̃o and R̃⌧ . Hence, we first derive this joint distribution in the
following section.

A. Joint Distribution of R̃o and R̃⌧

As R̃o and R̃⌧ are functions of Ro and R⌧ , we first
determine the joint distribution of Ro and R⌧ . Note that
Ro = kbok and R⌧ = kb⌧k where bo = arg minx2� kxk
and b⌧ = arg minx2� kx� u⌧k represent nearest BSs to the
UAV-UE at time t = 0 and t = ⌧ , respectively. Using the void

probability of PPP, we can directly determine the probability
density function (pdf) of Ro as [19]

fRo(r) = 2⇡�r exp(�⇡�r2). (6)
Let us define R0

⌧ = ku⌧ � bok. Note that there is at least
one handover if the distance of the nearest BS from u⌧ is
below R0

⌧ at time ⌧ because of the assumption of nearest BS
association policy. Let H and H

c denote the handover and
no handover events, respectively. It is easy to see that H ⌘

{�(S1) 6= �} where S1 = C1 \ (C0 \ C1), C0 = B(Ro,uo),
C1 = B(R0

⌧ ,u⌧ ) and B(r, z) is a circle of radius r centered at
z. A typical illustration of these circles and set S1 is depicted



in Fig. 3. Thus, similar to [16, Lemma 1], we can determine
the probability of handover within time ⌧ conditioned on Ro

and ✓ using void probability of PPP � as
P(H|Ro, ✓) = 1� exp(��|S1|). (7)

where |S1| is the Lebesgue measure of set S1.
Note that the serving link distance at time ⌧ becomes

R⌧ =

(
R0

⌧ when H
c occurs,

minx2� kx� u⌧k when H occurs.
(8)

By conditioning on H and Ro, the cumulative distribution
function (CDF) of R⌧ is presented in [16, Lemma 2] for
the terrestrial cellular networks. Different from this, in the
following theorem, we derive the joint distribution of Ro and
R⌧ by using (8) and appropriately conditioning on H and H

c.

Theorem 1. Joint CDF of Ro and R⌧ is FRo,R⌧ (ro, r⌧ ) =

�

Z 2⇡

0

Z ro

0
g(u, r⌧ ) exp(�⇡�u2)udud✓, (9)

where

g(u, r⌧ ) = 1� [r0⌧ > r⌧ ] exp(��Uv⌧ (r⌧ , u)), (10)
r0⌧ = u2 + v2⌧2 � 2uv⌧ cos(✓) and Uv⌧ (·, ·) is given in (24).

Proof. Please refer to Appendix A for the proof.

Using (9), we derive the joint distribution of R̃o and R̃⌧ in
the following corollary.

Corollary 1. Joint CDF of R̃o and R̃⌧ is

FR̃o,R̃⌧
(r̃o, r̃⌧ ) = �

Z 2⇡

0

Z r̃o

h
g(
p
u2 � h2,

p
r̃2⌧ � h2)

exp(�⇡�(u2
� h2))udud✓, (11)

where g(·, ·) is given in (10).

Proof. Please refer to Appendix B for the proof.

Using the above result, we derive the first- and second-order
statistics of R̃t and Xt processes in the next section.

B. Properties of R̃t and Xt

In this section, we first show that the process R̃t is a WSS
process. We then use the similar arguments to establish the
WSS property of Xt and determine its mean and ACF.

Corollary 2. The process of serving link distance R̃t is a WSS

process with the mean

R̄ =
1

2
p
�
exp(⇡�h2), (12)

and the ACF

⇢R̃R̃(⌧) =
4� exp(�2⇡�h2)R̄2 � 1

4⇡ exp(�⇡�h2)�(2,⇡�h2)� 1
, (13)

where �(·, ·) is the upper incomplete Gamma function and

R̄2 = �

Z 2⇡

0

Z 1

h
g1(r̃o, ✓)r̃

2
o exp

�
��⇡(r̃2o � h2))

�
dr̃od✓, (14)

such that

g1(r̃o, ✓) = h+

Z r̃0⌧

h
exp(��(Uv⌧ ((r̃

2
⌧�h2)

1
2 , (r̃2o�h2)

1
2 ))dr̃⌧ ,

r̃0⌧ = ((r0⌧ )
2 + h2)

1
2 and r0⌧ = r2o + v2⌧2 � 2rov⌧ cos(✓) and

Uv⌧ (·, ·) is given in (24).

Proof. Please refer to Appendix C for the proof.

Using (1), we can equivalently describe the process Xt as
Xt = (R̃t < Rth),

where Rth = (��2
n/P )�

1
↵ . From this, it is evident that

the mean of Xo can be directly obtained using (6) and the
correlation of Xo and X⌧ can be obtained using the joint
distribution of R̃o and R̃⌧ presented in Corollary 1. In fact,
in the following theorem, we first argue that the process Xt is
WSS and then determine the mean of Xt for t = 0 and ACF
of Xt using the joint distribution of R̃o and R̃⌧ .

Theorem 2. Successful transmission process Xt is a WSS

process with mean

X̄ = max(0, 1� exp
�
��⇡(Rth

2
� h2)

�
), (15)

and ACF

⇢XX (⌧) =
FR̃o,R̃⌧

(Rth,Rth)� X̄
2

X̄ (1� X̄ )
, (16)

where FR̃o,R̃⌧
(·, ·) is given in (11).

Proof. Please refer to Appendix D for the proof.

Corollary 3. Correlation coefficient ⇢XX (⌧) is non-negative

for all ⌧ .

Proof. Please refer to Appendix E for the proof.

Corollary 4. Successful transmission process Xt for the fol-

lowing two networks is equivalent:

1) UAV-UE served by terrestrial BSs: A network of terrestrial

BSs distributed as a homogeneous PPP with density � and the

UAV-UE following a straight-line with velocity v at height h.

2) UAV-BSs serving terrestrial UE: A network of UAV-BSs

serving a terrestrial user where the UAV-BSs are moving with

velocity v in random directions at height h with their initial

locations following a 2-D homogeneous PPP of density �.

Proof. With small improvisations to the arguments presented
in [11, Theorem 1], we can show that successful transmission
process Xt is equivalent for these two setups.

IV. NUMERICAL RESULTS AND DISCUSSION

For numerical results, we consider the following: BS density
� = 10�5 units/meter2, UAV flying height h = 50 meters,
transmission power P = �30 dBm, noise power �2

n = �120
dBm, SNR threshold � = 3 dB, and pathloss exponent ↵ = 3,
unless mentioned otherwise.

In Fig. 1, we verify the derived ACF ⇢R̃R̃(⌧) of the serving
link distances using simulation results for velocities v =
{5, 10, 20, 30} kmph. The lines correspond to the analytical
results, whereas the markers correspond to the simulation
results. It can be observed that the correlation function is non-
negative and decreases with time-lag ⌧ at a higher rate for the
higher velocity v. We also observe that the correlation between
link distances is independent of the UAV-UE height h. This can
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Figure 1. Correlation in R̃o and R̃⌧ . The lines correspond to the analytical
results, whereas the markers correspond to the simulation results.

be explained by the fact that the correlation is induced by the
handovers and the structure of terrestrial Voronoi cells (formed
by the PPP distributed BSs), which are both independent of h.

Fig. 2 presents the mean and ACF function of the successful
transmission process Xt. From Fig. 2 (Top), it is evident that
the mean of Xt (i.e., the success probability) decreases with
increasing height h. This is intuitive as the serving link distance
increases with the increase of h. However, the mean of Xt

decreases faster when the pathloss exponent ↵ is higher. This
is because a higher ↵ causes a rapid reduction in the received
power (or the received SNR), which results in degraded success
probability. Moreover, the success probability is zero when h
is greater than the distance threshold Rth. Besides, note that
a better success probability can be observed at higher heights
when ↵ is small since Rth is large for a small ↵.

The ACF of process Xt is depicted in Fig. 2 (Bottom) for
heights h = {30, 50} meters and velocities v = {5, 10, 20}
kmph. It can be observed that the correlation in the successful
transmission is significant over a larger time span, especially
when velocity v is small. Interestingly, the ACF of Xt depends
on h while the ACF of R̃t is independent of h. This is because
correlation in R̃t is determined by the handover rate and the
cell size which are both independent on h (as discussed above)
and the correlation in Xt appears through the condition of
successful transmission (i.e., the R̃t  Rth) which is dependent
of h.

V. CONCLUSION

This paper considered a cellular-enabled UAV network
wherein terrestrial BSs modeled as a homogeneous PPP serve a
UAV-UE that is moving along a randomly oriented straight-line
trajectory. For this setup, we have analyzed the SNR-dependent
successful transmission process observed by a UAV-UE. As a
key enabling result of this analysis, we first derived the joint
distribution of the serving link distances seen by the UAV-
UE at different time instances. Next, we established that the
successful transmission process for this setup is a WSS process.
Subsequently, we derived the mean and ACF of this process
using the joint distribution of the link distances. Further, we
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Figure 2. Top: Mean of Xt. Bottom: ACF of Xt(⌧) for ↵ = 3.

have also shown that the successful transmission processes seen
by a UAV-UE served by the terrestrial BSs and a terrestrial
user served by the UAV-BSs following independent straight-
line trajectories are equivalent.

APPENDIX

A. Proof of Theorem 1

The CDF of R⌧ conditioned on Ro and ✓ is
P(R⌧  r⌧ |Ro, ✓) = P(R⌧  r⌧ |H

c, Ro, ✓)P(Hc
|Ro, ✓)

+ P(R⌧  r⌧ |H, Ro, ✓)P(H|Ro, ✓). (17)
Let A = P(R⌧  r⌧ |Hc, Ro, ✓) and B = P(R⌧ 

r⌧ |H, Ro, ✓). From (8), we know R⌧ = R0
⌧ conditioned on

H
c. Thus, we have

A = (R0
⌧ < r⌧ ), (18)

Again from (8), we know that there is at least one BS in the
region S1 conditioned on H, as shown in Fig. 3. Let �(S1) =
N (number of BSs in S1). Hence, we can obtain B =

EN [P(R⌧  r⌧ |N)]
(a)
= 1� EN

⇥
P(R⌧i > r⌧ |N)N

⇤
, (19)

where R⌧i = |u⌧ � xi| for xi 2 � \ S1 and step (a) follows
from the independence property of PPP. Note that xis are
uniformly distributed in S1. Thus, the CDF of R⌧i becomes

P(R⌧i  r⌧ ) =
|S2|

|S1|
,



Figure 3. Illustration of handover with link distances Ro and R⌧ . S1 and S2
are denoted using blue and green shades, respectively, whereas the red and blue
dots denote the locations of static BSs and UAV at t = {o, ⌧}, respectively.

where S2 = S1\C2, C2 = B(r⌧ ,u⌧ ) and r⌧  R0
⌧ . The regions

S1 and S2 are illustrated in Fig. 3 using blue and green shades,
respectively. Since S2 ✓ S1 and S1 = C1 \ (Co \ C1), we have
S2 = C2 \ (Co \ C2). To relax the condition r⌧  R0

⌧ , we can
rewrite the CDF of R⌧i as

P(R⌧i  r⌧ ) =
min(|S2|, |S1|)

|S1|
, for r⌧ > 0. (20)

Condition H implies that the region S1 (green region in
Fig. 3) is non-empty. Thus, by the definition of the PPP, N
follows 0-truncated Poisson distribution with parameter �|S1|

conditioned on H. Substituting (20) in (19) and then using the
moment generating function of distribution of N , we obtain

B = 1�
exp(��min(|S2|, |S1|))� exp(��|S1|)

1� exp(��|S1|)
. (21)

Substituting (7), (18) and (21) in (17), we get
P(R⌧  r⌧ |Ro, ✓)

= exp(��|S1|) [R0
⌧  r⌧ ] + 1� exp(��min(|S2|, |S1|)),

= 1 + exp(��|S1|) [R0
⌧  r⌧ ]� exp(��|S2|) [R0

⌧ > r⌧ ]

� exp(��|S1|) [R0
⌧  r⌧ ] ,

= 1� exp(��|S2|) [R0
⌧ > r⌧ ] . (22)

We obtain joint CDF of Ro and R⌧ as FRo,Rt(ro, r⌧ ) =

1

2⇡

Z 2⇡

0

Z ro

0
P(R⌧  r⌧ |Ro, ✓)fRo(u)dud✓. (23)

Now, we provide an expression for calculation of |Si| = |Ci \

(Co \ Ci)| as
Uv⌧ (ri, ro) = ⇡r2i � Uv⌧ (ri, ro), (24)

where Ud(r1, r2) is the area of intersection between two circles
of radii r1 and r2 with centers separated by distance d. This
intersection area can be calculated as

Ud(r1, r2) =

8
><

>:

0, for rM + rn  d,

⇡r2n, for rM � rn � d,

g(rM, rn, d), otherwise,
where rM = max(r1, r2), rn = min(r1, r2) and

g(rM, rn, d) = r2M cos�1(d1/rM)� d1(r
2
M � d21)

1
2

+ r2n cos
�1(d2/rn)� d2(r

2
n � d22)

1
2 .

and d1 = r2M�r2n+d2

2d and d2 = d� d1. Finally, substituting (6)
and (22) in (23), we obtain (9).

B. Proof of Corollary 1

From (6) and R̃o = (R2
o + h2)

1
2 , we can readily obtain

fR̃o
(r̃o) = 2⇡�r̃o exp(�⇡�(r̃2o � h2)), (25)

for r̃o > h. Besides, we also have P(R̃⌧  r̃⌧ |R̃o = r̃o, ✓) =

P(R⌧  (r̃2⌧ � h2)
1
2 |Ro = (r̃2o � h2)

1
2 , ✓). (26)

The distribution of R⌧ conditioned on Ro and ✓ is given in
(22). Thus, similar to (23), we can write FR̃o,R̃⌧

(r̃o, r̃⌧ ) =

1

2⇡

Z 2⇡

0

Z r̃o

0
P(R̃⌧  r̃⌧ |R̃o = u, ✓)fR̃o

(u)dud✓.

Finally, substituting (25) and (26) (via (22)) in the above
expression, we obtain (11).

C. Proof of Corollary 2

At any given time, the distribution (thus, the mean) of R̃t

depends on the void probability of B((r̃2�h2)
1
2 ,ut). However,

the void probability for a homogeneous PPP � is determined
only by the Lebesgue measure of that set and not where it is
located. From this, it is apparent that the mean of R̃t is inde-
pendent of t. Further, the correlation of R̃t and R̃t+⌧ depends
on their joint distribution. As we have seen in Appendix B, this
joint distribution is determined by the distribution of points of
� within the region S1 that depends on the intersection of
B((R̃2

t � h2)
1
2 ,ut) and B((R̃2

t+⌧ � h2)
1
2 ,ut+⌧ ). However, the

distribution of points of homogeneous PPP � in a region is
completely determined by its Lebesgue measure. The area of
S1 is determined only by time-lag ⌧ (i.e., the distance travelled
by the UAV-UE within time ⌧ ). Hence, the ACF of R̃t and
R̃t+⌧ depends only on ⌧ , and not on t. From these arguments,
it is clear that the process R̃t is a WSS process. Now, we derive
the mean and ACF of Xt.

Since the mean of R̃t is independent of t, we can determine
it using the pdf of R̃o as given in (12). Now, we will obtain
ACF ⇢R̃R̃ of process R̃t for a given ⌧ at t = 0, as it is
independent of time. Thus, we have

⇢R̃R̃(⌧) =
Cov(R̃o, R̃⌧ )

(Var(R̃o)Var(R̃⌧ ))
1
2

(a)
=

E[R̃oR̃⌧ ]� R̄
2

Var(R̃o)
, (27)

where step (a) follows using the fact that R̃o and R̃⌧ are
identical in distribution since the serving link distance process
is stationary, as discussed above. Using the pdf of R̃o given in
(25), we can obtain

Var(R̃o) = exp(⇡�h2)
�(2,⇡�h2)

⇡�
�

1

4�
exp(2⇡�h2). (28)

where �(·, ·) is upper incomplete Gamma function. Substitut-
ing (12) and (28) in (27) provides (13). Next, we derive the
mean of R̃oR̃⌧ , defined as R̄2 = E[R̃oR̃⌧ ].

Following the similar steps as in Appendix A, we get
E[R̃⌧ |R̃o, ✓] =

R̃0
⌧P(Hc

|R̃o, ✓) + E[R̃⌧ |H, R̃o, ✓]P(H|R̃o, ✓). (29)



Since h  R̃⌧  R̃0
⌧ , we determine E[R̃⌧ |H, R̃o = r̃o, ✓]

= h+

Z R̃0
⌧

h
P(R̃⌧ > r̃⌧ |H, R̃o = r̃o, ✓)dr̃⌧ ,

= h+

Z R̃0
⌧

h
P(R⌧ > (r̃2⌧ � h2)

1
2 |H, Ro = (r̃2o � h2)

1
2 , ✓)dr̃⌧ ,

(a)
= h+

Z R̃0
⌧

h

exp(��|S̃2|)� exp(��|S̃1|)

1� exp(��|S̃1|)
dr̃⌧ ,

where S̃2 = S̃1 \ B((r̃2⌧ � h2)
1
2 ,u⌧ ) and S̃1 = C̃1 \ (C̃1 \

C̃0) (such that C̃0 and C̃1 are circles of radii (r̃2o � h2)
1
2 and

(r̃02⌧ � h2)
1
2 ). Here, step (a) follows using similar steps used

to obtain (21). For a given R̃o = r̃o, we have P(H|R̃o, ✓) =
1� exp(��|S̃1|). Thus, we can rewrite (29) as

E[R̃⌧ |R̃o, ✓] = R̃0
⌧ exp(��|S̃1|) + h[1� exp(��|S̃1|)]

+

Z R̃0
⌧

h

h
exp(��|S̃2|)� exp(��|S̃1|)

i
dr̃⌧ ,

(a)
= h+

Z R̃0
⌧

h
exp(��|S̃2|)dr̃⌧ , (30)

where step (a) follows since S̃1 does not depend on r̃⌧ . Using
this, we can determine the mean of R̃oR̃t as

R̄2 =
1

2⇡

Z 2⇡

0

Z 1

h
r̃oE[R̃⌧ |R̃o = r̃o, ✓]fR̃o

(r̃o)dr̃od✓.

Finally, substituting (25) and (30) in the above expression and
further simplifying provides (14).

D. Proof of Theorem 2

Using similar arguments to the ones presented in Appendix
C along with Xt = (R̃t  Rth), we can show that the process
Xt is also a WSS process. Now, we derive the mean and ACF
of this WSS process. The mean of Xt can be obtained as

X̄ = E[Xo] = P(R̃o  Rth) = P(Ro  (Rth
2
� h2)

1
2 ).

Note that E[X⌧ ] = 0 if h > Rth. Using this and (6), we can
obtain the mean of Xt as given in (15). Next, we obtain the
ACF ⇢XX for a given ⌧ at t = 0, as it is independent of t, as

⇢XX (⌧) =
E[X0X⌧ ]� E[X0]E[X⌧ ]

(Var(X0)Var(X⌧ ))
1
2

. (31)

Note that R̃o and R̃⌧ are equivalent in distribution because of
the homogeneity of PPP �, for the reason discussed above.
Therefore, we obtain Var(Xo) =

Var(X⌧ ) = E[ (R̃o  Rth)
2]� X̄

2 = X̄ (1� X̄ ). (32)
Now, we can obtain E[XoX⌧ ] =

E[ (R̃o  Rth) (R̃⌧  Rth)] = P(R̃o  Rth, R̃⌧  Rth),

which is given in (11). Finally, by substituting (11), (15), and
(32) in (31), we obtain (16).

E. Proof of Corollary 3

Using (22), we can lower bound the conditional CDF of R⌧

as
P(R⌧  r⌧ |Ro, ✓) � 1� exp(��⇡r2⌧ ),

which is just the marginal distribution of R⌧ . Using this, we
can lower bound (23) as

FRo,Rt(ro, r⌧ ) � FRo(ro)FR⌧ (r⌧ ).

Further extending this result to the joint distribution of R̃o and
R̃⌧ , we can obtain

FR̃o,R̃⌧
(Rth,Rth) � FR̃o

(Rth)FR̃⌧
(Rth)

(a)
= X̄

2,

where step (a) follows using E[Xt] = P(R̃o  Rth). From this
and (16), we deduce that the correlation coefficient ⇢XX � 0.
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