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ABSTRACT

Motivated by COVID-19 vaccine allocation, where vulnerable sub-

populations are simultaneously more impacted in terms of health

and more disadvantaged in terms of access to the vaccine, we for-

malize and study the problem of resource allocation when there

are inherent access differences that correlate with advantage and

disadvantage. We identify reducing resource disparity as a key goal

in this context and show its role as a proxy to more nuanced down-

stream impacts. We develop a concrete access model that helps

quantify how a given allocation translates to resource flow for the

advantaged vs. the disadvantaged, based on the access gap between

them. We then provide a methodology for access-aware allocation.

Intuitively, the resulting allocation leverages more vaccines in lo-

cations with higher vulnerable populations to mitigate the access

gap and reduce overall disparity. Surprisingly, knowledge of the

access gap is often not needed to perform access-aware allocation.

To support this formalism, we provide empirical evidence for our ac-

cess model and show that access-aware allocation can significantly

reduce resource disparity and thus improve downstream outcomes.

We demonstrate this at various scales, including at county, state,

national, and global levels.
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1 INTRODUCTION

All common resources must be allocated in someway tomembers of

a society. During such an allocation, the goal should be to optimize

the benefits of the resources for that society. To be transformational,

the way we allocate needs to be not only superficially fair but also

deeply just and willfully acting to mitigate unfairness. We learned

a great deal about what happens when we are not intentional in

our allocation efforts through the COVID-19 virus health crisis. Yet,

amidst the rise in monkeypox cases, we find ourselves in familiar

territory with shortages and allocation issues for the monkeypox

virus vaccines [14, 21]. For most of the COVID-19 pandemic, gov-

ernment officials and healthcare workers have been rapidly seeking
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ways to minimize loss caused by the COVID-19 virus. In this search,

they found the virus affects members of the vulnerable population

more severely; namely people with underlying conditions, members

of racial minority groups, those who lack personal transportation,

those of lower economic status, and older people [13]. Vulnerable

people experience worse short and long term health side effects and

higher mortality rates [6]. Additionally, the impact on cities and

states when members of the vulnerable populations get sick from

COVID-19 leads to higher hospitalization rates, lack of healthcare

staff availability, and less hospital space to care for other conditions.

Though these realities were recognized, many of the plans that were

developed to minimize loss, including vaccination, did not fully

take this into consideration. Instead, when vaccines began to be

distributed, they were distributed according to age (oldest) or career

(most essential workers) [18]. Additionally, points of distribution

for vaccines were receiving proportional amounts of vaccines [8]. It

is seemingly ideal to have such an allocation, but there are several

examples where this logic breaks. For example, age is not the only

good measure because we see Black Americans have a shorter life

expectancy than their White counterparts due to health inequities

[20]. Thus, only focusing on age exacerbates these issues for Black

Americans.

Motivated by COVID-19 vaccine allocation, we formalize the

problem of fair resource allocation when there are inherent access

differences that correlate with advantage and disadvantage. We

make and support three key premises:

(A) The population is stratified into disadvantaged and advan-

taged subpopulations.

(B) The disadvantaged subpopulation is more vulnerable to the

lack of resources.

(C) The disadvantaged subpopulation has obstacles in acquiring

allocated resources.

In Sec. 3, we describe the formal problem by closely following

premises (A) and (B). Our first contribution there is to highlight

reducing resource disparity between advantaged and disadvan-

taged subpopulations as a key goal of resource allocation. Then, in

Sec. 4, our second contribution is a concrete access model, which

we develop through premise (C). This allows us to determine how

resources would flow to the disadvantaged vs. advantaged subpop-

ulations, upon performing a given allocation. In Sec. 5, we show

that resource disparity can be effectively thought of as a proxy to

more complex impact disparities downstream. In Sec. 6, we com-

bine the formal problem with the access model to obtain our third

contribution, an access-aware allocation algorithm that reduces

resource disparity while maintaining approximate geographic pro-

portionality. A key finding here is that access-aware allocation can

often be performed without explicit knowledge of the access gap
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between the subpopulations. We acknowledge that there are many

contributors to access disparities other than disadvantage. That

said, in Sec. 7.1 we give empirical evidence in support of our access

model. Then, in Sec. 7.2, we revisit the COVID-19 vaccine allocation

problem as a use case. Our fourth contribution is, we show signifi-

cant reduction in resource disparity and thus downstream impact

can be achieved with minimal deviation from proportionality. In

Sec. 8, we conclude the paper with discussion points. We start with

a survey of related work in Sec. 2.

2 RELATED WORK

The importance of considering equity and justice when allocating

resources has not been lost on the scientific community, especially

for the COVID-19 vaccine distribution problem, the primary case

study here. The role of access differences and its interplay with

vulnerability and disadvantage is often alluded to, but not directly

formalized as we do.

For example, in [18], the authors note that those 65 and older

account for 80% of deaths from COVID-19; however, they warn

that łif this is done without explicit attention to promoting health

equity, it will, once again, exacerbate major health disparities.ž They

attribute this to the fact that: making a vaccination appointment

requires substantial time, reliable internet access and technology,

ability to travel to a vaccination site, and trust in the safety of the

vaccine. Note that inability to do any of these and the existence

of pre-exisiting health conditions correlates with a person being

more vulnerable. Several solutions are offered in [18], including

prioritizing hardest hit and lowest economic ZIP Codes, which is

very much in line with the access-aware allocation solutions that

come out of our explicit model. Other suggestions are: local vac-

cine education, decreasing transportation barriers, and simplifying

registration procedures. Though we do not discuss these, we do

acknowledge that they could aid in grassroots efforts of vaccine

administration.

In [33], the authors develop a tool to identify people who will

benefit most from receiving the vaccine at a specific time period.

They argue that those at most risk of contracting should be priori-

tized. However, access differences are not made explicit, and this

focus does not necessarily address minimizing the harshest effects

of contracting COVID-19.

In [12], data from electronic hospital records (EHRs) is used to

train a model which can determine the likelihood of a person to

die from contracting COVID-19. While we do not depend on health

records to determine whether a person would die from COVID-

19, we do use the CDC’s full definition of what it means to be

vulnerable. The findings of [12] (see also [17] for early variant

findings) clearly show affect the level of hospitalization and death

risk. It is also worth noting that health records for racial minorities,

lower-income people, and those who are in more rural areas tend

to not be complete profiles due to access barriers [26].

Many data-driven methods to guide vaccine allocation have also

been proposed. In [9], the authors cluster states with similarly

reported effective reproduction numbers1 to look for an optimal

distribution. Their focus does not include equity and is more on

1an epidemiological property that describes the expected number of new cases due
directly to one case

preventing spread, which we do not address. By concentrating on

resource equity between vulnerable and non-vulnerable subpopula-

tions, we focus on who would benefit most from receiving enough

vaccines.

In [7], allocation under limited resources is addressed but without

considerations of equity, disparity, or access. There, the importance

of dynamic allocation is emphasized, which we do not address. In

[29], the authors consider overall COVID-19 impacts (death, job

loss, and changes in the economy). They build a linear optimization

method to predict testing allocation, based on predicting the influx

of cases, over different time periods to maximize detection of the

virus amongst different population groups (symptomatic, asymp-

tomatic, and contact tracing). They incorporate a basic geographic

notion of equity, by allocating a minimum number of resources at

each location, but do not model access disparity. In a different rele-

vant line of work, resources are allocated to increase direct (spatial)

access. For example, in [34], the placement of hospital beds is opti-

mized using a model of spatial accessibility. This does not involve

an explicit relationship between vulnerability and resource acquisi-

tion but is relevant nonetheless in that it centers on issues of access

by the disadvantaged and findings include resulting improvements

in equity also.

In the theoretical CS and OR communities, models of equity and

allocation have also been proposed. Recently, [10] studied resource

allocation across groups with varying demand distributions and

showed tradeoffs between utilization and fairness across groups.

The varying demand distributions could be interpreted as access

differences, but it is important to note that upon instantiation of the

demand, there is no inherent difference in the ease with which the

resource is acquired. More importantly, in that model, individual

allocations can be made for each group, which may not ideally de-

scribe shared public resource allocation, save for assistance models

that occur through an application process. Though we focus on

access differences in physical resource acquisition, we acknowledge

the importance of differences in access to information and their

impact, e.g., as is done in [16] for standardized testing. Of course,

there are many dimensions beyond access, such as dynamics and

correlations, that further complicate resource acquisition. For ex-

ample, this was explored in depth by [22] for rationing medical

supplies in the COVID-19 backdrop.

A key theme in the current paper is that the disadvantaged

lack ease of access to resources and, simultaneously, are dispropor-

tionally affected by the burden of lack of resource [4, 27]. Some-

times they can be targeted directly (e.g., mobile clinics, government-

supplied PPE, etc). Though these are helpful solutions, these efforts

are expensive and resources often run out before having had suffi-

cient impact [30]. Policies that place more of these resources where

they are needed, such as the access-aware allocation methods pro-

posed here, can boost resource acquisition indirectly. Reaching

vulnerable populations and mitigating the obstacles they face are

critical in making optimization and data-driven methods achieve

their true clinical potential [23, 35]. We believe explicitly modeling

access differences is an essential tool for achieving this potential.
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3 PROBLEM DESCRIPTION

Allocation Task and Notation. We are tasked with allocating an

amount 𝑁Σ of resources, assumed to be arbitrarily divisible, across

𝑘 locations indexed by 𝑗 ∈ [𝑘] := {1, · · · , 𝑘}. The decision variables

are the amounts to be allocated to each location 𝑗 , denoted by 𝑁 𝑗 , or

equivalently the fraction of the whole that these represent, denoted

by 𝑛 𝑗 := 𝑁 𝑗/𝑁Σ. It is desirable to entirely allocate the resources,

so that
∑

𝑗 𝑁 𝑗 = 𝑁Σ and
∑

𝑗 𝑛 𝑗 = 1. We write n := (𝑛 𝑗 ) 𝑗∈[𝑘 ] . The

implicit target for this allocation are the population sizes 𝑃 𝑗 at each

location. Using parallel notation to 𝑁Σ, let 𝑃Σ =

∑
𝑗 𝑃 𝑗 be the total

population size and 𝑝 𝑗 := 𝑃 𝑗/𝑃Σ be the fraction of the population at

location 𝑗 , so that
∑

𝑗 𝑝 𝑗 = 1. Wewrite p := (𝑝 𝑗 ) 𝑗∈[𝑘 ] . Resources are

assumed to be limited, 𝑁Σ < 𝑃Σ, and we parametrize this explicitly

as 𝛼 := 𝑁Σ/𝑃Σ ∈ (0, 1).

Disadvantage vs. Advantage. A central premise of this work,

Premise (A), is that the population is stratified by disadvantage and

that this stratification varies across locations. The disadvantaged

should be regarded as particularly vulnerable in the absence of a

resource. We adopt the simplest model that encapsulates this, by us-

ing a parameter 𝛽 𝑗 ∈ [0, 1], which describes the fraction at location

𝑗 who is a particularly disadvantaged subpopulation. While the re-

mainder 1 − 𝛽 𝑗 of the population may also have some vulnerability,

we will describe them as advantaged. This stratification influences

the allocation task through a difference in how allocated resources

are acquired by each subpopulation. At any given location 𝑗 , given

𝑁 𝑗 resources, we assume there exists an acquisition function 𝜌 , that

determines the fraction of 𝑁 𝑗 acquired by the disadvantaged, while

the remainder 1 − 𝜌 is acquired by the advantaged.

How can we characterize 𝜌? We can only do this through a

clear model of access that describes the process by which allocated

resources are acquired by each subpopulation and the difference

between them. This is the motivation of Sec. 4, which elaborates

our proposed access model theoretically Ð this is later supported

empirically in Sec. 7.1. The resulting 𝜌 is found to depend on the

local quantities 𝑁 𝑗 , 𝑃 𝑗 , and 𝛽 𝑗 , as well as a global parameter 𝜂 that

describes the access gap between disadvantaged and advantaged

subpopulations. In what follows, for conciseness, we refer to the

value that 𝜌 takes at location 𝑗 as 𝜌 𝑗 . For reference, please refer to

Table 1 for a glossary of the main notations.

Resource Rate Disparity. Upon an allocation n, each subpopu-

lation acquires part of the 𝑁Σ resources. The disadvantaged ac-

quire
∑

𝑗 𝜌 𝑗𝑁 𝑗 = 𝑁Σ

∑
𝑗 𝜌 𝑗𝑛 𝑗 , while the advantaged acquire the

rest
∑

𝑗 (1 − 𝜌 𝑗 )𝑁 𝑗 = 𝑁Σ

∑
𝑗 (1 − 𝜌 𝑗 )𝑛 𝑗 . As a result, resource ac-

quisition rate may vary across the two subpopulations, which we

quantify through rate disparity:

RD =

∑
𝑗 (1 − 𝜌 𝑗 )𝑁 𝑗

∑
𝑗 (1 − 𝛽 𝑗 )𝑃 𝑗

−

∑
𝑗 𝜌 𝑗𝑁 𝑗

∑
𝑗 𝛽 𝑗𝑃 𝑗

= 𝛼

∑
𝑗 (1 − 𝜌 𝑗 )𝑛 𝑗

∑
𝑗 (1 − 𝛽 𝑗 )𝑝 𝑗

− 𝛼

∑
𝑗 𝜌 𝑗𝑛 𝑗∑
𝑗 𝛽 𝑗𝑝 𝑗

(1)

If the notion of disadvantage is true to its name, then RD will

typically be non-negative, as the resource acquisition rate will be

higher within the advantaged group. As we see in Sec. 7, this is

indeed the case for the vaccine allocation problem. Moreover, it is

desirable not only to have RD close to zero, but also to make it

negative, as downstream outcomes may improve with higher allo-

cation rates among the disadvantaged. We expand on this in Sec. 5.

This codifies Premise (B) and is the reason why the definition in Eq.

(1) does not enforce positivity. That said, |RD| may also be handled

with minimal modifications within the present methodology.

Proportional Allocation and Geographic Disparity. The baseline

allocation is proportional to the population, that is 𝑛 𝑗 = 𝑝 𝑗 , for all

𝑗 . This is fundamentally a notion of geographic equity that is an

expected and desirable property of a potential allocation in many

policies, including some recent resource allocation work, e.g. in

COVID-19 testing allocation [29]. To allow ourselves to remain

close to this property, we relax the strict equality of 𝑛 𝑗 = 𝑝 𝑗 for all

𝑗 to a distance on the 𝑘-simplex between n and p. One can think

of this as a form of headroom for social intervention, up to a limit

that could be potentially determined by law or by agreement. We

primarily consider the absolute ℓ1 or relative ℓ∞ distances:

d1 (n, p) =

∑︁

𝑗

|𝑛 𝑗 − 𝑝 𝑗 |

or (2)

d∞ (n, p) = max
𝑗

����
𝑛 𝑗

𝑝 𝑗
− 1

����

Note that d∞ is the more stringent of the two distances as d1 =

∑
𝑗 𝑝 𝑗

���
𝑛 𝑗

𝑝 𝑗
− 1

��� ≤ d∞. (The methodology could also handle absolute

ℓ∞ and relative ℓ1 distances, given bymax𝑗 |𝑛 𝑗 −𝑝 𝑗 | and
∑

𝑗

���
𝑛 𝑗

𝑝 𝑗
− 1

���
respectively, and weighted variants.)

Allocation Objective. It is worth remarking that if 𝜌 𝑗 = 𝛽 𝑗 , that

is if disadvantaged and advantaged subpopulations get their pro-

portional shares of the allocated resources at each location, then

proportional allocation yields zero rate disparity, RD = 0. Intu-

itively, this is a scenario where there is no access gap between the

disadvantaged and advantaged. When there is a gap, we expect

proportional allocation to not yield the best rate disparity. How can

we allocate resources to improve disparity across subpopulations

while maintaining a reasonable geographic parity? This trade-off

leads to the central objective of this paper, which we can express at

a high level as:

n★· = argmin RD(n, p, 𝑁Σ, 𝑃Σ, 𝛽, 𝜂)

subject to d· (n, p) ≤ 𝜀

𝛼n ≤ p,

(3)

where the last inequality is a no-waste constraint, which prohibits

the allocation of more resources than people at an location 𝑗 : 𝑁 𝑗 ≤

𝑃 𝑗 . The · can be either 1 or∞, indicating the distance used.

4 MODELING ACCESS

In this section, our scope is a single location 𝑗 . As such, for clarity,

we drop all 𝑗 subscripts.

4.1 Resource Acquisition

To model access differences across disadvantaged and advantaged

populations, we need to model how resources are acquired upon

allocation. For this, we adopt a simple yet effective model: Pois-

son acquisition until saturation or exhaustion. Each subpopulation
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𝑃Σ total population size n vector of all 𝑛 𝑗

𝑁Σ total resources available 𝛽 𝑗 percentage of disadvantaged at location 𝑗
𝛼 resource availability, 𝑁Σ/𝑃Σ 𝜌 𝑗 percentage of 𝑁 𝑗 acquired by the disadvantaged
𝑘 number of locations 𝜂 access gap between disadvantaged and advantaged
𝑃 𝑗 population size at location 𝑗 ∈ {1, · · · , 𝑘 } d1 ℓ1 distance
𝑁 𝑗 resources allocated to location 𝑗 d∞ relative ℓ∞ distance
𝑝 𝑗 fraction of total population at location 𝑗 , 𝑃 𝑗 /𝑃Σ 𝜀 tolerance in distance from proportionality
𝑛 𝑗 fraction of total resources allocated to 𝑗 , 𝑁 𝑗 /𝑁Σ n★· optimal allocation when distance d· is used
p vector of all 𝑝 𝑗 RD resource disparity, Eq. (1)

Table 1: Glossary of main notations

acquires a unit of resource according to an independent Poisson

arrival process, which stops when one of two things happen: (1)

an amount of resource equal to the subpopulation size is acquired

by the subpopulation (saturation) or (2) a total amount of resource

equal to the allocated size is acquired (exhaustion). This model

allows us to account for access differences via the relative rate of

each Poisson process. In what follows, we focus on a specific lo-

cation 𝑗 with population 𝑃 where 𝛽 fraction of the population is

disadvantaged and 𝑁 resources have been already allocated. Our

goals are to specify the acquisition model, describe access gaps,

and derive the shape of the acquisition function 𝜌 . We assume that

resources and subpopulation sizes are integers.

Base Model. Let 𝜆− and 𝜆+ be the rates of acquisition of the dis-

advantaged and advantaged respectively. When there are no access

gaps, these rates reflect only the relative sizes of the subpopulations.

We set the expected time for a single resource acquisition per per-

son in this case as our unit of time, and treat the two populations as

a split. This gives us the base rates of 𝜆− = 𝛽𝑃 and 𝜆+ = (1 − 𝛽)𝑃 .

Access Gap. Premise (C) states that the disadvantaged face ob-

stacles in acquiring resources. We can model this as a slowdown

relative to the base rate. Let 𝜂 be the (relative) access gap between

the disadvantaged and advantaged populations, where 𝜂 = 1 signi-

fies no gap and 𝜂 = 0 is the limit of infinite gap. Under this model,

the modified rate for the disadvantaged becomes 𝜆− = 𝜂𝛽𝑃 while

the rate of the advantaged remains unchanged 𝜆+ = (1 − 𝛽)𝑃 .

4.2 Naïve Acquisition Function

With this model, we can now concretely define the acquisition func-

tion 𝜌 to be the expected fraction of the total allocated 𝑁 resources

that will be acquired by the disadvantaged. To develop intuition, let

us start with a naïve characterization that ignores saturation. This

can be thought of as the limit of very scarce resources (𝛼 → 0), so

much so that no subpopulation in any location can be saturated.

In this case, subpopulations acquire resources until exhaustion.

If ¥𝑈𝑡 represents the disadvantaged process and ¥𝑉𝑡 represents the

advantaged process, then the exhaustion time can be defined as
¥𝑆 = min{𝑡 : ¥𝑈𝑡 + ¥𝑉𝑡 ≥ 𝑁 }. With this, the acquisition function

can be defined as ¥𝜌 := E
[
¥𝑈 ¥𝑆

]
/𝑁 . The ¥ notation is used to evoke

łnaïvež, and not second derivative. We have (the proof is given in

the supplementary material):

Proposition 4.1. If saturation is ignored, the naïve acquisition

function ¥𝜌 depends only on 𝛽 and 𝜂, and is of the form:

¥𝜌 =

𝜆−

𝜆− + 𝜆+
=

𝜂𝛽

𝜂𝛽 + 1 − 𝛽
(4)

4.3 Exact Acquisition Function

The model above is unrealistic, because it has a positive probability

for ¥𝑈 ¥𝑆 > 𝛽𝑃 or ¥𝑉 ¥𝑆 > (1− 𝛽)𝑃 . As the availability of the resource in-

creases, i.e., for larger values of 𝛼 , this probability is non-negligible

as subpopulations may saturate. We thus need an exact characteri-

zation of 𝜌 that reflects this. Let the disadvantaged and advantaged

processes in this case be 𝑈𝑡 and 𝑉𝑡 respectively. These are now

stopped versions of the Poisson processes, ¥𝑈𝑡 and ¥𝑉𝑡 , of the naïve

case. More precisely, if we define saturation times of these processes

as 𝑇𝑈 = min{𝑡 : ¥𝑈𝑡 ≥ 𝛽𝑃} and 𝑇𝑉 = min{𝑡 : ¥𝑉𝑡 ≥ (1 − 𝛽)𝑃} re-

spectively, i.e., the times when they hit their respective population

sizes, then

𝑈𝑡 =

{
¥𝑈𝑡 ; if 𝑡 ≤ 𝑇𝑈
𝛽𝑃 ; if 𝑡 > 𝑇𝑈

𝑉𝑡 =

{
¥𝑉𝑡 ; if 𝑡 ≤ 𝑇𝑉
(1 − 𝛽)𝑃 ; if 𝑡 > 𝑇𝑉

The exhaustion time is now modified to be: 𝑆 = min{𝑡 : 𝑈𝑡 +𝑉𝑡 ≥

𝑁 }, which is well-defined assuming that no wasteful allocations

are allowed, so that 𝑁 ≤ 𝑃 always. The exact characterization of

the acquisition function is now 𝜌 := E [𝑈𝑆 ] /𝑁 . We have (the proof

is given in the supplementary material):

Proposition 4.2. When both saturation and exhaustion occur, the

exact acquisition function 𝜌 depends not only on 𝛽 and 𝜂, but also on

𝑁 and 𝑃 . It can be written in terms of the naïve acquisition function

¥𝜌 of Eq. (4) as follows:

𝜌 = ¥𝜌 − ¥𝜌𝐹 (𝛽𝑃 − 1;𝑁 − 1, ¥𝜌) +
𝛽𝑃

𝑁
𝐹 (𝛽𝑃 ;𝑁, ¥𝜌)

+ (1 − ¥𝜌)𝐹 ((1 − 𝛽)𝑃 − 1;𝑁 − 1, 1 − ¥𝜌)

−
(1 − 𝛽)𝑃

𝑁
𝐹 ((1 − 𝛽)𝑃, 1 − ¥𝜌) (5)

4.3.1 Tractable Approximation. The acquisition function directly

affects the allocation objective expressed in Eq. 3 through the rate

disparity, as seen in Eq. 1. While the characterization of 𝜌 in Prop.

4.2 is exact, it is not directly amenable to reduction to a convex

optimization problem. Fortunately, we can develop a tractable ap-

proximation to 𝜌 that also helps develop intuition about its behavior.

One can think of the acquisition process in two stages: (1) both

subpopulations acquire simultaneously, (2) one subpopulation satu-

rates, while the other continues to acquire.

To quantify these stages, first note that with unlimited resources,

the advantaged saturation time is 𝑡 = 1, on average. This is because

the expected𝑚th arrival time of ¥𝑉 is𝑚/𝜆+, with𝑚 = 𝜆+ = (1− 𝛽)𝑃 .

Similarly, the disadvantaged saturation time is 𝑡 = 1/𝜂, on average.

As a result, it is highly unlikely for the disadvantaged to saturate

prior to the advantaged. This sets the stage for the approximation,

by taking these times to be equal to their expectations. The strength
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of such an approximation stems from the fact that for large param-

eters, a Poisson random variable concentrates very sharply around

its mean. The approximate model is:

• Before 𝑡 = 1, E [𝑈𝑡 ] and E [𝑉𝑡 ] grow linearly at the rate of

𝜂𝛽𝑃 and (1 − 𝛽)𝑃 respectively. This stage thus reaches a

maximal acquisition of (𝜂𝛽 + 1 − 𝛽)𝑃 .

• After 𝑡 = 1, E [𝑉𝑡 ] saturates at (1 − 𝛽)𝑃 , while E [𝑈𝑡 ] contin-

ues to grow linearly at the rate of 𝜂𝛽𝑃 .

• Exhaustion happens when E [𝑈𝑡 ] + E [𝑉𝑡 ] = 𝑁 .

In this model, if 𝑁 < (𝜂𝛽 +1− 𝛽)𝑃 we have 𝑆 ≈ (𝑁 /𝑃)/(𝜂𝛽 +1− 𝛽)

and thus 𝜌 = E [𝑈𝑆 ] /𝑁 ≈ (𝜂𝛽𝑃𝑆)/𝑁 = ¥𝜌 . In other words, if exhaus-

tion occurs during stage (1), the naïve model’s acquisition function

applies. Otherwise, the acquisition function is fully determined by

the size of the saturated subpopulation, since all that is left for the

other is the remainder of the resources. More precisely, in that case

we have 𝜌 ≈ [𝑁 − (1 − 𝛽)𝑃]/𝑁 . We can write:

𝜌 ≈





𝜂𝛽
𝜂𝛽+1−𝛽

; if 𝑁 <
1
𝛼 𝑃 (𝜂𝛽 + 1 − 𝛽)

1 −
(1−𝛽 )𝑃

𝑁 ; otherwise.

Further, using the fact that 𝑁 /𝑃 = 𝛼𝑛/𝑝 and observing that
𝜂𝛽

𝜂𝛽+1−𝛽
> 1 −

(1−𝛽 )𝑝
𝛼𝑛 is equivalent to 𝑛 <

1
𝛼 𝑝 (𝜂𝛽 + 1 − 𝛽), we can

write the approximate acquisition function as:

𝜌 := max

{
¥𝜌, 1 −

(1 − 𝛽)𝑝

𝛼𝑛

}
(6)

Eq. (6) clearly demarcates the two possible behaviors of 𝜌 : the

first dominated by exhaustion ( ¥𝜌) and the second dominated by

saturation. Note that the absolute sizes of 𝑁 and 𝑃 do not affect

this approximation, only their relative size 𝑁 /𝑃 matters. In fact,

we can think of this approximation as the limit of 𝜌 for large 𝑁

and 𝑃 . Fig. 1a illustrates this visually.

5 RESOURCE DISPARITY AND
DOWNSTREAM IMPACT

Reducing resource disparity may be thought of as a goal in its own

right, as a form of virtue or deontological ethics. However, in the

present context one may argue that this goes hand in hand with

a more consequentialist notion. Assume that, in the absence of the

resource, the advantaged are likely to incur an adverse outcome

with probability 𝑥 and that the disadvantage are more likely to incur

such an outcome, say with probability (1 + 𝛿)𝑥 . These outcomes

represent an abstraction of potential downstream impact. In the

presence of the resource, say the adverse outcome’s likelihood drops

by a factor 𝑞 ∈ (0, 1) for the advantaged and by a factor of 𝑞′ for the

disadvantaged. Thus, with the resource, the advantaged and disad-

vantaged have a probability 𝑞𝑥 and 𝑞′ (1 + 𝛿)𝑥 of adverse outcomes

respectively. We can then make the following observation.

Proposition 5.1. In the adverse outcome scenario described above,

the expected number of adverse outcomes is a linear function of RD.

Furthermore, the slope of the relationship is positive whenever 𝛿 >

𝑞′−𝑞
1−𝑞′ .

One can see this by noting that RD in Eq. (1) is a linear function

of the number of vaccines that go to the disadvantaged and that the

same is also true for the expected number of adverse outcomes. The

condition of Prop. 5.1 then follows from a direct calculation. We

omit the proof, as it is straightforward. Thus, if the disadvantage

is large enough at first (large enough 𝛿) and if the resource allows

a decent improvement for the disadvantaged (𝑞′ not much larger

than 𝑞) then reducing RD also reduces the expected number of

adverse outcomes. The first facet is intuitive. To see why the second

is also necessary, imagine that the resource did nothing to the

disadvantaged, i.e., 𝑞′ = 1. In that case, it doesn’t help to channel

more resources to them, and it is in fact more advantageous (for

downstream impact) to channel more to the advantaged. However,

these are arguably satisfied in practice, especially if the resource

is even more effective for the disadvantaged (𝑞′ < 𝑞).

Example. Using the CDC estimates [5] in the period 10/2021 to

2/2022, the average rate of COVID19 hospitalization per 100,000

people in the unvaccinated (advantaged) 18-64 age group is 99 and

the (disadvantage) 65+ group is 415. For the fully vaccinated, the

respective rates are 18 and 78. This gives 𝑞 = 18/99 ≈ 0.182 and

𝑞′ = 78/415 ≈ 0.188, corresponding to a minuscule threshold of

0.007 that 𝛿 = 415/99 − 1 ≈ 3.19 readily exceeds. If one considers

the 50+ group as advantaged instead, then one gets 𝑞′ < 𝑞 and the

condition holds trivially. □

6 ACCESS-AWARE ALLOCATION

We are now in position to instantiate concrete version of Eq. (3). To

develop intuition, we first do this for the naïve acquisition model

and show that it reduces to a linear program. We then show how

the resulting solution can be used iteratively, to heuristically solve

allocation under the approximate access model. As for the exact

access model, one could in principle use nonlinear optimization

with Eq. 5 directly, but we do not address this currently. Before

proceeding, let us rewrite resource disparity in Eq. (1) as follows:

RD = 𝛼

∑
𝑗 (1 − 𝜌 𝑗 )𝑛 𝑗

∑
𝑗 (1 − 𝛽 𝑗 )𝑝 𝑗

− 𝛼

∑
𝑗 𝜌 𝑗𝑛 𝑗∑
𝑗 𝛽 𝑗𝑝 𝑗

=

∑︁

𝑗

𝛼

(
1 − 𝜌 𝑗∑

𝑗 ′ (1 − 𝛽 𝑗 ′ )𝑝 𝑗 ′
−

𝜌 𝑗∑
𝑗 ′ 𝛽 𝑗 ′𝑝 𝑗 ′

)

︸                                     ︷︷                                     ︸
𝑐 𝑗

𝑛 𝑗 (7)

6.1 Naïve Allocation

In the naïve model, resource disparity becomes a linear function of

n, because plugging in ¥𝜌 instead of 𝜌 in the expression for 𝑐 𝑗 in Eq.

(7) gives:

𝑐 𝑗 =
𝛼

𝜂𝛽 𝑗 + 1 − 𝛽 𝑗

(
1 − 𝛽 𝑗∑

𝑗 ′ (1 − 𝛽 𝑗 ′ )𝑝 𝑗 ′
−

𝜂𝛽
∑

𝑗 ′ 𝛽 𝑗 ′𝑝 𝑗 ′

)
,

which does not depend on n. Furthermore, the no-waste con-

straint is already linear and the constraints with both d1 (n, p) and

d∞ (n, p) of Eq. (2) can be expanded into a set of linear constraints,

via slack variables. As such, in this case the allocation problem (3)

can be written as a linear program. Here are the instances that

result for each distance:
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=

Total Resources

Acquired

Time

Saturation

+

Exhaustion

Disadvantaged
Exhaustion

Only

Threshold

Advantaged

Resources Acquired

Advantaged

Saturates

Example

(a) Acquisition Behavior (b) Robustness to 𝜂

Figure 1: Visualizations Ð (a) Acquisition behavior versus time (with 𝜂 = 0.5, 𝛽 = 0.5). Blue and red plots are resources acquired

by all and by the advantaged, respectively for 𝑃 = 10, 100, 1000, 10000 (faintest to darkest), for the maximal expected time. For

a specific 𝑁 , resources are exhausted sooner (the orange example). For each case, the average resource is the solid line. The

error bars represent the 5 to 95 percentile range. The limits (dotted red and blue) correspond to the approximation model in

Section 4.3.1. These are indistinguishable from the average 𝑃 = 1000 case and from the entire confidence range for 𝑃 = 10000.

The acquisition function is always the expected fraction of resources acquired by the disadvantaged upon exhaustion. This can

have two distinct behaviors, based on whether only exhaustion occurs or both saturation and exhaustion occur. (b) Constraint

set of the example in Sec. 6.3 (interior of the blue region). Direction of the vector 𝑐 𝑗 of RD in Eq. (7), as 𝜂 varies (in pink). The

narrow fan implies that there exists a single discrepancy-optimizing allocation that is optimal for all 𝜂, and thus robust to lack

of specification of 𝜂.

n★1 = argmin
∑

𝑗 𝑐 𝑗𝑛 𝑗

subject to ∀𝑗 𝑛 𝑗 , 𝑠 𝑗 ≥ 0

𝑛 𝑗 − 𝑠 𝑗 ≤ 𝑝 𝑗
−𝑛 𝑗 − 𝑠 𝑗 ≤ −𝑝 𝑗
𝛼𝑛 𝑗 ≤ 𝑝 𝑗∑

𝑗 𝑠 𝑗 ≤ 𝜀∑
𝑗 𝑛 𝑗 = 1

or

n★∞ = argmin
∑

𝑗 𝑐 𝑗𝑛 𝑗

subject to ∀𝑗 𝑛 𝑗 , 𝑠 𝑗 ≥ 0

𝑛 𝑗 − 𝑠 𝑗 ≤ 𝑝 𝑗
−𝑛 𝑗 − 𝑠 𝑗 ≤ −𝑝 𝑗
𝛼𝑛 𝑗 ≤ 𝑝 𝑗

∀𝑗 𝑠 𝑗 ≤ 𝜀𝑝 𝑗∑
𝑗 𝑛 𝑗 = 1.

(8)

6.2 Better Allocation

Eq. 8 demonstrates concretely how the access model influences the

allocation decision. Access determines resource disparity, which in

turn can be traded offwith geographic disparity.While conveniently

in linear program form, these do not capture the phenomenon of

saturation that will occur whenever sufficient resources are avail-

able at a given location. The exact acquisition function in Eq. (5)

does address this, but is highly nonlinear. Let us consider instead

the approximate acquisition function in Eq. (6). The resulting RD

is still nonlinear, because 𝜌 𝑗 depends on 𝑛 𝑗 and 𝑝 𝑗 , and thus so

will 𝑐 𝑗 . Moreover, at each location, Eq. (7) multiplies Eq. (6) by −𝑛,

yielding the minimum of two linear functions, which is thus con-

cave. Since RD is the sum of these functions, the result is a concave

minimization problem, which can generally be non-tractable. That

said, this informs us that the solution remains on the boundary

of the constraint set. In addition, the two distinct behaviors of 𝜌

suggest that one could start with a naïve model and then łcorrectž

the model and repeat. This gives the following iterative heuristic:

(1) Solve the naïve allocation problem 8, assuming that exhaus-

tion does not occur.

(2) Use the current allocation to detect exhaustion locations 𝑗

and correct 𝜌 according to (6) at these locations.

(3) Re-solve the naïve allocation problem 8, but now with the

𝑐 𝑗 weights in (7) using the updated 𝜌 𝑗 .

(4) Repeat Steps (2) and (3) until convergence.

This is a heuristic both because 𝜌 is an approximation, even if an ac-

curate one, and also because a priori the iterations could either not

converge or converge to a suboptimal stable point. Nevertheless, in

practice the iterations converge extremely quickly and to good so-

lutions, i.e., solutions that significantly reduce resource disparity, as

we illustrate experimentally in Sec. 7. In the supplementarymaterial,

we empirically verify the quality of these using exhaustive search.

6.3 Robustness to the Access Gap

To consider the allocation scheme of Sec. 6.2 as a viable alternative

to the baseline proportional allocation, one should be able to readily

implement it. Apart from design choices, such as the type of allow-

able deviation from proportionality, all variables are known but

one: the access gap 𝜂. How should this be addressed? One approach

is to fit the model to historical data, e.g., using a similar approach to

the one we use to provide empirical evidence for the access model

in Sec. 7.1. While viable, this requires careful elimination of con-

founding variables. Surprisingly, we experimentally observe that

𝑛★1 and 𝑛★∞ are robust to the choice of 𝜂, in that the solution remains

stable for a large range of values and in some cases, for all 𝜂. We

give here an intuitive understanding of this robustness, through a

simple example. In the supplementary material, we suggest more

direct means to address not knowing 𝜂.
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Example. Consider a case with only three locations, 𝑗 = 1, 2, 3.

Let the population be evenly distributed, p =

(
1
3 ,

1
3 ,

1
3

)
. Say loca-

tions have varying proportions of disadvantaged: low 𝛽1 = 0.2,

medium 𝛽2 = 0.5, and high 𝛽3 = 0.8. Assume resources are limited

to 70% of the population, 𝛼 = 0.7. We are willing to deviate our allo-

cation as much as 𝜀 = 0.4 away from n in ℓ1, to reduce the resource

disparity RD between the disadvantaged and advantaged. Fig. 1b

displays the constraint set centered around the interior point p. The

fan shape represents the direction of the objective function vector

𝑐 𝑗 in RD of Eq. (7) at the optimal allocation, as 𝜂 varies. Note that 𝜂

does not affect the constraint set. Even if RD depends nonlinearly

on n, this informs us that the optimal allocation is indeed at the up-

per left corner 𝑛★1 =

(
2
15 ,

41
105 ,

10
21

)
of the constraint polytope, since

otherwise an infinitesimal gradient descent would move away. This

implies that the solution is completely unaffected by𝜂! Interestingly,

this phenomenon also occurs with most of the real data cases that

we cover in Sec. 7.2. Pragmatically, this means that we have an alter-

native to proportional allocation that does not require knowledge of

the access gaps and yet results in a much more equitable distribution

of resources. Note that the resulting allocation is intuitive: it boosts

the highly disadvantaged location’s allocation, reduces the low’s

allocation, and keeps the medium’s roughly the same. □

7 EMPIRICAL VALIDATION

7.1 Evidence for the Access Model

To determine whether the proposed model of access has merit

in practice, we look at how COVID-19 vaccine acquisition varies

across locations. We cannot directly observe the number of vaccines

acquired by the advantaged. We can, however, observe the overall

vaccination rate. According to the the naïve model, i.e., assuming

no saturation for simplicity, at any time 𝑡 the overall vaccination

rate is E
[
¥𝑈𝑡 + ¥𝑉𝑡

]
/(𝑃𝑡) = (𝜂𝛽 + 1 − 𝛽) = −(1 − 𝜂)𝛽 + 1. In what

follows, we empirically show that we indeed observe this linear

dependence on 𝛽 , despite the potential presence of confounding

variables.

Data. For the rates of COVID-19 vaccines, we use publicly avail-

able timeseries data from the CDC at the county level [3]. This data

is provided to the CDC by state or territory health departments

by healthcare providers. A few counties have no reported vaccina-

tions, we discard these. The features we captured were the dates

(Date), county name (Recip_County), state name (Recip_State),

number of people who received 1 dose of a COVID-19 vaccine

(Administered_Dose1_Recip), and their percentage at the county

level (Administered_Dose1_Pop_Pct). This data reflects recipients

over the age of 5. To characterize each county’s overall vulnerabil-

ity, we use publicly available data from Surgo Ventures’ Precision

for Community Vulnerability to COVID-19: Explore the U.S. Data

Tool [31]. They look at many of the factors the CDC uses to judge

vulnerability for COVID-19 such as socioeconomic status, house-

hold composition, racial status, existence of pre-exiting conditions,

and accessibility to healthcare and transportation. They use these

factors to calculate overall vulnerability at the county-level. From

Surgo, we captured county name, state name, and vulnerability

at (very high, high,moderate, low, very low) levels. To explore the

applicability of our observations at every scale, we also look at the

whole world, using Gallup numbers for vulnerability [11] and vacci-

nation numbers fromOneWorld in Data [24].We include only a sub-

set of 142 countries that have clean representation across data sets.

Experiments. For each county in California, Illinois, Ohio, and

Pennsylvania, we look at the percentage of the population that

has acquired at least the first-dose of the COVID-19 vaccine on

December 30, 2021. We do the same at the global level, per country.

Let’s call these numbers 𝑦 𝑗 . At the state level, we consider the

proportion of the vulnerable at each county to be 𝛽 𝑗 = moderate𝑗 +

high𝑗 + 0.5 × very high, where the very high vulnerability range is

slightly weighted down because it is often noisy and incomplete. For

each of the 4 states, Fig. 2a shows a scatter plot of𝑦 (the bubbles have

areas proportional to population size), along with its soft nearest-

neighbor interpolation (with 𝜆 = 20): 𝑦 (𝛽) =
∑

𝑗 𝑦 𝑗 exp(−𝜆 |𝛽−𝛽 𝑗 | )∑
𝑗 exp(−𝜆 |𝛽−𝛽 𝑗 | )

.

In the global case, we set 𝛽 𝑗 = moderate𝑗 + high𝑗 , the 2 categories

of Gallup, and illustrate the parallel results in Fig. 2b.

Results. We observe that, despite noise and confounding vari-

ables (e.g., differences between urban/suburban/rural regions, the

deliberately ignored saturation which affects the low-𝛽 range, noise

and outliers, etc.), the general trend of 𝑦 𝑗 versus beta is not only

monotonically decreasing, but is indeed roughly linear. In particular,

we do see clear segments of linear behavior for primary clusters of

counties. We conclude that, though highly idealized, the presented

access model has the potential to capture a realistic correlation

between the disadvantaged’s lack of resource and access obstacles.

Note also the common behavior across states, highlighted with the

red dotted line in Fig. 2a. We conjecture that this may be formalized

as a methodology to learn 𝜂 from the data. More strikingly, the

same behavior extends all the way to the global scale, showing the

ubiquity of the phenomenon anticipated by our model.

7.2 Behavior and Outcomes of Access-Aware
Allocation

We now explore, numerically, the behavior and outcomes to ex-

pect when employing the proposed access-aware allocation, in

comparison to proportional allocation. The latter has a simple char-

acterization: we always have
𝑛 𝑗

𝑝 𝑗
= 𝛼 . To assess how access-aware

allocation deviates from proportional allocation, we visualize the

behavior of
𝑛 𝑗

𝑝 𝑗
in this case, for locations with varying 𝛽 𝑗 . In order

to demonstrate the possible gains achieved versus proportional

allocation, we simultaneously visualize the latter’s discrepancy RD

along with the discrepancy achieved by access-aware allocation.

Data. In addition to the county-level CDC data, we also used data

privately communicated by the Ohio Health Department, including

tract-level maps with information about the number of vulnerable

people in each tract, for 22 counties in Ohio[28]. The criterion

for vulnerability in this case differs from Surgo’s, but is based on

similar metrics. Using tract-level data from the Census Bureau

[2], we could then determine the population size at each tract,

and thus the percentage vulnerable (𝛽) in each. This allows us

to explore the applicability of the present methodology at such

finer granularity. We also explore a much coarser granularity, with

allocation of vaccines across all 50 states in the US. The data for

this is an aggregation of that obtained from CDC and Surgo, as
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Figure 2: Vaccination rate vs. vulnerability Ð (a) Each bubble represents a county, with area proportional to its population. The

𝑥-axis is the estimated percentage of vulnerable in the county (𝛽). The 𝑦-axis is the percentage of the overall population with

their first COVID-19 vaccination dose as of 12/30/2021. The orange curve is a soft nearest-neighbor interpolation 𝑦 (𝛽) of the

relationship between 𝛽 and 𝑦. The dotted red is a visual guide illustrating the common dominant behavior across states. (b)

Global manifestation of the same phenomenon as in Fig. 2a Ð A roughly linear inverse relationship between vulnerability

numbers and vaccination rates across countries.

described in Sec. 7.1. The vulnerable percentage in this section is

taken to be everyone categorized as very high, high, or moderate.

Experiments. We fix the value of 𝜀 to 0.1 throughout. The in-

fluence of 𝜀 on the allocation is apparent nonetheless, and we

comment on it below. We look at the states of California, Illinois,

Georgia, Ohio, and Pennsylvania (locations = counties), in addition

to Franklin County, OH (locations = Census tracts), and the US

(locations = states). We consider 𝛼 = 0.1 (low), 0.5 (medium), and

0.9 (high) levels of resource availability. We vary 𝜂 from 0 to 1. In

each scenario, we solve for 𝑛★1 and 𝑛★2 using the iterative approach

in Sec 7.2, by solving Eq. 8 and alternating with updates of 𝜌 .

Results Ð Behavior. Fig. 3a illustrates the behavior of the 𝑛★1
allocation through the ratio

𝑛 𝑗

𝑝 𝑗
. The dotted line corresponds to 𝛼 ,

the proportional allocation case. We observe that in all cases the

access-aware allocation has roughly the same form: no allocation
𝑛
𝑝 = 0 below a lower threshold, full allocation 𝑛

𝑝 = 1 above an upper

threshold, and proportional allocation 𝑛
𝑝 = 𝛼 in between. The value

of 𝜀 influences how close the upper and lower thresholds are for

fixed 𝛼 . This is a harsh policy and is due to the lax nature of d1 that

allows such deviation from proportionality. It is worth noting that

this is not always the form of 𝑛★1 , as we have seen in the example

of Sec. 6.3.

Fig. 3b illustrates the behavior of the 𝑛★∞ allocation, which is

much simpler: slightly less allocation below a threshold 𝑛
𝑝 < 𝛼 and

slightly more allocation above a threshold 𝑛
𝑝 > 𝛼 . The value of 𝜀

determines the amount of change from 𝛼 . It is also interesting to

note that in this case, unlike the thresholds of 𝑛★1 , this threshold

does not depend on 𝛼 . This is a lax policy, giving a much gentler

deviation from proportionality, due to the harsh nature of d∞.

Lastly, we note that we do not display multiple policies for each𝜂,

because under each scenario the policy is unaffected by the choice

of 𝜂, thus supporting the claims of robustness in Sec. 6.3.

Results Ð Outcomes. Fig. 4a and Fig. 4b illustrate the improve-

ment in resource disparity that 𝑛★1 and 𝑛★∞ afford. Each constraint

results in specific characteristics. As we could expect from their

harsh and lax respective behaviors, 𝑛★1 can deliver a more marked

improvement to resource disparity than 𝑛★∞ can.

More interestingly, under 𝑛★1 , access-awareness is generally

(though not always) more impactful at higher access gaps (small 𝜂)

and less so at lower gaps (large 𝜂). There isn’t such a monotonic

relationship for 𝑛★∞, with RD often peaking in 𝜂 in that case. This

seems to suggest that when too much deviation from proportion-

ality isn’t desirable (so one would best use d∞), then allocation,

to be effective, needs to be compounded with enough social effort

to bring the disadvantaged above a certain level of access beyond

which it is able to mitigate any remaining difference. However, if

more bold redistribution is accepted (thus one could use d1) then

allocation on its own can go a long way to mitigate disparity. Thus

this work reveals an interesting tradeoff. To borrow some political

jargon, if one is łconservativež in resource allocation, they ought to

be more łprogressivež in providing social safety nets. Conversely,

if one is łsocialistž in resource allocation, they can afford to be less

regulated and more łlibertarianž when it comes to society.

Both instances do however share a common yet counterintuitive

pattern, in that the disparity reduction is relatively higher when re-

sources are more available (𝛼 = 0.9), especially in moderate access

gaps (mid to high 𝜂). This is due to saturation effects, as without

access-awareness, the advantaged subpopulation can quickly ac-

quire all the needed resources, leaving scraps to the disadvantaged.
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Figure 3: Behavior of Allocations Ð Each point is a location 𝑗 . The 𝑥-axis is the percentage vulnerable 𝛽 at location 𝑗 and the

𝑦-axis is the ratio of allocation to its population 𝑛
𝑝 . The allocation for 𝛼 = 0.1, 𝛼 = 0.5, and 𝛼 = 0.9 are also indicated with dotted

lines. Main observations Ð (a) 𝑛★1 specifies two thresholds, does not allocate below the lower, fully allocates above the higher,

and maintains 𝛼 in between. (b) 𝑛★∞ fixes a threshold and alters the proportional allocation slightly lower below it and slightly

higher above it.

What is practically most significant, however, is that at moderate

availability (𝛼 = 0.5) the improvement in RD is consistent in both

instances, no matter what the value of 𝜂 is. We see this visually

as the RD plots having shifted down. This highlights the potential

impact that access awareness could have on distributing resources

more equitably, no matter what the gap is between the advantaged

and disadvantaged.

A final phenomenon that is worth clarifying is the following.

Imagine 𝜂 = 0, meaning that no matter how resources are allocated,

the disadvantaged acquire nothing. In that case, one cannot hope

to improve on proportional allocation (or for that matter on any

non-wasteful allocation), since all resources will then flow to the

advantaged, and no reallocation can change it. One would then

expect, near 𝜂 = 0, for the RD of the access-aware allocations to

approach that of the proportional allocation. Yet, we observe a clear

separation between the two. How can we explain this? This is due

to the fact that our access model operates with an infinite time

horizon, which creates a discontinuity. While the disadvantaged

acquire nothing at 𝜂 = 0, even a modicum of access 𝜂 > 0 no matter

how small, the disadvantaged can acquire whatever is leftover after

the advantaged saturate. They can do this, even if it takes them

an arbitrarily long time. And this offers an opportunity for access-

aware allocation to make a difference. This also opens up an avenue

to explore finite time horizon effects by appropriately modifying

the access model.

8 DISCUSSIONS

Throughout this work, we have considered technical means by

which to address issues with access to limited resources for mem-

bers of vulnerable groups. We acknowledge that this is an oversim-

plification of society and that there are many factors, both endoge-

nous and exogenous, that can hamper a person’s acquisition of a

limited resource.

Other Factors of Slowed Access. Often, members of vulnerable

groups have been marginalized and mistreated by systems offering

aid and assistance to illness or societal issues (e.g. Tuskegee Experi-

ments) [32]. This mistreatment has lead to mistrust and reluctance

to accepting proposed solutions amongst some subpopulations. In

addition, there is often a wave of misinformation distributed in

mass on public concerns [25]. Without the correct information on

a resource, people are robbed of the opportunity to decide whether

obtaining a resource will truly be beneficial for them. Educating

people on the true benefits and disadvantages of obtaining a re-

source could help in their decision-making. Evenwith a trustworthy

system, true education on obtaining a resource, and the solution of

proximity issues, more barriers exist, e.g., lack of internet, inflexible

jobs, mobility issues, or no health insurance [18].

Calls for Justice. Our approach to mitigating slowed down

access through increased proximity could be interpreted as a form

of justice, in that those a part of the disadvantaged population have

often been marginalized, creating lack of access and exacerbating
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Figure 4: Outcomes of Allocations Ð (Left) Resource (vaccination) disparity (𝑦-axis, RD) of both the access-aware allocation 𝑛★∞
offers and the proportional allocation (faint plots), for 𝛼 = 0.1, 0.5, 0.9. (Right) Difference between the two, which captures the

improvement in disparity by using the access-aware allocation. The 𝑥-axis is the access gap, 𝜂. Main observations Ð (a) For 𝑛★1 ,

improvements are more marked when the access gap is larger, i.e. when 𝜂 is smaller. Counterintuitively, more availability

(larger 𝛼) offers relatively more opportunity to mitigate disparity, as explained in the text. (b) For 𝑛★∞, the general behavior is

comparable to that of 𝑛★1 . However, in this case we are more constrained not to deviate from proportionality, and the gains are

thus less.

the effects of this deficit. This marginalization has been caused by

multiple factors and reared in various ways, some include: redlining

which hurt access to jobs and healthcare [15], social exclusion

which can lead to lack of education, and inability to gather those

resources [1], etc. Such history has shifted the distribution of power

[19]. Though these effects are deeply rooted and ring throughout

the lives of the disadvantaged, the hope is that taking such steps

will encourage appropriate visibility of these members of society

and, by doing so, work toward reversing injustice.
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