Modeling Access Differences to
Reduce Disparity in Resource Allocation

Kenya S. Andrews
kandre32@uic.edu
University of Illinois at Chicago
Chicago, IL, USA

ABSTRACT

Motivated by COVID-19 vaccine allocation, where vulnerable sub-
populations are simultaneously more impacted in terms of health
and more disadvantaged in terms of access to the vaccine, we for-
malize and study the problem of resource allocation when there
are inherent access differences that correlate with advantage and
disadvantage. We identify reducing resource disparity as a key goal
in this context and show its role as a proxy to more nuanced down-
stream impacts. We develop a concrete access model that helps
quantify how a given allocation translates to resource flow for the
advantaged vs. the disadvantaged, based on the access gap between
them. We then provide a methodology for access-aware allocation.
Intuitively, the resulting allocation leverages more vaccines in lo-
cations with higher vulnerable populations to mitigate the access
gap and reduce overall disparity. Surprisingly, knowledge of the
access gap is often not needed to perform access-aware allocation.
To support this formalism, we provide empirical evidence for our ac-
cess model and show that access-aware allocation can significantly
reduce resource disparity and thus improve downstream outcomes.
We demonstrate this at various scales, including at county, state,
national, and global levels.
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1 INTRODUCTION

All common resources must be allocated in some way to members of
a society. During such an allocation, the goal should be to optimize
the benefits of the resources for that society. To be transformational,
the way we allocate needs to be not only superficially fair but also
deeply just and willfully acting to mitigate unfairness. We learned
a great deal about what happens when we are not intentional in
our allocation efforts through the COVID-19 virus health crisis. Yet,
amidst the rise in monkeypox cases, we find ourselves in familiar
territory with shortages and allocation issues for the monkeypox
virus vaccines [14, 21]. For most of the COVID-19 pandemic, gov-
ernment officials and healthcare workers have been rapidly seeking
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ways to minimize loss caused by the COVID-19 virus. In this search,
they found the virus affects members of the vulnerable population
more severely; namely people with underlying conditions, members
of racial minority groups, those who lack personal transportation,
those of lower economic status, and older people [13]. Vulnerable
people experience worse short and long term health side effects and
higher mortality rates [6]. Additionally, the impact on cities and
states when members of the vulnerable populations get sick from
COVID-19 leads to higher hospitalization rates, lack of healthcare
staff availability, and less hospital space to care for other conditions.
Though these realities were recognized, many of the plans that were
developed to minimize loss, including vaccination, did not fully
take this into consideration. Instead, when vaccines began to be
distributed, they were distributed according to age (oldest) or career
(most essential workers) [18]. Additionally, points of distribution
for vaccines were receiving proportional amounts of vaccines [8]. It
is seemingly ideal to have such an allocation, but there are several
examples where this logic breaks. For example, age is not the only
good measure because we see Black Americans have a shorter life
expectancy than their White counterparts due to health inequities
[20]. Thus, only focusing on age exacerbates these issues for Black
Americans.

Motivated by COVID-19 vaccine allocation, we formalize the
problem of fair resource allocation when there are inherent access
differences that correlate with advantage and disadvantage. We
make and support three key premises:

(A) The population is stratified into disadvantaged and advan-
taged subpopulations.

(B) The disadvantaged subpopulation is more vulnerable to the
lack of resources.

(C) The disadvantaged subpopulation has obstacles in acquiring
allocated resources.

In Sec. 3, we describe the formal problem by closely following
premises (A) and (B). Our first contribution there is to highlight
reducing resource disparity between advantaged and disadvan-
taged subpopulations as a key goal of resource allocation. Then, in
Sec. 4, our second contribution is a concrete access model, which
we develop through premise (C). This allows us to determine how
resources would flow to the disadvantaged vs. advantaged subpop-
ulations, upon performing a given allocation. In Sec. 5, we show
that resource disparity can be effectively thought of as a proxy to
more complex impact disparities downstream. In Sec. 6, we com-
bine the formal problem with the access model to obtain our third
contribution, an access-aware allocation algorithm that reduces
resource disparity while maintaining approximate geographic pro-
portionality. A key finding here is that access-aware allocation can
often be performed without explicit knowledge of the access gap
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between the subpopulations. We acknowledge that there are many
contributors to access disparities other than disadvantage. That
said, in Sec. 7.1 we give empirical evidence in support of our access
model. Then, in Sec. 7.2, we revisit the COVID-19 vaccine allocation
problem as a use case. Our fourth contribution is, we show signifi-
cant reduction in resource disparity and thus downstream impact
can be achieved with minimal deviation from proportionality. In
Sec. 8, we conclude the paper with discussion points. We start with
a survey of related work in Sec. 2.

2 RELATED WORK

The importance of considering equity and justice when allocating
resources has not been lost on the scientific community, especially
for the COVID-19 vaccine distribution problem, the primary case
study here. The role of access differences and its interplay with
vulnerability and disadvantage is often alluded to, but not directly
formalized as we do.

For example, in [18], the authors note that those 65 and older
account for 80% of deaths from COVID-19; however, they warn
that “if this is done without explicit attention to promoting health
equity, it will, once again, exacerbate major health disparities” They
attribute this to the fact that: making a vaccination appointment
requires substantial time, reliable internet access and technology,
ability to travel to a vaccination site, and trust in the safety of the
vaccine. Note that inability to do any of these and the existence
of pre-exisiting health conditions correlates with a person being
more vulnerable. Several solutions are offered in [18], including
prioritizing hardest hit and lowest economic ZIP Codes, which is
very much in line with the access-aware allocation solutions that
come out of our explicit model. Other suggestions are: local vac-
cine education, decreasing transportation barriers, and simplifying
registration procedures. Though we do not discuss these, we do
acknowledge that they could aid in grassroots efforts of vaccine
administration.

In [33], the authors develop a tool to identify people who will
benefit most from receiving the vaccine at a specific time period.
They argue that those at most risk of contracting should be priori-
tized. However, access differences are not made explicit, and this
focus does not necessarily address minimizing the harshest effects
of contracting COVID-19.

In [12], data from electronic hospital records (EHRs) is used to
train a model which can determine the likelihood of a person to
die from contracting COVID-19. While we do not depend on health
records to determine whether a person would die from COVID-
19, we do use the CDC’s full definition of what it means to be
vulnerable. The findings of [12] (see also [17] for early variant
findings) clearly show affect the level of hospitalization and death
risk. It is also worth noting that health records for racial minorities,
lower-income people, and those who are in more rural areas tend
to not be complete profiles due to access barriers [26].

Many data-driven methods to guide vaccine allocation have also
been proposed. In [9], the authors cluster states with similarly
reported effective reproduction numbers! to look for an optimal
distribution. Their focus does not include equity and is more on

!an epidemiological property that describes the expected number of new cases due

directly to one case
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preventing spread, which we do not address. By concentrating on
resource equity between vulnerable and non-vulnerable subpopula-
tions, we focus on who would benefit most from receiving enough
vaccines.

In [7], allocation under limited resources is addressed but without
considerations of equity, disparity, or access. There, the importance
of dynamic allocation is emphasized, which we do not address. In
[29], the authors consider overall COVID-19 impacts (death, job
loss, and changes in the economy). They build a linear optimization
method to predict testing allocation, based on predicting the influx
of cases, over different time periods to maximize detection of the
virus amongst different population groups (symptomatic, asymp-
tomatic, and contact tracing). They incorporate a basic geographic
notion of equity, by allocating a minimum number of resources at
each location, but do not model access disparity. In a different rele-
vant line of work, resources are allocated to increase direct (spatial)
access. For example, in [34], the placement of hospital beds is opti-
mized using a model of spatial accessibility. This does not involve
an explicit relationship between vulnerability and resource acquisi-
tion but is relevant nonetheless in that it centers on issues of access
by the disadvantaged and findings include resulting improvements
in equity also.

In the theoretical CS and OR communities, models of equity and
allocation have also been proposed. Recently, [10] studied resource
allocation across groups with varying demand distributions and
showed tradeoffs between utilization and fairness across groups.
The varying demand distributions could be interpreted as access
differences, but it is important to note that upon instantiation of the
demand, there is no inherent difference in the ease with which the
resource is acquired. More importantly, in that model, individual
allocations can be made for each group, which may not ideally de-
scribe shared public resource allocation, save for assistance models
that occur through an application process. Though we focus on
access differences in physical resource acquisition, we acknowledge
the importance of differences in access to information and their
impact, e.g., as is done in [16] for standardized testing. Of course,
there are many dimensions beyond access, such as dynamics and
correlations, that further complicate resource acquisition. For ex-
ample, this was explored in depth by [22] for rationing medical
supplies in the COVID-19 backdrop.

A key theme in the current paper is that the disadvantaged
lack ease of access to resources and, simultaneously, are dispropor-
tionally affected by the burden of lack of resource [4, 27]. Some-
times they can be targeted directly (e.g., mobile clinics, government-
supplied PPE, etc). Though these are helpful solutions, these efforts
are expensive and resources often run out before having had suffi-
cient impact [30]. Policies that place more of these resources where
they are needed, such as the access-aware allocation methods pro-
posed here, can boost resource acquisition indirectly. Reaching
vulnerable populations and mitigating the obstacles they face are
critical in making optimization and data-driven methods achieve
their true clinical potential [23, 35]. We believe explicitly modeling
access differences is an essential tool for achieving this potential.
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3 PROBLEM DESCRIPTION

Allocation Task and Notation. We are tasked with allocating an
amount N5 of resources, assumed to be arbitrarily divisible, across
k locations indexed by j € [k] := {1,-- -, k}. The decision variables
are the amounts to be allocated to each location j, denoted by N, or
equivalently the fraction of the whole that these represent, denoted
by nj := Nj/Ns. It is desirable to entirely allocate the resources,
so that }1; Nj = Ny and }; n; = 1. We write n := (n;) je[x]- The
implicit target for this allocation are the population sizes P; at each
location. Using parallel notation to N5, let Py = ), i Pj be the total
population size and p; := P;/Ps be the fraction of the population at
location j, so that 3 j pj = 1. We write p := (p;) je[x]- Resources are
assumed to be limited, Ny < Py, and we parametrize this explicitly
asa := N5 /Ps € (0,1).

Disadvantage vs. Advantage. A central premise of this work,
Premise (A), is that the population is stratified by disadvantage and
that this stratification varies across locations. The disadvantaged
should be regarded as particularly vulnerable in the absence of a
resource. We adopt the simplest model that encapsulates this, by us-
ing a parameter f8; € [0, 1], which describes the fraction at location
Jj who is a particularly disadvantaged subpopulation. While the re-
mainder 1 — f; of the population may also have some vulnerability,
we will describe them as advantaged. This stratification influences
the allocation task through a difference in how allocated resources
are acquired by each subpopulation. At any given location j, given
Nj resources, we assume there exists an acquisition function p, that
determines the fraction of N; acquired by the disadvantaged, while
the remainder 1 — p is acquired by the advantaged.

How can we characterize p? We can only do this through a
clear model of access that describes the process by which allocated
resources are acquired by each subpopulation and the difference
between them. This is the motivation of Sec. 4, which elaborates
our proposed access model theoretically — this is later supported
empirically in Sec. 7.1. The resulting p is found to depend on the
local quantities N, P;, and f3;, as well as a global parameter # that
describes the access gap between disadvantaged and advantaged
subpopulations. In what follows, for conciseness, we refer to the
value that p takes at location j as p;. For reference, please refer to
Table 1 for a glossary of the main notations.

Resource Rate Disparity. Upon an allocation n, each subpopu-
lation acquires part of the Ny resources. The disadvantaged ac-
quire }; pjN;j = Ny X pjnj, while the advantaged acquire the
rest 31;(1 — pj)N; = N5 3;(1 - pj)n;j. As a result, resource ac-
quisition rate may vary across the two subpopulations, which we
quantify through rate disparity:

Zj(=pjNj  X;piN;
2j(1=pj)Pj  X;PBiP;
2j(l=pjnj  Xjpjnj

T USGBe “TiBw @

RD

If the notion of disadvantage is true to its name, then RD will
typically be non-negative, as the resource acquisition rate will be
higher within the advantaged group. As we see in Sec. 7, this is
indeed the case for the vaccine allocation problem. Moreover, it is
desirable not only to have RD close to zero, but also to make it
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negative, as downstream outcomes may improve with higher allo-
cation rates among the disadvantaged. We expand on this in Sec. 5.
This codifies Premise (B) and is the reason why the definition in Eq.
(1) does not enforce positivity. That said, |RD| may also be handled
with minimal modifications within the present methodology.

Proportional Allocation and Geographic Disparity. The baseline
allocation is proportional to the population, that is n; = p;, for all
Jj. This is fundamentally a notion of geographic equity that is an
expected and desirable property of a potential allocation in many
policies, including some recent resource allocation work, e.g. in
COVID-19 testing allocation [29]. To allow ourselves to remain
close to this property, we relax the strict equality of n; = p; for all
Jj to a distance on the k-simplex between n and p. One can think
of this as a form of headroom for social intervention, up to a limit
that could be potentially determined by law or by agreement. We
primarily consider the absolute #; or relative £, distances:

di(np) = > lnj-pjl
J
or (2)
nj
do(np) = max|— -1
7P

Note that de is the more stringent of the two distances as d; =
2jbj ;—j - 1‘ < deo. (The methodology could also handle absolute

{0 and relative ¢ distances, given by max; [n; —pj| and ¥ ;

n_
pj !

respectively, and weighted variants.)

Allocation Objective. It is worth remarking that if p; = f8;, that
is if disadvantaged and advantaged subpopulations get their pro-
portional shares of the allocated resources at each location, then
proportional allocation yields zero rate disparity, RD = 0. Intu-
itively, this is a scenario where there is no access gap between the
disadvantaged and advantaged. When there is a gap, we expect
proportional allocation to not yield the best rate disparity. How can
we allocate resources to improve disparity across subpopulations
while maintaining a reasonable geographic parity? This trade-off
leads to the central objective of this paper, which we can express at

a high level as:

n* = arg min RD(n, p, N5, Ps, B, 1)
subject to d.(n,p) <e¢ (3)
an < p,

where the last inequality is a no-waste constraint, which prohibits
the allocation of more resources than people at an location j: Nj <
Pj. The - can be either 1 or co, indicating the distance used.

4 MODELING ACCESS

In this section, our scope is a single location j. As such, for clarity,
we drop all j subscripts.

4.1 Resource Acquisition

To model access differences across disadvantaged and advantaged
populations, we need to model how resources are acquired upon
allocation. For this, we adopt a simple yet effective model: Pois-
son acquisition until saturation or exhaustion. Each subpopulation
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Ps | total population size
N5 | total resources available
a | resource availability, N /P,
k | number of locations
P; | population size at location j € {1,--- ,k}
Nj | resources allocated to location j
pj | fraction of total population at location j, P;/Ps
n; | fraction of total resources allocated to j, Nj/Ns
p | vectorofall p;
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n | vector of all n;
Bj | percentage of disadvantaged at location j
pj | percentage of N; acquired by the disadvantaged
n | access gap between disadvantaged and advantaged
d; | ¢ distance
de | relative £ distance
e | tolerance in distance from proportionality
n’ optimal allocation when distance d. is used
RD | resource disparity, Eq. (1)

Table 1: Glossary of main notations

acquires a unit of resource according to an independent Poisson
arrival process, which stops when one of two things happen: (1)
an amount of resource equal to the subpopulation size is acquired
by the subpopulation (saturation) or (2) a total amount of resource
equal to the allocated size is acquired (exhaustion). This model
allows us to account for access differences via the relative rate of
each Poisson process. In what follows, we focus on a specific lo-
cation j with population P where f fraction of the population is
disadvantaged and N resources have been already allocated. Our
goals are to specify the acquisition model, describe access gaps,
and derive the shape of the acquisition function p. We assume that
resources and subpopulation sizes are integers.

Base Model. Let A~ and A* be the rates of acquisition of the dis-
advantaged and advantaged respectively. When there are no access
gaps, these rates reflect only the relative sizes of the subpopulations.
We set the expected time for a single resource acquisition per per-
son in this case as our unit of time, and treat the two populations as
a split. This gives us the base rates of A~ = fP and A* = (1 - §)P.

Access Gap. Premise (C) states that the disadvantaged face ob-
stacles in acquiring resources. We can model this as a slowdown
relative to the base rate. Let  be the (relative) access gap between
the disadvantaged and advantaged populations, where = 1 signi-
fies no gap and n = 0 is the limit of infinite gap. Under this model,
the modified rate for the disadvantaged becomes A~ = P while
the rate of the advantaged remains unchanged A* = (1 — §)P.

4.2 Naive Acquisition Function

With this model, we can now concretely define the acquisition func-
tion p to be the expected fraction of the total allocated N resources
that will be acquired by the disadvantaged. To develop intuition, let
us start with a naive characterization that ignores saturation. This
can be thought of as the limit of very scarce resources (¢ — 0), so
much so that no subpopulation in any location can be saturated.
In this case, subpopulations acquire resources until exhaustion.
If U; represents the disadvantaged process and V; represents the
advantaged process, then the exhaustion time can be defined as
S =min{t : U;+V; > N}. With this, the acquisition function
can be defined as j := E [US] /N. The " notation is used to evoke
“naive”, and not second derivative. We have (the proof is given in
the supplementary material):

PRrROPOSITION 4.1. If saturation is ignored, the naive acquisition
function j depends only on  and n, and is of the form:

. AT B
P+ " up+1-p )

4.3 Exact Acquisition Function

The model above is unrealistic, because it has a positive probability
for US > BP or VS > (1 - B)P. As the availability of the resource in-
creases, i.e., for larger values of «, this probability is non-negligible
as subpopulations may saturate. We thus need an exact characteri-
zation of p that reflects this. Let the disadvantaged and advantaged
processes in this case be U; and V; respectively. These are now
stopped versions of the Poisson processes, U; and V;, of the naive
case. More precisely, if we define saturation times of these processes
as Ty = min{t : U; > fP} and Ty = min{t : V; > (1 — B)P} re-
spectively, i.e., the times when they hit their respective population
sizes, then

U = Ut ; ift<Ty v, = Vt ; ift <Ty
=l pp o ift>Ty "l a-ppr ; ift>Ty
The exhaustion time is now modified to be: S = min{t : Uy +V; >

N}, which is well-defined assuming that no wasteful allocations
are allowed, so that N < P always. The exact characterization of
the acquisition function is now p := E [Us] /N. We have (the proof
is given in the supplementary material):

PROPOSITION 4.2. When both saturation and exhaustion occur, the
exact acquisition function p depends not only on  and n, but also on
N and P. It can be written in terms of the naive acquisition function
p of Eq. (4) as follows:

p=i  ~ FE(BP-uN-15)+ L F(ppiN )

(1-p)F((1-pP-LN-1,1-p)

CPPE (1 -pra-p) ®

+

4.3.1 Tractable Approximation. The acquisition function directly
affects the allocation objective expressed in Eq. 3 through the rate
disparity, as seen in Eq. 1. While the characterization of p in Prop.
4.2 is exact, it is not directly amenable to reduction to a convex
optimization problem. Fortunately, we can develop a tractable ap-
proximation to p that also helps develop intuition about its behavior.
One can think of the acquisition process in two stages: (1) both
subpopulations acquire simultaneously, (2) one subpopulation satu-
rates, while the other continues to acquire.

To quantify these stages, first note that with unlimited resources,
the advantaged saturation time is t = 1, on average. This is because
the expected m™ arrival time of V is m/A*, with m = A* = (1— §)P.
Similarly, the disadvantaged saturation time is t = 1/1, on average.
As aresult, it is highly unlikely for the disadvantaged to saturate
prior to the advantaged. This sets the stage for the approximation,
by taking these times to be equal to their expectations. The strength
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of such an approximation stems from the fact that for large param-
eters, a Poisson random variable concentrates very sharply around
its mean. The approximate model is:

o Before t = 1, E [U;] and E [V;] grow linearly at the rate of
npP and (1 — P)P respectively. This stage thus reaches a
maximal acquisition of (nf +1 — f)P.

o After t = 1, E [V}] saturates at (1 — )P, while E [U;] contin-
ues to grow linearly at the rate of nfP.

e Exhaustion happens when E [U;] + E [V;] = N.

In this model, if N < (nf+1— )P we have S = (N/P)/(nf+1-p)
and thus p = E [Us] /N = (nPS)/N = p.In other words, if exhaus-
tion occurs during stage (1), the naive model’s acquisition function
applies. Otherwise, the acquisition function is fully determined by
the size of the saturated subpopulation, since all that is left for the
other is the remainder of the resources. More precisely, in that case
we have p ~ [N — (1 — f)P]/N. We can write:

e Fl s N <LP(B+1-p)
1- % otherwise.

Further, using the fact that N/P = an/p and observing that

qﬁZf—ﬁ >1- (l;ﬁ)p is equivalent to n < ép(r]ﬁ+ 1 - f), we can
write the approximate acquisition function as:
1-
p= max{ﬁ,l—ﬂ} (6)
an

Eq. (6) clearly demarcates the two possible behaviors of p: the
first dominated by exhaustion (g) and the second dominated by
saturation. Note that the absolute sizes of N and P do not affect
this approximation, only their relative size N/P matters. In fact,
we can think of this approximation as the limit of p for large N
and P. Fig. 1a illustrates this visually.

5 RESOURCE DISPARITY AND
DOWNSTREAM IMPACT

Reducing resource disparity may be thought of as a goal in its own
right, as a form of virtue or deontological ethics. However, in the
present context one may argue that this goes hand in hand with
a more consequentialist notion. Assume that, in the absence of the
resource, the advantaged are likely to incur an adverse outcome
with probability x and that the disadvantage are more likely to incur
such an outcome, say with probability (1 + §)x. These outcomes
represent an abstraction of potential downstream impact. In the
presence of the resource, say the adverse outcome’s likelihood drops
by a factor ¢ € (0, 1) for the advantaged and by a factor of ¢’ for the
disadvantaged. Thus, with the resource, the advantaged and disad-
vantaged have a probability gx and g’ (1 + §)x of adverse outcomes
respectively. We can then make the following observation.

PROPOSITION 5.1. In the adverse outcome scenario described above,
the expected number of adverse outcomes is a linear function of RD.
Furthermore, the slope of the relationship is positive whenever § >
7-q
1-q"*

One can see this by noting that RD in Eq. (1) is a linear function
of the number of vaccines that go to the disadvantaged and that the

same is also true for the expected number of adverse outcomes. The
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condition of Prop. 5.1 then follows from a direct calculation. We
omit the proof, as it is straightforward. Thus, if the disadvantage
is large enough at first (large enough §) and if the resource allows
a decent improvement for the disadvantaged (¢’ not much larger
than g) then reducing RD also reduces the expected number of
adverse outcomes. The first facet is intuitive. To see why the second
is also necessary, imagine that the resource did nothing to the
disadvantaged, i.e., ¢’ = 1. In that case, it doesn’t help to channel
more resources to them, and it is in fact more advantageous (for
downstream impact) to channel more to the advantaged. However,
these are arguably satisfied in practice, especially if the resource
is even more effective for the disadvantaged (¢’ < g).

Example. Using the CDC estimates [5] in the period 10/2021 to
2/2022, the average rate of COVID19 hospitalization per 100,000
people in the unvaccinated (advantaged) 18-64 age group is 99 and
the (disadvantage) 65+ group is 415. For the fully vaccinated, the
respective rates are 18 and 78. This gives g = 18/99 ~ 0.182 and
q’ = 78/415 ~ 0.188, corresponding to a minuscule threshold of
0.007 that 6 = 415/99 — 1 =~ 3.19 readily exceeds. If one considers
the 50+ group as advantaged instead, then one gets ¢’ < g and the
condition holds trivially. O

6 ACCESS-AWARE ALLOCATION

We are now in position to instantiate concrete version of Eq. (3). To
develop intuition, we first do this for the naive acquisition model
and show that it reduces to a linear program. We then show how
the resulting solution can be used iteratively, to heuristically solve
allocation under the approximate access model. As for the exact
access model, one could in principle use nonlinear optimization
with Eq. 5 directly, but we do not address this currently. Before
proceeding, let us rewrite resource disparity in Eq. (1) as follows:

S 0=pnj e
RD = jU T PN 2 PN

S a-Bop; “XiBin

L-pi b .
Za(Zj'(l—ﬁj/)pj, Y Bipy nj 7)

J

Cj

6.1 Naive Allocation

In the naive model, resource disparity becomes a linear function of
n, because plugging in j instead of p in the expression for c; in Eq.
(7) gives:

oo a 1-5j _ np
DB+ 1= B\ =By Xy Brpi)

which does not depend on n. Furthermore, the no-waste con-
straint is already linear and the constraints with both dj (n, p) and
deo(n, p) of Eq. (2) can be expanded into a set of linear constraints,
via slack variables. As such, in this case the allocation problem (3)
can be written as a linear program. Here are the instances that
result for each distance:
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Figure 1: Visualizations — (a) Acquisition behavior versus time (with n = 0.5, § = 0.5). Blue and red plots are resources acquired
by all and by the advantaged, respectively for P = 10, 100, 1000, 10000 (faintest to darkest), for the maximal expected time. For
a specific N, resources are exhausted sooner (the orange example). For each case, the average resource is the solid line. The
error bars represent the 5 to 95 percentile range. The limits (dotted red and blue) correspond to the approximation model in
Section 4.3.1. These are indistinguishable from the average P = 1000 case and from the entire confidence range for P = 10000.
The acquisition function is always the expected fraction of resources acquired by the disadvantaged upon exhaustion. This can
have two distinct behaviors, based on whether only exhaustion occurs or both saturation and exhaustion occur. (b) Constraint
set of the example in Sec. 6.3 (interior of the blue region). Direction of the vector c; of RD in Eq. (7), as 5 varies (in pink). The
narrow fan implies that there exists a single discrepancy-optimizing allocation that is optimal for all 7, and thus robust to lack

of specification of 7.

nf =  argmin X cjnj
subject to Vj njs; > 0
nj=sj < pj
—nj—sj = -pj
an;j < pj
Zj Sj < ¢
Zj nj = 1
or 8)
nX =  argmin X cjnj
subject to Vj njsj > 0
nj=sj < pj
nj—sj = -pj
an;j < pj
Vi osj < &pj
Zj n; = 1.

6.2 Better Allocation

Eq. 8 demonstrates concretely how the access model influences the
allocation decision. Access determines resource disparity, which in
turn can be traded off with geographic disparity. While conveniently
in linear program form, these do not capture the phenomenon of
saturation that will occur whenever sufficient resources are avail-
able at a given location. The exact acquisition function in Eq. (5)
does address this, but is highly nonlinear. Let us consider instead
the approximate acquisition function in Eq. (6). The resulting RD
is still nonlinear, because p; depends on n; and p;, and thus so
will ¢;. Moreover, at each location, Eq. (7) multiplies Eq. (6) by —n,
yielding the minimum of two linear functions, which is thus con-
cave. Since RD is the sum of these functions, the result is a concave
minimization problem, which can generally be non-tractable. That
said, this informs us that the solution remains on the boundary

of the constraint set. In addition, the two distinct behaviors of p
suggest that one could start with a naive model and then “correct”
the model and repeat. This gives the following iterative heuristic:

(1) Solve the naive allocation problem 8, assuming that exhaus-
tion does not occur.

(2) Use the current allocation to detect exhaustion locations j
and correct p according to (6) at these locations.

(3) Re-solve the naive allocation problem 8, but now with the
cj weights in (7) using the updated ;.

(4) Repeat Steps (2) and (3) until convergence.

This is a heuristic both because g is an approximation, even if an ac-
curate one, and also because a priori the iterations could either not
converge or converge to a suboptimal stable point. Nevertheless, in
practice the iterations converge extremely quickly and to good so-
lutions, i.e., solutions that significantly reduce resource disparity, as
we illustrate experimentally in Sec. 7. In the supplementary material,
we empirically verify the quality of these using exhaustive search.

6.3 Robustness to the Access Gap

To consider the allocation scheme of Sec. 6.2 as a viable alternative
to the baseline proportional allocation, one should be able to readily
implement it. Apart from design choices, such as the type of allow-
able deviation from proportionality, all variables are known but
one: the access gap n. How should this be addressed? One approach
is to fit the model to historical data, e.g., using a similar approach to
the one we use to provide empirical evidence for the access model
in Sec. 7.1. While viable, this requires careful elimination of con-
founding variables. Surprisingly, we experimentally observe that
nf and n% are robust to the choice of 7, in that the solution remains
stable for a large range of values and in some cases, for all n. We
give here an intuitive understanding of this robustness, through a
simple example. In the supplementary material, we suggest more
direct means to address not knowing 7.
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Example. Consider a case with only three locations, j = 1,2, 3.
Let the population be evenly distributed, p = (% % %) Say loca-
tions have varying proportions of disadvantaged: low f; = 0.2,
medium fy = 0.5, and high f3 = 0.8. Assume resources are limited
to 70% of the population, & = 0.7. We are willing to deviate our allo-
cation as much as ¢ = 0.4 away from n in £, to reduce the resource
disparity RD between the disadvantaged and advantaged. Fig. 1b
displays the constraint set centered around the interior point p. The
fan shape represents the direction of the objective function vector
cj in RD of Eq. (7) at the optimal allocation, as # varies. Note that
does not affect the constraint set. Even if RD depends nonlinearly

on n, this informs us that the optimal allocation is indeed at the up-

per left corner n;‘ = (% 1%’ %) of the constraint polytope, since

otherwise an infinitesimal gradient descent would move away. This
implies that the solution is completely unaffected by 5! Interestingly,
this phenomenon also occurs with most of the real data cases that
we cover in Sec. 7.2. Pragmatically, this means that we have an alter-
native to proportional allocation that does not require knowledge of
the access gaps and yet results in a much more equitable distribution
of resources. Note that the resulting allocation is intuitive: it boosts
the highly disadvantaged location’s allocation, reduces the low’s
allocation, and keeps the medium’s roughly the same. O

7 EMPIRICAL VALIDATION
7.1 Evidence for the Access Model

To determine whether the proposed model of access has merit
in practice, we look at how COVID-19 vaccine acquisition varies
across locations. We cannot directly observe the number of vaccines
acquired by the advantaged. We can, however, observe the overall
vaccination rate. According to the the naive model, i.e., assuming
no saturation for simplicity, at any time ¢ the overall vaccination
rate is E [Ut + Vt] /(Pt) = (gf+1-p) =—(1-n)f+1 Inwhat
follows, we empirically show that we indeed observe this linear
dependence on f, despite the potential presence of confounding
variables.

Data. For the rates of COVID-19 vaccines, we use publicly avail-
able timeseries data from the CDC at the county level [3]. This data
is provided to the CDC by state or territory health departments
by healthcare providers. A few counties have no reported vaccina-
tions, we discard these. The features we captured were the dates
(Date), county name (Recip_County), state name (Recip_State),
number of people who received 1 dose of a COVID-19 vaccine
(Administered_Dosel_Recip), and their percentage at the county
level (Administered_Dose1_Pop_Pct). This data reflects recipients
over the age of 5. To characterize each county’s overall vulnerabil-
ity, we use publicly available data from Surgo Ventures’ Precision
for Community Vulnerability to COVID-19: Explore the U.S. Data
Tool [31]. They look at many of the factors the CDC uses to judge
vulnerability for COVID-19 such as socioeconomic status, house-
hold composition, racial status, existence of pre-exiting conditions,
and accessibility to healthcare and transportation. They use these
factors to calculate overall vulnerability at the county-level. From
Surgo, we captured county name, state name, and vulnerability
at (very high, high, moderate, low, very low) levels. To explore the
applicability of our observations at every scale, we also look at the
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whole world, using Gallup numbers for vulnerability [11] and vacci-
nation numbers from One World in Data [24]. We include only a sub-
set of 142 countries that have clean representation across data sets.

Experiments. For each county in California, Illinois, Ohio, and
Pennsylvania, we look at the percentage of the population that
has acquired at least the first-dose of the COVID-19 vaccine on
December 30, 2021. We do the same at the global level, per country.
Let’s call these numbers y;. At the state level, we consider the
proportion of the vulnerable at each county to be f; = moderate; +
high; + 0.5 X very high, where the very high vulnerability range is
slightly weighted down because it is often noisy and incomplete. For
each of the 4 states, Fig. 2a shows a scatter plot of y (the bubbles have

areas proportional to population size), along with its soft nearest-
2 yjexp(-AB-p;l)

2 exp(=Alf=p;1)
In the global case, we set f; = moderate; + high , the 2 categories
of Gallup, and illustrate the parallel results in Fig. 2b.

neighbor interpolation (with A = 20): §(f) =

Results. We observe that, despite noise and confounding vari-
ables (e.g., differences between urban/suburban/rural regions, the
deliberately ignored saturation which affects the low-f range, noise
and outliers, etc.), the general trend of y; versus beta is not only
monotonically decreasing, but is indeed roughly linear. In particular,
we do see clear segments of linear behavior for primary clusters of
counties. We conclude that, though highly idealized, the presented
access model has the potential to capture a realistic correlation
between the disadvantaged’s lack of resource and access obstacles.
Note also the common behavior across states, highlighted with the
red dotted line in Fig. 2a. We conjecture that this may be formalized
as a methodology to learn 1 from the data. More strikingly, the
same behavior extends all the way to the global scale, showing the
ubiquity of the phenomenon anticipated by our model.

7.2 Behavior and Outcomes of Access-Aware
Allocation

We now explore, numerically, the behavior and outcomes to ex-
pect when employing the proposed access-aware allocation, in
comparison to proportional allocation. The latter has a simple char-
acterization: we always have ;—’ = a. To assess how access-aware
allocation deviates from proportional allocation, we visualize the
behavior of Z—] in this case, for locations with varying f;. In order

J
to demonstrate the possible gains achieved versus proportional
allocation, we simultaneously visualize the latter’s discrepancy RD
along with the discrepancy achieved by access-aware allocation.

Data. In addition to the county-level CDC data, we also used data
privately communicated by the Ohio Health Department, including
tract-level maps with information about the number of vulnerable
people in each tract, for 22 counties in Ohio[28]. The criterion
for vulnerability in this case differs from Surgo’s, but is based on
similar metrics. Using tract-level data from the Census Bureau
[2], we could then determine the population size at each tract,
and thus the percentage vulnerable (f) in each. This allows us
to explore the applicability of the present methodology at such
finer granularity. We also explore a much coarser granularity, with
allocation of vaccines across all 50 states in the US. The data for
this is an aggregation of that obtained from CDC and Surgo, as
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Figure 2: Vaccination rate vs. vulnerability — (a) Each bubble represents a county, with area proportional to its population. The
x-axis is the estimated percentage of vulnerable in the county (f). The y-axis is the percentage of the overall population with
their first COVID-19 vaccination dose as of 12/30/2021. The orange curve is a soft nearest-neighbor interpolation () of the
relationship between § and y. The dotted red is a visual guide illustrating the common dominant behavior across states. (b)
Global manifestation of the same phenomenon as in Fig. 2a — A roughly linear inverse relationship between vulnerability

numbers and vaccination rates across countries.

described in Sec. 7.1. The vulnerable percentage in this section is
taken to be everyone categorized as very high, high, or moderate.

Experiments. We fix the value of ¢ to 0.1 throughout. The in-
fluence of ¢ on the allocation is apparent nonetheless, and we
comment on it below. We look at the states of California, Illinois,
Georgia, Ohio, and Pennsylvania (locations = counties), in addition
to Franklin County, OH (locations = Census tracts), and the US
(locations = states). We consider a = 0.1 (low), 0.5 (medium), and
0.9 (high) levels of resource availability. We vary 7 from 0 to 1. In
each scenario, we solve for n} and n) using the iterative approach
in Sec 7.2, by solving Eq. 8 and alternating with updates of p.

Results — Behavior. Fig. 3a illustrates the behavior of the n;‘
nj
pj
the proportional allocation case. We observe that in all cases the
access-aware allocation has roughly the same form: no allocation

IEJ = 0 below a lower threshold, full allocation jﬂ, = 1 above an upper

allocation through the ratio —£. The dotted line corresponds to «a,

threshold, and proportional allocation £ = « in between. The value
of ¢ influences how close the upper and lower thresholds are for
fixed a. This is a harsh policy and is due to the lax nature of d; that
allows such deviation from proportionality. It is worth noting that
this is not always the form of n¥, as we have seen in the example
of Sec. 6.3.

Fig. 3b illustrates the behavior of the n¥, allocation, which is
much simpler: slightly less allocation below a threshold % < aand
slightly more allocation above a threshold 2 > a. The value of ¢
determines the amount of change from «. It is also interesting to
note that in this case, unlike the thresholds of nT, this threshold
does not depend on a. This is a lax policy, giving a much gentler
deviation from proportionality, due to the harsh nature of deo.

Lastly, we note that we do not display multiple policies for each 7,
because under each scenario the policy is unaffected by the choice
of 1, thus supporting the claims of robustness in Sec. 6.3.

Results — Outcomes. Fig. 4a and Fig. 4b illustrate the improve-
ment in resource disparity that n} and n, afford. Each constraint
results in specific characteristics. As we could expect from their
harsh and lax respective behaviors, n;‘ can deliver a more marked
improvement to resource disparity than n%, can.

More interestingly, under n*, access-awareness is generally
(though not always) more impactful at higher access gaps (small )
and less so at lower gaps (large 7). There isn’t such a monotonic
relationship for n%,, with RD often peaking in 7 in that case. This
seems to suggest that when too much deviation from proportion-
ality isn’t desirable (so one would best use dc), then allocation,
to be effective, needs to be compounded with enough social effort
to bring the disadvantaged above a certain level of access beyond
which it is able to mitigate any remaining difference. However, if
more bold redistribution is accepted (thus one could use d;) then
allocation on its own can go a long way to mitigate disparity. Thus
this work reveals an interesting tradeoff. To borrow some political
jargon, if one is “conservative” in resource allocation, they ought to
be more “progressive” in providing social safety nets. Conversely,
if one is “socialist” in resource allocation, they can afford to be less
regulated and more “libertarian” when it comes to society.

Both instances do however share a common yet counterintuitive
pattern, in that the disparity reduction is relatively higher when re-
sources are more available (a« = 0.9), especially in moderate access
gaps (mid to high ). This is due to saturation effects, as without
access-awareness, the advantaged subpopulation can quickly ac-
quire all the needed resources, leaving scraps to the disadvantaged.
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Figure 3: Behavior of Allocations — Each point is a location j. The x-axis is the percentage vulnerable f at location j and the
y-axis is the ratio of allocation to its population IH’ The allocation for o = 0.1, « = 0.5, and @ = 0.9 are also indicated with dotted

lines. Main observations — (a) n;( specifies two thresholds, does not allocate below the lower, fully allocates above the higher,
and maintains « in between. (b) n%, fixes a threshold and alters the proportional allocation slightly lower below it and slightly

higher above it.

What is practically most significant, however, is that at moderate
availability (¢ = 0.5) the improvement in RD is consistent in both
instances, no matter what the value of 1 is. We see this visually
as the RD plots having shifted down. This highlights the potential
impact that access awareness could have on distributing resources
more equitably, no matter what the gap is between the advantaged
and disadvantaged.

A final phenomenon that is worth clarifying is the following.
Imagine 1 = 0, meaning that no matter how resources are allocated,
the disadvantaged acquire nothing. In that case, one cannot hope
to improve on proportional allocation (or for that matter on any
non-wasteful allocation), since all resources will then flow to the
advantaged, and no reallocation can change it. One would then
expect, near n = 0, for the RD of the access-aware allocations to
approach that of the proportional allocation. Yet, we observe a clear
separation between the two. How can we explain this? This is due
to the fact that our access model operates with an infinite time
horizon, which creates a discontinuity. While the disadvantaged
acquire nothing at # = 0, even a modicum of access > 0 no matter
how small, the disadvantaged can acquire whatever is leftover after
the advantaged saturate. They can do this, even if it takes them
an arbitrarily long time. And this offers an opportunity for access-
aware allocation to make a difference. This also opens up an avenue
to explore finite time horizon effects by appropriately modifying
the access model.

8 DISCUSSIONS

Throughout this work, we have considered technical means by
which to address issues with access to limited resources for mem-
bers of vulnerable groups. We acknowledge that this is an oversim-
plification of society and that there are many factors, both endoge-
nous and exogenous, that can hamper a person’s acquisition of a
limited resource.

Other Factors of Slowed Access. Often, members of vulnerable
groups have been marginalized and mistreated by systems offering
aid and assistance to illness or societal issues (e.g. Tuskegee Experi-
ments) [32]. This mistreatment has lead to mistrust and reluctance
to accepting proposed solutions amongst some subpopulations. In
addition, there is often a wave of misinformation distributed in
mass on public concerns [25]. Without the correct information on
a resource, people are robbed of the opportunity to decide whether
obtaining a resource will truly be beneficial for them. Educating
people on the true benefits and disadvantages of obtaining a re-
source could help in their decision-making. Even with a trustworthy
system, true education on obtaining a resource, and the solution of
proximity issues, more barriers exist, e.g., lack of internet, inflexible
jobs, mobility issues, or no health insurance [18].

Calls for Fustice. Our approach to mitigating slowed down
access through increased proximity could be interpreted as a form
of justice, in that those a part of the disadvantaged population have
often been marginalized, creating lack of access and exacerbating
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Figure 4: Outcomes of Allocations — (Left) Resource (vaccination) disparity (y-axis, RD) of both the access-aware allocation n%,
offers and the proportional allocation (faint plots), for & = 0.1, 0.5, 0.9. (Right) Difference between the two, which captures the
improvement in disparity by using the access-aware allocation. The x-axis is the access gap, 1. Main observations — (a) For n;‘,
improvements are more marked when the access gap is larger, i.e. when 7 is smaller. Counterintuitively, more availability
(larger ) offers relatively more opportunity to mitigate disparity, as explained in the text. (b) For n%, the general behavior is
comparable to that of n}. However, in this case we are more constrained not to deviate from proportionality, and the gains are

thus less.

the effects of this deficit. This marginalization has been caused by
multiple factors and reared in various ways, some include: redlining
which hurt access to jobs and healthcare [15], social exclusion
which can lead to lack of education, and inability to gather those
resources [1], etc. Such history has shifted the distribution of power
[19]. Though these effects are deeply rooted and ring throughout
the lives of the disadvantaged, the hope is that taking such steps
will encourage appropriate visibility of these members of society
and, by doing so, work toward reversing injustice.
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