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Mechanical Characterization of
Compliant Cellular Robots.
Part I: Passive Stiffness
Modular active cell robots (MACROs) are a design paradigm for modular robotic hard-
ware that uses only two components, namely actuators and passive compliant joints.
Under the MACRO approach, a large number of actuators and joints are connected to
create mesh-like cellular robotic structures that can be actuated to achieve large deforma-
tion and shape change. In this two-part paper, we study the importance of different possible
mesh topologies within the MACRO framework. Regular and semi-regular tilings of the
plane are used as the candidate mesh topologies and simulated using finite element analysis
(FEA). In Part 1, we use FEA to evaluate their passive stiffness characteristics. Using a
strain-energy method, the homogenized material properties (Young’s modulus, shear
modulus, and Poisson’s ratio) of the different mesh topologies are computed and compared.
The results show that the stiffnesses increase with increasing nodal connectivity and that
stretching-dominated topologies have higher stiffness compared to bending-dominated
ones. We also investigate the role of relative actuator-node stiffness on the overall mesh
characteristics. This analysis shows that the stiffness of stretching-dominated topologies
scales directly with their cross-section area whereas bending-dominated ones do not
have such a direct relationship. [DOI: 10.1115/1.4054615]
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1 Introduction
Modular robots hold promise to enable complex robotic tasks

using simple, small, and discrete robotic subunits [1–3]. Such
robots are especially promising in resource-constrained environ-
ments and in applications where a multitude of tasks has to be
accomplished by a small number of robots [2,4,5]. In such cases,
modularity and reconfiguration are desirable traits. Modular
robots typically consist of multiple identical modules such that
each module merges actuation, sensing, and controls in a single
self-sufficient unit. This results in these modules being highly
complex and difficult to fabricate in large numbers. To address
this, we have proposed a new design paradigm for modular
robots called modular active cell robots abbreviated as MACROs
[6,7]. MACROs are inspired by the observations in nature of the
hierarchical architecture employing simple building blocks result-
ing in complex biological systems. For example, simple contracting
muscle cells are arranged in multiple levels of architectures in ske-
letal muscles to generate complex motion [8] and in the gastrointes-
tinal tract, simple cells are used in the muscle lining to generate
complex anterograde peristalsis [9]. Similarly, the MACRO frame-
work aims to assemble a large number of simple, identical, and easy
to fabricate components in a variety of architectures to realize
highly articulate, reconfigurable, and modular robots. MACROs
can find applications in a variety of fields especially in resource-
constrained environments such as in outer space or deep sea. In
such cases, the MACRO framework has the advantage of using
simple and identical components that can be mass-fabricated,
thereby simplifying the hardware requirements. Furthermore, the
reconfigurability and modularity of MACROs allow the same com-
ponents to be re-purposed or re-assembled to accomplish a
completely different task. MACRO architecture can also help

toward creating modular hardware for general-purpose robots that
can help with tasks of everyday living. Using the same components
and then changing the assembly and topology can lead to a variety
of behavior that can include grasping, manipulation, locomotion,
etc.
A primary way in which MACROs are simpler than many other

modular robot concepts is that they do not have actuators for their
own mobility or rearrangement—they are “building blocks” assem-
bled with external actuation (for instance, by a human operator) and
accomplish changes to the larger structure by actuating the active
cells and thereby causing the surrounding passive compliant ele-
ments to strain and cause structural shape change. MACROs are
therefore primarily structural robots, designed to provide shape-
changing ability to a robotic material. The individual components
of the MACRO system are shown in Fig. 1.
A physical implementation of the MACRO concept is shown by

Nawroj et al. [6,7]. In this implementation, ACs are fabricated using
shape memory alloy (SMA) coils and passive bias springs to create
a linear-actuating cell that exhibits ∼25% strain when actuated (see
Fig. 1(c)). Nodes to connect cells to a larger structure are fabricated
by molding polyurethane in 3D printed molds (see Fig. 1(d )). Actu-
ation of the mesh can be accomplished in a number of ways, such as
controlling individual cells, or in an aggregate way, such as by
applying a voltage to boundary nodes with internal cells electrically
connected. Note that these SMA-based active cells are only one of
many ways to create MACROs, and the work described in this
paper examines the concept in a way that will generalize to a
wide range of designs and implementations.
The goal of this paper is to investigate the mechanical properties

of different candidate arrangements of active cells into larger struc-
tures in order to understand how those choices result in different
properties and capabilities of the aggregate structures. We, there-
fore, begin by analyzing the 11 possible uniform tilings of the
plane [10], which are the only possible regular/repeating planar
arrangements of units with equal edge length. In Part I of this
two-part paper, we look at the passive characteristics of different
MACRO meshes, namely their Young’s modulus, shear modulus,
and Poisson’s ratio. In addition, we vary the stiffnesses of actuators
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and nodes relative to each other to investigate their effects on
the properties of overall mesh. Part II of the paper investigates the
active characteristics of MACRO meshes or in other words,
the strain behavior of a MACRO. In particular, we quantify the
overall mesh strain of a large MACRO mesh based on the specific
edges of the mesh that are being actuated.
We consider uniform tilings of the plane as candidate topologies

for MACRO. Within these tilings, we represent a MACRO using a
planar network of edges and vertices (see Fig. 1(b)), with the edges
representing simple and identical linear-actuators called active cells
or ACs [11] as shown in Fig. 1(c). These ACs are linear actuators
that can be either contracting or extending type. The nodes in the
MACROmesh consist of passive elastomeric joints that are compli-
ant and can undergo large bending deformation. These joints can
attach to two or more active cells depending on the number of
arms molded into the node as shown in Fig. 1(d ). Therefore, a
large number of ACs are connected to each other through the
flexure nodes to create a MACROmesh that forms the robotic mate-
rial as shown in Figs. 1(a) and 1(b). AMACRO consists, in addition
to the mesh of cells and nodes itself, electrical components to power
and actuate the robotic mesh. However, in this two-part paper, we
are interested in the mechanical characterization of various mesh
architectures, so we focus solely on the ACs, the flexure nodes,
and their mechanical behavior when assembled in large meshes.
Throughout this paper, we use ACs, edges, or actuators inter-
changeably to refer to the active components in the MACRO
mesh, namely the linear actuators. Similarly, we use flexure
nodes, joints, vertices, or simply nodes to refer to the passive com-
ponents, namely the passive flexure joints.
To capture the passive behavior of MACROs, we utilize homog-

enization methods that replace the inhomogeneous material micro-
structure with a homogeneous medium to evaluate the coefficients
of the homogenized elastic tensor CH [12,13] and further, evaluate
the material properties such as the equivalent Young’s modulus,
shear modulus, and Poisson’s ratio. This approach helps to
capture gross behaviors of nonhomogenous materials with a repeat-
ing microstructure, such as metamaterials, lattice materials, or cel-
lular solids [14–17]. Similarly, since the MACRO meshes
presented in this paper have a repeating unit cell, we can apply

homogenization methods to evaluate their stiffness properties.
However, many homogenization methods often require additional
postprocessing and are complicated to implement. For our applica-
tion, since our lattice structures have additional symmetry in their
unit cell, we can use an intuitive and relatively easy to implement
strain-energy method proposed by Refs. [18–20]. We briefly sum-
marize this method in Sec. 2, followed by Sec. 3 that present the
MACRO mesh topologies considered as the design choices
within our framework. Mechanical properties obtained using the
strain-energy method are presented in Sec. 4, followed by discus-
sion and conclusions in Secs. 5 and 6, respectively.

2 Strain-Energy Method
Consider a planar material with a repeating microstructure as

shown in Fig. 2. If the microstructure of this material has two
orthogonal axes of symmetry, then the material is orthotropic. For
such a material, we can write the following relation between stresses
and strains

σ11
σ22
σ12

⎡
⎣

⎤
⎦ =

CH
1111 CH

1122 0
CH
2211 CH

2222 0
0 0 CH

1212

⎡
⎣

⎤
⎦

ε11
ε22
2ε12

⎡
⎣

⎤
⎦ (1)

where the superscript H denotes the homogenized parameters and
the subscripts 1 and 2 denote the X and Y axes, respectively.
Also, σ represents the stresses, ɛ represents the strains, and CH

are the coefficients of the stiffness tensor. As shown in Fig. 2,
since the MACRO structure has two axes of reflective symmetry,
only a quarter of this structure needs to be analyzed to obtain its
material properties. On this symmetric quarter, by applying four dif-
ferent loading conditions as shown in Figs. 2(a)–2(d ), we can eval-
uate the coefficients of the stiffness tensor. These four loading
conditions are chosen such that they make all but one of the
strains to be equal to zero in Eq. (1), thereby aiding in the evaluation
of stiffness coefficients.
In the loading condition shown in Fig. 2(a), the only nonzero

strain is the prescribed strain along the X direction, ɛ11, while all

Fig. 1 A schematic showing the MACRO framework: (a) large MACRO robotic material,
(b) constitutive MACRO mesh and its components, (c) active cells (linear actuators), and
(d ) passive flexure nodes (joints)
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other strains are zero due to the boundary conditions. Therefore, for
this load case, the strain energy is

SE(a) =
1
2
σ11ε11 (2)

The superscript (a) here denotes the load case shown in Fig. 2(a).
Furthermore, for this loading condition, we have from Eq. (1)

σ11 = CH
1111ε11 (3)

Therefore, from Eqs. (2) and (3), we can get

CH
1111 =

2SE(a)

(ε11)2
(4)

Similarly, we can obtain from the remaining three load cases, the
following relations between the strain energy, applied strains, and
the coefficients of the stiffness tensor:

CH
2222 =

2SE(b)

(ε22)2
(5)

Fig. 2 Boundary conditions on a symmetric quarter of the repeating structure to evaluate the
coefficients of elastic stiffness tensor
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CH
1212 =

SE(c)

2(ε12)2
(6)

CH
1122 =

SE(d) − SE(a) − SE(b)

ε11ε22
(7)

Note that for the biaxial loading condition shown in Fig. 2(d ), the
prescribed strains ɛ11 and ɛ22 have to be equal to the prescribed
strains applied in conditions from Figs. 2(a) and 2(b), respectively.
This is a necessary condition to obtain the relation shown in Eq. (7).
Next, we can obtain Young’s modulus, shear modulus, and Pois-

son’s ratio from the coefficients of the stiffness tensor as shown
below:

E1 = CH
1111 −

(CH
1122)

2

CH
2222

(8)

E2 = CH
2222 −

(CH
1122)

2

CH
1111

(9)

G12 = CH
1212 (10)

ν12 =
CH
1122

CH
2222

(11)

ν21 =
CH
1122

CH
1111

(12)

We implement this strain-energy method using the commercial
finite element analysis (FEA) package, Abaqus. Timoshenko
beam elements (B21 in Abaqus FEA) with rectangular cross-section
are used to model both the actuators and nodes. Both the compo-
nents in the MACRO mesh, i.e., actuators and nodes are assigned
the same material properties (Young’s modulus, density, and Pois-
son’s ratio), but different cross-section dimensions that capture their
different stiffnesses in our model. Since we are implementing a
beam element FE model, this assumption does not lead to any
loss in generality. The goal of this study is to investigate the role
of different mesh topologies on the resulting MACRO’s mechanical
properties, irrespective of the type of actuators and compliant joints
used. Therefore, we have attempted to keep the model of actuators
and nodes in this study as simple as possible. These assumptions
allow us to create a computationally inexpensive model of
MACROs that allows us to run a large number of simulations of dif-
ferent mesh topologies, loading conditions, and actuation modes.
Figure 3 shows the different steps involved in implementation of

the strain-energy method in Abaqus. We start with choosing a spe-
cific mesh size for the mesh topology being analyzed. We use these
quantities as inputs for a MATLAB function that outputs the data
required to model the MACRO mesh, namely, coordinates of all
nodes and a matrix that specifies the nodes that each edge connects
to. These data are then imported into Abaqus, where it is used to
create the geometry of the part that represents the MACRO mesh.
For stiffness simulations, we run four different FE simulations cor-
responding to the four different loading and boundary conditions
shown in Fig. 2. Four different Abaqus models are created with
the same part geometry and material and section assignments,

Fig. 3 Flow chart showing the different stages involved in the FE analysis to determine the stiffness properties of a MACRO
mesh
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followed by applying different prescribed displacements and
boundary conditions. The four models are solved and the output
data are exported to MATLAB for postprocessing. Strain energy, SE
and prescribed strains, ɛ are imported and then used to evaluate
the coefficients of stiffness tensor using Eqs. (4)–(7). Finally, the
equivalent Young’s modulus, shear modulus, and Poisson’s ratio
are calculated using Eqs. (8)–(12).
In the next section, we describe the design constraints that are

imposed on MACROs and the resulting choices of the candidate
mesh topologies.

3 Mesh Topologies
Under the MACRO framework, a large number of identical linear

actuators are connected to each other using identical compliant
joints to form a deformable robotic mesh. We use tilings [10] to
denote such a MACRO mesh, where the edges of the tiling
denote the actuators and the vertices of the tiling denote the compli-
ant joints connecting the actuators to form the mesh. Due to certain
assumptions within the MACRO framework, we have a few design
constraints on the possible tiling topologies that can be used for a
MACRO. These constraints are listed below. For further details
of tilings and associated terminology, refer to Grunbaum and
Shephard [10].

• Regularity of enclosed polygons: Since we are constrained to
identical actuators, all the edges of the mesh are going to be of
the same length at rest. Therefore, each polygon formed by the

edges in the mesh is going to be regular, i.e., they are both
equiangular and equilateral. The regularity of polygons may
change after actuation.

• Edge-to-edge tiling: The vertices of the mesh denote the com-
pliant joints connecting the actuators denoted by the edges.
Since the actuators can only be connected to other actuators
at the compliant joints, all corners and sides of the tiling
must coincide with the vertices and edges of the tiling, respec-
tively, thereby implying edge-to-edge tiling.

• Vertex transitivity: All vertices of a MACRO mesh represent-
ing the compliant joints are connected to the same number of
edges representing the actuators. While not strictly required by
the framework, this is a useful generalization for rapid fabrica-
tion since only one type of node needs to be fabricated for a
given MACRO mesh. A complex mesh that requires nontran-
sitive vertices to account for geometric needs can be consid-
ered as a MACRO consisting of two or more MACRO
modules, each of which has vertex transitivity.

The mesh topologies that satisfy the above constraints are the
uniform tilings of the planar space. There are 11 such tilings and
among them there are three regular tilings of the plane implying
they use only a single type of regular polygon in their structure.
The remaining eight tilings are semi-regular tilings of the plane,
i.e., they can have more than one type of regular polygon in their
structure (although all edges in the mesh are the same length).
These 11 regular tilings considered in this paper are shown in Fig. 4.

Fig. 4 The three uniform regular tilings (top row) and eight uniform semi-regular tilings of the plane [10]. Each of
these tiling topologies was used to create mesh topologies for studying the mechanical properties of MACRO
meshes.
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The vertex transitivity constraint implies that each tiling has only
one type of vertex and therefore we denote each tiling based on the
vertex’s configuration following the convention used in Ref. [10].
The naming convention is based on the types of polygons arranged
in order around the vertex denoted by a dot in Fig. 4 with the poly-
gons connected to this vertex denoted by thicker lines.
A representative volume element (RVE) is the smallest unit of a

repetitive structure over which we can make measurements that are
representative of the entire structure [21,22]. By choosing an RVE
for each mesh such that it has two orthogonal axes of symmetry, we
can prove that it is orthotropic and further we can characterize it
using the strain-energy method. Except for the T4H mesh, we can
choose such an RVE for all the mesh topologies as shown in
Fig. 5. T4H type of tiling occurs in two enantiomorphic forms, in
other words, it has two mirror images and therefore it does not
have reflective symmetry and therefore is not orthotropic. Hence,
we have not included T4H tiling in this stiffness characterization.

4 Results
In this section, we present the results obtained from characteriz-

ing all the MACRO mesh topologies using the strain-energy
method. Applying the four different loading conditions as shown
in Fig. 2 and then using the relations given by Eqs. (4)–(7), we
can obtain the coefficients of the stiffness tensor. Furthermore, we
can obtain the homogenized material properties of different

topologies, namely Young’s modulus, shear modulus, and Pois-
son’s ratio using Eqs. (8)–(12).
For the FEA simulations, both actuators and nodes are assigned

the same Young’s modulus of 2000 MPa and Poisson’s ratio of
0.3. The difference in the stiffness properties of actuators and
nodes is modeled by assigning different cross-section dimensions
to these two parts. The in-plane width of actuators is 5 mm while
that of nodes is 1 mm. The out-of-plane width of both components
is assigned to be 5 mm. The length of actuators is taken as 25 mm
and the length of each arm of a node is taken as 12.5 mm. Therefore,
each edge in the MACRO mesh has a length of 50 mm, since it is
shared by an actuator and an arm for each of the two nodes that
this actuator connects.
For each type of mesh topology, we constructedMACROmeshes

of four different sizes, 40 MACRO meshes in total. These sizes
are chosen to be 750 mm × 750 mm, 1000 mm × 1000 mm,
1250 mm × 1250 mm, and 1500 mm × 1500 mm. We applied
strains ranging from 1% to 4.5% in the four different loading condi-
tions as mentioned in Sec. 2 to each of these meshes. We have sim-
ulated four meshes of different sizes to verify that the stiffnesses
obtained are independent of the size of the mesh and that there are
no boundary effects that influence the obtained modulus values.
The average of Young’s modulus in two orthogonal directions and
shear modulus obtained for the four different meshes are plotted in
Fig. 6 for all the MACRO mesh topologies. The scale and limits of
theX-axis is the same across all subplots in Fig. 6. However, for read-
ability, the Y-axis scale and limits are different for some of the
subplots.

Fig. 5 A choice of RVE (shown by thicker lines) that is symmetric about two orthogonal axes. These RVEs can also tile the
plane by simple translation with no overlap along the aforementioned axes.
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Fig. 6 Young’smodulus and shearmodulus versus applied strain for all tenmesh topologies with the
topology type shown as an inset in the respective plot
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For comparison of material properties across all mesh topologies,
we have plotted these values at 1% strain in Fig. 7. Furthermore,
values of Poisson’s ratio along two orthogonal directions are
plotted in Fig. 8.
Next, we simulate three additional MACROmeshes for each type

of mesh topology where the relative stiffness of the actuators (i.e.,
edges) as compared to that of the compliant nodes is varied. We
perform these simulations to look at the relationship of overall
mesh stiffness properties to that of the stiffnesses of actuators and
nodes. In the default case, actuators are stiffer than the nodes and
the results for this default case are plotted in Figs. 6–8. The different
stiffnesses are modeled by assigning different cross-section dimen-
sions to the actuators as compared to the nodes. In the default case,
let the actuator cross-section area be A1 and that of node be A2,
where A1= 5A2. As mentioned before, we model three additional
cases, first case called “node stiff,” where the nodes are stiffer
than the actuators and in this case cross-section area of nodes is
A1 whereas that of actuators is A2. The remaining two cases have
identical cross-section and thereby identical stiffnesses for both
actuators and nodes, with one case called “equal stiffness (low)”
with the assigned cross-section being A2 for both components and
the other case called “equal stiffness (high)” with both components
assigned area A1.
A heat map of Young’s modulus in the two orthogonal directions

for the three additional cases is plotted in Fig. 9. Here, the values are
divided by the default case where the actuators are stiffer than the

nodes. Therefore, a value of one in the heat map implies that
there is no change in the overall mesh properties when the proper-
ties of the components are varied. Similarly, a heat map of the shear
modulus for the three cases is plotted in Fig. 10.

5 Discussion
All ten mesh topologies have values of E1 essentially equivalent

to E2 for the range of strains applied, though with some small

Fig. 7 Comparison of material properties at an applied strain of
1%: (a) Young’s modulus along X and Y (1 and 2) directions and
(b) shear modulus

Fig. 8 Comparison of Poisson’s ratio across all MACRO mesh
topologies measured at 1% applied strain

Fig. 9 Heat map of Young’s modulus at 1% strain for four differ-
ent conditions of varying the relative stiffness of actuator versus
compliant nodes. The values here are divided by the default
“actuator stiff” configuration.
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differences that can be attributed to the numerical errors associated
with FEA. This implies that all these topologies have identical
stiffnesses in the two orthogonal directions. Hexagon and triangle
honeycombs are isotropic [23] and MACRO meshes are similar in
structure to honeycombs except for the difference in cross-section
between actuator and nodal sections. Therefore, E1 and E2 being
equal indicate isotropic behavior for all topologies, but further
validation is required to verify this. Based on the values of
Young’s modulus obtained, we can rank the topologies as
follows: T > T3S2 > S>T2STS> THTH >TSHS> TD2 >H> SO2 >
SHD. Topologies with higher nodal connectivity tend to have
higher stiffnesses, which is what we observe here. This rank order
mostly follows the order of decreasing nodal connectivity with the
exception of S due to the fact that the applied strains in
the strain-energy method are along the constituent members in the
mesh. We can also observe that the first five topologies in
this rank order have significantly higher modulus as compared to
the remaining topologies. These five topologies undergo stretching-
dominated deformation while the remaining undergo bending-
dominated deformation. Multiple studies have distinguished lattice
materials in these two categories and our findings here are consistent
with the literature. Heat maps generated for the stiffness/cross-
section area variation studies further support this argument.
Stretching-dominated topologies all have the same ratio of E, and
this ratio is directly proportional to the cross-section area irrespective
of whether such area assignment relates to stiffer nodes or stiffer
actuators. Bending-dominated topologies, however, do not have a
much higher variation in the E ratios. Also, the “node stiff” case
has a higher E value compared to the “actuator stiff” case for all
such topologies. Therefore, having compliant nodes aids deforma-
tion only in bending-dominated topologies.
Similarly, we can rank the topologies for shear modulus as

follows: T> THTH> T2STS> T3S2 > TSHS>H > S> SO2 > SHD>
TD2. Unlike Young’s modulus, shear modulus values are signifi-
cantly higher for only the T and THTH topologies as compared
to other topologies. Furthermore, these are the only two topologies
that show a linear scaling with cross-sectional area. Therefore, we
can say that only T and THTH show stretching-dominated beha-
vior under shear loading, whereas all other topologies are bending-
dominated for shear loading. It should also be pointed out that
there is significant increase in G for the “node stiff” and “equal
stiff (high)” cases as compared to the increase in E for these
two conditions. This implies that the compliance at the nodes
aid in shear deformation of MACRO structures substantially
more than they do in the case of deformation along the two
orthogonal axes.
Poisson’s ratio plot (see Fig. 8) also shows an interesting relation

for the bending versus stretching-dominated topologies. Bending-
dominated topologies all have a Poisson’s ratio close to 1, in both

directions. In comparison, stretching-dominated topologies have
these values in the range of 0.1–0.4.

6 Conclusions and Future Work
We modeled and characterized the stiffness properties of differ-

ent networks of identical linear actuators and compliant nodes in
this paper. Under the MACRO framework, we considered
uniform tilings of planar space as the design topologies. We evalu-
ated and compared equivalent Young’s modulus, shear modulus,
and Poisson’s ratio for all topologies using a strain-energy
method. Additionally, we simulated three additional cases by
varying the relative stiffness of actuator versus node.
Based on the results, only T and THTH topologies show

stretching-dominated behavior in both axial and shear loadings.
Therefore, only these two topologies exhibit high stiffness in both
axial and shear loading directions. Remaining topologies are
bending-dominated in either both or one type of loading, thereby
showing a lower stiffness in either one or both the cases. Stretching-
dominated behavior shows a direct scaling with the cross-sectional
area, however, the location of compliance, whether at the nodes or
at the center of the edges, in such topologies has no effect on its
overall stiffness.
In the future, we plan to extend this work to solve the inverse

problem of designing a MACRO mesh for a desired stiffness char-
acteristic. Such a problem would involve solving for the mesh
topology as well as actuator and nodal properties/geometry for a
target equivalent Young’s modulus and shear modulus. We
further plan to experimentally validate the FE model presented
here using different commercially available linear actuators and
molded or 3D printed compliant nodes. Finally, extension to
spatial lattices of MACRO architecture is another avenue of
future work that we plan to undertake.
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Nomenclature
A = cross-section area
E = Young’s modulus
G = shear modulus

CH = homogenized elastic tensor
CH
ijkl = coefficient of elastic tensor

SE = strain energy
ɛ = strain
ν = Poisson’s ratio
σ = stress
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