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AbstractÐToday more and more bus companies are providing
real-time bus locations to their riders to improve passenger
experience and increase ridership. Most of the existing bus
localization systems rely on the Global Navigation Satellite
System (GNSS), such as the Global Positioning System (GPS).
However, it is costly to install GNSS receivers and retrofit
existing buses to power them, which prevents them to be adopted
by those bus operators with tight budgets. There has been
increasing interest in developing GPS-free localization schemes
that leverage the wireless signals transmitted by the buses to
localize them. Such schemes often require the received signal
strength (RSS) measured at multiple base stations and therefore
are not applicable to a small transportation service with a single
base station, such as the shuttle service for a university campus.
This paper presents a novel approach that leverages the LoRa
link characteristics measured by a single base station and deep
learning to localize a campus shuttle when it approaches a stop.
Experimental results show that our solution provides a detection
accuracy of no less than 92.07% and significantly outperforms
all baselines without requiring new hardware and introducing
additional communication overhead.

Index TermsÐCampus Shuttle Localization, LoRa, Link Char-
acteristics, Deep Learning

I. INTRODUCTION

Today more and more bus companies are providing real-

time bus locations to their riders to improve passenger ex-

perience and increase ridership. For instance, the real-time

location of a bus can be used to calculate the expected time of

arrival (ETA) at different bus stops. Most of the existing bus

localization systems rely on the Global Navigation Satellite

System (GNSS), such as the Global Positioning System (GPS).

For instance, buses in New York city are equipped with GPS

receivers, and users can use the NYC bus checker app to

get live bus countdowns and estimated arrival time at any

of NYC’s 15,000+ bus stops [1]. However, it is costly to

install GPS receivers and retrofit existing buses to power them,

which prevents them to be adopted by those bus operators

with tight budgets. There exist some alternatives that leverage

RFID [2] and Bluetooth Proximity Beacons [3] to provide

accurate bus locations. Gunady et al. use Bluetooth Low

Energy (BLE) proximity beacons to track the location of a

bus and BLE detection devices are installed at all bus stops

along the route [3]. Extra and expensive hardware is required

both on buses and stops to support such designs. The bus

operators with tight budget consequently have shown a marked

reluctance to embrace them.

There has been increasing interest in developing new lo-

calization schemes that leverage the existing wireless signals

transmitted by the buses to localize them. For example, Ogue-

jiofor designs an outdoor localization system to automatically

locate the position of target devices by measuring the signal

strength at an appropriate number of sensor nodes [4]. Plets

et al. present a performance comparison of signal strength

based and signal arrival time differences based localization

approaches in a public outdoor LoRa network [5]. The

trigonometry calculation is used to obtain the object location

relative to at least three reference points. Such schemes often

require the received signal strength (RSS) to be measured at

multiple base stations and therefore are not applicable to a

small transportation service with a single base station. In this

paper, we have developed a LoRa-based localization system

by using a single base station and existing LoRa [6] traffic.

We present a low-cost solution that leverages the LoRa link

characteristics measured by a single LoRa base station and

deep learning to localize a campus shuttle when it approaches

a stop. Our solution does not require the installation of new

hardware and operates solely with the existing LoRa link

characteristics. Specifically, our paper makes the following

contributions:

• We perform an empirical study that shows the feasibility

of using the LoRa link characteristics measured by a

single LoRa base station to localize campus shuttles;

• We develop a novel deep learning-based localization

method that uses multiple deep neural networks (DNNs)

to predict the shuttle location when it arrives at a stop;

• We implement our solution and test it using the real-world

campus shuttle monitoring system. We have performed

a 14-month empirical study to collect LoRa link traces

to evaluate our localization method. Experimental results

show that our approach can provide high localization

accuracy and outperform several baselines.

The remainder of the paper is organized as follows. Sec-

tion II introduces the background of our LoRa-based campus

shuttle monitoring system. Section III shows our empirical

study and Section IV presents the design of our campus shut-



Fig. 1. Campus shuttle route, stops, and LoRa base station.

Fig. 2. LoRa network architecture.

tle localization approach. Section V evaluates our approach.

Section VI reviews related work. Section VII concludes the

paper.

II. BACKGROUND OF OUR CAMPUS SHUTTLE

MONITORING SYSTEM

In this section, we introduce our campus shuttle monitoring

system, which relies on a LoRa-based wireless network to

collect data from six campus shuttles in a real-time fashion [7].

As Figure 1 shows, all shuttles circle the campus of the State

University of New York at Binghamton (a 1280m × 990m

area) using a fixed counterclockwise route and stop at seven

shuttle stops (marked as A, B, C, D, E, F , and G in Figure 1).

LoRa is a low-power wide-area network modulation tech-

nique that has been initiated by Semtech [8] to build scalable

wireless networks. A LoRa module that works at the sub-

1 GHz bands can achieve a lifetime of up to 4.5 years

with a 2000 mAh battery capacity [9]. The characteristics

of LoRa make it a cost-effective solution to monitor the

campus shuttles. Because the LoRa coverage range is 10 to 15

km, the characteristics of LoRa radio make it possible for a

single LoRa base station to cover our entire campus. Figure 2

shows our LoRa network architecture, which consists of LoRa

end devices, a LoRa base station, and a server. The LoRa

end devices transmit uplink data messages to the LoRa base

station through long-distance LoRa links and the LoRa base

Fig. 3. Hardware deployment for our LoRa network.

station then forwards the messages to the server through an

Ethernet connection. The LoRa base station measures each

incoming LoRa packet’s signal to noise ratio (SNR) and RSS

values, periodically computes the packet delivery ratio (PDR)

of each LoRa link, and forward the information to the server.

The server is responsible for storing the data into a database

and running campus shuttle monitoring applications. A user

can access the database to view the historical data through

an application terminal. The server also generates downlink

application messages and passes them from right to left in

Figure 2 until reaching the designated LoRa end device.

The LoRa base station periodically broadcasts the network

management packets that synchronize the time of all LoRa end

devices on the shuttles. A fixed channel is used for downlink

packets and six dedicated channels are assigned for different

LoRa end devices to avoid conflicts.

Figure 3 shows the LoRa base station placed in a weath-

erproof box on the roof of a three-floor building and a LoRa

end device installed in the glove compartment above the driver

seat on a shuttle. The LoRa base station and end devices are

built by integrating commercial off-the-shelf (COTS) devices:

• The LoRa base station contains a Raspberry Pi 3 Model

B (an embedded computer), which is integrated with an

iC980A module provided by IMST [10]. The iC980A

module is an upgraded version of the IMST iC880A

module, which operates in the 900/915 MHz band.

• The LoRa end device installed on the campus shuttle is

a Raspberry Pi 3 Model B embedded computer, which

is integrated with an RN2903 module [11]. The RN2903

module operates in the 900/915 MHz band that can be

configured in either transmission or reception mode each

time, and it can operate on a single channel for data

transmission or reception. Please note that our LoRa

devices operate in the free, unlicensed band.

LoRa Radios provide several configurable physical-layer pa-

rameters. The spreading factor (SF ) and bandwidth (BW ) de-

termine the time duration of a single LoRa chirp transmission.

The central carrier frequency (fc) decides the LoRa signal

central frequency for communication. The cyclic redundancy



Fig. 4. Seven areas near shuttle stops.

Fig. 5. RSS measurements when the shuttle is at different locations. The
shuttle stops A, B, C, D, E, F , and G are marked in red.

check (CRC) can be used to verify the integrity of the received

packets. The coding rate (CR) is the proportion of the data that

carries the useful information, and LoRa uses the Hamming

code [12] to provide data redundancy and detect errors. We

configure our LoRa devices to use SF = 9, BW = 500KHz,

fc = 910MHz, and CR = 4/8, and enable CRC to achieve

the best performance.

III. EMPIRICAL STUDY

In this section, we present our empirical study that inves-

tigates the feasibility of using the LoRa link characteristics

measured at a single base station to localize campus shuttles.

To obtain the ground truth, we deploy a GPS receiver on

the shuttle, which transmits its current location every 4.5

seconds through the LoRa link. We have performed a 14-

month empirical study and collected 248,000 packets in total

when six campus shuttle circled the university campus 2,185

times. The LoRa base station measures the RSS and the SNR

of each incoming packet and computes the PDR using the

sequence ID carried by each packet.

A. Mapping RSS and SNR to Shuttle Stops

Our goal is to localize a campus shuttle when it approaches

a stop. Figure 4 plots seven areas, which surround our seven

shuttle stops. We first study whether there exist unique RSS

and SNR measurements in each area, which allows us to

localize the shuttle. Figure 5 and Figure 6 plot the RSS and

SNR measurements when the shuttle is at different locations.

The RSS and SNR measurements vary considerably in the

Fig. 6. SNR measurements when the shuttle is at different locations. The
shuttle stops A, B, C, D, E, F , and G are marked in red.

Fig. 7. Heatmap of the number of shuttle stops where we observe the same
pair of RSS and SNR measurements.

same area due to the shuttle movement. For example, the RSS

measurements varies from -96 dBm to -77 dBm at the stop

A and from -113 dBm to -102 dBm at the stop F. Similarly,

the SNR measurements varies from -21 dBm to 1 dBm at

the stop F and from -19 dBm to 1 dBm at the stop G.

Figure 7 plots the heatmap of the number of shuttle stops

where we observe the same pair of RSS and SNR measure-

ments. As Figure 7 shows, the RSS and SNR measurements

with high values may help us localize the shuttle when it

approaches the stop A, which is close to our LoRa base station.

Observation 1: Some pairs of RSS and SNR measurements

appear only at a single shuttle stop, and therefore can be used

to localize the shuttle when it approaches that stop.

However, most RSS and SNR measurements appear in more

than two stops. For example, the combination of RSS =
−109dBm and SNR = −8dBm appears in four stops (C,

D, E, F ) and the combination of RSS = −108dBm and

SNR = −4dBm appears in two stops (D and F ).

Observation 2: Most RSS and SNR measurements appear

at multiple shuttle stops. It is infeasible to localize the shuttle

by simply mapping RSS and SNR measurements to different

shuttle stops.

B. Feasibility of Using Link Characteristics for Shuttle Local-

ization

We further investigate the feasibility of using more link

characteristics to localize the shuttle. Figure 8 plots the PDR,

the RSS, the RSS variation (RSSV), and the SNR when the



Fig. 8. PDR, RSS, RSSV, and SNR measurements when the shuttle circles the
university campus. PDR and RSSV are computed using a 45-second moving
window.

shuttle circles the university campus. We have identified all

lost and corrupted packets by checking the sequence ID carried

by each packet and used them to compute the PDR. The RSSV

is computed by following the equation:

RSSV =
8∑

k=0

|rssi−k − rssi−k−1| (1)

where rssi−k and rssi−k−1 are the (i−k)th and (i−k−1)th
RSS values measured by the LoRa base station. As Figure 8

shows, the PDR is high (100%) when the shuttle is close to the

stop A, decreases when it approaches the stop B, and increases

back to 100% when it gets close to the stop C. Similarly, the

RSS, the RSSV, and the SNR also show some unique changing

patterns when the shuttle approaches different stops.

Observation 3: In addition to RSS and SNR, it is beneficial

to use PDR and RSSV measurements to localize the shuttle.

IV. SYSTEM DESIGN

In this section, we first present an overview of our campus

shuttle localization system and then discuss each engine inside

it.

A. System Overview

Figure 9 shows the design of our campus shuttle localization

system that runs on the LoRa base station. When the system

begins to operate, it enters the training phase, which requires

the shuttles to transmit their ground truth locations together

with their regular data traffic. The Data Preprocessing Engine

gathers the link characteristics and the ground truth shuttle lo-

cations from the LoRa radio, preprocesses them, and forwards

the data to the Modeling Engine, which generates models

for the Localization Engine and the Reset Engine. After the

deep learning models and reset model generation, the campus

shuttle localization system then enters the operation phase and

no longer requires the shuttles to collect location data. The

Localization Engine and Reset Engine uses the LoRa link

characteristics to localize a shuttle when it approaches a shuttle

stop. We will next present the design of each engine.

Fig. 9. Campus shuttle localization system.

B. Data Preprocessing Engine

The Data Preprocessing Engine measures the link character-

istics from the LoRa base station when it receives an incoming

packet. In the training phase, it labels the measured LoRa link

characteristics (PDR, RSS, RSSV, and SNR measurements)

with the ground truth shuttle location carried by the LoRa

packet and then forward the data to the Modeling Engine

that trains the localization models. In the operation phase, it

forwards the measured LoRa link characteristics to the Local-

ization Engine and the Reset Engine that use the localization

models to localize a shuttle. Please note that the ground truth

shuttle locations are needed only in the training phase.

Specifically, the Data Preprocessing Engine performs the

following tasks:

• Identifying missing packets: All received packets are

sorted based on their sequence IDs. Based on the se-

quence IDs carried by the revised LoRa packets and

the predetermined packet transmission interval, the Data

Preprocessing Engine can identify all missing packets

at the LoRa base station. The missing packets’ RSS

and SNR values can be represented by the most recent

measurements.

• Computing categorical values: The shuttle route is di-

vided into seven blocks, which cover seven shuttle stops.

As Figure 4 shows, A, B, C, D, E, F , and G are the

seven blocks. All blocks (Blocki) can be represented as

a categorical value that is between [1, 7]. The categorical

values (labels) are used by the Modeling Engine for

training.

• Feature scaling: The Data Preprocessing Engine uses

min-max normalization method to preprocess all LoRa

link characteristics by following the equation:

x′ =
x−min(x)

max(x)−min(x)
(2)



Fig. 10. Importance factors of different link characteristic features when using
tree-based feature selection method [13].

where x is the original value, and x′ is the normalized

one. The Eq. 2 can convert link values into the range

between [0, 1]. The feature scaling helps to weigh all

the features equally and makes the deep learning model

converge faster.

C. Modeling Engine

1) Problem Formulation: Our localization system aims to

localize a shuttle when it approaches a stop with the following

requirements:

• As shown in Figure 1, the campus shuttle runs following

a fixed route with seven stops. Our localization system

must detect the current location when the campus shuttle

approaches a stop as accurate as possible;

• Our localization system must be able to correct its pre-

diction without human involvement;

• Our localization system must rely on a single one base

station ;

• Our localization system must introduce no additional

overhead and operate with the existing LoRa traffic.

To predict the current shuttle location, we formulate the

shuttle localization task as a machine learning problem.

Let x = concatenation(PDR,RSS,RSSV, SNR) denote

the given network link characteristics and y = P ∈
(A,B,C,D,E, F,G) denote the current shuttle location. Our

goal is to learn a nonlinear mapping fθ(·) : x → y, which can

correctly predict the current shuttle location with the measured

LoRa link characteristics as input.

2) Feature Selection: We perform a feature selection study

to identify important LoRa link characteristics. The feature

importance can represent how useful the input features can

contribute to predict the target variable. We have defined four

input features (LoRa link characteristics) and one target vari-

able (shuttle location). Figure 10 plots the importance factors

of four input features when we use the tree-based method [13]

to compute the score. The input features, which are selected

at the top of the trees, are more important than those at the

lower level of the trees. We plot the normalized importance

factors and the sum of all importance factors equals to one.

The importance factors are 0.2848, 0.2202, 0.2887, and 0.2064

for PDR, RSS, RSSV, and SNR, respectively. The feature

Fig. 11. Location detection accuracy by using DNN classification.

Fig. 12. Multiple DNN models and model controller in the Localization
Engine.

importance scores are in the same order of magnitude. The

results indicate all four different inputs can contribute to

predict the target variable (i.e., shuttle location). Please note

that some input features can be affected by the shuttle running

speed. For instance, the PDR is relatively high when the shuttle

stops or drives at low speed. The PDR decreases when the

shuttle is moving.

3) Simple Classification: The primary goal of our system

is to learn a classifier to identify the shuttle locations based

on input features. We first try to identify each shuttle stop

by using a deep learning model to solve the classification

problem. Multilayer Perceptron (MLP) [14] is used to design

the architecture of a deep learning model: there are 128 and

64 neurons in the first two hidden layers, and eight neurons

in the output layer to represent the seven shuttle stop blocks

and transition block. Figure 11 shows the accuracy of shuttle

location prediction when the shuttle approaches different stops.

The prediction accuracy is 94.20%, 54.84%, 20.90 %, 48.97%,

21.97%, 45.84%, and 24.26% when the campus shuttle arrives

at shuttle stop A, B, C, D, E, F , and G, respectively. The

average accuracy is 44.43%. The simple approach cannot

accurately identify shuttle locations without considering the

sequential order of shuttle arrival (A → B → ... → F → G).

For instance, if campus shuttle approaches stop E, then the

next prediction should be F instead of other locations.

4) Enhanced Deep Learning Model: To improve the overall

performance, the Modeling Engine builds multiple models to

detect different shuttle stops and the model controller in the



Localization Engine selects the correct model for prediction

(See Section IV-E). Figure 12 shows multiple DNN models

computed by the Modeling Engine, which are further stored

in the model container. In the training phase, our Modeling

Engine trains each DNN model to detect each shuttle stop,

independently. Multilayer Perceptron (MLP) is used to design

the architecture of each deep learning model: there are 128

and 64 neurons in the first two hidden layers, and two

neurons in the output layer to represent the detection status

of current stop. The Modeling Engine forwards all models to

the localization engine for online localization. We introduce

the Localization Engine in Section IV-E.

Algorithm 1: Reset Model Construction Algorithm

Input : RSS, SNR,Blocki
Output: Table[][]

1 Table[][]={};

2 if Table[RSS][SNR] is empty then

3 Allocate space for Table[RSS][SNR] ;

4 Table[RSS][SNR] = {Blocki} ;

5 end

6 else if Table[RSS][SNR] is not empty then

7 if Blocki is not in Table[RSS][SNR] then

8 Insert Blocki into Table[RSS][SNR];
9 end

10 end

5) Reset Model: The Modeling Engine also needs to con-

struct the reset model and forwards the model to the Reset

Engine. Basically, the reset model can be used correct the

current model prediction. Algorithm 1 shows the reset model

construction algorithm. The RSS and SNR measurements are

input link characteristics, and Blocki indicates the current

shuttle blocks. Table[][] is a lookup table. We implement it

as a two-level hash table to map the input (RSS and SNR)

to an array of Blocksi. Line 2 to Line 5 of Algorithm 1

initialize the lookup table if it is empty, and allocate space

for the current Blocki. Line 6 to Line 10 of Algorithm 1

check whether the current Blocki existed in the lookup table.

If Blocki is not inside the table, and it will allocate space

for the current Blocki and add into Table[RSS][SNR]. The

Algorithm 1 runs in the training phase and build a map from

(RSS, SNR) to the blocks. This map can be used to set rules

for the RSS and SNR threshold to detect reset points.

D. Reset Engine

Based on the reset model generated by the Modeling En-

gine, the Reset Engine can set up RSS and SNR threshold

for the reset points. Those reset points possess special values

which only appear in specific shuttle stations. If the resetting

points are detected, the Reset Engine outputs the current

location, which bypasses the Localization Engine’s output (See

Section IV-E). The Reset Engine also needs to signal (Sreset)

the model controller in the Localization Engine to reset its

current deep learning model. Please note that the same reset

points can be detected only when the minimum time of shuttle

round interval is satisfied to prevent the repeat correction or

error correction.

E. Localization Engine

Algorithm 2: Model Controller Algorithm

Input : RSS, SNR, Sreset, Sfeedback

Output: Modelnew
1 Modelcur = −1;

2 if Modelcur == −1 then

3 //Initialization

4 if Sreset! = −1 then

5 Modelcur = Sreset ;

6 Output (Modelcur + 1)%N ;

7 end

8 end

9 else

10 //Runtime update

11 if Sreset! = −1 then

12 if Minimum time of shuttle round interval

satisfied then

13 Modelcur = Sreset ;

14 Output (Modelcur + 1)%N ;

15 end

16 end

17 if Sfeedback == True then

18 Modelcur = Modelcur + 1 ;

19 Output (Modelcur + 1)%N ;

20 end

21 end

The Localization Engine has two major modules, which

include the model container and model controller, as shown in

Figure 12. The model container stores multiple DNN models

and the model controller activate the correct DNN model

for the location prediction. Algorithm 2 illustrates the model

controller algorithm. The input values are RSS, SNR, resetting

signal (Sreset), and feedback signal (Sfeedback). Sfeedback is

a boolean value, which represents whether the current stop

has been detected or not. When Sfeedback == True, it

means the current stop has been detected. Then the value

of model selector will increase by one. Line 2 to Line 8

of Algorithm 2 initializes the model selector Modelcur. If a

resetting point is detected (Line 4), Modelcur will be updated

and the model controller signals the Localization Engine to

activate the next DNN model (Modelcur + 1)%N , where

N is the total number of DNN models in the Localization

Engine. Please note that Sreset can be an integer value in the

range of [0, N −1], which represents different shuttle stops. If

the resetting point is detected again and the minimum round

time interval is satisfied, the model controller can correct the

current prediction (Line 11 to Line 16). If the current stop is

detected, Sfeedback will be true, and the next deep learning

model can be activated (Line 17 to Line 20). Please note that



Fig. 13. Campus shuttle round interval. Fig. 14. Detection accuracy under different approaches.

the minimum time of shuttle round interval can ensure that the

reset signal will not be triggered many times within a single

round. Taking our campus shuttle system as an example, the

resetting point at stop A can be detected when RSS and SNR

measurements are above the -90dBm and 0dBm threshold.

The system contains seven DNN models (N = 7) in the

Localization Engine, which can make predictions based on

current link characteristics. By identifying the current shuttle

stop (Sfeedback is true), the current model indicator is updated

(Modelcur = Modelcur +1), then the Control Engine signals

the localization engine to activate the next one. The model

selection process repeats when the campus shuttle circles the

campus.

V. EVALUATION

A. Experimental Setup

We perform a series of experiments to validate the efficiency

of our method to locate the shuttle when it arrives at different

stop. We compare our method against three baselines: (i)

A single DNN model for classification [14]; (ii) SVM-P

method [15]; and (iii) hand-crafted threshold-based localiza-

tion method. As introduced in Section IV-C, we consider a

single DNN model to perform localization. The DNN model

has 128 and 64 neurons in the first two hidden layers, and

8 neurons in the last layer to represent different shuttle stops

and transition blocks. The rectified linear unit (ReLU) is used

to activate each hidden layer and softmax is employed to

the output layers, respectively. We use the Adam optimizer

with a learning rate of 0.01. For the SVM method, we have

considered the polynomial kernel (SVM-P) for classification.

In our hand-crafted method, we set different rules (i.e., RSS,

SNR, and PDR threshold or range) to detect different shuttle

stops. The RSS and SNR threshold for stop A is -90 dBm
and 0 dBm. The PDR range for stop B, C, D, E, F , and

G is [40%, 60%), [90%, 100%], [30%, 40%), [60%, 70%),

[10%, 30%), and [70%, 90%], respectively. Our method has

seven DNN models in total, each of which has 128 and 64

neurons in the first two hidden layers, and two neurons in the

output layer to represent the detection status of current stop.

A total number of 100 training epochs have been trained on

each DNN model. A different number of training data sets has

been used to evaluate our approach against different baselines.

(a) Station A. (b) Station B.

(c) Station C. (d) Station D.

(e) Station E. (f) Station F.

(g) Station G.

Fig. 15. Detection accuracy of our solution over time.

We use 60% of our total data collection to test the detection

accuracy of our model.

B. Detection Accuracy of Our Solution

In this set of experiments, we measure the shuttle stop detec-

tion accuracy of our solution and three baselines. Figure 13

shows the cumulative distribution function (CDF) of round

time intervals when the campus shuttle circles the campus. The

time interval ranges between 430 seconds to 2718 seconds.

The median time interval is 990 seconds. By leveraging the

minimal round interval information (See Algorithm 2) and

different DNN models to detect the campus at different stops,

Figure 14 shows the comparison on the detection accuracy

among different solutions. The detection accuracy of our so-

lution is 99.16%, 97.41%, 96.11%, 95.19%, 92.91%, 92.07%

and 95.19% at different shuttle stops, respectively. The average

accuracy is 71.96% under our solution based on calculation of



Fig. 16. Performance when using a different number of training data sets.

conditional probability. In comparison, the detection accuracy

of a single DNN model is 94.20%, 54.84%, 20.90%, 48.97%,

21.97%, 45.84% and 24.26% at different shuttle stops, re-

spectively. The average accuracy is 44.43%. The SVM-P and

hand-crafted solutions have lower average detection accuracy,

which are 37.15% and 21.52%, respectively. The detection ac-

curacy of SVM is 82.91%, 43.17%, 29.29%, 43.10%, 18.99%,

23.26% and 19.30% at different shuttle stops, respectively.

The results show that our solution consistently outperforms

the baselines. The performance improvement benefits from

the multiple DNN models and the control engine selection

algorithm. We then sort our data by their chronological order

and use a time window of 437 rounds to test our solution over

time. Figure 15 shows the detection accuracy of our solution

over time under different shuttle stations. When the time

increases from 120 hours to 600 hours, the accuracy of our

solution to detect stop A is 99.01%, 99.24%, 99.08%, 98.63%,

99.54% (as shown in Figure 15(a)). Small changes in accuracy

can also be observed at other stations. The results indicate our

solution can be applied under different time windows and the

detection accuracy does not decrease or vary considerably over

time.

C. Performance under Different Amounts of Training Data

We further evaluate the effectiveness of our solution with

the different amount of training data. Figure 16 shows the

detection accuracy of our solution under a different number

of training data sets. When the training data set is one loop,

the detection accuracy of A is 40.19%. It further increases to

92.07%, 95.19%, and 99.08% under 5, 10, and 100 rounds of

training data, respectively. The detection accuracy increases

dramatically when the number of training data sets increases

from one to five loops. For instance, the detection accuracy

increases by 51.88% at stop A when the number of training

data increases from one to five loops. The detection accuracy

is 98.25%, 93.59%, 95.42%, 93.90%, 91.91%, 91.53% and

93.36% at different shuttle stops when the training data set is

20 loops. The results show that our solution performs well with

a small number of training data sets and the cost of training

DNN models is low.

D. Importance of Reset Engine

We perform a study to demonstrate the importance of

the Reset Engine to improve the robustness of the system.

Fig. 17. A micro-benchmark measurement on location prediction with or
without the reset engine.

Fig. 18. Recovery overhead.

Figure 17 shows a micro-benchmark measurement on location

prediction with or without the reset engine. The C and

W on the y-axis represent correct and wrong predictions,

respectively. It can be observed that our method can quickly

correct the prediction with the reset engine. After the wrong

prediction on location F and G, it can correctly predict the

location A. However, it takes a whole round for the one

without the reset engine to correct its location prediction. Our

experimental results demonstrate the importance of the reset

engine to help our localization system quickly recover from

the wrong prediction.

We further measure the number of stops used to correct

prediction with or without the reset engine. Figure 18 shows

the CDF of recovery overhead with or without the reset engine,

respectively. By enabling the reset engine, the maximum

and median recovery overhead are six stops and three stops,

respectively. In contrast, the maximum and median recovery

overhead are 12 stops and five stops by disabling the reset

engine. The results indicate that the reset engine can make the

localization system more stable and robust.

E. Time Consumption of Our Solution

We measure the training time of our DNN models. Figure 19

shows the box plot of training time for each DNN model.

We run the modeling algorithm on a Dell Linux laptop with

the 2.8GHz Intel Core E3-1505M for ten different times. On

average, the modeling time is 60.38 seconds, 58.32 seconds,

61.10 seconds, 57.43 seconds, 62.20 seconds, 55.24 seconds,

and 60.92 seconds for location A, B, C, D, E, F , and

G, respectively. The time consumption of DNN training is



Fig. 19. Training Time of Different DNN models (offline training).

Fig. 20. CDF of execution time for online localization.

moderate, and the modeling time is a one-time expense. Once

the model is established, no further training is required. Our

solution’s detection accuracy over time has been evaluated in

Section V-B. Figure 20 shows the CDF of execution time of

DNN models with the model selection algorithm in the online

localization stage. On average, the execution time is 0.028

seconds. The execution time is far less than the LoRa packets

sending interval (4.5 seconds). The short training time and

execution time demonstrate the high runtime efficiency of our

solution. Our model can provide real-time location predictions

with low execution time.

VI. RELATED WORK

GPS combined with other technologies are traditionally

used to identify moving bus locations and provide arrival time

prediction. For instance, Jisha et al. propose an IoT-based

tracking system to estimate school bus arrival time by using

a combination of GPS, GSM, and RFID technologies [16]. A

Kalman filtering-based prediction algorithm has been used to

estimate the arrival time of a school bus. Lee et al. design a

navigation system that supports autonomous driving through

the use of GPS/DR [17]. The system uses GPS/DR error

estimation based on a lane detection algorithm to improve

the localization performance. However, it is costly to install

localization devices and retrofit existing buses to power them.

The GPS module is power-hungry in the continuous navigation

mode [18], which is unacceptable for resource-constrained IoT

devices.

There has been increasing interest in developing GPS-

free localization schemes that leverage the wireless signals

transmitted by the IoT devices to locate them. Those practical

localization techniques are based majorly on Time of Arrival

(ToA), Time Difference of Arrival (TDoA), RSS, and Angle of

Arrival (AoA) [19]. Multiple base stations or APs are required

to locate the target object. For instance, Xiong et al. develop

an AoA based localization method, which uses antennae arrays

at the receiver side to estimate the device location [20].

Two monitors are required in a two-dimensional space, and

three monitors are required in a three-dimensional space to

track wireless clients. Lam et al. place six anchor nodes and

filter out the nodes strongly affected by noise to identify

the location of target device by using LoRa technology [21].

Thaljaoui et al. design a method for identifying a BLE device

by using three BLE beacons. The method operates in two

stages: the distance estimation stage and iRingLA localization

stage [22]. Shirehjini et al. propose a RFID based localization

system. The mobile device is equipped with an RFID reader,

and it reads the information from multiple RFID tags on

the carpet and then uses the sensor information to calculate

the device’s relative position [23]. Kyritsis et al. present a

low-cost, threshold-based localization approach and design an

algorithm that takes into account both the RSS of the bluetooth

low energy beacons and the geometry of the rooms the

beacons are placed in [24]. Artificial neural networks (ANNs)

are also used to perform device localization. The location

prediction is often formulated as a classification problem.

Altini et al. design a deep learning system based on multiple

neural networks to identify the target object location [25]. The

DNN is trained using the Bluetooth RSS values in the offline

training stage with labels. Once the model is trained, then

it can be used in the online localization stage. Most of the

previous work often requires the measurements performed at

multiple base stations and therefore are not applicable to a

single base station scenario. Recently, Blanco et al. propose

a single base station ToA/AoA localization method [26]. By

using the LTE sounding reference signal, the distance between

the target object and base station is calculated through the ToA

estimation. The AoA is measured by leveraging the multi-

signal classification algorithm [26] and the system has been

evaluated in the office scenario. Such a design can greatly

benefit from the technologies such as Massive Multiple Input

Multiple Output (MIMO) [27] systems to correctly predict

the target object location. In a practical urban environment,

the multiple base stations method used for localization can

rarely be met [28]. Tsalolikhin et al. address the problem

of mobile station localization using a single base station

approach, which attempts to build a statistical model of urban

propagation conditions [29]. The main idea of the proposed

localization approach is to formulate the mobile station local-

ization problem in the target classification framework and to

use the statistical model of the urban propagation conditions

to locate the target object without any hardware modifications.

Porretta et al. propose a deterministic localization method

with a single base station [30]. This method approximates

the urban environment in the base station proximity by a

sentinel function and achieves good localization performance.

The method requires exact knowledge of the urban environ-



ment in the base station proximity. A new mobile station

localization approach based on Ring of Scatterers (ROS)

is proposed in response to the Non-Line-of-Sight (NLOS)

environments [31]. By exploiting the geometrical relations

among the mobile station, scatterers, and the single base

station, Tian et al. present a Geometric Characteristics Based

(GCB) localization algorithm with ROS model that provides

conditional information for accurate location estimation of

mobile station and scatterers [31]. Simulation results illustrate

the superior performance of the proposed algorithm in typical

NLOS environments. In contrast to previous studies, our paper

investigates the feasibility of a single base station localization

by using low-cost and low-power LoRa networks without

introducing extra network traffic. Our approach leverages the

LoRa link characteristics measured by a single LoRa base

station and deep learning method to localize a campus shuttle,

and it is therefore orthogonal and complementary.

VII. CONCLUSIONS

Today most of the existing bus localization systems rely

on the GNSS, such as GPS. However, it is costly to install

GPS receivers and retrofit existing buses to power them,

which prevents them to be adopted by those bus operators

with tight budgets. There also exist some localization methods

that leverage the wireless signals transmitted by the buses to

locate running objects. Such methods often require the RSS

measurements to be performed at multiple base stations and

therefore are not applicable to a small transportation service

with a single base station. In this paper, we present our 14-

month empirical study that investigates the feasibility of using

the LoRa link characteristics measured at a single base station

to localize campus shuttles. Based on our findings, we develop

a novel solution that uses the LoRa link measurements to

localize a shuttle when it approaches a stop. We implement

our solution and test it on our campus shuttle monitoring

system. Experimental results show that our solution provides

the detection accuracy of no less than 92.07% and significantly

outperforms all baselines.
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