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ABSTRACT

We revisit the application of predictive models by the Chicago
Department of Public Health to schedule restaurant inspections and
prioritize the detection of critical food code violations. We perform
the first analysis of the model’s fairness to the population served by
the restaurants in terms of average time to find a critical violation.
We find that the model treats inspections unequally based on the
sanitarian who conducted the inspection and that, in turn, there
are geographic disparities in the benefits of the model. We examine
four alternate methods of model training and two alternative ways
of scheduling using the model and find that the latter generate
more desirable results. The challenges from this application point to
important directions for future work around fairness with collective
entities rather than individuals, the use of critical violations as a
proxy, and the disconnect between fair classification and fairness
in dynamic scheduling systems.
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1 INTRODUCTION

The Chicago Department of Public Health (CDPH) issues food
safety guidelines and conducts inspections of more than 16,000
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food establishments. Through these inspections, CDPH sanitarians
educate owners and workers about food safety practices, inspect
the premises and practices for safe food handling, and promote a
healthy environment for food preparation. The City of Chicago
records each of the food inspections on its public data portal.! As
there are a limited number of sanitarians, a natural goal is to use
data to prioritize performing the inspections that best protect the
public health. Inspections which identify critical violations of the
food code allow conditions posing the highest risk of causing a
food-borne illness to be addressed. Thus, data scientists working
for the city and their collaborators trained a machine learning
(ML) model to predict the likelihood of an inspection resulting in a
critical violation [31]. The trained ML model, which we refer to as
the Schenk Jr. et al. model, was used to prioritize food inspections in
a simulated study. An evaluation of the model showed that using it
to schedule inspections achieves a 7-day improvement in the mean
time to detect a critical violation compared to the actual inspection
schedule followed by sanitarians [31].

In this paper, we first reexamine the model from a fairness per-
spective and assess how the improvement gained by employing
the model is shared by different parts of the city. A key driver of
geographic variation is that not all sanitarians report critical vio-
lations at the same rate, with a range of less than three percent to
more than forty percent inspections cited with violations. Since
the model prioritizes the restaurants inspected by sanitarians who
report a high rate of critical violations, residents of the city regions
where sanitarians cite critical violations at a higher-than-average
rate tend to see inspections prioritized at the expense of the other
regions.

We then explore approaches to prioritize food inspections in a
fairer way. Our interventions span two broad classes of techniques:
(a) those where we train a new model to predict critical violations
in a fairer way and (b) post-processing approaches where we use the
Schenk Jr. et al. model as-is but modify the way the model is used
to achieve a fairer resource allocation. We examine four different
approaches to training fair models, and find that they mitigate but
do not eliminate the geographic unfairness that results when the
models are used to schedule inspections. We consider two post-
processing approaches which adjust the way sanitarian identities
are used when scheduling inspections: one censors the sanitarian

!Chicago Data Portal: https://data.cityofchicago.org/Health-Human-Services/Food-
Inspections/4ijn-s7e5
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feature when predicting while the other uses the model to resched-
ule each sanitarian’s inspections rather than globally reschedul-
ing all inspections. Our results show that these post-processing
approaches are more effective than retraining in achieving fair
outcomes. After analyzing the fairness properties of the various ap-
proaches, we examine the trade off between efficiency and fairness.
We find that the post-processing approaches enable an attractive
trade-off between efficiency and fairness while the fair models are
essentially Pareto dominated.

We conclude by discussing three key issues our results raise for
future work. The inspection of restaurants is different from much
of the fairness literature in that each entity has many stakeholders,
so models based on simple binary protected attributes are not a
good fit for some protected groups of interest. The use of critical
violations as a proxy for public health raises important questions
about what fairness means in this setting, particularly in light of the
heterogeneity across sanitarians. Finally, we discuss the disconnect
between training a model for classification and our goal of achieving
fairness in a dynamic scheduling system.

1.1 Related Work

Food inspections remain an essential food safety practice to pre-
vent food-borne illnesses. However, the variation in practices and
guidelines across jurisdictions results in a lack of consistency in
local and national food safety levels and the link between inspec-
tions and food safety is actively studied. One of the first studies
done in Seattle-King County found that restaurants with lower food
inspection scores? were likely to have more outbreaks than restau-
rants with higher scores [19]. Another study done in Miami-Dade
County found no correlation between restaurant inspection scores
and the outbreak of food-borne illnesses [8]. Jones et al. found
inconsistencies between criteria for high risk establishments and
establishments that resulted in outbreaks through a study in the
state of Tennessee and called for a deeper examination into the
restaurant inspection system [21]. Today, there are still calls for
systemic change in local food safety inspection systems across the
country due to the poor predictive power of the current inspection
framework [2]. Technologists have also been exploring how to im-
prove the food inspection process and searching for non-traditional
data sources. Google search activity in an ML-based approach to
identify higher risk establishments has shown some promise [30],
but the addition of Yelp data did not improve the prediction of
inspection scores [1].

More broadly our work sits at the intersection of two trends
in the use of artificial intelligence techniques. First is the use of
predictive analytics to bring algorithmic decision-making to gov-
ernment operations. We witness a rise in the use of ML algorithms
for delivery of public services, digitization of court records, and
management of government programs [7, 13]. Second is the in-
creased openness of government data. A recent study points out
the need for more transparency to counter the public distrust of Al
and promote its use for the common good [24]. Such initiatives help
authorities improve their operations and provide transparency to
their decision-making process. Kaggle tournaments have been used

ZSanitarians assigned each inspection a score out of 100, and a lower score indicated
more critical violations.
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to encourage public involvement in civic model creation [15] to
create better public services [28]. We provide a case study of using
open data to analyze the fairness of predictive analytics and provide
interventions to improve it. Previous case studies of other domains
include predictive policing [14] and child maltreatment [6].

2 BACKGROUND

Schenk Jr. et al. sought a predictive model to prioritize the routine
food inspections conducted by sanitarians from the Chicago De-
partment of Public Health (CDPH) [31]. Rather than relying solely
on manual scheduling of food inspections by CDPH, in 2015 the
Chicago Department of Innovation and Technology and data scien-
tists from the Civic Consulting Alliance created a machine learning
model to aid in this scheduling process.

The model specifically looks at the scheduling of routine food
inspections which are conducted once or twice a year at each es-
tablishment independent of any customer complaints. The dataset
used to train and test the model consists of information from 18,000
inspections over 4 years with the training set from September 2011
to April 2014 and the testing set from September 2014 to October
2014. The dataset is derived from several datasets from the Chicago
Open source portal® including those about crime rates, sanitation,
weather, and food inspections. The dataset also includes informa-
tion about the sanitarians who conducted the inspections. In order
to protect the individual identity and the privacy of the approxi-
mately three dozen sanitarians, they are grouped into six sanitarian
clusters based on their critical violation rate, which is the percent-
age of inspections they conduct that result in critical violations.
The clusters, which are used as features in the model, were named
after the lines of Chicago rail transit system: Purple, Blue, Orange,
Green, Yellow, and Brown. From this dataset, they train a logistic
regression model using features including the sanitarian cluster
conducting the inspection, past establishment violation records,
and surrounding environment data (crime rates, cleanliness, tem-
perature) to predict the likelihood of the inspection resulting in a
critical violation.

The trained model is then used to output a risk score for each
food inspection where a higher score signifies a higher risk of
finding a critical violation. These risk scores are used to prioritize
inspections: the highest risk score should be inspected first and the
remainder inspected in decreasing order of the risk scores (model
coefficients detailed in Table 2 in supplementary material).

Evaluating the model requires making an assumption on how
it would be used. Schenk Jr. et al. [31] reassigned the dates of the
inspections in the test set based on their predicted risk score, while
preserving the number of inspections performed each day and the
identity of the sanitarian performing each inspection (illustrated
in supplementary material §A.5). The main goal of their work was
to ensure that the inspections which resulted in critical violations
were conducted as rapidly as possible. Therefore, each schedule of
inspections (the original and the one created by the model) was
evaluated by the average time required to detect critical violations.
This was calculated by taking the mean of the number of days
between date the inspection was scheduled and the first day of the
test set window (i.e. September 1, 2014) for those inspections that

3https://data.cityofchicago.org/



Fair Decision-Making for Food Inspections

resulted in a critical violation?. They found that, on average, the
schedule based on their model detected critical violations 7-days
faster than the original schedule when applied to the two-month
test set. The dataset and code used in this analysis are available in
the project’s repository.’

Kannan, Shapiro, and Bilgic [22] provided an independent analy-
sis of the model results and identified several issues with the model
and its analysis. Their finding regarding one of the feature sets
turns out to be particularly relevant for our analysis (we also revisit
their other findings in §7). In particular, they argued that using the
sanitarian clusters as a predictive feature unfairly changes the pre-
diction risk for the establishment. Since the clusters were created
by grouping sanitarians with similar violation rates, it was likely
that establishments set to be inspected by sanitarian clusters with
a high propensity to find violations were much more likely to have
a high risk score for a potential violation, regardless of the other
attributes. They view this outcome as being unfair to the restau-
rant. Because CDPH’s intent in performing inspections is to protect
the public health, our primary focus is on fairness to customers of
the establishment. Nevertheless, we show that this differentiated
behavior of sanitarians and its use by the model has important
consequences for our fairness concerns on larger geographic areas
across the city.

3 FAIRNESS OF THE SCHENK JR. ET
AL. MODEL

We focus on the fairness of the way Schenk Jr. et al.[31] model is
used to schedule inspections for the city and in turn, distributes pub-
lic health benefits among Chicago’s residents. To quantify fairness,
we borrow from the existing definitions of the fairness literature
and adapt them to the problem of food inspections. The first defini-
tion we focus on is Demographic Parity (DP) or Statistical Parity,
defined as a classifier having equal positive predicted rates for ad-
vantaged (A = 1) and disadvantaged (A = 0) groups [5]. Given a
prediction ¥, demographic parity is satisfied if

PY=1]A=0)=P(Y=1]|A=1). (1)

We are interested in achieving similar amounts of time taken to
complete food inspections across groups of interest, which makes
our fairness objectives compatible with the evaluation metrics of
the model. Since we consider multiple groups, A is categorical with
values {aO, L att }, where n is the total number of groups. Let T
represent the random variable for the time to complete a random
food inspection. Our interpretation of DP is

E[T|A=d|=E[T|A=d"!] st0<i<n. (2

Eq. 2 states a fair schedule, on average, has equal times to conduct
the inspections belonging to different groups. Another widely ap-
plicable definition of fairness is Equal Opportunity (EOpp), which
is defined as the classifier having equal true positive rates for ad-
vantaged and disadvantaged groups [17]. Formally,

P(Y=1|Y=1,A=0)=P(Y=1|Y=1,A=1). (3

4This approach makes several strong assumptions. We discuss concerns related to the
efficiency and operational constraints of food inspection at the city level in §6.2. We
discuss the use of critical violation detection as a proxy for public safety in §7.
Shttps://github.com/Chicago/food-inspections-evaluation
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Our interpretation of equal opportunity requires having similar
times to detect critical violations in food inspections across all
groups. This can be written as

E[T|A=d,Y=1]=E[T|A=d*,Y=1] sto0<i<n.

4

Eq. 4 states a schedule is fair if the inspections where a critical
violation was found (Y = 1), on average, took equal amounts of
time to be detected across the groups. These interpretations of DP
and EOpp are consistent with work on extending these concepts
beyond simple classification settings [4].

Throughout the rest of the paper, we consider an early detec-
tion of a critical violation to be a desirable outcome. Although this
outcome helps in achieving the broader goal of protecting public
health, there a multitude of groups (stakeholders) that stand to
benefit from food inspections: CDPH, restaurant owners, and the
customers. Since a restaurant serves a large number of people living
or working in its neighborhood and they are affected by potential
food-borne illness stemming from unsafe conditions, a major ad-
vantage of an early violation detection goes to the customers (we
elaborate on the choice of stakeholder in §7). Thus, our primary
interest is in applying these definitions to groups consisting of
restaurants located in a particular region of the city.

3.1 Fairness along geographic lines

For our fairness analysis, we examine the effects of the model on dif-
ferent regions of the city, colloquially known as "sides". We explore
how the residents of the different regions are affected by using the
model to schedule the food inspections. Using the ZIP codes of the
inspected restaurants in the dataset, we match their location to the
nine sides® of the city. We largely follow the methodology used by
the City of Chicago as described in §2 and fully detailed in [31].
However, to improve the robustness of the results we perform a
cross-validated evaluation, rather than the evaluation on the last
60-days performed by Schenk Jr. et al.. The dataset contains 19 non-
overlapping periods spanning 60 days from the first inspection date
till the last. Out of these 19 evaluations periods, we exclude three
evaluation periods that did not contain inspections for all 60 days.
While we consider both the notions of fairness in Equations 2 and
4, since the overall goal of the system is to improve the detection
of critical violations we put more emphasis on the second.

Fig. 1 shows the difference between the average time taken to
detect critical violations in a specific region and the overall average
for that schedule using solid colors. This corresponds to the extent
to which EOpp is violated in that region, Eq. 4. It also shows the
difference between the average time taken to conduct inspections
(regardless of whether a critical violation is found) in a region
and the overall average for that schedule. This corresponds to DP
(Eq. 2) and is shown using light colors. The two schedules we
consider here are: (a) “Default Schedule" (blue bars), which is the
schedule of inspections that the sanitarians originally followed as
they conducted inspections and (b) “Schenk Jr. Schedule" (orange
bars), which is the schedule obtained using the Schenk Jr. et al.
model risk scores and reordering the inspections based on the scores

®For a map, see https://enwikipedia.org/wiki/Chicago#/media/File:Chicago_
community_areas_map.svg. Accessed 06/12/2021
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Figure 1: The figure illustrates the difference between the mean time to detect a critical violation in a particular region and the
overall mean time for that schedule (EOpp) using the narrower, solid-colored bars. The wider, light colored bars represent the
difference in time to conduct inspections regardless of whether a violation was found (DP). The labels represent the major
regions of Chicago. Error bars indicate the standard error of EOpp from 16-fold cross validation. (The error bars for DP are

similar and omitted for legibility.)

such that inspections with a high risk score (i.e. high predicted
likelihood of being a critical violation) are conducted earlier. The
bars indicating negative values signify that the detection times
are quicker than the schedule mean (the group is better off than
average) and the positive values show that the detection times
are slower than the schedule mean (the group is worse off than
average).

Considering the Default schedule, we observe all of the regions
have detection times close to the schedule mean, consistent with a
random schedule being perfectly fair. On the other hand, four out
of nine sides have quicker detection times than the average under
the Schenk Jr. schedule. For the remaining five that are worse off,
two sides receive a far greater delay (at least 10 days) in detecting
critical violations. The trends for the inspection times are similar
and suggest that a large part of the gain in critical violation de-
tection for the advantaged regions under the Schenk Jr. schedule
comes from inspections in those regions being moved earlier as a
whole rather than specifically the inspections most likely to find
critical violations. The breakdown of the detection times by region
underscores the disparate outcome the Schenk Jr. schedule would
have on food inspections in different regions of the city. If used,
an individual’s place of residence can determine if they have an
expedited or delayed routine inspection of food establishments in
their neighborhood, which in turn impacts their likelihood of being
subjected to a food-borne illness. Our fairness analysis along racial
(§A.6) and economic lines (§A.7) only finds small effects for these
groupings.

3.2 Exploring the cause of unfairness

An examination of the coefficients of the Schenk Jr. et al. model
(§A.1) shows that the sanitarian conducting the food inspection is a
key feature. As the dataset clusters multiple sanitarians together to
protect their identity, we examine sanitarian behavior at the cluster
level. We first inspect the critical violation rate for each of the sani-
tarian clusters. The critical violation rate is computed as the ratio

Park Ridge *

.
Franklin Park s
)
El dparke * *
Northlake e Uk

Melrose Park

Maywood

Brookfield

La Grange
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Figure 2: Map of Chicago with purple and brown dots repre-
senting the location of food inspections done by Purple (the
highest critical violation rate) and Brown (the lowest critical
violation rate) cluster sanitarians, respectively.
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Table 1: Table showing the inspector clusters and their criti-
cal violation rate for the inspections conducting during the
model evaluation period.

Sanitarian Critical Violation
Cluster Rate
Purple 40.83%
Blue 25.53%
Orange 13.76%
Green 9.68%
Yellow 5.94%
Brown 2.5%

of the number of inspections that resulted in a critical violation to
the total number of inspections conducted by the sanitarians for a
cluster. The critical violation rates for each sanitarian cluster vary
widely, as shown in Table 1. The Purple sanitarian cluster has the
highest rate of citing the restaurants with a critical violation at 41%.
On the other hand, the Brown sanitarian cluster has the lowest
critical violation rate of 2.5%. Through personal communication
with the authors of [31], we learned that the approximately three
dozen sanitarians are grouped into six clusters purely based on their
critical violation rate. This variation in critical violation rate across
sanitarians has at least three possible causes: different strictness
among sanitarians, different characteristics of the restaurants in-
spected, and effects of one inspection on future inspections. In §A.3,
we analyze a set of restaurants which had repeat routine inspec-
tions by two or more distinct sanitarian clusters. Essentially, we
condition on the restaurants being inspected and observe a strong
correlation between more critical violations cited and one of the
inspections done by a high violation rate sanitarian (e.g. Purple
cluster) regardless of the order. This confirms that model unfairness
is driven by the sanitarians rather than properties of the restaurants
a sanitarian cluster inspects or the timing and nature of inspections
by different clusters.

To explore the effects of sanitarian critical violation rate on
the unfair outcome for Chicago residents, we plot the location
of the inspections on a map of Chicago using the latitudes and
longitudes from the dataset. Fig. 2 shows the inspections done by
the Purple cluster sanitarians and those done by the Brown cluster
sanitarians. We are particularly interested in these two clusters
because they represent the sanitarians with the highest and the
lowest critical violation rates. We observe that the inspections
conducted by Purple cluster sanitarians are concentrated in the
North and Central parts of the city. In contrast, Brown cluster
inspections are scattered around in the Northwest and Southwest
parts of the city. Therefore, the residents living in the North and
Central parts of the city are more advantaged by having a smaller
time to detect a critical violation detection than the residents living
in the other parts of the city. §A.2 shows the maps for all sanitarian
clusters, highlighting the various ways they are scattered across
the city.

Finally, we plot the difference in detection and inspections times
from the schedule means broken down by sanitarian clusters (rather
than by regions as was done in Fig. 1) under the Default and Schenk
Jr. schedules in Fig. 3. Despite varying violation rates, under the

EAAMO 22, October 6-9, 2022, Arlington, VA, USA
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Figure 3: The light-colored bars illustrate the time to con-
duct an inspection (DP) and the solid-colored bars illustrate
the time to detect a critical violation (EOpp) relative to the
schedule mean. Lower values are better for the cluster. Error
bars indicate the standard error for EOpp. Those for DP are
omitted for legibility.

Default schedule all clusters of sanitarians both detect critical vio-
lations (solid blue bars) and conduct inspections (light blue bars)
at around the same time on average. This shows inspections for
different clusters were scheduled at roughly equal times, regardless
of their results. On the other hand, under the Schenk Jr. schedule
(light orange bars) the inspections are sorted in the order of the
critical violation rates (Table 1). The inspections by the Purple sani-
tarian cluster are scheduled first, and those by the Brown sanitarian
cluster are scheduled last. The average times to detect the critical
violations follow a similar trend (dark orange bars). This provides
further evidence that the model effectively schedules inspections
done by the sanitarians in the order of their violation rate.

To summarize, our analysis suggests that the variation in the
violation rates across sanitarian clusters and their significance as
features in the Schenk Jr. et al. model is one of the major causes of
geographic unfairness in the resulting schedule. In the remainder
of the paper, we investigate mitigations for both the direct unfair-
ness across sanitarian clusters and the resulting indirect unfairness
across regions.

4 FAIRNESS THROUGH MODEL RETRAINING

In this section, we examine techniques aimed at achieving a fair
allocation of food inspection times across sanitarian clusters and
city regions by retraining the model in ways designed to result
in fairer predictions of critical violations. We use the risk scores
from the retrained models to reorder the inspections and measure
how fair each approach is by computing the difference from the
schedule mean in days. Our evaluation results preserve the origi-
nally assigned sanitarians clusters and the number of inspections
done per day. For brevity, we show only the results for the time
to detect a critical violation (EOpp, Eq. 2). Results for DP in §A.4
show similar trends.
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Figure 4: A disaggregated view of the time to detect a critical violation under four schedules obtained using different model
retraining techniques. The bars show the difference in detection times from the schedule mean across sanitarian clusters (Fig.
4a, top) and geographic groups (Fig. 4b, bottom) with error bars showing the standard error. (Best viewed in color.)

4.1 Remove Sanitarians from the Model

For our first approach, we intervene at the pre-processing stage. We
train a logistic regression model, the same class of model used by
Schenk Jr. et al., but do not give the model access to the sanitarian
features. We use the scores from the model to reorder the inspec-
tions and call the resulting inspection schedule the “No-Sanitarian"
schedule.

Fig. 4 shows the time to detect a critical violation for the No-
sanitarian schedule in purple. Although the variation under the No-
sanitarian schedule reduces in magnitude compared to the Schenk Jr.
schedule, the detection times still differ across the sanitarian clusters
(Fig. 4a). Inspections done by Purple cluster sanitarians get a higher
priority and their mean times are faster than all other sanitarian
clusters. Conversely, Brown cluster sanitarians take the most time to
detect critical violations. We also see varied detection times across
regions (Fig. 4b). In summary, we observe an improvement over
the Schenk Jr. schedule for sanitarian clusters but not a definitive
improvement for regions.

Our findings support those from the prior literature [3, 23, 27, 36]
that removing a protected feature, in this case the sanitarian cluster,

does not remove bias from the model. We believe that the correlation
of the remaining dataset features with the sanitarian clusters allows
the model to continue to discriminate.

4.2 Fair Regression with Polyvalent Protected
Attributes

Now, we implement the approach proposed by Zafar et al. that adds
fairness constraints to the logistic regression optimization [34].
Their fairness constraints support polyvalent (non-binary) pro-
tected features, like the sanitarian clusters in our case. The model
enforces a constraint which limits the allowed covariance between
the distance to the boundary of the classifier and the protected
attributes on the logistic regression loss optimization. Intuitively,
this should avoid the exploitation of correlations we saw with the
No-sanitarian schedule. The allowed covariance is a parameter de-
termining the trade-off between fairness and accuracy. We selected
the covariance threshold (c = 0.001) as the one that produced the
fairest outcomes after testing values in {0.0, 107%,0.001,0.01,0.1}.
The resulting scores from the trained model are used to rearrange
the inspections and obtain the “Zafar Schedule".
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Fig. 4 shows the results for the Zafar schedule in pink. The detec-
tion times vary less in comparison to the No-sanitarian schedule. In
particular, the early detection times for Purple cluster sanitarians
and later detection times for the Orange cluster are substantially
reduced. We see the greatest improvement for the Brown cluster
as their detection times are now essentially identical to the overall
schedule mean. For geographic groups, the regions that were disad-
vantaged in the Schenk Jr. and No-sanitarian schedules, namely Far
Southwest, Southwest, West, Northwest, see considerable improve-
ments. Also, the detection times for the most advantaged regions
(North and Far North) are now slightly worse than the schedule
mean. This is consistent with our intuition that the ability of the
Zafar et al. model to limit the covariance between the decision
boundary and the protected attribute should allow it to eliminate
the residual effects of the sanitarian features from the dataset and
reach a better outcome than the No-sanitarian schedule.

4.3 Fair Regression with Binary Protected
Attributes

Next, we explore the logistic regression model proposed by Rezaei
et al.. It robustly optimizes log loss under an adversarial distribu-
tion constrained to lie near the distribution from the data and uses
constraints to enforce fairness objectives [29]. Their work focuses
on three common fairness objectives: Demographic Parity (DP) [5],
Equal Opportunity (EOpp) [17], and Equality of Odds [17]. Since
we examine EOpp in this section, we use their model for that ob-
jective. Rezaei et al. model requires the protected attributes to be
binary, so we convert the sanitarian clusters from categorical to
binary values by splitting them along their violation rates. We as-
sign the majority protected attribute (A = 1) to the inspections
conducted by Purple, Blue, and Orange cluster sanitarians which
a have higher violation rate compared to the rest (Table 1). Simi-
larly, we assign the remaining inspections done by Green, Yellow
and Brown cluster sanitarians to the minority protected attribute
(A = 0). The model allows a regularization parameter C, and we
select its value (C = 0.5) that results in the fairest outcome from
{0.001, 0.005,0.01,0.05,0.1,0.2,0.3,0.4, 0.5}.

We report the results obtained from the Rezaei et al. model
under the fairness constraint of EOpp and term them “Rezaei EOpp
Schedule" in Fig. 4 in olive. We observe that the detection times
become less fair compared to the Zafar schedule for the sanitarian
clusters although the fairness for city regions is closer. We believe
one of the reasons the Rezaei et al. model does not perform as
well as the Zafar model is rooted in the loss of information when
converting the sanitarian cluster values from categorical to binary
sensitive values. For example, nothing prevents the model from
delaying Orange cluster inspections to prioritize those of the Purple
cluster as the two clusters have been combined. This emphasizes the
importance of developing fair ML models which accept polyvalent
protected attributes rather than limiting analysis to the binary case.
Another reason is that the use of robust optimization means that not
only is the model’s ability to enforce fairness limited by the need
to force it on other nearby models, but that for EOpp in particular
there are additional technical complications due to the conditioning
on true positives in the definition.
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4.4 Group Proportional Fair Regression

Finally, we adopt Krishnaswamy et al.’s Proportional Fairness clas-
sifier [25]. Rather than protect specified attributes, they provide
guarantees for arbitrary, unknown groups. This is achieved by train-
ing a randomized classifier which guarantees that, for each possible
group, the expected utility is in proportion to that of the group’s
optimal classifier. The randomized classifier consists of multiple
models that are weighted during the training. To get a single risk
score to use when scheduling, we calculate the probability the in-
spection is predicted as critical (i.e. the sum of weights of classifiers
that predict an inspection as critical). We call the schedule obtained
from this method the “Krishnaswamy Schedule", shown in Fig. 4 in
cyan. The results for the Krishnaswamy schedule are similar to the
Zafar schedule and a substantial improvement over the Schenk Jr.
Schedule. However, the variation in detection times (for both sani-
tarian clusters and city sides) is still not close to the near-perfect
fairness achieved by the Default schedule.

To conclude, the approaches we discuss mitigate the sanitarian
effect to an extent. However, we believe none of them offer a com-
plete solution as even the fairest (Zafar and Krishnaswamy) still
have substantial variation across regions.

5 FAIRNESS THROUGH MODEL USAGE

In this section, we examine two post-processing approaches to re-
duce model disparity. First, we explore suppressing the sanitarian
features during model evaluation. Second, we study the effect of
using the model output to schedule the inspections within the sani-
tarian clusters. As a reminder, we preserve the sanitarian cluster
assigned to the inspections in the test set when rescheduling them.
We present results for EOpp; similar results for DP are in §A.4.

5.1 Schenk Jr. Schedule with Sanitarians
assigned later

A natural way to use the trained model in practice is by predict-
ing the likelihood of an inspection being a critical violation in
the absence of a specific sanitarian and doing those inspections
first. We do this by keeping the Schenk Jr. et al. model as-is and
setting the sanitarian features to be zero during the evaluation pe-
riods. We obtain a new schedule by sorting the inspections by the
predicted scores and term it the “Sanitarian-blind schedule". This
approach is distinct from the No-sanitarian schedule suggested in
§4.1. That schedule results from eliminating all information about
the sanitarian clusters during training and rescheduling phases. The
Sanitarian-blind schedule does not modify the Schenk Jr. et al. model
but receives no signal related to the sanitarian cluster assignment
during rescheduling.

In Fig. 5, the detection times for Sanitarian-blind schedule are
represented in green. Broadly, the Sanitarian-blind schedule dis-
tributes the detection times among sanitarian clusters similarly to
the Krishnaswamy schedule. The Purple sanitarian cluster remains
the most advantaged group and the Brown the most disadvantaged.
The behavior can be attributed to the fact that while we have blinded
the sanitarian features, some of the remaining features correlate
with them, as discussed in §4.1. The detection times across regions
in Fig. 5b reflect an analogous behavior.
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5.2 Schenk Jr. Schedule with In-cluster
reordering

Another way we could use the model is to first assign each sanitar-
ian a list of restaurant inspections to perform, then use the model
to prioritize within each sanitarian’s list. The scenario is essentially
a “localized" version of the Schenk Jr. et al. objective [31]. We retain
the trained model and its predicted scores using all the features
for the evaluation periods. Under all the previous approaches, the
inspections can be rearranged based on the predicted score without
any constraints. For this approach, we consider all the inspections
done by each sanitarian cluster separately, sort only those inspec-
tions, replace them in the Default schedule, and repeat for each
sanitarian cluster. In other words, the resulting schedule keeps the
number of inspections each sanitarian cluster conducts each day
the same as in the Default schedule. See §A.5 for an illustrated

example. We refer to this schedule as the “In-cluster Sort Sched-
ule". Unlike the Sanitarian-blind schedule as described in §5.1, the
In-cluster Sort schedule does not lose any information during the
rescheduling stage and leverages the information gathered from
the extra features available.

Fig. 5 illustrates the performance of the In-Cluster Sort sched-
ule in red color. The results show the In-Cluster Sort produces a
more equal outcome and the notable differences in the detection
times for the Purple and Brown cluster sanitarians from the Krish-
naswamy and Sanitarian-blind schedules have become negligible.
Correspondingly, Fig. 4b depicts that the gap in detection times
across North and Northwest sides has been bridged as well. These
results are achieved despite the limitations of our data only allowing
us to implement this intervention at the level of sanitarian clusters
rather than at the intended level of individual sanitarians.
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6 EFFICIENCY AND FEASIBILITY

In this section we move beyond fairness alone to consider other
important aspects of selecting an approach. First we examine the
trade-off between fairness and efficiency. Then we consider how
the schedules obtained could be used given operational constraints.
This raises important questions about the feasibility of the sched-
ules, the choice of right performance metric, and the possibility
that some of the efficiency advantages of some methods may be
illusory.

6.1 Fairness and Efficiency Trade-off

We begin by defining our measures of efficiency and fairness.
Starting from our definition of Equal Opportunity, we take as
our notion of efficiency as the mean time to detect a critical vi-
olation: 4 = E[T | Y = 1]. For fairness, we compute the same
metric for each protected group (i.e. sanitarian cluster or region):
pi = B[T | A =a',Y = 1]. We then sum the absolute distance of
each of the n groups from the overall mean and use this as our
fairness metric:

n—-1
d=2|ﬂi—/1|~ ©)
i=0

This approach is similar in spirit to quantifying the extent to which
equal opportunity is violated in a classification setting by comparing
the difference in the relevant probabilities between groups.”

In Fig. 6, we plot the efficiency on the y-axis and fairness on
the x-axis. Lower values are better for both. The Default schedule
is the most fair but the least efficient. In contrast, the Schenk Jr.
schedule is the most efficient but the least fair to the sanitarian
clusters. The Zafar and Rezaei algorithms have parameters which
have the effect of trading off between efficiency and fairness, so for
these we plot a range of parameter values (¢ = {0.001,0.01,0.1} and
C ={0.5,0.2,0.1,0.05,0.01,0.005} respectively) and illustrate the
trade-off curve they enable with dashed lines. We use a dashed gray
line to illustrate the Pareto frontier, the set of schedules that are
not dominated in terms of both efficiency and fairness by (a convex
combination of) other schedules. The two model usage approaches
lie on or near the Pareto frontier for both sanitarian clusters and
regions, indicating they represent trade-offs between efficiency and
fairness that may be interesting in practice. Neither is clearly better
than the other.

Some of the model retraining approaches are near the Pareto
frontier for sanitarian clusters, but all are far from it for regions,
making their desirability questionable. The Zafar schedule varies
its efficiency for a relatively small change in fairness. As fairness
decreases, the Zafar schedule overlaps with the No-sanitarian clus-
ter. This is expected as with higher allowed covariance between
decision function and protected attributes the model gets more
ability to use the residual sanitarian features. The Krishnaswamy
and Rezaei schedules appear largely dominated, with the exception
of Rezaei toward the efficient but unfair part of the Pareto frontier
for sanitarian clusters.

Results for DP are not meaningful as all schedules preserve the number of inspections
conducted each day so they have the same efficiency on average.
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6.2 Operational Constraints

From §2, we know that the risk scores for Schenk Jr. et al. model
are weighted by the sanitarian cluster. Since the inspections are
sorted based on the risk score, the Schenk Jr. schedule assumes that
all the inspections are fungible.

Consider a scenario when all the inspections done by Purple
cluster sanitarians are scheduled first. Would it mean the other
sanitarians conduct no inspections during that time? Do the Purple
cluster sanitarians remain idle after conducting their inspections
early on? If the inspections were reassigned to a different sanitarian
cluster, would the result change? These questions point to some
of the operational constraints encountered in practice and are not
accounted for Schenk Jr. et al.’s methodology. A real scheduling
approach needs to be able to account for factors such as limited
capacity for a sanitarian to conduct inspections in a day both - time
needed to conduct the inspections themselves and the time needed
to travel from inspection to inspection. Efficiency gains which do
not respect these constraints may be illusory.

Such considerations are another advantage of the post-
processing techniques in §5. The Sanitarian-blind schedule works
by placing the inspections in an order without needing an assigned
sanitarian, allowing later assignment of sanitarians in that respect
operational constraints. Likewise, the In-cluster Sort schedule en-
sures the number of inspections conducted by each cluster each
day is reasonable, although it does not account for travel times.?

7 DISCUSSION

We have revisited the application of predictive models by CDPH
to schedule restaurant inspections and performed the first analysis
from the perspective of fairness to the population served by the
restaurants. We found that the model treats inspections unequally
based on the cluster of the sanitarian who conducted the inspection
and that there are, as a result, geographic disparities in the benefits
of the model. We examined approaches to using the original model
in a fairer way and ways to train the model to achieve fairness and
found more success with the former class of approaches.

While our analysis and conclusions are limited to a single data set
from the city of Chicago and the particular algorithmic approaches
tested, we believe this setting is representative of an important
class of problems. Our communications with experts in food safety
suggest that the resource allocation problems and wide differences
in violation rates faced by Chicago are common in many jurisdic-
tions. Beyond food safety, cities conduct other types of inspections
including of structural inspections of buildings, fire safety, business
licensing, and enforcement of environmental and accessibility reg-
ulations. Thus, we conclude by discussing three broad challenges
our results point to for future work.

In contrast to much of the literature that focuses on the fair treat-
ment of individuals, things being inspected typically have many
stakeholders. In this work we have taken the simple approach of
identifying restaurants with the people who live nearby, but this is
certainly a rough approximation at best. There is a need for better
methods to understand who is affected by inspection decisions
and how. A related problem is understanding and quantifying the

81deally we would rearrange inspections at the level of individual sanitarians, but data
limitations only allow us to treat inspections by cluster as fungible.



EAAMO °22, October 6-9, 2022, Arlington, VA, USA

30

.

|
28

26 ‘f.F‘

(in days)
N
IS

22

20

Time to detect a Critical Violation

18

4 6 8 10 12 14 16

Difference from schedule mean
for Sanitarian Clusters

—e— Default
Schenk Jr.

—4+#— No-sanitarian
Zafar

—o— Krishnaswamy

Shubham Singh, Bhuvni Shah, Chris Kanich, and lan A. Kash

18 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Difference from schedule mean
for City Regions

—»— Sanitarian-blind
—&— In-cluster Sort

Rezaei EOpp

Figure 6: A scatter plot showing the trade-off between the time to detect a violation (EOpp, y-axis) and the fairness which
is computed as the average of absolute distance from the mean across all group (x-axis), as defined in Eq. 5. A lower mean
detection time and a lower distance from mean are desirable. Error bars give the standard error from 16 cross-validated runs.

effects of inspection scheduling across groups based on race or
economic status. The approach we explored (see supplementary
material §A.6,§A.7) found limited fairness effects for these group-
ings but it is unclear whether this is because the algorithms were in
fact fair or the approach does a poor job of quantifying the fairness
effects. Beyond simply measuring fairness, developing fair classi-
fication algorithms that can handle the sort of continuous-valued
protected attributes that arise when the data captures the demo-
graphic breakdown of, e.g., a neighborhood is a largely unexplored
challenge.

While the goal of inspections is to protect public health, their
effectiveness is challenging to measure directly. We have followed
Chicago’s approach of using detecting critical violations of the food
code as early as possible as a proxy. The use of proxies is common,
and has caused notable issues in other domains (for example the
use of arrests as a proxy for crime [14]). The risk of feedback loops
has been pointed out in both this and other domains [6, 22]. How-
ever, we wish to stress that sanitarians have discretion in how they
resolve issues they observe, ranging from punishment in the form
of critical violations to education and helping restaurant owners
correct issues in the course of the inspection. So a low violation rate
is not necessarily indicative of a sanitarian simply missing issues.
Prior work has found that factors such as the outcome of a previous
inspection and the position of an inspection in an inspector’s daily
schedule may significantly impact the detection of violations in an

inspection [18]. This raises difficult questions about what it means
to be fair. Our approach of reordering within each sanitarian cluster
ducks this issue to some extent, assuming what a critical violation
“means” to a given sanitarian is consistent across time (although
this may not eliminate all issues; see Finding 2 of [22]). However,
questions remain including how this can provide fairness guaran-
tees to individuals and whether all critical violations are equally
bad. Given the range of violation rates, it seems likely that some
restaurants with no critical violation inspected by Brown cluster
sanitarians actually deserve more scrutiny than many restaurants
with a critical violation inspected by Purple cluster sanitarians,
meaning some of the increased performance of the original model
may be illusory. * What is a better proxy for sanitarians who find
critical violations only rarely? Should we be not just reordering
inspections but actively shaping which sanitarian performs them
to enhance fairness?

Finally, while the models we use are trained to perform classi-
fication, their use in this context is for ranking which in turn is
used for scheduling. There is room to improve over our approach
at all stages of this pipeline. Would it be good to instead learn a
counterfactual “sanitarian-independent” violation probability, as is
done when predicting clicks in search advertising [16] and has been
explored in the literature on causal models in fairness [23]? Rather
than trying to achieve fair classification or doing the ranking in

9This can also be viewed as an issue of unfairness to restaurants [22].



Fair Decision-Making for Food Inspections

ways that address unfairness in the classification, are there better
approaches that directly leverage ideas from the literature on fair
rankings [32, 35] or the literature on fair classification in the con-
text of larger systems [10]? We have treated scheduling as a single,
static problem, but inspections occur on an ongoing basis. How
should we understand and achieve fairness in the full, dynamic set-
ting? This last question in particular points to potentially fruitful
ways to study this domain in light of the literatures on fairness in
reinforcement learning [20, 33] and overall fairness in comparison
to local or immediate fairness [9, 11, 12, 26].
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