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ABSTRACT

We revisit the application of predictive models by the Chicago

Department of Public Health to schedule restaurant inspections and

prioritize the detection of critical food code violations. We perform

the first analysis of the model’s fairness to the population served by

the restaurants in terms of average time to find a critical violation.

We find that the model treats inspections unequally based on the

sanitarian who conducted the inspection and that, in turn, there

are geographic disparities in the benefits of the model. We examine

four alternate methods of model training and two alternative ways

of scheduling using the model and find that the latter generate

more desirable results. The challenges from this application point to

important directions for future work around fairness with collective

entities rather than individuals, the use of critical violations as a

proxy, and the disconnect between fair classification and fairness

in dynamic scheduling systems.

CCS CONCEPTS

· Applied computing→ Decision analysis; Computing in gov-

ernment; · Computing methodologies→ Planning and schedul-

ing.
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1 INTRODUCTION

The Chicago Department of Public Health (CDPH) issues food

safety guidelines and conducts inspections of more than 16,000
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food establishments. Through these inspections, CDPH sanitarians

educate owners and workers about food safety practices, inspect

the premises and practices for safe food handling, and promote a

healthy environment for food preparation. The City of Chicago

records each of the food inspections on its public data portal.1 As

there are a limited number of sanitarians, a natural goal is to use

data to prioritize performing the inspections that best protect the

public health. Inspections which identify critical violations of the

food code allow conditions posing the highest risk of causing a

food-borne illness to be addressed. Thus, data scientists working

for the city and their collaborators trained a machine learning

(ML) model to predict the likelihood of an inspection resulting in a

critical violation [31]. The trained ML model, which we refer to as

the Schenk Jr. et al. model, was used to prioritize food inspections in

a simulated study. An evaluation of the model showed that using it

to schedule inspections achieves a 7-day improvement in the mean

time to detect a critical violation compared to the actual inspection

schedule followed by sanitarians [31].

In this paper, we first reexamine the model from a fairness per-

spective and assess how the improvement gained by employing

the model is shared by different parts of the city. A key driver of

geographic variation is that not all sanitarians report critical vio-

lations at the same rate, with a range of less than three percent to

more than forty percent inspections cited with violations. Since

the model prioritizes the restaurants inspected by sanitarians who

report a high rate of critical violations, residents of the city regions

where sanitarians cite critical violations at a higher-than-average

rate tend to see inspections prioritized at the expense of the other

regions.

We then explore approaches to prioritize food inspections in a

fairer way. Our interventions span two broad classes of techniques:

(a) those where we train a new model to predict critical violations

in a fairer way and (b) post-processing approaches where we use the

Schenk Jr. et al. model as-is but modify the way the model is used

to achieve a fairer resource allocation. We examine four different

approaches to training fair models, and find that they mitigate but

do not eliminate the geographic unfairness that results when the

models are used to schedule inspections. We consider two post-

processing approaches which adjust the way sanitarian identities

are used when scheduling inspections: one censors the sanitarian

1Chicago Data Portal: https://data.cityofchicago.org/Health-Human-Services/Food-
Inspections/4ijn-s7e5
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feature when predicting while the other uses the model to resched-

ule each sanitarian’s inspections rather than globally reschedul-

ing all inspections. Our results show that these post-processing

approaches are more effective than retraining in achieving fair

outcomes. After analyzing the fairness properties of the various ap-

proaches, we examine the trade off between efficiency and fairness.

We find that the post-processing approaches enable an attractive

trade-off between efficiency and fairness while the fair models are

essentially Pareto dominated.

We conclude by discussing three key issues our results raise for

future work. The inspection of restaurants is different from much

of the fairness literature in that each entity has many stakeholders,

so models based on simple binary protected attributes are not a

good fit for some protected groups of interest. The use of critical

violations as a proxy for public health raises important questions

about what fairness means in this setting, particularly in light of the

heterogeneity across sanitarians. Finally, we discuss the disconnect

between training amodel for classification and our goal of achieving

fairness in a dynamic scheduling system.

1.1 Related Work

Food inspections remain an essential food safety practice to pre-

vent food-borne illnesses. However, the variation in practices and

guidelines across jurisdictions results in a lack of consistency in

local and national food safety levels and the link between inspec-

tions and food safety is actively studied. One of the first studies

done in Seattle-King County found that restaurants with lower food

inspection scores2 were likely to have more outbreaks than restau-

rants with higher scores [19]. Another study done in MiamiśDade

County found no correlation between restaurant inspection scores

and the outbreak of food-borne illnesses [8]. Jones et al. found

inconsistencies between criteria for high risk establishments and

establishments that resulted in outbreaks through a study in the

state of Tennessee and called for a deeper examination into the

restaurant inspection system [21]. Today, there are still calls for

systemic change in local food safety inspection systems across the

country due to the poor predictive power of the current inspection

framework [2]. Technologists have also been exploring how to im-

prove the food inspection process and searching for non-traditional

data sources. Google search activity in an ML-based approach to

identify higher risk establishments has shown some promise [30],

but the addition of Yelp data did not improve the prediction of

inspection scores [1].

More broadly our work sits at the intersection of two trends

in the use of artificial intelligence techniques. First is the use of

predictive analytics to bring algorithmic decision-making to gov-

ernment operations. We witness a rise in the use of ML algorithms

for delivery of public services, digitization of court records, and

management of government programs [7, 13]. Second is the in-

creased openness of government data. A recent study points out

the need for more transparency to counter the public distrust of AI

and promote its use for the common good [24]. Such initiatives help

authorities improve their operations and provide transparency to

their decision-making process. Kaggle tournaments have been used

2Sanitarians assigned each inspection a score out of 100, and a lower score indicated
more critical violations.

to encourage public involvement in civic model creation [15] to

create better public services [28]. We provide a case study of using

open data to analyze the fairness of predictive analytics and provide

interventions to improve it. Previous case studies of other domains

include predictive policing [14] and child maltreatment [6].

2 BACKGROUND

Schenk Jr. et al. sought a predictive model to prioritize the routine

food inspections conducted by sanitarians from the Chicago De-

partment of Public Health (CDPH) [31]. Rather than relying solely

on manual scheduling of food inspections by CDPH, in 2015 the

Chicago Department of Innovation and Technology and data scien-

tists from the Civic Consulting Alliance created a machine learning

model to aid in this scheduling process.

The model specifically looks at the scheduling of routine food

inspections which are conducted once or twice a year at each es-

tablishment independent of any customer complaints. The dataset

used to train and test the model consists of information from 18,000

inspections over 4 years with the training set from September 2011

to April 2014 and the testing set from September 2014 to October

2014. The dataset is derived from several datasets from the Chicago

Open source portal3 including those about crime rates, sanitation,

weather, and food inspections. The dataset also includes informa-

tion about the sanitarians who conducted the inspections. In order

to protect the individual identity and the privacy of the approxi-

mately three dozen sanitarians, they are grouped into six sanitarian

clusters based on their critical violation rate, which is the percent-

age of inspections they conduct that result in critical violations.

The clusters, which are used as features in the model, were named

after the lines of Chicago rail transit system: Purple, Blue, Orange,

Green, Yellow, and Brown. From this dataset, they train a logistic

regression model using features including the sanitarian cluster

conducting the inspection, past establishment violation records,

and surrounding environment data (crime rates, cleanliness, tem-

perature) to predict the likelihood of the inspection resulting in a

critical violation.

The trained model is then used to output a risk score for each

food inspection where a higher score signifies a higher risk of

finding a critical violation. These risk scores are used to prioritize

inspections: the highest risk score should be inspected first and the

remainder inspected in decreasing order of the risk scores (model

coefficients detailed in Table 2 in supplementary material).

Evaluating the model requires making an assumption on how

it would be used. Schenk Jr. et al. [31] reassigned the dates of the

inspections in the test set based on their predicted risk score, while

preserving the number of inspections performed each day and the

identity of the sanitarian performing each inspection (illustrated

in supplementary material §A.5). The main goal of their work was

to ensure that the inspections which resulted in critical violations

were conducted as rapidly as possible. Therefore, each schedule of

inspections (the original and the one created by the model) was

evaluated by the average time required to detect critical violations.

This was calculated by taking the mean of the number of days

between date the inspection was scheduled and the first day of the

test set window (i.e. September 1, 2014) for those inspections that

3https://data.cityofchicago.org/
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resulted in a critical violation4. They found that, on average, the

schedule based on their model detected critical violations 7-days

faster than the original schedule when applied to the two-month

test set. The dataset and code used in this analysis are available in

the project’s repository.5

Kannan, Shapiro, and Bilgic [22] provided an independent analy-

sis of the model results and identified several issues with the model

and its analysis. Their finding regarding one of the feature sets

turns out to be particularly relevant for our analysis (we also revisit

their other findings in ğ7). In particular, they argued that using the

sanitarian clusters as a predictive feature unfairly changes the pre-

diction risk for the establishment. Since the clusters were created

by grouping sanitarians with similar violation rates, it was likely

that establishments set to be inspected by sanitarian clusters with

a high propensity to find violations were much more likely to have

a high risk score for a potential violation, regardless of the other

attributes. They view this outcome as being unfair to the restau-

rant. Because CDPH’s intent in performing inspections is to protect

the public health, our primary focus is on fairness to customers of

the establishment. Nevertheless, we show that this differentiated

behavior of sanitarians and its use by the model has important

consequences for our fairness concerns on larger geographic areas

across the city.

3 FAIRNESS OF THE SCHENK JR. ET
AL. MODEL

We focus on the fairness of the way Schenk Jr. et al.[31] model is

used to schedule inspections for the city and in turn, distributes pub-

lic health benefits among Chicago’s residents. To quantify fairness,

we borrow from the existing definitions of the fairness literature

and adapt them to the problem of food inspections. The first defini-

tion we focus on is Demographic Parity (DP) or Statistical Parity,

defined as a classifier having equal positive predicted rates for ad-

vantaged (𝐴 = 1) and disadvantaged (𝐴 = 0) groups [5]. Given a

prediction 𝑌 , demographic parity is satisfied if

𝑃 (𝑌 = 1 | 𝐴 = 0) = 𝑃 (𝑌 = 1 | 𝐴 = 1) . (1)

We are interested in achieving similar amounts of time taken to

complete food inspections across groups of interest, which makes

our fairness objectives compatible with the evaluation metrics of

the model. Since we consider multiple groups, 𝐴 is categorical with

values {𝑎0, . . . , 𝑎𝑛−1}, where 𝑛 is the total number of groups. Let 𝑇

represent the random variable for the time to complete a random

food inspection. Our interpretation of DP is

E[𝑇 | 𝐴 = 𝑎𝑖 ] = E[𝑇 | 𝐴 = 𝑎𝑖+1] s.t. 0 ≤ 𝑖 < 𝑛 . (2)

Eq. 2 states a fair schedule, on average, has equal times to conduct

the inspections belonging to different groups. Another widely ap-

plicable definition of fairness is Equal Opportunity (EOpp), which

is defined as the classifier having equal true positive rates for ad-

vantaged and disadvantaged groups [17]. Formally,

𝑃 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 0) = 𝑃 (𝑌 = 1 | 𝑌 = 1, 𝐴 = 1) . (3)

4This approach makes several strong assumptions. We discuss concerns related to the
efficiency and operational constraints of food inspection at the city level in ğ6.2. We
discuss the use of critical violation detection as a proxy for public safety in ğ7.
5https://github.com/Chicago/food-inspections-evaluation

Our interpretation of equal opportunity requires having similar

times to detect critical violations in food inspections across all

groups. This can be written as

E[𝑇 | 𝐴 = 𝑎𝑖 , 𝑌 = 1] = E[𝑇 | 𝐴 = 𝑎𝑖+1, 𝑌 = 1] s.t. 0 ≤ 𝑖 < 𝑛 .

(4)

Eq. 4 states a schedule is fair if the inspections where a critical

violation was found (𝑌 = 1), on average, took equal amounts of

time to be detected across the groups. These interpretations of DP

and EOpp are consistent with work on extending these concepts

beyond simple classification settings [4].

Throughout the rest of the paper, we consider an early detec-

tion of a critical violation to be a desirable outcome. Although this

outcome helps in achieving the broader goal of protecting public

health, there a multitude of groups (stakeholders) that stand to

benefit from food inspections: CDPH, restaurant owners, and the

customers. Since a restaurant serves a large number of people living

or working in its neighborhood and they are affected by potential

food-borne illness stemming from unsafe conditions, a major ad-

vantage of an early violation detection goes to the customers (we

elaborate on the choice of stakeholder in ğ7). Thus, our primary

interest is in applying these definitions to groups consisting of

restaurants located in a particular region of the city.

3.1 Fairness along geographic lines

For our fairness analysis, we examine the effects of the model on dif-

ferent regions of the city, colloquially known as "sides". We explore

how the residents of the different regions are affected by using the

model to schedule the food inspections. Using the ZIP codes of the

inspected restaurants in the dataset, we match their location to the

nine sides6 of the city. We largely follow the methodology used by

the City of Chicago as described in ğ2 and fully detailed in [31].

However, to improve the robustness of the results we perform a

cross-validated evaluation, rather than the evaluation on the last

60-days performed by Schenk Jr. et al.. The dataset contains 19 non-

overlapping periods spanning 60 days from the first inspection date

till the last. Out of these 19 evaluations periods, we exclude three

evaluation periods that did not contain inspections for all 60 days.

While we consider both the notions of fairness in Equations 2 and

4, since the overall goal of the system is to improve the detection

of critical violations we put more emphasis on the second.

Fig. 1 shows the difference between the average time taken to

detect critical violations in a specific region and the overall average

for that schedule using solid colors. This corresponds to the extent

to which EOpp is violated in that region, Eq. 4. It also shows the

difference between the average time taken to conduct inspections

(regardless of whether a critical violation is found) in a region

and the overall average for that schedule. This corresponds to DP

(Eq. 2) and is shown using light colors. The two schedules we

consider here are: (a) łDefault Schedule" (blue bars), which is the

schedule of inspections that the sanitarians originally followed as

they conducted inspections and (b) łSchenk Jr. Schedule" (orange

bars), which is the schedule obtained using the Schenk Jr. et al.

model risk scores and reordering the inspections based on the scores

6For a map, see https://en.wikipedia.org/wiki/Chicago#/media/File:Chicago_
community_areas_map.svg. Accessed 06/12/2021
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Figure 1: The figure illustrates the difference between the mean time to detect a critical violation in a particular region and the

overall mean time for that schedule (EOpp) using the narrower, solid-colored bars. The wider, light colored bars represent the

difference in time to conduct inspections regardless of whether a violation was found (DP). The labels represent the major

regions of Chicago. Error bars indicate the standard error of EOpp from 16-fold cross validation. (The error bars for DP are

similar and omitted for legibility.)

such that inspections with a high risk score (i.e. high predicted

likelihood of being a critical violation) are conducted earlier. The

bars indicating negative values signify that the detection times

are quicker than the schedule mean (the group is better off than

average) and the positive values show that the detection times

are slower than the schedule mean (the group is worse off than

average).

Considering the Default schedule, we observe all of the regions

have detection times close to the schedule mean, consistent with a

random schedule being perfectly fair. On the other hand, four out

of nine sides have quicker detection times than the average under

the Schenk Jr. schedule. For the remaining five that are worse off,

two sides receive a far greater delay (at least 10 days) in detecting

critical violations. The trends for the inspection times are similar

and suggest that a large part of the gain in critical violation de-

tection for the advantaged regions under the Schenk Jr. schedule

comes from inspections in those regions being moved earlier as a

whole rather than specifically the inspections most likely to find

critical violations. The breakdown of the detection times by region

underscores the disparate outcome the Schenk Jr. schedule would

have on food inspections in different regions of the city. If used,

an individual’s place of residence can determine if they have an

expedited or delayed routine inspection of food establishments in

their neighborhood, which in turn impacts their likelihood of being

subjected to a food-borne illness. Our fairness analysis along racial

(§A.6) and economic lines (§A.7) only finds small effects for these

groupings.

3.2 Exploring the cause of unfairness

An examination of the coefficients of the Schenk Jr. et al. model

(§A.1) shows that the sanitarian conducting the food inspection is a

key feature. As the dataset clusters multiple sanitarians together to

protect their identity, we examine sanitarian behavior at the cluster

level. We first inspect the critical violation rate for each of the sani-

tarian clusters. The critical violation rate is computed as the ratio

Figure 2: Map of Chicago with purple and brown dots repre-

senting the location of food inspections done by Purple (the

highest critical violation rate) and Brown (the lowest critical

violation rate) cluster sanitarians, respectively.
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Table 1: Table showing the inspector clusters and their criti-

cal violation rate for the inspections conducting during the

model evaluation period.

Sanitarian

Cluster

Critical Violation

Rate

Purple 40.83%

Blue 25.53%

Orange 13.76%

Green 9.68%

Yellow 5.94%

Brown 2.5%

of the number of inspections that resulted in a critical violation to

the total number of inspections conducted by the sanitarians for a

cluster. The critical violation rates for each sanitarian cluster vary

widely, as shown in Table 1. The Purple sanitarian cluster has the

highest rate of citing the restaurants with a critical violation at 41%.

On the other hand, the Brown sanitarian cluster has the lowest

critical violation rate of 2.5%. Through personal communication

with the authors of [31], we learned that the approximately three

dozen sanitarians are grouped into six clusters purely based on their

critical violation rate. This variation in critical violation rate across

sanitarians has at least three possible causes: different strictness

among sanitarians, different characteristics of the restaurants in-

spected, and effects of one inspection on future inspections. In §A.3,

we analyze a set of restaurants which had repeat routine inspec-

tions by two or more distinct sanitarian clusters. Essentially, we

condition on the restaurants being inspected and observe a strong

correlation between more critical violations cited and one of the

inspections done by a high violation rate sanitarian (e.g. Purple

cluster) regardless of the order. This confirms that model unfairness

is driven by the sanitarians rather than properties of the restaurants

a sanitarian cluster inspects or the timing and nature of inspections

by different clusters.

To explore the effects of sanitarian critical violation rate on

the unfair outcome for Chicago residents, we plot the location

of the inspections on a map of Chicago using the latitudes and

longitudes from the dataset. Fig. 2 shows the inspections done by

the Purple cluster sanitarians and those done by the Brown cluster

sanitarians. We are particularly interested in these two clusters

because they represent the sanitarians with the highest and the

lowest critical violation rates. We observe that the inspections

conducted by Purple cluster sanitarians are concentrated in the

North and Central parts of the city. In contrast, Brown cluster

inspections are scattered around in the Northwest and Southwest

parts of the city. Therefore, the residents living in the North and

Central parts of the city are more advantaged by having a smaller

time to detect a critical violation detection than the residents living

in the other parts of the city. §A.2 shows the maps for all sanitarian

clusters, highlighting the various ways they are scattered across

the city.

Finally, we plot the difference in detection and inspections times

from the schedule means broken down by sanitarian clusters (rather

than by regions as was done in Fig. 1) under the Default and Schenk

Jr. schedules in Fig. 3. Despite varying violation rates, under the
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Figure 3: The light-colored bars illustrate the time to con-

duct an inspection (DP) and the solid-colored bars illustrate

the time to detect a critical violation (EOpp) relative to the

schedule mean. Lower values are better for the cluster. Error

bars indicate the standard error for EOpp. Those for DP are

omitted for legibility.

Default schedule all clusters of sanitarians both detect critical vio-

lations (solid blue bars) and conduct inspections (light blue bars)

at around the same time on average. This shows inspections for

different clusters were scheduled at roughly equal times, regardless

of their results. On the other hand, under the Schenk Jr. schedule

(light orange bars) the inspections are sorted in the order of the

critical violation rates (Table 1). The inspections by the Purple sani-

tarian cluster are scheduled first, and those by the Brown sanitarian

cluster are scheduled last. The average times to detect the critical

violations follow a similar trend (dark orange bars). This provides

further evidence that the model effectively schedules inspections

done by the sanitarians in the order of their violation rate.

To summarize, our analysis suggests that the variation in the

violation rates across sanitarian clusters and their significance as

features in the Schenk Jr. et al. model is one of the major causes of

geographic unfairness in the resulting schedule. In the remainder

of the paper, we investigate mitigations for both the direct unfair-

ness across sanitarian clusters and the resulting indirect unfairness

across regions.

4 FAIRNESS THROUGH MODEL RETRAINING

In this section, we examine techniques aimed at achieving a fair

allocation of food inspection times across sanitarian clusters and

city regions by retraining the model in ways designed to result

in fairer predictions of critical violations. We use the risk scores

from the retrained models to reorder the inspections and measure

how fair each approach is by computing the difference from the

schedule mean in days. Our evaluation results preserve the origi-

nally assigned sanitarians clusters and the number of inspections

done per day. For brevity, we show only the results for the time

to detect a critical violation (EOpp, Eq. 2). Results for DP in §A.4

show similar trends.
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Figure 4: A disaggregated view of the time to detect a critical violation under four schedules obtained using different model

retraining techniques. The bars show the difference in detection times from the schedule mean across sanitarian clusters (Fig.

4a, top) and geographic groups (Fig. 4b, bottom) with error bars showing the standard error. (Best viewed in color.)

4.1 Remove Sanitarians from the Model

For our first approach, we intervene at the pre-processing stage. We

train a logistic regression model, the same class of model used by

Schenk Jr. et al., but do not give the model access to the sanitarian

features. We use the scores from the model to reorder the inspec-

tions and call the resulting inspection schedule the łNo-Sanitarian"

schedule.

Fig. 4 shows the time to detect a critical violation for the No-

sanitarian schedule in purple. Although the variation under the No-

sanitarian schedule reduces inmagnitude compared to the Schenk Jr.

schedule, the detection times still differ across the sanitarian clusters

(Fig. 4a). Inspections done by Purple cluster sanitarians get a higher

priority and their mean times are faster than all other sanitarian

clusters. Conversely, Brown cluster sanitarians take themost time to

detect critical violations. We also see varied detection times across

regions (Fig. 4b). In summary, we observe an improvement over

the Schenk Jr. schedule for sanitarian clusters but not a definitive

improvement for regions.

Our findings support those from the prior literature [3, 23, 27, 36]

that removing a protected feature, in this case the sanitarian cluster,

does not remove bias from themodel.We believe that the correlation

of the remaining dataset features with the sanitarian clusters allows

the model to continue to discriminate.

4.2 Fair Regression with Polyvalent Protected
Attributes

Now, we implement the approach proposed by Zafar et al. that adds

fairness constraints to the logistic regression optimization [34].

Their fairness constraints support polyvalent (non-binary) pro-

tected features, like the sanitarian clusters in our case. The model

enforces a constraint which limits the allowed covariance between

the distance to the boundary of the classifier and the protected

attributes on the logistic regression loss optimization. Intuitively,

this should avoid the exploitation of correlations we saw with the

No-sanitarian schedule. The allowed covariance is a parameter de-

termining the trade-off between fairness and accuracy. We selected

the covariance threshold (𝑐 = 0.001) as the one that produced the

fairest outcomes after testing values in {0.0, 10−6, 0.001, 0.01, 0.1}.

The resulting scores from the trained model are used to rearrange

the inspections and obtain the łZafar Schedule".
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Fig. 4 shows the results for the Zafar schedule in pink. The detec-

tion times vary less in comparison to the No-sanitarian schedule. In

particular, the early detection times for Purple cluster sanitarians

and later detection times for the Orange cluster are substantially

reduced. We see the greatest improvement for the Brown cluster

as their detection times are now essentially identical to the overall

schedule mean. For geographic groups, the regions that were disad-

vantaged in the Schenk Jr. and No-sanitarian schedules, namely Far

Southwest, Southwest, West, Northwest, see considerable improve-

ments. Also, the detection times for the most advantaged regions

(North and Far North) are now slightly worse than the schedule

mean. This is consistent with our intuition that the ability of the

Zafar et al. model to limit the covariance between the decision

boundary and the protected attribute should allow it to eliminate

the residual effects of the sanitarian features from the dataset and

reach a better outcome than the No-sanitarian schedule.

4.3 Fair Regression with Binary Protected
Attributes

Next, we explore the logistic regression model proposed by Rezaei

et al.. It robustly optimizes log loss under an adversarial distribu-

tion constrained to lie near the distribution from the data and uses

constraints to enforce fairness objectives [29]. Their work focuses

on three common fairness objectives: Demographic Parity (DP) [5],

Equal Opportunity (EOpp) [17], and Equality of Odds [17]. Since

we examine EOpp in this section, we use their model for that ob-

jective. Rezaei et al. model requires the protected attributes to be

binary, so we convert the sanitarian clusters from categorical to

binary values by splitting them along their violation rates. We as-

sign the majority protected attribute (𝐴 = 1) to the inspections

conducted by Purple, Blue, and Orange cluster sanitarians which

a have higher violation rate compared to the rest (Table 1). Simi-

larly, we assign the remaining inspections done by Green, Yellow

and Brown cluster sanitarians to the minority protected attribute

(𝐴 = 0). The model allows a regularization parameter 𝐶 , and we

select its value (𝐶 = 0.5) that results in the fairest outcome from

{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

We report the results obtained from the Rezaei et al. model

under the fairness constraint of EOpp and term them łRezaei EOpp

Schedule" in Fig. 4 in olive. We observe that the detection times

become less fair compared to the Zafar schedule for the sanitarian

clusters although the fairness for city regions is closer. We believe

one of the reasons the Rezaei et al. model does not perform as

well as the Zafar model is rooted in the loss of information when

converting the sanitarian cluster values from categorical to binary

sensitive values. For example, nothing prevents the model from

delaying Orange cluster inspections to prioritize those of the Purple

cluster as the two clusters have been combined. This emphasizes the

importance of developing fair ML models which accept polyvalent

protected attributes rather than limiting analysis to the binary case.

Another reason is that the use of robust optimizationmeans that not

only is the model’s ability to enforce fairness limited by the need

to force it on other nearby models, but that for EOpp in particular

there are additional technical complications due to the conditioning

on true positives in the definition.

4.4 Group Proportional Fair Regression

Finally, we adopt Krishnaswamy et al.’s Proportional Fairness clas-

sifier [25]. Rather than protect specified attributes, they provide

guarantees for arbitrary, unknown groups. This is achieved by train-

ing a randomized classifier which guarantees that, for each possible

group, the expected utility is in proportion to that of the group’s

optimal classifier. The randomized classifier consists of multiple

models that are weighted during the training. To get a single risk

score to use when scheduling, we calculate the probability the in-

spection is predicted as critical (i.e. the sum of weights of classifiers

that predict an inspection as critical). We call the schedule obtained

from this method the łKrishnaswamy Schedule", shown in Fig. 4 in

cyan. The results for the Krishnaswamy schedule are similar to the

Zafar schedule and a substantial improvement over the Schenk Jr.

Schedule. However, the variation in detection times (for both sani-

tarian clusters and city sides) is still not close to the near-perfect

fairness achieved by the Default schedule.

To conclude, the approaches we discuss mitigate the sanitarian

effect to an extent. However, we believe none of them offer a com-

plete solution as even the fairest (Zafar and Krishnaswamy) still

have substantial variation across regions.

5 FAIRNESS THROUGHMODEL USAGE

In this section, we examine two post-processing approaches to re-

duce model disparity. First, we explore suppressing the sanitarian

features during model evaluation. Second, we study the effect of

using the model output to schedule the inspections within the sani-

tarian clusters. As a reminder, we preserve the sanitarian cluster

assigned to the inspections in the test set when rescheduling them.

We present results for EOpp; similar results for DP are in §A.4.

5.1 Schenk Jr. Schedule with Sanitarians
assigned later

A natural way to use the trained model in practice is by predict-

ing the likelihood of an inspection being a critical violation in

the absence of a specific sanitarian and doing those inspections

first. We do this by keeping the Schenk Jr. et al. model as-is and

setting the sanitarian features to be zero during the evaluation pe-

riods. We obtain a new schedule by sorting the inspections by the

predicted scores and term it the łSanitarian-blind schedule". This

approach is distinct from the No-sanitarian schedule suggested in

ğ4.1. That schedule results from eliminating all information about

the sanitarian clusters during training and rescheduling phases. The

Sanitarian-blind schedule does notmodify the Schenk Jr. et al. model

but receives no signal related to the sanitarian cluster assignment

during rescheduling.

In Fig. 5, the detection times for Sanitarian-blind schedule are

represented in green. Broadly, the Sanitarian-blind schedule dis-

tributes the detection times among sanitarian clusters similarly to

the Krishnaswamy schedule. The Purple sanitarian cluster remains

the most advantaged group and the Brown the most disadvantaged.

The behavior can be attributed to the fact that while we have blinded

the sanitarian features, some of the remaining features correlate

with them, as discussed in ğ4.1. The detection times across regions

in Fig. 5b reflect an analogous behavior.
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Figure 5: The times to detect violation under the schedules obtained by post-processing techniques. The bars show the difference

from the schedule mean grouped by sanitarian clusters (Fig. 5a, top) and sides of Chicago (Fig. 5b, bottom) with error bars

giving the standard error. (Best viewed in color.)

5.2 Schenk Jr. Schedule with In-cluster
reordering

Another way we could use the model is to first assign each sanitar-

ian a list of restaurant inspections to perform, then use the model

to prioritize within each sanitarian’s list. The scenario is essentially

a łlocalized" version of the Schenk Jr. et al. objective [31]. We retain

the trained model and its predicted scores using all the features

for the evaluation periods. Under all the previous approaches, the

inspections can be rearranged based on the predicted score without

any constraints. For this approach, we consider all the inspections

done by each sanitarian cluster separately, sort only those inspec-

tions, replace them in the Default schedule, and repeat for each

sanitarian cluster. In other words, the resulting schedule keeps the

number of inspections each sanitarian cluster conducts each day

the same as in the Default schedule. See §A.5 for an illustrated

example. We refer to this schedule as the łIn-cluster Sort Sched-

ule". Unlike the Sanitarian-blind schedule as described in ğ5.1, the

In-cluster Sort schedule does not lose any information during the

rescheduling stage and leverages the information gathered from

the extra features available.

Fig. 5 illustrates the performance of the In-Cluster Sort sched-

ule in red color. The results show the In-Cluster Sort produces a

more equal outcome and the notable differences in the detection

times for the Purple and Brown cluster sanitarians from the Krish-

naswamy and Sanitarian-blind schedules have become negligible.

Correspondingly, Fig. 4b depicts that the gap in detection times

across North and Northwest sides has been bridged as well. These

results are achieved despite the limitations of our data only allowing

us to implement this intervention at the level of sanitarian clusters

rather than at the intended level of individual sanitarians.
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6 EFFICIENCY AND FEASIBILITY

In this section we move beyond fairness alone to consider other

important aspects of selecting an approach. First we examine the

trade-off between fairness and efficiency. Then we consider how

the schedules obtained could be used given operational constraints.

This raises important questions about the feasibility of the sched-

ules, the choice of right performance metric, and the possibility

that some of the efficiency advantages of some methods may be

illusory.

6.1 Fairness and Efficiency Trade-off

We begin by defining our measures of efficiency and fairness.

Starting from our definition of Equal Opportunity, we take as

our notion of efficiency as the mean time to detect a critical vi-

olation: 𝜇 = E[𝑇 | 𝑌 = 1]. For fairness, we compute the same

metric for each protected group (i.e. sanitarian cluster or region):

𝜇𝑖 = E[𝑇 | 𝐴 = 𝑎𝑖 , 𝑌 = 1]. We then sum the absolute distance of

each of the 𝑛 groups from the overall mean and use this as our

fairness metric:

𝑑 =

𝑛−1∑︁

𝑖=0

|𝜇𝑖 − 𝜇 | . (5)

This approach is similar in spirit to quantifying the extent to which

equal opportunity is violated in a classification setting by comparing

the difference in the relevant probabilities between groups.7

In Fig. 6, we plot the efficiency on the y-axis and fairness on

the x-axis. Lower values are better for both. The Default schedule

is the most fair but the least efficient. In contrast, the Schenk Jr.

schedule is the most efficient but the least fair to the sanitarian

clusters. The Zafar and Rezaei algorithms have parameters which

have the effect of trading off between efficiency and fairness, so for

these we plot a range of parameter values (𝑐 = {0.001, 0.01, 0.1} and

𝐶 = {0.5, 0.2, 0.1, 0.05, 0.01, 0.005} respectively) and illustrate the

trade-off curve they enable with dashed lines. We use a dashed gray

line to illustrate the Pareto frontier, the set of schedules that are

not dominated in terms of both efficiency and fairness by (a convex

combination of) other schedules. The two model usage approaches

lie on or near the Pareto frontier for both sanitarian clusters and

regions, indicating they represent trade-offs between efficiency and

fairness that may be interesting in practice. Neither is clearly better

than the other.

Some of the model retraining approaches are near the Pareto

frontier for sanitarian clusters, but all are far from it for regions,

making their desirability questionable. The Zafar schedule varies

its efficiency for a relatively small change in fairness. As fairness

decreases, the Zafar schedule overlaps with the No-sanitarian clus-

ter. This is expected as with higher allowed covariance between

decision function and protected attributes the model gets more

ability to use the residual sanitarian features. The Krishnaswamy

and Rezaei schedules appear largely dominated, with the exception

of Rezaei toward the efficient but unfair part of the Pareto frontier

for sanitarian clusters.

7Results for DP are not meaningful as all schedules preserve the number of inspections
conducted each day so they have the same efficiency on average.

6.2 Operational Constraints

From ğ2, we know that the risk scores for Schenk Jr. et al. model

are weighted by the sanitarian cluster. Since the inspections are

sorted based on the risk score, the Schenk Jr. schedule assumes that

all the inspections are fungible.

Consider a scenario when all the inspections done by Purple

cluster sanitarians are scheduled first. Would it mean the other

sanitarians conduct no inspections during that time? Do the Purple

cluster sanitarians remain idle after conducting their inspections

early on? If the inspections were reassigned to a different sanitarian

cluster, would the result change? These questions point to some

of the operational constraints encountered in practice and are not

accounted for Schenk Jr. et al.’s methodology. A real scheduling

approach needs to be able to account for factors such as limited

capacity for a sanitarian to conduct inspections in a day both ś time

needed to conduct the inspections themselves and the time needed

to travel from inspection to inspection. Efficiency gains which do

not respect these constraints may be illusory.

Such considerations are another advantage of the post-

processing techniques in ğ5. The Sanitarian-blind schedule works

by placing the inspections in an order without needing an assigned

sanitarian, allowing later assignment of sanitarians in that respect

operational constraints. Likewise, the In-cluster Sort schedule en-

sures the number of inspections conducted by each cluster each

day is reasonable, although it does not account for travel times.8

7 DISCUSSION

We have revisited the application of predictive models by CDPH

to schedule restaurant inspections and performed the first analysis

from the perspective of fairness to the population served by the

restaurants. We found that the model treats inspections unequally

based on the cluster of the sanitarian who conducted the inspection

and that there are, as a result, geographic disparities in the benefits

of the model. We examined approaches to using the original model

in a fairer way and ways to train the model to achieve fairness and

found more success with the former class of approaches.

While our analysis and conclusions are limited to a single data set

from the city of Chicago and the particular algorithmic approaches

tested, we believe this setting is representative of an important

class of problems. Our communications with experts in food safety

suggest that the resource allocation problems and wide differences

in violation rates faced by Chicago are common in many jurisdic-

tions. Beyond food safety, cities conduct other types of inspections

including of structural inspections of buildings, fire safety, business

licensing, and enforcement of environmental and accessibility reg-

ulations. Thus, we conclude by discussing three broad challenges

our results point to for future work.

In contrast to much of the literature that focuses on the fair treat-

ment of individuals, things being inspected typically have many

stakeholders. In this work we have taken the simple approach of

identifying restaurants with the people who live nearby, but this is

certainly a rough approximation at best. There is a need for better

methods to understand who is affected by inspection decisions

and how. A related problem is understanding and quantifying the

8Ideally we would rearrange inspections at the level of individual sanitarians, but data
limitations only allow us to treat inspections by cluster as fungible.
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Figure 6: A scatter plot showing the trade-off between the time to detect a violation (EOpp, y-axis) and the fairness which

is computed as the average of absolute distance from the mean across all group (x-axis), as defined in Eq. 5. A lower mean

detection time and a lower distance from mean are desirable. Error bars give the standard error from 16 cross-validated runs.

effects of inspection scheduling across groups based on race or

economic status. The approach we explored (see supplementary

material §A.6,§A.7) found limited fairness effects for these group-

ings but it is unclear whether this is because the algorithms were in

fact fair or the approach does a poor job of quantifying the fairness

effects. Beyond simply measuring fairness, developing fair classi-

fication algorithms that can handle the sort of continuous-valued

protected attributes that arise when the data captures the demo-

graphic breakdown of, e.g., a neighborhood is a largely unexplored

challenge.

While the goal of inspections is to protect public health, their

effectiveness is challenging to measure directly. We have followed

Chicago’s approach of using detecting critical violations of the food

code as early as possible as a proxy. The use of proxies is common,

and has caused notable issues in other domains (for example the

use of arrests as a proxy for crime [14]). The risk of feedback loops

has been pointed out in both this and other domains [6, 22]. How-

ever, we wish to stress that sanitarians have discretion in how they

resolve issues they observe, ranging from punishment in the form

of critical violations to education and helping restaurant owners

correct issues in the course of the inspection. So a low violation rate

is not necessarily indicative of a sanitarian simply missing issues.

Prior work has found that factors such as the outcome of a previous

inspection and the position of an inspection in an inspector’s daily

schedule may significantly impact the detection of violations in an

inspection [18]. This raises difficult questions about what it means

to be fair. Our approach of reordering within each sanitarian cluster

ducks this issue to some extent, assuming what a critical violation

łmeansž to a given sanitarian is consistent across time (although

this may not eliminate all issues; see Finding 2 of [22]). However,

questions remain including how this can provide fairness guaran-

tees to individuals and whether all critical violations are equally

bad. Given the range of violation rates, it seems likely that some

restaurants with no critical violation inspected by Brown cluster

sanitarians actually deserve more scrutiny than many restaurants

with a critical violation inspected by Purple cluster sanitarians,

meaning some of the increased performance of the original model

may be illusory. 9 What is a better proxy for sanitarians who find

critical violations only rarely? Should we be not just reordering

inspections but actively shaping which sanitarian performs them

to enhance fairness?

Finally, while the models we use are trained to perform classi-

fication, their use in this context is for ranking which in turn is

used for scheduling. There is room to improve over our approach

at all stages of this pipeline. Would it be good to instead learn a

counterfactual łsanitarian-independentž violation probability, as is

done when predicting clicks in search advertising [16] and has been

explored in the literature on causal models in fairness [23]? Rather

than trying to achieve fair classification or doing the ranking in

9This can also be viewed as an issue of unfairness to restaurants [22].
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ways that address unfairness in the classification, are there better

approaches that directly leverage ideas from the literature on fair

rankings [32, 35] or the literature on fair classification in the con-

text of larger systems [10]? We have treated scheduling as a single,

static problem, but inspections occur on an ongoing basis. How

should we understand and achieve fairness in the full, dynamic set-

ting? This last question in particular points to potentially fruitful

ways to study this domain in light of the literatures on fairness in

reinforcement learning [20, 33] and overall fairness in comparison

to local or immediate fairness [9, 11, 12, 26].
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