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Abstract—People have been increasingly deploying the Inter-
net of Things (IoT) devices to monitor and control their environ-
ments. Unfortunately, extensive recent research has shown that
IoT devices are vulnerable to multiple adversarial attacks, which
analyze their network traffic to reveal a wide range of sensitive
private information about user in-home activities. Thus, smart
home users recently have a keen interest in employing virtual
private networks (VPN) to obscure their privacy information in
their IoT network traffic. Our key insight is that VPN-encrypted
IoT network traffic data is not anonymous, since this aggregate
traffic data can still be disaggregated into individual IoT device
traffic data. And this individual IoT device traffic may have an
identifiable traffic signature that already embeds detailed user
sensitive information.

To explore the severity and extent of this privacy threat,
we design a new factorial hidden Markov model (FHMM)-
based smart home network traffic disaggregator—TrafficSpy
that can accurately disaggregate VPN-encrypted whole-house
IoT network traffic data into individual IoT device network
traffic data. We evaluate TrafficSpy using VPN network traffic
data from three smart homes. We find that TrafficSpy can
disaggregate VPN traffic data into individual IoT device data
accurately. We also show that the disaggregated traffic traces
can be further attacked by smart and adaptive adversaries and
thus reveal user sensitive information. TrafficSpy represents
a serious privacy threat, but also a potentially useful tool
that provides important contextual information for smart home
monitoring and automation.

Index Terms—Disaggregation, IoT Privacy, Smart Homes,
Machine Learning, Deep Learning

I. INTRODUCTION

People are increasingly deploying the Internet of Things
(IoT) devices in smart homes to monitor and control their
environment. The total installed base of the IoT devices is
projected to amount to 5.44 billions worldwide by 2025, a
fivefold increase in 10 years [28]. Network traffic data gen-
erated by these IoT devices is recorded by Internet Service
Providers (ISPs) and their third-parties to maintain customer
services, such as generating monthly bills, personalizing data
plan, and detecting network outages. In addition, recent IoT
privacy study [17] shows that 72 out of 81 popular IoT
devices are sharing data with third-parities (e.g., Google,
Amazon and Akamai) completely unrelated to original manu-
facturer and far beyond basic necessary device configuration,
including voice speakers, smart TVs, and streaming dongles.
Unfortunately, significant recent research [8], [23], [6], [7],
[5], [26], [1] has shown that IoT device traffic data has
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Fig. 1. An example of VPN-encrypted IoT traffic traces.

significant privacy threats. In addition, it is surprisingly easy
for on-path adversaries to launch data analytics attacks to
infer user sensitive information from IoT traffic data, since
user in-home activity highly correlates with simple time-
series data statistical metrics, such as mean, variance, and
range.

Recently, smart home users have a keen interest in employ-
ing virtual private networks (VPN) to prevent their privacy
leakage [12], [18], [19]. When a VPN service is enabled on
the router or gateway, VPN will establish a virtual peer-to-
peer (P2P) encrypted “tunnel” over the Internet. This can
secure the data traveling between the smart home and IoT
manufacturers and/or remote cloud servers, which are usually
required by smart home automation. Considering the tradeoff
between speed and security, OpenVPN is the most widely
adopted protocol to hide smart home user private informa-
tion [22]. Figure 1 shows an example of OpenVPN-encrypted
IoT traffic trace from a smart home. We can observe that
different individual IoT device traffics are hidden under the
VPN-encrypted IoT traffic to protect user privacy. Thus, such
VPN-encrypted traffic data from smart homes is often not
treated as sensitive: instead, it is routinely transmitted over
Internet, shared with ISPs, IoT manufacturers, and third-
parities. To make it worse, recent news [24], [25], [20]
reported that 27 out of 117 VPN companies may share or
sell user network traffic data to third-parties.

It is generally believed that VPN-encrypted network traffic
is anonymous. However, our key insight in this work is
that VPN-encrypted IoT traffic data can be disaggregated
into individual IoT device traffic data. Since device-level
IoT network traffic data may have a unique network traffic
signature that already embeds detailed user in-home activity
information [1], [31], such disaggregated per-device traffic



data may indirectly reveal user privacy information that might
be interesting for insurance companies, marketers, or the
government. To explore the severity and extent of this privacy
threat, we design a new factorial hidden Markov model
(FHMM)-based network traffic disaggregator—TrafficSpy
that can accurately disaggregate VPN-encrypted whole-house
IoT network traffic data into individual IoT device traffic
data. Our hypothesis is that FHMM-enabled disaggregator
is able to recover the unknown individual IoT device level
network traffic rate signals, given only the observed aggregate
VPN-encrypted network traffic rate measurements. In evalu-
ating our hypothesis, we make the following contributions.
TrafficSpy Design. We present the design of network traffic
disaggregator—TrafficSpy, which can accurately disaggre-
gate VPN-encrypted whole-house IoT network traffic into
individual IoT device network traffic. In essence, TrafficSpy
employs network traffic data preprocessing, intelligent device
traffic pattern learning, and FHMM-based network traffic
disaggregation to accurately disaggregate whole-house aggre-
gate traffic traces. We also design optimization techniques to
further improve TrafficSpy’s disaggregation performance.
Implementation and Evaluation. We implement TrafficSpy
both simulator and prototype in python using widely-used
open-source frameworks. We evaluate TrafficSpy using 105
days VPN network traffic rate traces from 3 different homes.
We find that TrafficSpy can disaggregate VPN traffic traces
into individual IoT device trace accurately. We also show that
the disaggregated traffic traces can be attacked by Machine
Learning (ML)- and Deep Learning (DL)-based smart and
adaptive attacks, and thus reveal user sensitive information.
Releasing Anonymized Datasets and Code. TrafficSpy
represents a serious privacy threat, but also a potentially
useful tool for smart home monitoring and automation. Our
approaches to disaggregate VPN-encrypted smart home net-
work traces and adversarial attack models are quite general,
and can be applied to address similar problems in other
research domains, such as smart grid and medical e-health
system. We release source code and datasets to broad IoT
research communities on our website [29].

II. BACKGROUND AND RELATED WORK
A. Problem Statement

The aim of network traffic disaggregation in a smart
home is to provide accurate individual IoT device traffic
consumption estimates based on the VPN-encrypted whole-
house IoT network traffic consumption. In essence, given a
specific smart home, we assume there are N IoT devices, and
for each IoT device, the traffic rate signal is represented as
X; = (X;1, X2, X;3, ..., X;t)(1 <t < n) where n denotes
the duration of recorded traffic rate trace and X;t € R repre-
sents the network traffic rate measured in KB/s or MB/s by
on-path network observers, such as Internet Service Providers
(ISPs), VPN providers, and/or third-parties. Then, we can
describe the main network traffic rate as the summation
of the individual IoT device traffic rate signals with the
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Fig. 2. Overview of our privacy threat model.

following form: Y; = Zfil X;t + €; where €; is an error
term which is mainly comprised of network traffic noises
generated by VPN service, router or gateway maintenance,
and IoT devices’ heartbeat background network traffic. This
signal—Y; is assumed to be the aggregation of network traffic
consumed by the component IoT devices in a building. Thus,
our goal of the network traffic disaggregation problem is to
recover the unknown network traffic rate signals—X; given
only the observed aggregate VPN-encrypted network traffic
rate measurements—Y .

B. Privacy Threat Model

TrafficSpy assumes either a software or hardware VPN
router is deployed in a smart home. A VPN wraps all smart
home traffic from IoT devices in an additional transport layer.
By doing so, the VPN can aggregate all the traffic into a
single traffic flow with the source and destination addresses
of the VPN endpoints. As shown in Figure 2, we are broadly
concerned with the capabilities of ISPs, IoT manufactures,
on-path network observers, VPN service providers, and third-
parties to infer user in-home activities from VPN-encrypted
smart home network traffic. The network traffic rate meta-
data, including inbound/outbound traffic rates, network pro-
tocols, source, and destination IPs, package sizes and etc., are
accessible to these entities. The potential adversaries may
be interested in inferring user activities from smart home
network traffic to gain profit, while users usually do not want
to share such privacy-sensitive information with others. We
assume adversaries can use any data analytics techniques to
infer certain types of information from the observed patterns
in recorded traffic traces (but they cannot manipulate the
traffic). This is a typical assumption in existing privacy
leakage analysis works [2], [9], [30].

In particular, we are concerned with 3 types of privacy
attacks: 1) Learning occupancy from the data. This includes
whether a home is occupied and when; ii) Learning user
in-home activities from the traffic data. User activities may
include when users come and go, when they perform their
daily activities, such as going to bed, waking up, watching
TV, listening to music, playing online games, as well as
more complex questions, such as whether a household has
a baby, and whether they go on vacation on weekends; iii)
Learning network traffic pattern information from the data.
This includes whether a particular IoT device is present in
a home, what model of an IoT device is present, and how
much traffic the home consumes on it monthly.

Attack Scenario #1: An external adversary from ISPs, IoT
device manufacturers or third-parties is actively monitoring
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Fig. 3. Comparison of 7 disaggregation approaches based on (a) MAPE, (b) MCC, and (c) Training Time using 20.5 days traffic rate (kB/min) trace.

the VPN aggregate traffic traces for a target home and then
uses data analytics approaches to learn the indirect user
privacy information that might be interesting for insurance
companies, marketers, or government.

Attack Scenario #2: To infer the type of IoT devices
and user activities at a certain home, an external on-path
adversary intends to acquire the real-time VPN aggregate
IoT network traffic traces. The attacker can leverage ML/DL-
based disaggregation models to separate the VPN aggregate
traffic traces into per-device traffic traces. Then, the external
attacker may further identify the IoT devices using per-device
traffic traces and launch cyberattacks on them.

C. Related Work

There is not significant research in IoT VPN traffic dis-
aggregation area. The most relevant ones are the netmeter
energy data disaggregation work in Non-intrusive Load Mon-
itoring (NILM) community. We outlined and implemented
a wide range of the most recent design alternatives [16],
[31, [11], [14], [4], [32], [33] that could be adapted to
disaggregate VPN traces in smart homes. Combinatorial
Optimization (CO) [3] assumes each device has a linear
model such that we can identify which device is “on” and
“off” at each time—t. Thus, the aggregated signal at time—t
can be described as the sum of all the individual load signal of
the devices that are “on” at that time. MEAN algorithm [11]
only calculates and keeps the mean state values for each
device. During the modeling training process, the mean
values are updated every time the same device is “on”.
Denoising Autoencoder (DAE) is a special kind of deep
neural networks that can extract or reconstruct a particular
component from noisy input. Multiple trained models are
required to disaggregate the aggregate readings since DAE
can only denoise on a per-device basis. Recurrent Neural
Network (RNN) [14] receives a sequence of main readings
and outputs a single value of power consumption of the target
appliance. The RNN approach might have the vanishing
gradient problem in modeling training process. Sequence-
to-Sequence (Seq2seq) model [32], [14] learns a regres-
sion mapping from the main sequence to the corresponding
target device sequence for a single-channel blind source
separation (BSS) with the same timestamps. The Seq2seq is
an essentially posterior density estimator. Sliding Window
Gated Recurrent Units Network (WindowGRU) [16] is
an improvement to the RNN approach that uses long short-

term memory (LSTM) neurons and suffers from their high
computational cost. WindowGRU replaces LSTM neurons
with light-weight Gated Recurrent Unites (GRU). Theneu-
ral networks of WindowGRU will analyze the time slice
[t,t — w] to predict the per-device consumption at time—
t where w is the sliding window size. Factorial Hidden
Markov Model (FHMM) [33] is a generalization of the
multi-HMMs in which the hidden state is “weighted” into
multi-state variables, and thus can model the whole-house
as a factorial HMMs model. The operational states of each
device are learned via Markow chain, and the dependence
between different time slots are also learned.

Observation and Summary. Figure 3 (a) shows that Win-
dowGRU and FHMM yield the lowest average Mean Abso-
lute Percentage Error (MAPE) values as of 3.054 and 2.170,
respectively. They achieve the best disaggregation accuracy.
Meanwhile, Figure 3 (b) shows that FHMM approach yields
the highest average Matthews Correlation Coefficient (MCC)
value of 0.483, which indicating that FHMM approach
achieves the best accuracy when distinguishing one individual
IoT device from other IoT devices in the same household.
Unsurprisingly, MEAN approach reports MAPE and MCC
as of 8.466 and O, respectively. This is mainly due to the
fact that MEAN algorithm tends to work in “always on”
mode to predict the per-device network traffic. In addition,
Figure 3 (c) reports that DAE, Seq2seq, and WindowGRU all
have very long training overhead. This is mainly due to their
architecture design in which multi-layer neural networks are
typically employed to learn the transition features. MEAN
and CO yield the lowest training overhead, since they mainly
depend on empirical threshold analytics instead. To achieve
the tradeoff among MAPE, MCC and training overhead,
FHMM approach is the most suited technique to address our
IoT traffic disaggregation problem. These valuable insights
will guide the development of our proposed technique—
TrafficSpy.

III. TRAFFICSPY DESIGN
A. System Design

Figure 4 shows the system structure of our disaggrega-
tion system—TrafficSpy that has multiple steps, including
network traffic converting, statistics, preprocessing, training,
model building, disaggregation and adaptive evaluation. In
essence, TrafficSpy will first convert all the network traffic
rate traces into the common timeseries dataset format inspired
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Fig. 4. The system pipeline of TrafficSpy.

by the REDD format [15] which is widely used in many
NILM-based disaggregation problems. Next, TrafficSpy will
perform statistical analytics on the converted common data
file to ensure its correctness and effectiveness. Then, Traffic-
Spy will preprocess the data into NumPy arrays and split the
whole dataset into training, testing and validation datasets.
After that, TrafficSpy will build leverage the Factorial Hidden
Markov Model (FHMM) model to learn the relationships
among different IoT device network traffic consumption
signals. Eventually, TrafficSpy will apply the FHMM-based
approach to disaggregate VPN whole-house traffic traces into
individual device traffic traces. TrafficSpy also integrates with
smart and adaptive attack models that can directly evaluate
user privacy leakage degree in the disaggregated per-device
traffic traces.

B. Network Traffic Data Preprocessing

Network Traffic Converting. Given a new target home, the
inputs for TrafficSpy are the aggregate whole-house network
traffic rate traces from the new house, and the individual
device traffic rate traces that TrafficSpy learns from other
smart homes or public online repositories. The aggregate
network traffic rate traces are the traffic volume data that
might be observed by on-path adversaries. TrafficSpy lever-
ages the per-device traffic rate traces as the groundtruth
data to learn or calibrate disaggregation models. TrafficSpy
employs network traffic converter interface (NTCC) to collect
and convert these per-device historical traffic rate traces both
“online” and “offline”. In particular, NTCC also provides
users with the public APIs to collect per-device traffic rates.
Network Traffic Sampling. In addition to the above-
mentioned traffic data converting, TrafficSpy also provide au-
tomatic up-sampling and down-sampling functions in NTCC
to support different granularity level aggregated whole house
traffic data disaggregation. This automatic sampling process
of TrafficSpy enables external on-path adversaries to launch
multiple ML-based or DL-based user privacy attacks at
different granularity traffic rate traces.

C. Intelligent Device Traffic Signature Learning

Next, as shown in Figure 5 (a), TrafficSpy will learn
individual IoT device traffic rate signatures from its historical
traffic rate signatures, which are used in its later to train
disaggregation algorithms. Different IoT devices typically
have different network traffic signatures. In particular, the
non-interactive background traffic patterns in which there are

no occupant engaged might be similar from house to house
for a specific IoT device. Thus, it is possible to observe the
similar background traffic for IoT devices across different
smart homes. However, different smart home occupants may
operate their interactive IoT devices in different ways. That
says, even for the same [oT device, it would be challenging
for us to use some homes’ interactive traffic loads and
patterns as the proxy to “predict” the same IoT device traffic
loads and patterns at new homes. To mitigate this issue,
we propose to leverage K-Means clustering algorithm-based
approach to learn the interactive load patterns. As shown in
Figure 5 (b) ~ (d), our analytics using K-Means clustering
algorithm where K = 3 has shown that IoT devices typically
have identifiable three traffic consumption patterns, including
low or background (in purple), medium (in yellow), and
high (in cyan) traffic mode. In particular, the background
traffic volume for IoT devices typically should be the same
in different smart homes. Eventually, we apply the K-Means
clustering algorithm where K = 1 on all IoT devices to
infer the threshold—T}4ckgrouna that we can leverage to
model the background traffic, and also the medium/high
threshold—7,.4i¢ that enables TrafficSpy to more efficiently
disaggregate whole-house aggregate traffic.

Note that, TrafficSpy’s approach to estimating the traffic
flows of IoT devices in a smart home is orthogonal to the
other aspects of the technique and is thus “pluggable,” such
that we could use other machine learning approaches to
estimate background traffic flows.

D. Building FHMM-based Traffic Disaggregation Model

As we studied in Section II, our insight is that considering
the MAPE, MCC and training overhead benchmarking met-
rics, FHMM approach is the most well suited technique to
address our smart home VPN traffic disaggregation problem.
In this section, we will explain how we leverage FHMM
approach to build TrafficSpy’s disaggregation process.
Learning Process. The Hidden Markov Model (HMM) [10]
is a widely used algorithm to learn probalilitstic results from
time series data. Hidden Markov Model (HMM) assumes a
sequence of observations Y; = Y7, Y5, Y3, ..., Y1 can be mod-
eled using a specific probilistic relationships to a sequence
of hidden IoT device status S; = (S, S2,Ss, ..., S7). This
HMM-based structure will form a Markov chain to convey
the past per-device network traffic consumption information.
The formal relationships can be described as the following
joint probability factors:
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Thus, in the HMM model, S; is independent of

(51,52, 853, ..., S1—2) given S;_;. While, FHMM [33] is a
generalization of the multi-HMMs in which the hidden state
is “weighted” into multi-state variables, and thus can model
the whole-house as a factorial HMMs model. In particular,
the operational status of each device or appliance are learned
via Markow chain at each time—t, and the dependence
between different time slots are also learned in the process.
These make FHMM well suited for our distributed manner
problem—whole-house network traffic disaggregation.

Figure 6 shows the structure of TrafficSpy’s FHMM ap-
proach. The FHMM-based approach can be described as
follows,

N
P(S; | S-1) = [ P(st™ | 8™ @)
n=1

where P(™) denotes the different transitions matrices, and
H(") represents the initial probabilities. Then, we can have:

T

whose mean is a linear function of the state variables defined
as follows,

P(Y; | S) = €% (2m) % eapl— = (V=) -C~ - (YVimpuo)]
“4)
where p; = 22;1 wn. Sg"’). Here, W (") represents a Dz N
matrix in which columns are indicating the contributions
towards mean values for each St(n) setting. C' is the DaxD
covariance matrix, and ' represents the operation of matrix
transpose, and |C| denotes the determinant operator of C.
Optimization Process. However, the approach we build up
so far is intractable for large value of N which is the number
of IoT devices in a smart home. That says it is often expen-
sive in both training time and memory capacity to perform
the exact inference solutions when N > 30. To mitigate
this issue, we apply the approximate FHMM technology by
relaxing the hidden state values and transforming the exact
FHMM inference problem into a convex problem [33].

1
2

E. Adaptive User Privacy Inference

To further explore the severity and extent of the privacy
threat, TrafficSpy also provides a full stack of ML-based and
DL-based adversarial inference models.

Feature Selection. To identify principle features of IoT traf-
fic rate data, we empirically examine the statistical features
based on timeseries motifs in each IoT device traffic traces,
including duration, mean, maximum and minimum values,
standard deviations, range, Skewness, variation coefficient,
kurtosis, area under the curve (AUC), etc. We leverage
Principal Component Analysis (PCA) to analyze the principle
features from IoT network traffic rate traces.

Machine Learning or Deep Learning Classifier Selection.
We then investigate the most widely used ML classifiers in
prior IoT traffic research work to build ML-based adver-
sarial attack models, including Logistic Regression, Support
Vector Machines (SVMs), and Random Forest. In particular,
we also benchmark different kernels for SVMs, including
linear, linear passive-aggressive, linear ridge, polynomial
with 1~10 degrees, and radial basis function (RBF). We

N
P(S,,Y;) = P(Sy)-P(Y; | Sl)'H P, | St)'H P(Sg") | St(ial)so design a convolutional neural networks (CNNs)-based
n=1

t=2
3)
We leverage the Gaussian model to capture the continuous
IoT device traffic rate observations Y; at different time ¢,

c]ieep learning approach to infere user in-home activities.
The CNNs architecture of TrafficSpy is comprised of input,
convolutional layers (ReLU), max pooling, fully-connected
layers and output. Two fully-connected layers with ReL.U



and another fully-connected layer (without ReLLU) are added
to further process the outputs.

Adaptive Adversarial Attacks on Disaggregated Traffics.
In addition, TrafficSpy also enables a set of deeper adaptive
adversarial attacks on the disaggregated individual IoT traffic
traces. Our hypothesis is that online attackers may gain
their knowledge-level about the target house and thus can
integrate this information with their attack models to better
infer use in-home private activity information. To do so, we
fine-tune or calibrate the model parameter space using the
knowledge-level information when building the ML-based
or DL-based attack models. This will examine TrafficSpy’s
ability to explore the user privacy threat of the disaggregated
individual traffic rate traces.

FE. Online Optimizations

Individual Traffic Rate Adjustment. TrafficSpy also intro-
duces optimization techniques to further improve the disag-
gregation performance. TrafficSpy also dynamically adjusts
its background traffic threshold and rate of traffic spikes over
time to match the expected rate each period. TrafficSpy only
ensures these time periods look the same with respect to
each other, regardless of whether a home is occupied or not.
In addition, TrafficSpy also indexes its traffic rate signatures
database based on each IoT device’s traffic rate signature’s
real time-of-use. At any time, TrafficSpy tries to select from
the past traffic rate signatures that occurred near that time.

IV. IMPLEMENTATION

We implement TrafficSpy in python using widely avail-
able open-source frameworks, including Pandas, Scikit-learn
and PyCUDA. The simulator takes a home’s VPN aggregate
whole-house network traffic race traces as input and applies
different disaggregation techniques outlined in Section III.
The outputs of TrafficSpy are the separated individual IoT
device traffic rate traces. To implement the 7 different disag-
gregation algorithms discussed in Section II and Section V,
we leverage the open source NILM toolkit (NILMK) V0.2 to
build those disaggregation approaches. As shown in Figure 7,
we also deploy a prototype TrafficSpy using Raspberry Pi
4 Model B-based hardware (BCM2711) in a “mock” smart
home on our campus to demonstrate TrafficSpy’s ability to
disaggregate smart home network traffic rate in real-time.

Note that, we use Raspberry Pi 4 here to build a prototype
to demonstrate and validate TrafficSpy’s performance. On-
path adversaries can deploy TrafficSpy on their servers or
gateways to disaggregate VPN traces and infer user private
information. We do not assume or require external adver-
saries to have Raspberry Pi installed in their end. We use
the Scikit-learn machine learning library in python to build
our machine learning attack approaches, including Logistic
Regression, Support Vector Machines (SVMs), and Random
Forest. For CNNs-based attack approaches, we implement
based on the framework from VGGnet. For user in-home
activities, we implement LSTM-based user in-home activities
modeling using Keras model library.
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Fig. 7. The overview of our PrivacyGuard prototype.

V. EXPERIMENTAL EVALUATION
A. Datasets

Dataset 1: UNSW. We downloaded the publicly-available
IoT traffic rate traces from UNSW Sydney [27] that includes
second level network traffic traces of 22 IoT devices for 20.5
days. To evaluate our TrafficSpy approaches, we process the
IoT traffic metadata traces to IoT traffic rate data for disag-
gregation and also label all the user activities for adaptive
adversarial evaluation.

Dataset 2: Real Home VPN Dataset. We deploy [oT devices
in a volunteer’s house and set up a router-based hardware
VPN environment. The home is a private townhouse apart-
ment with 3 occupants operating 22 IoT devices daily. We
configure CyberGhost VPN service using OpenVPN protocol
on the router—Netgear R6700-V3 (DD-WRT firmware), and
VPN servers are dynamically chosen to get better speed
for torrent downloading. All the 22 IoT devices are hidden
behind this router that is hosting the VPN client service to
encrypt the communication channel. We have collected 105
days of VPN aggregate whole-house network traffic data.
Table I shows the IoT device samples of this dataset.
Dataset 3: User Activity Groundtruth Dataset. To label
user activity in public datasets rather than our own, we
develop a script to search motifs in aggregated traffic spikes.
We cluster and process groundtruth user activities data com-
prehensively. For our own datasets, we have been logging
user activities in our smart homes. We anonymize groundtruth
datasets along with the above-mentioned datasets.

Ethical Consideration for Data Collection. Data collection
participants were one-to-one interviewed and provided user
privacy consent and agreement. Before sharing datasets, we
remove user identical information and sampled the datasets.

B. Experimental Setup

We implement a general version of Combinatorial Opti-
mization (CO), MEAN Approach, Denoising Autoencoder
(DAE), Recurrent Neural Network (RNN), Sequence-to-
Sequence (Seq2seq), and Sliding Window Gated Recurrent
Units Network (WindowGRU) using prior work proposed
in [3], [11], [1], [9], [13], [14], [32], [16]. We then imple-
ment TrafficSpy, including network traffic data preprocessing,
intelligent device traffic pattern learning, and FHMM-based
traffic disaggregation to accurately disaggregate whole-house
aggregate traffic traces into individual IoT device traffic rates.
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MAC Address
14:0A:C5:8A:73:76
24:F5:A2:FF:91:1D
20:DF:B9:5C:72:62
28:6D:97:77:5F:D5

EC:B5:FA:04:AE:96
00:0E:F3:45:73:31
D4:B7:61:5F:B4:6D

TABLE I
LiIST OF IOT DEVICE SAMPLES IN DATASET 2.

IP Address
192.168.1.116
192.168.1.110
192.168.1.128
192.168.1.143
192.168.1.123
192.168.1.124
192.168.1.102

Device
Amazon Echo
Belkin Switch
Google Home

Insteon Hub
Philips Hue
SmartHome Hub
XiaoMi Camera

C. Evaluating Metrics

Mean Absolute Percentage Error (MAPE). To quantify
the disaggregation accuracy of TrafficSpy, we compute the
MAPE, between the ground truth individual IoT device traffic
consumption and the TrafficSpy infers over all time intervals
t. A lower MAPE indicates higher accuracy with a 0% MAPE
being perfectly aggregated traffic disaggregation.

100 o= S; — P
MAPE = — R 5
n;I 5| (5)

where n describes the duration of traffic disaggregation, Sy
denotes the per-device groundtruth traffic consumption, and
P, indicates the predicted per-device traffic rate at time ¢.
Matthews Correlation Coefficient (MCC). To quantify the
disaggregation accuracy, we use the MCC [21], a standard
measure of a classifier’s performance for imbalanced dataset,
where values are in the range —1.0 to 1.0, with 1.0 being
perfect individual traffic disaggregation, 0.0 being random
individual traffic disaggregation, and —1.0 indicating indi-
vidual traffic disaggregation is always wrong.

D. Experimental Results

1) Quantifying Disaggregation Accuracy of Different Ap-
proaches: We first quantify disaggregation accuracy when
applying 7 disaggregation approaches on both Dataset #1
and Dataset #2, including CO, MEAN, DAE, RNN, Seq2seq,
WindowGRU, and TrafficSpy. Figure 8 shows the quantitative
comparison results using MAPE (a), MCC (b), and training
overhead (c). Unsurprisingly, CO and MEAN approaches
report the worst MAPE and MCC results and the best training
overhead. This is mainly due to fact that CO assumes each
device has binary “on” and “off” status and MEAN assumes
all the devices are “on” and tries to use their mean values to
separate them. In addition, both CO and MEAN leverage
thresholds to disaggregate the VPN aggregate traffic, and

thus do not require significant training overhead. We observe
that TrafficSpy and neural networks-based approaches (e.g.,
RNN, DAE) are reporting reasonably accurate disaggregation
results. In particular, TrafficSpy (FHMM) yields the best
MCC and the worst MAPE. Figure 8 (c) reports training
overhead across 7 approaches. We find that excluding CO
and MEAN, TrafficSpy reports the shortest training time.

Results: Comparing with the other 6 recent disaggregation
approaches, TrafficSpy is the best performing disaggregation
approach across two different datasets. TrafficSpy vyields
average MAPE as 0.323, which is ~2 times better than the
baseline approach—MEAN and ~3 times better than CO.

2) Quantifying Disaggregation Accuracy When Varying

Granularity of Traffic Traces: We next evaluate traffic dis-
aggregation effect on different trace rate traces that have
different level of granularities, such as 1 minute, 3 minutes, 5
minutes, 10 minutes, 30 minutes and 60 minutes. As shown
in Figure 9 (a), as expected, higher granularity results in
lower MAPE results. This is mainly due to the facts that
1) TrafficSpy performs consistently well on different traffic
rate traces at different granularities, 2) fewer fluctuations
and spikes are observed in higher resolution traffic rate
traces. When traffic rate traces are becoming coarser, error
percentages are declining.
Results: TrafficSpy’s accuracy is a linear function of the
granularities of 1oT traffic rate traces. TrafficSpy yields the
MAPE of 0.15 when disaggregating on 10 minutes level
network traffic rate traces, which is ~4 times less than as
the baseline MEAN approach.

3) Quantifying TrafficSpy’s Scalable Performance: Next,
we examine the performance effect on TrafficSpy when
disaggregating network traffic traces having different amount
of IoT devices. In doing so, we are evaluating the scalability
performance of TrafficSpy. Figure 9 (b) shows that the larger
amount of the IoT devices in a smart home has resulted in
a better overall disaggregation performance. We observe that
TrafficSpy achieves lower MAPEs when the number of IoT
devices increases from 3 to 40.

Results: Larger smart home size has resulted in lower
MAPESs of TrafficSpy. With the growth of the number of the
IoT devices, TrafficSpy achieves better overall performance.

4) Quantifying TrafficSpy’s Performance When Adding
New Device in Smart Homes: Next, we examine the perfor-
mance effect on TrafficSpy when disaggregating the network
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Fig. 9. The disaggregation accuracy comparison on different traffic granularities (a), different amount of IoT devices (b), and adding new IoT device (c).

traffic traces that have new IoT devices installed. In doing
so, we are evaluating the robust performance of TrafficSpy.
As shown in Figure 9 (c), TrafficSpy reports similar or
slightly lower disaggregation accuracy in MAPE (~6.62%)
when smart home installs new IoT device that TrafficSpy
knows its traffic signatures. We also find that TrafficSpy
yields similar or slight worse disaggregation accuracy in
MAPE (~6.61%) when smart home owner installs new IoT
device that TrafficSpy does not know its traffic signatures.
Note that, constant repeated traffic patterns in a unknown
IoT device trace can be linked to the new IoT device when
TrafficSpy learns its traffic signature from other smart homes
or public IoT traffic repositories. Results: TrafficSpy reports
6.62% changes in MAPEs when smart home users installing
a new known and unknown IoT device. TrafficSpy is robust
to new IoT device becomes online.

5) Attacking User Occupancy: We then examine the effec-
tiveness of user occupancy detection from the individual IoT
device traces that are disaggregated by different approaches.
Figure 10 (a) shows the comparison results of attacking on
per-device traces. We observe that TrafficSpy (FHMM) yields
the best MCC as of 0.636 and is the best performing approach
to detect user occupancy status.

Results: Comparing with other disaggregation approaches,
TrafficSpy achieves the best MCC value as of 0.636 to attack
user occupancy status in a target home.

6) Attacking User In-home Activities: We next benchmark

the effectiveness of inferring user activities from individual
IoT device traces that are disaggregated by 7 different dis-
aggregation approaches. We leverage ML/DL-based attack
models that we proposed in Section III. Unsurprisingly, as
shown in Figure 10 (b), we observe that TrafficSpy (FHMM)
yields the best MCCs as of 0.523, 0.456, and 0.581 across
three different user in-home activities attacking. TrafficSpy
is constantly the top-1 disaggregator.
Results: Comparing with other 6 disaggregation approaches,
TrafficSpy constantly achieves the best MCC values when
attacking user in-home activities. TrafficSpy exposes a serious
user privacy threat.

7) Inferring User In-home Activities by Adaptive Adver-
sary: We next examine the effect of different knowledge-
level adaptive adversary on privacy inference from Traffic-
Spy’s separated traffic. We define attacker knowledge-level as
the percentages of traffic rate testing dataset that an external
adversary can leverage to calibrate its attack models to infer
user in-home activity. 0% indicates that the external adversary

has no knowledge of the target home testing dataset and
no cross-validation is performed to train the attack models.
While, 100% means the external adversary has observed all
the groundtruth traffic patterns for each user activity so that
the attack models are “perfectly” trained. Figure 10 (c) shows
the ability of TrafficSpy to infer user private information
when adaptive adversary having more knowledge about our
attack model. To report MCCs in Figure 10 (c), we apply
KNN-based, SVM-based, Decision Tree (DT)-based attack
models on per-device traffic traces generated by TrafficSpy to
infer 4 user activities and report the mean value of the MCCs,
respectively. We find that TrafficSpy’s MCC increases from
0.47 to 0.91. This is because inferring user in-home activity
is surprisingly easy as discussed in Section II.

Results: TrafficSpy’s MCC is increasing from 0.47 to 0.91
when varying adversary knowledge level from 0% to 100%.
Thus, TrafficSpy exposes a serious user privacy threat.

E. Designing User Privacy-preserving Approaches

Our experimental evaluation results have shown that on-
path adversaries can infer and fingerprint users’ sensitive
privacy information such as occupancy and user in-home
activities by only analyzing VPN-encrypted IoT network
traffic traces. We are developing a new low-cost, open-source
and traffic reshaping based user privacy defense system to
significantly reduce the private information leaked through
IoT device VPN traces, while still permitting sophisticated
control that is necessary in smart home management. In
essence, we plan to use intelligent traffic signature learn-
ing, long short-term memory (LSTM)-based artificial traffic
signature injection, and partial traffic reshaping to obfuscate
user in-home privacy. We also plan to develop optimization
techniques to further reduce traffic reshaping overhead.

VI. CONCLUSION AND FUTURE WORK

We design a new open-source factorial hidden Markov
model (FHMM)-based network traffic disaggregator—
TrafficSpy that can accurately disaggregate VPN-encrypted
whole-house IoT traffic traces into individual IoT device
traffic traces. We evaluate TrafficSpy by using 105 days IoT
network traffic traces and deploying a hardware prototype.
We find that TrafficSpy can accurately disaggregate VPN
traffic traces. Our evaluation also show that we can accu-
rately further detect 4 different kind of user in-home private
information. Thus, TrafficSpy represents a serious privacy
threat. We plan to deploy TrafficSpy in more smart homes
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which more commercially-available IoT devices to further
benchmark and improve its online performance.
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