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AbstractÐPeople have been increasingly deploying the Inter-
net of Things (IoT) devices to monitor and control their environ-
ments. Unfortunately, extensive recent research has shown that
IoT devices are vulnerable to multiple adversarial attacks, which
analyze their network traffic to reveal a wide range of sensitive
private information about user in-home activities. Thus, smart
home users recently have a keen interest in employing virtual
private networks (VPN) to obscure their privacy information in
their IoT network traffic. Our key insight is that VPN-encrypted
IoT network traffic data is not anonymous, since this aggregate
traffic data can still be disaggregated into individual IoT device
traffic data. And this individual IoT device traffic may have an
identifiable traffic signature that already embeds detailed user
sensitive information.

To explore the severity and extent of this privacy threat,
we design a new factorial hidden Markov model (FHMM)-
based smart home network traffic disaggregatorÐTrafficSpy
that can accurately disaggregate VPN-encrypted whole-house
IoT network traffic data into individual IoT device network
traffic data. We evaluate TrafficSpy using VPN network traffic
data from three smart homes. We find that TrafficSpy can
disaggregate VPN traffic data into individual IoT device data
accurately. We also show that the disaggregated traffic traces
can be further attacked by smart and adaptive adversaries and
thus reveal user sensitive information. TrafficSpy represents
a serious privacy threat, but also a potentially useful tool
that provides important contextual information for smart home
monitoring and automation.

Index TermsÐDisaggregation, IoT Privacy, Smart Homes,
Machine Learning, Deep Learning

I. INTRODUCTION

People are increasingly deploying the Internet of Things

(IoT) devices in smart homes to monitor and control their

environment. The total installed base of the IoT devices is

projected to amount to 5.44 billions worldwide by 2025, a

fivefold increase in 10 years [28]. Network traffic data gen-

erated by these IoT devices is recorded by Internet Service

Providers (ISPs) and their third-parties to maintain customer

services, such as generating monthly bills, personalizing data

plan, and detecting network outages. In addition, recent IoT

privacy study [17] shows that 72 out of 81 popular IoT

devices are sharing data with third-parities (e.g., Google,

Amazon and Akamai) completely unrelated to original manu-

facturer and far beyond basic necessary device configuration,

including voice speakers, smart TVs, and streaming dongles.

Unfortunately, significant recent research [8], [23], [6], [7],

[5], [26], [1] has shown that IoT device traffic data has
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Fig. 1. An example of VPN-encrypted IoT traffic traces.

significant privacy threats. In addition, it is surprisingly easy

for on-path adversaries to launch data analytics attacks to

infer user sensitive information from IoT traffic data, since

user in-home activity highly correlates with simple time-

series data statistical metrics, such as mean, variance, and

range.

Recently, smart home users have a keen interest in employ-

ing virtual private networks (VPN) to prevent their privacy

leakage [12], [18], [19]. When a VPN service is enabled on

the router or gateway, VPN will establish a virtual peer-to-

peer (P2P) encrypted ªtunnelº over the Internet. This can

secure the data traveling between the smart home and IoT

manufacturers and/or remote cloud servers, which are usually

required by smart home automation. Considering the tradeoff

between speed and security, OpenVPN is the most widely

adopted protocol to hide smart home user private informa-

tion [22]. Figure 1 shows an example of OpenVPN-encrypted

IoT traffic trace from a smart home. We can observe that

different individual IoT device traffics are hidden under the

VPN-encrypted IoT traffic to protect user privacy. Thus, such

VPN-encrypted traffic data from smart homes is often not

treated as sensitive: instead, it is routinely transmitted over

Internet, shared with ISPs, IoT manufacturers, and third-

parities. To make it worse, recent news [24], [25], [20]

reported that 27 out of 117 VPN companies may share or

sell user network traffic data to third-parties.

It is generally believed that VPN-encrypted network traffic

is anonymous. However, our key insight in this work is

that VPN-encrypted IoT traffic data can be disaggregated

into individual IoT device traffic data. Since device-level

IoT network traffic data may have a unique network traffic

signature that already embeds detailed user in-home activity

information [1], [31], such disaggregated per-device traffic



data may indirectly reveal user privacy information that might

be interesting for insurance companies, marketers, or the

government. To explore the severity and extent of this privacy

threat, we design a new factorial hidden Markov model

(FHMM)-based network traffic disaggregatorÐTrafficSpy

that can accurately disaggregate VPN-encrypted whole-house

IoT network traffic data into individual IoT device traffic

data. Our hypothesis is that FHMM-enabled disaggregator

is able to recover the unknown individual IoT device level

network traffic rate signals, given only the observed aggregate

VPN-encrypted network traffic rate measurements. In evalu-

ating our hypothesis, we make the following contributions.

TrafficSpy Design. We present the design of network traffic

disaggregatorÐTrafficSpy, which can accurately disaggre-

gate VPN-encrypted whole-house IoT network traffic into

individual IoT device network traffic. In essence, TrafficSpy

employs network traffic data preprocessing, intelligent device

traffic pattern learning, and FHMM-based network traffic

disaggregation to accurately disaggregate whole-house aggre-

gate traffic traces. We also design optimization techniques to

further improve TrafficSpy’s disaggregation performance.

Implementation and Evaluation. We implement TrafficSpy

both simulator and prototype in python using widely-used

open-source frameworks. We evaluate TrafficSpy using 105

days VPN network traffic rate traces from 3 different homes.

We find that TrafficSpy can disaggregate VPN traffic traces

into individual IoT device trace accurately. We also show that

the disaggregated traffic traces can be attacked by Machine

Learning (ML)- and Deep Learning (DL)-based smart and

adaptive attacks, and thus reveal user sensitive information.

Releasing Anonymized Datasets and Code. TrafficSpy

represents a serious privacy threat, but also a potentially

useful tool for smart home monitoring and automation. Our

approaches to disaggregate VPN-encrypted smart home net-

work traces and adversarial attack models are quite general,

and can be applied to address similar problems in other

research domains, such as smart grid and medical e-health

system. We release source code and datasets to broad IoT

research communities on our website [29].

II. BACKGROUND AND RELATED WORK

A. Problem Statement

The aim of network traffic disaggregation in a smart

home is to provide accurate individual IoT device traffic

consumption estimates based on the VPN-encrypted whole-

house IoT network traffic consumption. In essence, given a

specific smart home, we assume there are N IoT devices, and

for each IoT device, the traffic rate signal is represented as

Xi = (Xi1, Xi2, Xi3, ..., Xit)(1 ≤ t ≤ n) where n denotes

the duration of recorded traffic rate trace and Xit ∈ R repre-

sents the network traffic rate measured in KB/s or MB/s by

on-path network observers, such as Internet Service Providers

(ISPs), VPN providers, and/or third-parties. Then, we can

describe the main network traffic rate as the summation

of the individual IoT device traffic rate signals with the

Fig. 2. Overview of our privacy threat model.

following form: Yt =
∑N

i=1
Xit + ϵt where ϵt is an error

term which is mainly comprised of network traffic noises

generated by VPN service, router or gateway maintenance,

and IoT devices’ heartbeat background network traffic. This

signalÐYt is assumed to be the aggregation of network traffic

consumed by the component IoT devices in a building. Thus,

our goal of the network traffic disaggregation problem is to

recover the unknown network traffic rate signalsÐXi given

only the observed aggregate VPN-encrypted network traffic

rate measurementsÐY .

B. Privacy Threat Model

TrafficSpy assumes either a software or hardware VPN

router is deployed in a smart home. A VPN wraps all smart

home traffic from IoT devices in an additional transport layer.

By doing so, the VPN can aggregate all the traffic into a

single traffic flow with the source and destination addresses

of the VPN endpoints. As shown in Figure 2, we are broadly

concerned with the capabilities of ISPs, IoT manufactures,

on-path network observers, VPN service providers, and third-

parties to infer user in-home activities from VPN-encrypted

smart home network traffic. The network traffic rate meta-

data, including inbound/outbound traffic rates, network pro-

tocols, source, and destination IPs, package sizes and etc., are

accessible to these entities. The potential adversaries may

be interested in inferring user activities from smart home

network traffic to gain profit, while users usually do not want

to share such privacy-sensitive information with others. We

assume adversaries can use any data analytics techniques to

infer certain types of information from the observed patterns

in recorded traffic traces (but they cannot manipulate the

traffic). This is a typical assumption in existing privacy

leakage analysis works [2], [9], [30].

In particular, we are concerned with 3 types of privacy

attacks: i) Learning occupancy from the data. This includes

whether a home is occupied and when; ii) Learning user

in-home activities from the traffic data. User activities may

include when users come and go, when they perform their

daily activities, such as going to bed, waking up, watching

TV, listening to music, playing online games, as well as

more complex questions, such as whether a household has

a baby, and whether they go on vacation on weekends; iii)

Learning network traffic pattern information from the data.

This includes whether a particular IoT device is present in

a home, what model of an IoT device is present, and how

much traffic the home consumes on it monthly.

Attack Scenario #1: An external adversary from ISPs, IoT

device manufacturers or third-parties is actively monitoring
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Fig. 3. Comparison of 7 disaggregation approaches based on (a) MAPE, (b) MCC, and (c) Training Time using 20.5 days traffic rate (kB/min) trace.

the VPN aggregate traffic traces for a target home and then

uses data analytics approaches to learn the indirect user

privacy information that might be interesting for insurance

companies, marketers, or government.

Attack Scenario #2: To infer the type of IoT devices

and user activities at a certain home, an external on-path

adversary intends to acquire the real-time VPN aggregate

IoT network traffic traces. The attacker can leverage ML/DL-

based disaggregation models to separate the VPN aggregate

traffic traces into per-device traffic traces. Then, the external

attacker may further identify the IoT devices using per-device

traffic traces and launch cyberattacks on them.

C. Related Work

There is not significant research in IoT VPN traffic dis-

aggregation area. The most relevant ones are the netmeter

energy data disaggregation work in Non-intrusive Load Mon-

itoring (NILM) community. We outlined and implemented

a wide range of the most recent design alternatives [16],

[3], [11], [14], [4], [32], [33] that could be adapted to

disaggregate VPN traces in smart homes. Combinatorial

Optimization (CO) [3] assumes each device has a linear

model such that we can identify which device is ªonº and

ªoffº at each timeÐt. Thus, the aggregated signal at timeÐt

can be described as the sum of all the individual load signal of

the devices that are ªonº at that time. MEAN algorithm [11]

only calculates and keeps the mean state values for each

device. During the modeling training process, the mean

values are updated every time the same device is ªonº.

Denoising Autoencoder (DAE) is a special kind of deep

neural networks that can extract or reconstruct a particular

component from noisy input. Multiple trained models are

required to disaggregate the aggregate readings since DAE

can only denoise on a per-device basis. Recurrent Neural

Network (RNN) [14] receives a sequence of main readings

and outputs a single value of power consumption of the target

appliance. The RNN approach might have the vanishing

gradient problem in modeling training process. Sequence-

to-Sequence (Seq2seq) model [32], [14] learns a regres-

sion mapping from the main sequence to the corresponding

target device sequence for a single-channel blind source

separation (BSS) with the same timestamps. The Seq2seq is

an essentially posterior density estimator. Sliding Window

Gated Recurrent Units Network (WindowGRU) [16] is

an improvement to the RNN approach that uses long short-

term memory (LSTM) neurons and suffers from their high

computational cost. WindowGRU replaces LSTM neurons

with light-weight Gated Recurrent Unites (GRU). Theneu-

ral networks of WindowGRU will analyze the time slice

[t, t − w] to predict the per-device consumption at timeÐ

t where w is the sliding window size. Factorial Hidden

Markov Model (FHMM) [33] is a generalization of the

multi-HMMs in which the hidden state is ªweightedº into

multi-state variables, and thus can model the whole-house

as a factorial HMMs model. The operational states of each

device are learned via Markow chain, and the dependence

between different time slots are also learned.

Observation and Summary. Figure 3 (a) shows that Win-

dowGRU and FHMM yield the lowest average Mean Abso-

lute Percentage Error (MAPE) values as of 3.054 and 2.170,

respectively. They achieve the best disaggregation accuracy.

Meanwhile, Figure 3 (b) shows that FHMM approach yields

the highest average Matthews Correlation Coefficient (MCC)

value of 0.483, which indicating that FHMM approach

achieves the best accuracy when distinguishing one individual

IoT device from other IoT devices in the same household.

Unsurprisingly, MEAN approach reports MAPE and MCC

as of 8.466 and 0, respectively. This is mainly due to the

fact that MEAN algorithm tends to work in ªalways onº

mode to predict the per-device network traffic. In addition,

Figure 3 (c) reports that DAE, Seq2seq, and WindowGRU all

have very long training overhead. This is mainly due to their

architecture design in which multi-layer neural networks are

typically employed to learn the transition features. MEAN

and CO yield the lowest training overhead, since they mainly

depend on empirical threshold analytics instead. To achieve

the tradeoff among MAPE, MCC and training overhead,

FHMM approach is the most suited technique to address our

IoT traffic disaggregation problem. These valuable insights

will guide the development of our proposed techniqueÐ

TrafficSpy.

III. TRAFFICSPY DESIGN

A. System Design

Figure 4 shows the system structure of our disaggrega-

tion systemÐTrafficSpy that has multiple steps, including

network traffic converting, statistics, preprocessing, training,

model building, disaggregation and adaptive evaluation. In

essence, TrafficSpy will first convert all the network traffic

rate traces into the common timeseries dataset format inspired



Fig. 4. The system pipeline of TrafficSpy.

by the REDD format [15] which is widely used in many

NILM-based disaggregation problems. Next, TrafficSpy will

perform statistical analytics on the converted common data

file to ensure its correctness and effectiveness. Then, Traffic-

Spy will preprocess the data into NumPy arrays and split the

whole dataset into training, testing and validation datasets.

After that, TrafficSpy will build leverage the Factorial Hidden

Markov Model (FHMM) model to learn the relationships

among different IoT device network traffic consumption

signals. Eventually, TrafficSpy will apply the FHMM-based

approach to disaggregate VPN whole-house traffic traces into

individual device traffic traces. TrafficSpy also integrates with

smart and adaptive attack models that can directly evaluate

user privacy leakage degree in the disaggregated per-device

traffic traces.

B. Network Traffic Data Preprocessing

Network Traffic Converting. Given a new target home, the

inputs for TrafficSpy are the aggregate whole-house network

traffic rate traces from the new house, and the individual

device traffic rate traces that TrafficSpy learns from other

smart homes or public online repositories. The aggregate

network traffic rate traces are the traffic volume data that

might be observed by on-path adversaries. TrafficSpy lever-

ages the per-device traffic rate traces as the groundtruth

data to learn or calibrate disaggregation models. TrafficSpy

employs network traffic converter interface (NTCC) to collect

and convert these per-device historical traffic rate traces both

ªonlineº and ªofflineº. In particular, NTCC also provides

users with the public APIs to collect per-device traffic rates.

Network Traffic Sampling. In addition to the above-

mentioned traffic data converting, TrafficSpy also provide au-

tomatic up-sampling and down-sampling functions in NTCC

to support different granularity level aggregated whole house

traffic data disaggregation. This automatic sampling process

of TrafficSpy enables external on-path adversaries to launch

multiple ML-based or DL-based user privacy attacks at

different granularity traffic rate traces.

C. Intelligent Device Traffic Signature Learning

Next, as shown in Figure 5 (a), TrafficSpy will learn

individual IoT device traffic rate signatures from its historical

traffic rate signatures, which are used in its later to train

disaggregation algorithms. Different IoT devices typically

have different network traffic signatures. In particular, the

non-interactive background traffic patterns in which there are

no occupant engaged might be similar from house to house

for a specific IoT device. Thus, it is possible to observe the

similar background traffic for IoT devices across different

smart homes. However, different smart home occupants may

operate their interactive IoT devices in different ways. That

says, even for the same IoT device, it would be challenging

for us to use some homes’ interactive traffic loads and

patterns as the proxy to ªpredictº the same IoT device traffic

loads and patterns at new homes. To mitigate this issue,

we propose to leverage K-Means clustering algorithm-based

approach to learn the interactive load patterns. As shown in

Figure 5 (b) ∼ (d), our analytics using K-Means clustering

algorithm where K = 3 has shown that IoT devices typically

have identifiable three traffic consumption patterns, including

low or background (in purple), medium (in yellow), and

high (in cyan) traffic mode. In particular, the background

traffic volume for IoT devices typically should be the same

in different smart homes. Eventually, we apply the K-Means

clustering algorithm where K = 1 on all IoT devices to

infer the thresholdÐTbackground that we can leverage to

model the background traffic, and also the medium/high

thresholdÐTactive that enables TrafficSpy to more efficiently

disaggregate whole-house aggregate traffic.

Note that, TrafficSpy’s approach to estimating the traffic

flows of IoT devices in a smart home is orthogonal to the

other aspects of the technique and is thus ªpluggable,º such

that we could use other machine learning approaches to

estimate background traffic flows.

D. Building FHMM-based Traffic Disaggregation Model

As we studied in Section II, our insight is that considering

the MAPE, MCC and training overhead benchmarking met-

rics, FHMM approach is the most well suited technique to

address our smart home VPN traffic disaggregation problem.

In this section, we will explain how we leverage FHMM

approach to build TrafficSpy’s disaggregation process.

Learning Process. The Hidden Markov Model (HMM) [10]

is a widely used algorithm to learn probalilitstic results from

time series data. Hidden Markov Model (HMM) assumes a

sequence of observations Yt = Y1, Y2, Y3, ..., YT can be mod-

eled using a specific probilistic relationships to a sequence

of hidden IoT device status St = (S1, S2, S3, ..., ST ). This

HMM-based structure will form a Markov chain to convey

the past per-device network traffic consumption information.

The formal relationships can be described as the following

joint probability factors:
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Fig. 8. The performance comparison of applying different traffic disaggregation approaches on both UNSW dataset and VPN dataset.

Device MAC Address IP Address

Amazon Echo 14:0A:C5:8A:73:76 192.168.1.116

Belkin Switch 24:F5:A2:FF:91:1D 192.168.1.110

Google Home 20:DF:B9:5C:72:62 192.168.1.128

Insteon Hub 28:6D:97:77:5F:D5 192.168.1.143

Philips Hue EC:B5:FA:04:AE:96 192.168.1.123

SmartHome Hub 00:0E:F3:45:73:31 192.168.1.124

XiaoMi Camera D4:B7:61:5F:B4:6D 192.168.1.102

TABLE I
LIST OF IOT DEVICE SAMPLES IN DATASET 2.

C. Evaluating Metrics

Mean Absolute Percentage Error (MAPE). To quantify

the disaggregation accuracy of TrafficSpy, we compute the

MAPE, between the ground truth individual IoT device traffic

consumption and the TrafficSpy infers over all time intervals

t. A lower MAPE indicates higher accuracy with a 0% MAPE

being perfectly aggregated traffic disaggregation.

MAPE =
100

n

n∑

t=0

|
St − Pt

St

| (5)

where n describes the duration of traffic disaggregation, St

denotes the per-device groundtruth traffic consumption, and

Pt indicates the predicted per-device traffic rate at time t.

Matthews Correlation Coefficient (MCC). To quantify the

disaggregation accuracy, we use the MCC [21], a standard

measure of a classifier’s performance for imbalanced dataset,

where values are in the range −1.0 to 1.0, with 1.0 being

perfect individual traffic disaggregation, 0.0 being random

individual traffic disaggregation, and −1.0 indicating indi-

vidual traffic disaggregation is always wrong.

D. Experimental Results

1) Quantifying Disaggregation Accuracy of Different Ap-

proaches: We first quantify disaggregation accuracy when

applying 7 disaggregation approaches on both Dataset #1

and Dataset #2, including CO, MEAN, DAE, RNN, Seq2seq,

WindowGRU, and TrafficSpy. Figure 8 shows the quantitative

comparison results using MAPE (a), MCC (b), and training

overhead (c). Unsurprisingly, CO and MEAN approaches

report the worst MAPE and MCC results and the best training

overhead. This is mainly due to fact that CO assumes each

device has binary ªonº and ªoffº status and MEAN assumes

all the devices are ªonº and tries to use their mean values to

separate them. In addition, both CO and MEAN leverage

thresholds to disaggregate the VPN aggregate traffic, and

thus do not require significant training overhead. We observe

that TrafficSpy and neural networks-based approaches (e.g.,

RNN, DAE) are reporting reasonably accurate disaggregation

results. In particular, TrafficSpy (FHMM) yields the best

MCC and the worst MAPE. Figure 8 (c) reports training

overhead across 7 approaches. We find that excluding CO

and MEAN, TrafficSpy reports the shortest training time.

Results: Comparing with the other 6 recent disaggregation

approaches, TrafficSpy is the best performing disaggregation

approach across two different datasets. TrafficSpy yields

average MAPE as 0.323, which is ∼2 times better than the

baseline approachÐMEAN and ∼3 times better than CO.

2) Quantifying Disaggregation Accuracy When Varying

Granularity of Traffic Traces: We next evaluate traffic dis-

aggregation effect on different trace rate traces that have

different level of granularities, such as 1 minute, 3 minutes, 5

minutes, 10 minutes, 30 minutes and 60 minutes. As shown

in Figure 9 (a), as expected, higher granularity results in

lower MAPE results. This is mainly due to the facts that

1) TrafficSpy performs consistently well on different traffic

rate traces at different granularities, 2) fewer fluctuations

and spikes are observed in higher resolution traffic rate

traces. When traffic rate traces are becoming coarser, error

percentages are declining.

Results: TrafficSpy’s accuracy is a linear function of the

granularities of IoT traffic rate traces. TrafficSpy yields the

MAPE of 0.15 when disaggregating on 10 minutes level

network traffic rate traces, which is ∼4 times less than as

the baseline MEAN approach.

3) Quantifying TrafficSpy’s Scalable Performance: Next,

we examine the performance effect on TrafficSpy when

disaggregating network traffic traces having different amount

of IoT devices. In doing so, we are evaluating the scalability

performance of TrafficSpy. Figure 9 (b) shows that the larger

amount of the IoT devices in a smart home has resulted in

a better overall disaggregation performance. We observe that

TrafficSpy achieves lower MAPEs when the number of IoT

devices increases from 3 to 40.

Results: Larger smart home size has resulted in lower

MAPEs of TrafficSpy. With the growth of the number of the

IoT devices, TrafficSpy achieves better overall performance.

4) Quantifying TrafficSpy’s Performance When Adding

New Device in Smart Homes: Next, we examine the perfor-

mance effect on TrafficSpy when disaggregating the network
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Fig. 9. The disaggregation accuracy comparison on different traffic granularities (a), different amount of IoT devices (b), and adding new IoT device (c).

traffic traces that have new IoT devices installed. In doing

so, we are evaluating the robust performance of TrafficSpy.

As shown in Figure 9 (c), TrafficSpy reports similar or

slightly lower disaggregation accuracy in MAPE (∼6.62%)

when smart home installs new IoT device that TrafficSpy

knows its traffic signatures. We also find that TrafficSpy

yields similar or slight worse disaggregation accuracy in

MAPE (∼6.61%) when smart home owner installs new IoT

device that TrafficSpy does not know its traffic signatures.

Note that, constant repeated traffic patterns in a unknown

IoT device trace can be linked to the new IoT device when

TrafficSpy learns its traffic signature from other smart homes

or public IoT traffic repositories. Results: TrafficSpy reports

6.62% changes in MAPEs when smart home users installing

a new known and unknown IoT device. TrafficSpy is robust

to new IoT device becomes online.

5) Attacking User Occupancy: We then examine the effec-

tiveness of user occupancy detection from the individual IoT

device traces that are disaggregated by different approaches.

Figure 10 (a) shows the comparison results of attacking on

per-device traces. We observe that TrafficSpy (FHMM) yields

the best MCC as of 0.636 and is the best performing approach

to detect user occupancy status.

Results: Comparing with other disaggregation approaches,

TrafficSpy achieves the best MCC value as of 0.636 to attack

user occupancy status in a target home.

6) Attacking User In-home Activities: We next benchmark

the effectiveness of inferring user activities from individual

IoT device traces that are disaggregated by 7 different dis-

aggregation approaches. We leverage ML/DL-based attack

models that we proposed in Section III. Unsurprisingly, as

shown in Figure 10 (b), we observe that TrafficSpy (FHMM)

yields the best MCCs as of 0.523, 0.456, and 0.581 across

three different user in-home activities attacking. TrafficSpy

is constantly the top-1 disaggregator.

Results: Comparing with other 6 disaggregation approaches,

TrafficSpy constantly achieves the best MCC values when

attacking user in-home activities. TrafficSpy exposes a serious

user privacy threat.

7) Inferring User In-home Activities by Adaptive Adver-

sary: We next examine the effect of different knowledge-

level adaptive adversary on privacy inference from Traffic-

Spy’s separated traffic. We define attacker knowledge-level as

the percentages of traffic rate testing dataset that an external

adversary can leverage to calibrate its attack models to infer

user in-home activity. 0% indicates that the external adversary

has no knowledge of the target home testing dataset and

no cross-validation is performed to train the attack models.

While, 100% means the external adversary has observed all

the groundtruth traffic patterns for each user activity so that

the attack models are ªperfectlyº trained. Figure 10 (c) shows

the ability of TrafficSpy to infer user private information

when adaptive adversary having more knowledge about our

attack model. To report MCCs in Figure 10 (c), we apply

KNN-based, SVM-based, Decision Tree (DT)-based attack

models on per-device traffic traces generated by TrafficSpy to

infer 4 user activities and report the mean value of the MCCs,

respectively. We find that TrafficSpy’s MCC increases from

0.47 to 0.91. This is because inferring user in-home activity

is surprisingly easy as discussed in Section II.

Results: TrafficSpy’s MCC is increasing from 0.47 to 0.91

when varying adversary knowledge level from 0% to 100%.

Thus, TrafficSpy exposes a serious user privacy threat.

E. Designing User Privacy-preserving Approaches

Our experimental evaluation results have shown that on-

path adversaries can infer and fingerprint users’ sensitive

privacy information such as occupancy and user in-home

activities by only analyzing VPN-encrypted IoT network

traffic traces. We are developing a new low-cost, open-source

and traffic reshaping based user privacy defense system to

significantly reduce the private information leaked through

IoT device VPN traces, while still permitting sophisticated

control that is necessary in smart home management. In

essence, we plan to use intelligent traffic signature learn-

ing, long short-term memory (LSTM)-based artificial traffic

signature injection, and partial traffic reshaping to obfuscate

user in-home privacy. We also plan to develop optimization

techniques to further reduce traffic reshaping overhead.

VI. CONCLUSION AND FUTURE WORK

We design a new open-source factorial hidden Markov

model (FHMM)-based network traffic disaggregatorÐ

TrafficSpy that can accurately disaggregate VPN-encrypted

whole-house IoT traffic traces into individual IoT device

traffic traces. We evaluate TrafficSpy by using 105 days IoT

network traffic traces and deploying a hardware prototype.

We find that TrafficSpy can accurately disaggregate VPN

traffic traces. Our evaluation also show that we can accu-

rately further detect 4 different kind of user in-home private

information. Thus, TrafficSpy represents a serious privacy

threat. We plan to deploy TrafficSpy in more smart homes
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Fig. 10. The comparison of training overhead, occupancy detection and user activity detection.

which more commercially-available IoT devices to further

benchmark and improve its online performance.
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