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Abstract
Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems.
Animal-infrastructure interactions vary across species and regions, underlining the need to study
the animal-outage relationship in more species and diverse systems. Animal activity has been an
indicator of reliability in the electrical grid system by describing temporal patterns in AROs.
However, these ARO models have been limited by a lack of available species activity data, instead
approximating activity based on seasonal patterns and weather dependency in ARO records and
characteristics of broad taxonomic groups, e.g. squirrels. We highlight available resources to fill the
ecological data gap limiting joint analyses between ecology and energy sectors. Species distribution
modeling (SDM), a common technique to model the distribution of a species across geographic
space and time, paired with community science data, provided us with species-specific estimates of
activity to analyze alongside spatio-temporal patterns of ARO severity. We use SDM estimates of
activity for multiple outage-prone bird species to examine whether diverse animal activity patterns
were important predictors of ARO severity by capturing existing variation within animal-outage
relationships. Low dimensional representation and single patterns of bird activity were important
predictors of ARO severity in Massachusetts. However, both patterns of summer migrants and
overwintering species showed some degree of importance, indicating that multiple biological
patterns could be considered in future models of grid reliability. Making the best available
resources from quantitative ecology known to outside disciplines can allow for more
interdisciplinary data analyses between ecological and non-ecological systems. This can result in
further opportunities to examine and validate the relationships between animal activity and grid
reliability in diverse systems.

1. Introduction

Power outages result in unwanted disruptions to the functioning of the electric distribution system. These
disruptions are a result of a variety of interacting factors including weather, failed equipment, vegetation, and
animal activity [1]. Understanding system reliability—the ability to withstand disruptions and minimize
supply loss—is a long standing research priority to maintain critical infrastructure and essential public
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Figure 1. (A) Cumulative Percentage of Customers Affected by Causes in MA (2013–2018). (B) Cumulative Percentage of Number
of Outages by Causes in MA (2013–2018). Initial exploratory analysis showed that AROs accounted for 7% of total customers
affected by electric outages and 13% of total number of outages within this period. Data obtained from Commonwealth of
MA [6].

services [1, 2]. As a result, assessments of distribution reliability can be broken into three research sectors:
historical reliability, predicted reliability, and outage causes [2, 3]. Historical reliability is a reactive approach
that makes use of historical data on past performance to target less reliable areas of the electric system for
improvement. Predictive approaches have developed proactive models that forecast expected outages using a
combination of causal factors [4]. The third sector focuses on mechanisms driving outages, identifying
specific factors and their interconnected dependencies that disrupt the electrical system [5]. In this study, we
focus on the third sector, specifically within the context of animal-related outages (hereafter, AROs), and
investigate whether simultaneous activity patterns in multiple species can serve as indicators of reliability in
the electric distribution system.

AROs contribute a fair proportion of disruptions to the electrical grid. For example, AROs represented
about 7% of the total number of customers affected by electric outages in the state of Massachusetts
(hereafter, MA) between 2013 and 2018 (figure 1). While AROs impact comparatively fewer distribution
customers than other outage causes, they are often frequently occurring, resulting in considerable impact on
the grid [7]. Many taxonomic groups have been identified as causes for AROs including rodents, birds,
snakes, ungulates, and medium-sized climbing mammals [8]. The relationship between species populations
and grid reliability varies across different species, regions, and habitat types, underlining a need for testing
this relationship in more diverse environments and species [9]. However, the inaccessibility of species activity
data has forced many ARO models to approximate animal activity levels based on life history characteristics
from broad taxonomic groups, e.g. squirrels [4, 10, 11].

Studies in cities across the United States have shown that non-squirrel taxa such as birds are also
important for describing distribution reliability [1]. Birds were also listed by the National Rural Electric
Cooperative Association as a leading cause of overhead distribution power outages in the United States,
second to squirrels [8, 12]. ARO models which have relied on a single proxy of animal activity are limited in
their flexibility to be applied to diverse systems. They also lose the ability to account for species-specific
mechanisms that drive AROs which allow for more meaningful ARO mitigation strategies [13, 14].

Mechanisms driving AROs are derived from environmental conditions and engineering factors that
interact with biological species traits [12]. Behavioral and morphological traits determine a species’
likelihood of interacting with electrical equipment and how this interaction manifests figure 2.

In the case of birds, gregarious social behavior encourages multiple individuals to gather near power
lines, causing the lines to sag or swing and collide as flocks take off at once [8, 12]. Cavity nesting species
build nests in electrical equipment and excavate cavities in wooden utility poles. Nesting in equipment
increases their chances of collision while flying in and out of the nest, while the nests and cavities themselves
damage pole integrity and attract further animals, i.e. predators, to lines [8, 12, 15]. Perch-hunting strategies
make utility poles ideal foraging structures for species of raptors, but also increase their chances of
electrocution or collision [12].

Additionally, morphology such as wing shape, eye placement, and body size can influence the likelihood
of collision in flight and electrocution on lines. Wing loading, or the ratio of body size to wing span, can
indicate flight maneuverability, while binocular vision is better at detecting obstacles than peripheral vision

2



Environ. Res.: Ecol. 1 (2022) 011004

Figure 2. Factors contributing to bird related outage risk. The ‘Vulnerable Characteristics’ box indicates traits that make an
animal susceptible to interacting with the grid and infrastructure design that makes the grid susceptible to disruptions caused by
animals. The risk of a power outage only occurs when vulnerable species and power lines become physically exposed to one
another. Species distributions and seasonal activity as well as power line placement (the ‘Animal-Infrastructure Exposure’ box)
determine whether vulnerable species and equipment are exposed to each other, creating the risk of an ARO.

[16–18]. Species with larger body sizes and wing spans are able to connect conductors and grounding parts
on electrical equipment, causing short circuits [12].

The risk of an ARO starts with these vulnerable characteristics; i.e. traits that make an animal susceptible
to interacting with the grid as well as infrastructure designs that make the grid susceptible to disruptions
caused by animals (e.g. a lack of animal deterrents or guards). However, the realized risk (or likelihood) of a
power outage only occurs when vulnerable species and power lines become physically exposed to one
another. Species distributions and seasonal activity as well as power line placement determine whether
vulnerable species and equipment are exposed to each other, creating the risk of an ARO. Environmental
conditions such as land use and habitat cover, as well as seasonality determine this degree of exposure.
Different habitats and seasons are suitable for different species and this determines the spatio-temporal
exposure of species to infrastructure [13, 14, 19] (figure 2). As a result, there is variable ARO risk across space
(species distributions) and time (species seasonal activity) which is largely driven by the traits unique to
different outage-prone species.

Considering multiple animal activity patterns in animal-outage models may expose a greater
understanding of risk interrelationships between ecological and energy domains. Specifically, it may expose
species traits that are directly related to outages (e.g. body size, nesting type, or foraging strategy), help
delineate ecological patterns such as migration routes and timing that impact distribution lines, and as a
result provide more robust outage prevention and mitigation strategies for AROs. Although case studies
examining relationships between animals and electrical infrastructure have shown variation across species
and geography due to the variables mentioned above [9], existing ARO models have largely been unable to
test this multiple animal activity pattern hypothesis due to limited data for diverse species and taxonomic
groups.

The few studies that have used species activity data alongside outage records have shown animal activity
to be an important variable in characterizing the reliability of the power grid [1], yet these data remain
underutilized in animal-outage studies [4, 10, 11]. Joint analyses of power outage and species activity data
have been limited to a few species and coarse resolutions due to the resource demanding nature of biological
surveys which limit the accessibility of ecological data [1, 7, 11]. We examined available options to fill the
ecological data gap in ARO studies and test our multi-pattern hypothesis by using species distribution
models derived from eBird data.

Community science data has the potential to improve the availability of species-specific activity estimates
and to provide greater flexibility to explore animal-grid interactions in more diverse systems. Community
science databases such as eBird [20] are comprised of opportunistic species observations submitted by the
general public. eBird captures year-round bird observations at a global scale and has best practice
methodologies in place to predict fine resolution estimates of species distributions across geographic space
and time [21, 22]. Wide-scale species-specific population databases such as eBird are key to better
understanding and mitigating both bird mortality and ARO disruptions to the electrical distribution system.
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eBird data is semi-structured, meaning it collects data on the species observation process. This allows data
users to standardize opportunistic data that can be subject to several data biases including taxonomic, spatial,
temporal, and detection bias [21]. These biases can become increasingly apparent at finer spatial and
temporal resolutions, leading to variable and inconsistent species responses [23], but eBird data has also been
used to develop species models that far exceed the spatial and temporal limitations of standardized biological
surveys, filling knowledge gaps on the full annual cycles and range-wide distributions of bird species [24].

We demonstrate eBird’s ability to increase the availability of animal activity for ARO models by using a
case study of outage-prone bird species and AROs in the state of MA from 2013–2018. Using eBird data to
develop species distribution models (hereafter, SDMs) for 16 outage-prone bird species in MA, we conducted
a data-driven exploration of ARO severity as it relates to spatio-temporal patterns of activity in multiple
species. Behavioral and morphological traits differed between our study species, influencing their activity
patterns throughout seasons, distributions across the landscape, and their likelihood to cause disruptions to
the grid (figure 2). eBird data allowed us to visualize these patterns in animal activity alongside ARO severity
at weekly, township resolutions, considered the most accurate temporal resolution at which to estimate
AROs [2, 10].

Our results suggest that single animal activity patterns representative of the main biological
characteristics exhibited by groups of species were important estimates of ARO severity and grid reliability,
but diversifying species within these patterns did not improve the strength of their estimates. However, we
found that more than one dominant, temporal bird activity pattern had relatively high importance for
estimating ARO severity in MA; these being patterns in summer migrants and overwintering resident
species. A multi-pattern approach is important for understanding the biological life cycles and traits, which
vary across geographies and species, that influence animal-related grid reliability in different regions. Due to
this known variation, we recommend future studies use our approach as a guide to explore this relationship
further with different species, taxa, regions, and modeling approaches.

We submit that SDMs based on community science databases are an improvement for understanding
mechanistic drivers of grid reliability as opposed to using animal activity proxies derived from ARO patterns.
Community science data can improve the accessibility of ecological data which can then support future joint
analyses of ecological and electric distribution systems.

2. Methods

We chose MA as our case study region because of its available high resolution power outage data (street level
and minute resolution) which gave us the flexibility to rescale it to match the resolution of our species data.
In addition, the outage data in MA had a high degree of completeness, capturing over 90% of all reported
distribution level customer outages in the state.

All analyses were performed in R statistical language version 4.0.2 [25].

2.1. Aligning outage data and species activity estimates
2.1.1. Estimating bird activity
We first identified taxonomic groups of birds known to cause outages due to their behavioral and
morphological traits [12]. We select 16 species with these outage prone traits (table 1) and who also have
their year round or breeding range within MA (referenced from eBird species range maps). To ensure we had
sufficient detection data, we did not consider nocturnal species such as owls because eBird observations are
predominantly recorded during daylight hours.

The eBird surveys are semi-structured which allows the data to be standardized and adjusted for
common sampling biases. As a result, the data have been used to generate estimates of annual and multi-year
trends in species populations consistent with structured bird surveys such as the North American Breeding
Bird Survey [29]. Detection data (binary data on whether a species was observed) are more readily available
from eBird surveys than individual counts. This makes detection rates (hereafter, DR), the probability of
observing a species on a standardized survey, a commonly estimated measure of relative abundance. We use
DR as a proxy of activity in birds because animal activity can be an underlying driver of DR, i.e. active birds
are easier to detect by observers.

To align spatio-temporal resolutions across species’ DRs and outage data, we estimate relative bird
activity (DR) for our 16 study species at a weekly township-level resolution. We modeled eBird DRs using a
random forest approach that appears in an earlier study comparing the performance of multiple modeling
methods for relative abundance [23]. We apply the random forest approach because it provides added
flexibility to account for the multiple spatial and temporal variables needed to characterize species
occurrences. The random forest methodology was derived from the ‘encounter rate’ methodology in the Best

4



Environ. Res.: Ecol. 1 (2022) 011004

Table 1.MA bird species selected for their contributions to animal-caused outages. See [23] for the list of focal species (with the
exception of Monk Parakeet (Myiopsitia monacbus) and American Crow (Corvus brachyrhynchos)) with scientific names.

Species (Abbreviation) Disruptive Traits Outage Cause References

Brown-headed Cowbird (BHCO) Social behavior, nesting
type, flight type

Phase conductor contact,
excrement (contamination),
nest contact, predator attraction,
collision, electrocution

[8, 16, 26–28]
Common Grackle (COGR)
Red-winged Blackbird (RWBL)
European Starling (EUST)
House Sparrow (HOSP)
Mourning Dove (MODO)
Monk Parakeet (MOPA)
Downy Woodpecker (DOWO) Nesting type, foraging type Pole damage [8, 15]
Hairy Woodpecker (HAWO)
Northern Flicker (NOFL)
Pileated Woodpecker (PIWO)
Red-bellied Woodpecker (RBWO)
Osprey (OSPR) Nesting type, foraging

type, migratory activity,
body size

Collision, electrocution,
excrement (streamer),
nest contact

[8, 18, 28]
Red-tailed Hawk (RTHA)
Turkey Vulture (TUVU)
American Crow (AMCO)

Practices for Using eBird Data [21, 22] which outlines how to estimate species distributions across space and
time from the eBird Basic Dataset, and addresses common forms of biases found in the data [30].

The random forest model predicted DR in response to temporal variables (year, day of week, week of the
year, and starting time of observations) and survey effort (protocol type and list length). The full data
preparation and modeling methodology follows the methods in [23]. Here, we add additional spatial
predictors in addition to time and survey effort to improve our estimates of species occurrence across both
space and time.

MA township names as well as the proportion of land cover types in each township were also included in
the model to account for spatial variation in habitat availability and observer density. Land cover proportions
were calculated within each township using 1 km resolution land cover types from the National Land Cover
Database [31] aggregated into broader habitat types for birds. The final land cover categories used in the RF
model were proportion of barren land, cultivated land, developed land, forest, open water, shrub, wetland.
Since topography also influences species distributions, the median and standard deviation in elevation
within each township were also used as spatial covariates. Elevation data was downloaded from the EarthEnv
project [32].

Our species DR models had fair model performance when looking at AUC and Maximum Kappa, with
the exception of Monk parakeet. Monk parakeet also had the lowest model performance (AUC = 0.71 and
Max Kappa = 0.39) which led us to drop this species from our analysis due to data limitations (see S3
supplementary material for model performance metrics of all study species). Monk parakeet is a fairly recent
invasive species to MA, with introductions to the United States beginning with the pet trade in the late 20th
century [33]. At the time of this study, eBird observations of Monk parakeet only began in 2009 and were
limited to 89 observations on complete eBird checklists. This left us with very few observations to build our
DR models. Our two study species with the next fewest observations were Pileated woodpecker (PIWO)
(n = 15 290) and Turkey vulture (n = 34 932) for comparison. For the remainder of our study we focus on 15
study species, removing Monk parakeet from the analysis.

2.1.2. Power outage data
We obtained outage records from three electric distribution utilities (Eversource, UNITIL, and National
Grid) in MA through the MA Office of Energy and Environmental Affairs [34]. These three utilities account
for the majority share of electricity distribution in the state. The data range from 2013–2018 at a
township-level spatial resolution. Fields include the date and time of the outage, township of the outage, and
the categorical cause of the outage. The details on our outage data pre-processing appears in the
supplementary materials (S1 supplementary materials).

For our analysis, we focused on a subset of outages classified as being caused by an ‘animal’. We refer to
these outages as AROs throughout this paper. AROs were first obtained as a subset of electric outages with a
recorded outage cause classified as ‘Animal’, ‘Animal-other’, ‘Birds’, or ‘Squirrels.’

Previous explorations of animal activity alongside outages have focused on the frequency of ARO events,
which is a direct measurement of animal interference with the grid [1, 2, 7]. However, an important
measurement of system reliability in the energy sector is the System Average Interruption Duration Index
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(SAIDI). SAIDI is used to quantify the amount of time, on average, customers’ electricity is disrupted. We
recognize that SAIDI incorporates information that can be influenced by other factors outside of animal
interactions such as the repair time required by various means of infrastructure design and maintenance
strategies [3, 35, 36], which may interfere with its relationship with animal activity. However, we measure the
severity of AROs with SAIDI because it is the IEEE standard metric for quantifying electrical grid reliability
[37] and is more relevant to grid managers for the purpose of assessing and understanding electrical system
reliability. SAIDI was measured in minutes and is calculated as

SAIDIi,ℓ =
Di,ℓCi,ℓ

Hℓ

, (1)

where
Di is the duration of the grid disruption in minutes for the grid disruption event i;
Ci is the number of customers affected during the grid disruption event i;
H is the total number of households served in the system a location ℓ.
We calculated SAIDI for each outage event before summing SAIDI across all outage records within each

township and week to generate our weekly, township-level aggregated outage dataset.
Our aggregated SAIDI data were positively skewed (mean = 0.99, median = 0.12), so we used the natural

log transformation of SAIDI (lnSAIDI) for the remainder of the analysis. We removed outliers of these
aggregated lnSAIDI values using the interquartile range (IQR) method. We took 1.5 times the IQR and added
this value to the 75th quantile and subtracted it from the 25th quantile. We then removed week-township
records with lnSAIDI 1.5 IQR below the 25th quantile and 1.5 IQR above the 75th quantile. There were
several instances of townships with abnormally high weekly values of SAIDI, so this process removed 2.6% of
our week-township outage records, leaving 10 287 observations for the remainder of the analysis.

2.1.3. Aligning outage severity and bird activity
The MA outage dataset had certain weeks and townships without any reported AROs. ARO reporting can be
subjected to false negatives (unreported occurrences) from both reporting procedures and the mobility of
the animals themselves. Federal and state agencies require utilities to comply with conservation laws and
regulations (e.g. the Migratory Bird Treaty Act and Endangered Species Act) when engaging in activities
related to species protected by these laws (such as nest removal and installing animal deterrents) [12].
Additional time, effort, and costs are associated with the actions needed to address any impacts on these
protected species by power lines, which may deter ARO reporting. In addition, scavenging of animal
carcasses can vary between geographic areas and species, with smaller animal carcasses being removed by
scavengers within 24–48 h. Similarly, not all animal-grid interactions result in mortality, resulting in the
animal(s) moving away from the scene of the outage before the cause can be reported [12].

Due to the likelihood of these false 0’s in our power outage data and lack of capacity to monitor the above
mentioned reporting biases, we interpret our results as conditional on an outage having occurred. By using
only non-zero values of SAIDI at the weekly-township resolution, our study focuses on the impact of bird
activity on the severity of AROs. We merged our weekly, township-level outage and bird datasets, dropping
56 MA townships that did not have any reported AROs within our study period. Out of the 313 weeks from
2013–2018 across the remaining 351 MA townships (109 863 possible observations), we were left with 10 287
weekly-township observations that had both species DRs and SAIDI records (9.3% of all possible
week-township observations). The combined dataset consisted of 16 variables, with lnSAIDI being our
measure of ARO severity, and 15 species DR estimates that represented the activity of each of our 15
remaining study species.

2.2. Spatio-temporal patterns in outage-prone bird species
We first applied a principal component analysis (PCA) to examine the spatial and temporal patterns in bird
activity (DR) across all species. PCA allows discovery of clear subgroups of species with shared
spatio-temporal patterns in their weekly-township observations of DR. We used the prcomp R-function to
run the PCA on all 15 bird species DRs, accounting for complete weekly observations between 2013 and 2018
for all 351 MA townships. The resulting DR principal components (PCs) were linear combinations of DRs
that explained the most variation in activity across the MA populations of these species. Bi-plots of these PC
loading vectors then group species with distinct spatial and temporal patterns of activity.

We grouped species with similar spatio-temporal variation determined by the first two PCs, i.e. species
with positive PC values, species with negative PC values, and species with values close to zero (figure 3), and
plotted their state average DRs to visualize distinct temporal activity patterns in our study species. We also
looked at their distinct spatial patterns by mapping mean species DR averaged across time for each MA
township.
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2.3. Accounting for several activity patterns in models of grid reliability
We developed a set of models to test our main hypothesis that multiple animal activity patterns, specifically
bird activity patterns, improve our ability to describe changes in outage severity than using single activity
patterns or not accounting for bird activity at all in ARO models. Our model set was grouped into three main
categories to test this hypothesis: ‘null models’ that only used time and habitat as predictors, ‘single-pattern’
models that used activity patterns of a single species that represented one of four main spatio-temporal
trends found within our study species (see section 3.1), and ‘multi-pattern’ models that used multiple
activity patterns found within our study species. We estimated multiple versions of outage severity models
within each of these three categories, using lnSAIDI as our dependent response variable.

For our predictors, we used species DRs to represent bird activity, the proportion of land cover occupied
by distinct habitat types in each township (see section 2.1.2), and temporal variables of month and year as
factors. We began with five habitat types and our 15 study species DRs as potential predictors, but removed
habitats and species that were highly correlated to minimize collinearity among our predictors. We removed
the developed land habitat type because it was highly anti-correlated with forested habitat and retained only
one of our three blackbird species (Red-winged blackbird (RWBL)) and three of our five woodpecker species
(Red-bellied woodpecker (RBWO), Northern flicker (NOFL), and PIWO) because activity patterns between
species within each of these families were highly correlated. This left four of our five habitat predictors and
11 of our 15 bird species which were used for our final SAIDI models.

In our null models, we did not include any measures of bird activity and only relied on changes in
habitat, month, and year to account for spatio-temporal trends in SAIDI. We used four habitat types (forest,
barren land, open water, and grassland) to represent spatial patterns. We include one model that only
includes habitat types, a second model that only accounts for time, and a third that accounts for time and
habitat together. Next we added different combinations of bird activity patterns to this time and habitat
model to test if bird activity improved model performance.

We estimated three multi-pattern models that used different approaches to incorporate multiple bird
activity patterns into SAIDI models. We estimated one model that used individual detection rates of each of
our study species (n = 11 after removing those with collinearity; hereafter the ‘All Species’ model), a second
model that used detection rates from only four species that represented the dominant spatio-temporal
activity patterns within our study species (the ‘All Representative Species’ model), and a third model that
used the first two PCs of all our study species’ detection rates (the ‘All PC’ model; see section 2.2).

From the All Representative Species model, we created four single-pattern models, each using detection
rates from a single species representing a dominant bird activity pattern. These were temporal patterns of
overwintering resident species, temporal patterns of summer migrant species, spatial patterns of forest
dependent species, and spatial patterns of urban generalist species. Our ‘Resident Species’ model, based on
the seasonal activity patterns of species (figure 4(A)), used RBWO detection rates to represent seasonal
activity patterns in overwintering resident species and our ‘Migration Species’ model (figure 4(C)) used
RWBL to address seasonal activity patterns unique to summer bird species migrants. For these temporal
trend representative species, we chose species that also had broad spatial distributions (found fairly
ubiquitously across the state) in order to focus on temporal patterns in activity (S2 supplementary
materials). Our ‘Forest Species’ model used PIWO activity to describe spatial patterns of forest dependent
species (S2 supplementary materials, figure 2), and our ‘Urban Species’ model used European starling
activity to address spatial distributions unique to urban specialist species (S2 supplementary materials, figure
4). Similar to our temporal trend species, the spatial trend representative species had weak temporal patterns
(activity generally stayed constant throughout the year) to focus on spatial patterns in activity (figure 4(B)).

For each of our models that included bird activity (single- and multi-activity models), we included a
model that only accounted for species activity without time and habitat, and two more models that
accounted for species, habitat, and time together, one as additive predictors (‘Additive’ models) and another
another using interactions between activity and habitat and activity and month (‘Interaction’ models). This
resulted in a total of 24 models in our model set.

Since our data is structured as weekly observations per MA township, we had replicate observations
within each township and year. Spatial relatedness within each township may be due to town specific
characteristics associated with ARO severity such as customer population size, number of households, and
infrastructure. We also expect observations within years to be influenced by inter-annual changes in variables
such as climate which impact timing of periodic ecological events in biological life cycles as well as customer
demand on the electrical grid for heating and cooling. Therefore, we considered linear mixed effects (LMM)
models with additive random intercepts for townships and year [38]. We used an analysis of variance to test
the significance of these random effects by comparing a multiple linear regression and a LMM version of
each candidate model. Finding the random effects to be significant for each candidate model, we chose to use
LMMs as our final models.
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Figure 3. The first two PCs of weekly detection rates across 15 outage-prone bird species in MA townships. Each species is placed
along each axis by its loading vector in the first PC and the second PC. These two axes divide species into their unique patterns in
activity throughout seasons and spatial distributions across the landscape. The color and length of each vector indicates each
species’ contribution to the variance in the PCs. Species in the bottom right quadrant are summer migrants limited to urban
environments, while the upper left quadrant are resident species occupying more rural areas of the state. The upper right
quadrant contains migratory species occupying rural regions and the bottom left quadrant contains resident species concentrated
in urban regions.

We used three metrics to evaluate and rank the performance of each LMM in our comparison set using
R-package ‘Performance’ [39]. Akaike’s Information Criteria (AIC) weight is used for estimating the relative
fit and parsimony between alternative models, and we supplement these indicators which compare model
performance relative between models with conditional and marginal R2, which describe the variance
explained by both the fixed and random effects (conditional) and just the fixed effects (marginal) of each
model [40]. The difference between these two indices reflects the variation captured by random effects. Our
primary goal was to explore the relationship between the response and features; therefore, discussion based
on multiple measures provides a more holistic picture of the limitations in modeling ARO severity in MA.

We expected that specific activity patterns would be important for describing ARO severity in different
seasons and habitat types. Since the temporal activity patterns of summer migrant and overwintering
resident bird species complement each other throughout the year and habitat preferences determine spatial
distributions of species, this may result in different groups of species causing outages at different times of the
year and locations within the state. We expected this phenomenon to result in multi-pattern models or more
than one single-pattern model to be competitive in our model comparison.

3. Results and findings

3.1. Spatio-temporal patterns in bird activity
The first two PCs of our bird DR PCA explained 40% of the variance across species DRs and highlighted the
main spatio-temporal patterns of activity seen in our 15 focal species (figure 3). By visualizing time series
and maps of DRs for species grouped by their loading vectors along the first two PCs, we found the first PC
largely grouped species based on their seasonal activity patterns, i.e. heightened summer activity in
migratory species such as RWBL (figure 4(C)) versus heightened winter activity in resident species such as
RBWO (figure 4(A)).

Given the first grouping, the second PC further grouped species based on their spatial distributions, i.e.
PIWO which occupies continuous forested areas versus NOFL which can occupy forest patches in more
urbanized environments (figure 5). See our supplementary materials for maps of all study species’
distributions and land cover types in MA (S2 supplementary materials). Together these PCs indicate four
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Figure 4.Mean and 95th percentiles of species detection rates, averaged across years and townships, are plotted for each week of
the year. Resident species in group (A) have higher winter activity, species in (B) did not express strong seasonal activity patterns,
and migratory species in (C) have higher summer activity in MA. These species were grouped by their PC1 loading vector values.

distinct spatio-temporal patterns of bird activity, i.e. rural resident species, urban resident species, rural
migratory species, and urban migratory species. Plotting species by their loading vectors along these two PCs
grouped our study species into these four distinct activity patterns (figure 3).

3.2. Grid reliability vs species activity patterns
The additive Resident Species model was ranked the highest performing model by AIC weight (0.624, ∼62%
across all models in the set). In particular, proportion of forest cover and barren land were statistically
significant spatial covariates and the the activity of overwintering resident birds in addition to the months of
June, July, and November were statistically significant temporal covariates, all of which saw positive
correlations with SAIDI. However, the additive All PC model also carried some AIC weight (0.105, ∼10%),
along with the null model using only time and habitat (AIC weight = 0.089, ∼9%). Overall we found
single-pattern models had better performance than multi-pattern models, with the majority AIC weight
attributed to the Resident Species, single-pattern model and the remaining AIC weight split relatively evenly
between non-activity and multi-activity models. In addition, additive models of bird activity, habitat, and
time had higher AIC weight than models with interaction terms (table 2).

All of our models explained moderate variance in SAIDI, with conditional R2 ranging from 0.146 to
0.171 [41]. We found that the random variation among townships and years explained the majority of the
variation in ARO severity (R2 conditional greater than R2 marginal for all models, table 2). Many towns had
low sample sizes (72 of 292 towns had <= 10 observations) and it is likely the model may overfit in these
groups. The 11 models with the highest conditional R2 values were all within close range of each other (all
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Figure 5. (A) Maps of the average weekly detection rates for PIWO and NOFL in MA townships. These species display two
distinct spatial distributions across the state. PIWO are more frequently observed in continuous forested habitat, while NOFL can
occupy forest patches in more urbanized environments surrounding the cities of Springfield and Boston. (B) A map of dominant
land cover types in each MA township is provided for referencing these spatial patterns in habitat. See our supplementary
materials for maps of all 15 study species (S2 supplementary materials).

>0.169, with less than a 0.002 difference between them). The interaction Migrant Species model had the
highest conditional R2 of these models, followed by the null model with habitat and time. The majority of
models with the highest conditional R2 were single-pattern models with habitat and time. Of these
single-pattern models, temporal patterns (Migratory and Resident Species models) had higher conditional
R2 for interaction models, and spatial patterns (Urban and Forest Species models) had higher conditional R2

for additive models. Multi-pattern models generally explained less variance in their random effect (lower
conditional R2), but exhibited higher relative marginal R2 (variance from fixed effects only) (table 2). Note,
although marginal R2 may decrease with an increase in the number of fixed parameters, it is unlikely as the
variance explained by the fixed effects will increase [40].

4. Discussion

4.1. Improving models of ARO severity using multiple animal activity patterns
Overall, we found that modeling ARO severity using diverse bird species and all of their exhibited activity
patterns did not greatly improve model performance over models using low dimensional, single-patterns or
only time and habitat cover as predictors of SAIDI. However, the dominant temporal activity patterns
belonging to species with different biological characteristics, i.e. migratory and overwintering behavior, were
important covariates of ARO severity. Although model performance varied across different model
performance metrics, SAIDI models using single bird activity patterns had the highest AIC weight, which
could have been due to their greater parsimony, and had a relatively high conditional R2 compared to models
that included multiple bird activity patterns from diverse species covariates.

Outage-prone bird species in MA either had little variation in activity across the state or over time, or
exhibited a combination of four main spatio-temporal patterns (summer peaks in migrant species activity,
winter peaks in overwintering residents, concentrations of urban generalist species activity in developed
areas, and concentrations of forest specialists in rural areas) resulting from distinct behavioral traits and life
histories. Species that had similar traits also shared complementary activity patterns. Migratory species such
as Osprey (OSPR) and RWBL had the strongest seasonal fluctuations in activity and are nearly inactive in the
state during the winter (figure 4(C)), while late spring into fall had the highest levels of activity for these
species during breeding and migration. Resident woodpecker species have more stable, year-long activity and
increase in activity during the winter likely due to northern populations moving south and overwintering in
the state (figure 4(A)). Species such as PIWO, that occupy large, intact mature forests are distributed across
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Table 2.Model set comparing whether including multiple bird activity patterns improved models of SAIDI. The model set was broken
into three hypotheses: 1. Non-activity model with habitat and time (null model), 2. the null model with a single bird activity pattern
(Single-Pattern Model), and 3. the null model with multiple bird activity patterns (Multi-Pattern Models). The multi-pattern models
used all study species detection rates (All Species), the PCs of all study species detection rates (All PC), and a model that uses one
representative species from four dominant spatio-temporal trends in bird activity (All Representative Species). The single-pattern
models used only one of these four representative species at a time. Model performance is compared with conditional R2, marginal R2,
AIC weight (AIC; measure of model parsimony), and the number of fixed effects included in each model. Models are ordered by AIC
weight.

Model
hypothesis ln(SAIDI) ∼ model

R2

conditional
R2

marginal
AIC

weight
Fixed
effects

Single-Pattern
Model

Resident Species, Habitat, and Time
(Additive)

0.1693 0.0551 0.6247 17

Multi-Pattern
Model

All PC, Habitat, and Time
(Additive)

0.1695 0.0549 0.1057 18

Null Model (No
Bird Activity)

Time and Habitat 0.1701 0.0542 0.0895 16

Multi-Pattern
Model

All Representative Species, Habitat,
and Time (Additive)

0.1683 0.0548 0.0492 20

Single-Pattern
Model

Migrant Species, Habitat, and Time
(Additive)

0.1696 0.0543 0.0465 17

Single-Pattern
Model

Forest Species, Habitat, and Time
(Additive)

0.1696 0.0540 0.0385 17

Single-Pattern
Model

Urban Species, Habitat, and Time
(Additive)

0.1698 0.0541 0.0362 17

Single-Pattern
Model

Migrant Species, Habitat, and Time
(Interaction)

0.1709 0.0557 0.0074 29

Multi-Pattern
Model

All Species, Habitat, and Time
(Additive)

0.1694 0.0572 0.0015 27

Single-Pattern
Model

Resident Species, Habitat, and Time
(Interaction)

0.1700 0.0559 0.0005 29

Single-Pattern
Model

Forest Species, Habitat, and Time
(Interaction)

0.1648 0.0523 0.0002 29

Single-Pattern
Model

Urban Species, Habitat, and Time
(Interaction)

0.1697 0.0550 0.0001 29

Multi-Pattern
Model

All Species, Habitat, and Time
(Interaction)

0.1692 0.0665 0.0000 159

Null Model (No
Bird Activity)

Time 0.1688 0.0113 0.0000 12

Multi-Pattern
Model

All PC, Habitat, and Time
(Interaction)

0.1673 0.0554 0.0000 42

Multi-Pattern
Model

All Representative Species, Habitat,
and Time (Interaction)

0.1652 0.0567 0.0000 68

Multi-Pattern
Model

All PC 0.1601 0.0051 0.0000 3

Single-Pattern
Model

Resident Species 0.1602 0.0008 0.0000 2

Multi-Pattern
Model

All Species 0.1565 0.0215 0.0000 12

Single-Pattern
Model

Migrant Species 0.1576 0.0026 0.0000 2

Null Model (No
Bird Activity)

Habitat 0.1583 0.0430 0.0000 5

Single-Pattern
Model

Urban Species 0.1557 0.0043 0.0000 2

Multi-Pattern
Model

All Representative Species 0.1495 0.0105 0.0000 5

Single-Pattern
Model

Forest Species 0.1463 0.0043 0.0000 2

forested areas in rural sections of MA (figure 5). In contrast, opportunistic species such as the NOFL can take
advantage of smaller forest patches within the suburbs of urbanized areas in the state.

The redundancy of these four main species activity patterns within our study species aligns with our
model results. Using one representative species from each of these patterns was sufficient for estimating
ARO severity and adding species that exhibited the same patterns did not add additional information. We
found including migratory bird activity with habitat and time explained the greatest variance in SAIDI
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(conditional R2) and including resident bird activity with habitat and time was ranked the top performing
model for AIC. The importance of both these models could also be indicative that different groups of species
contribute more to outages at different times of the year, depending on their life history traits and timing for
biological cycles such as migration and breeding. In this case, considering more than one animal activity
pattern (as opposed to simply diversifying species) could still be important to account for the effects of
biological patterns and mechanics on ARO severity.

4.2. Data considerations for future studies of AROs
Despite diverse bird activity showing less importance for ARO severity compared to single activity patterns
or simply measures of habitat and time, this finding could be specific to our case study location and species.
One explanation could be that birds contribute less to outages in MA compared to other outage-prone taxa
such as rodents or small mammals. Out of our 15 062 ARO records, only 30 records were specifically
recorded as attributed to birds. Our case study also used only one taxonomic group in a relatively small
geographic area and animal-outage interactions are known to vary greatly across geographic locations
depending on local species communities and the engineering design of distribution lines [8]. For instance,
bird species played a significant role in modeling outages in Arizona [1], while squirrel biology was used to
reliably model AROs in Kansas [2]. Better data are needed to begin incorporating activity for more diverse
taxa into analyses of grid reliability, especially for small mammals. Existing species occurrence databases for
these taxa such as i-Naturalist and the Global Biodiversity Information Facility (GBIF) [42] do not compile
complete survey data. As a result, they cannot account for sampling bias and true absences, a benefit that
allows eBird to produce more accurate SDMs.

Animal activity is not the only factor that drives animal-infrastructure interactions. In some cases it is the
increasing susceptibility of existing populations that plays a greater role in determining grid interactions.
Stochastic variables such as weather events can further drive bird-infrastructure interactions by increasing
bird susceptibility to line collisions, while data on infrastructure composition can improve knowledge of
species-infrastructure overlap and exposure. In these cases, the spatio-temporal distribution of species may
be important for explaining animal activity, while species distributions in conjunction with stochastic
environmental data such as extreme weather events and information on infrastructure may add further
understanding to the relationship between animals and electrical grid reliability (figure 2). Therefore, the use
of animal activity as an indicator of grid reliability could be strengthened by including additional
environmental and infrastructure data alongside estimates of species activity.

A further data limitation in our study was the inconsistent reporting in the outage data we obtained from
utility companies. The reported ARO causes in our data consisted of mostly non-descriptive classifications,
i.e. ‘animal’ or ‘animal-other,’ with taxon specific causes identifying between birds and squirrels limited to a
few hundred records. In many cases AROs can be difficult to report, with animals moving away from the site
after causing an outage, or predators carrying away carcasses [12]. Legal processes can also deter reporting of
species protected by conservation laws. As a result, accurate ARO data and their specific causes can be
difficult to extract from reported outage records. In order to improve our understanding of AROs, there
continues to be a need for better data in both the ecology and energy sectors.

5. Conclusions

We highly recommend further collaborations between energy experts and ecologists to study the importance
of diverse animal activity patterns in estimating grid reliability, as there is currently a lack of research on this
topic. Future studies could use our framework applying community science data to supplement sparse
ecological data for studying AROs in other geographic locations. Additionally, future work should apply
activity patterns of non-bird taxa to ARO models as standardized observation data and fine scale species
distribution models for these other taxa become more widely available. Furthermore, collaboration may lead
to development of better modeling strategies. We explored many linear mixed models, but a mechanistic or
non-linear model may better explain the patterns in ARO severity. Additionally, improvements in data
collection and study design may be explored.

Although further studies with different taxa, species, and geographic locations should be considered to
validate our findings, our conclusion that multiple dominant animal activity patterns were important
predictors of grid reliability indicates that more than one life history characteristic should be considered in
studies of AROs. However, obtaining activity data for multiple species may not be necessary as long as these
dominant patterns are captured. Making the best available resources from quantitative ecology known to
outside disciplines can allow for more successful interdisciplinary data analyses between ecological and
non-ecological disciplines. Species distribution modeling is used by ecologists to estimate the distribution of
species across continuous spatio-temporal resolutions from observational data collected by limited biological
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surveys. We suggest that SDMs in combination with more widely available community science databases can
be used to improve the availability of animal activity estimates in models of AROs and allow these models to
be applied to more diverse regions.
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