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ABSTRACT The demand for mobile video streams is constantly increasing. With this demand comes a
need for mobile devices to receive more videos at ever increasing quality. However, due to the large size of
video data and intensive computational requirements, video streaming requires frequent memory access that
consume a substantial amount ofmobile device power; as a result, the battery life of mobile devices is limited.
In this paper, we present a video content-adaptable Region-of-Interest (ROI)-aware video storage technique
that promotes power savings. During the video encoding process on the transmitting server, based on the
macroblock variance and ROI characterization, the ‘‘macroblocks of interest’’ are identified and embedded
in the encoded bitstream. In the decoding process, a new frame buffer with dynamic power-quality trade-
off is presented to adapt to the macroblock characteristics during run-time. Results from the system-level
and circuit-level simulations show that the proposed technique enables substantially more truncated bits and
significant power savings while delivering similar or better video quality as compared to other state-of-the-art
solutions.

INDEX TERMS Content, memory, region of interest, power consumption, video quality.

I. INTRODUCTION
Recently, mobile video streaming on YouTube, Vimeo, and
Netflix has increased quickly and will consume approx-
imately 79% of the total internet traffic by 2027 [1].
At the same time, power-efficient video storage has proven
to be a very challenging problem to solve. This is due
to the large data sizes associated and intensive computa-
tional requirements demanding frequent data access. With
the advancement of computing technologies, more video
streaming services deliver content to battery-powered mobile
devices: such as smart phones and Internet-of-Things (IoT).
On one hand, these devices would benefit greatly from low-
power consumption as this would extend their battery life.
On the other hand, the mobile video streaming process –
receive, decode, and display of a video bitstream – consumes
considerable power and limits the mobile devices’ battery
life. For example, with a video decoding chip, embedded
memories contribute to over 50% of the decoding power
consumption [2]. This use-case is only expected to grow
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for the next-generation video formats, H.265/HEVC and
H.266/VVC, which has 2x-3x greater memory demands
when compared to H.264 [3].

Today’s mobile hardware designers, including memory
designers, are focusing on hardware-level energy-efficient
design techniques in order to accommodate the large amount
of video data. However, these design techniques usually
come with significant implementation overhead (e.g., silicon
area, delay) to solve failure problems in memories. We have
recently explored viewer-aware video memory design by
investigating the impact of illuminance levels in different
viewing surroundings on the viewer’s experience [4]–[7],
as shown in Fig. 1. Our previous studies illustrate a new
dimension of power savings for hardware design through the
introduction of viewer awareness, but the developed memo-
ries cannot adapt to a wide variety ofmobile videos. To enable
an optimized trade-off between power efficiency and video
quality, this paper aims to develop a video content-adaptable
Region-of-Interest (ROI)-aware memory for general videos.
Specifically, this paper makes the following contributions:
• An intelligent ROI-aware and content-adaptive frame-
work is proposed to determine video frame regions
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FIGURE 1. Proposed content-adaptable ROI-aware low-power video
memory. The direction of an arrow indicates the development from one
previous technique to a newer one.

to preserve (output quality) or truncate bits for power
savings. The truncation is applied for all Luma and
Chroma video data (i.e., Y, U, and/or V components)
(Section III).

• The system-level implementation scheme of the pro-
posed technique is developed and discussed (Sections
IV-A, IV-B, and IV-C).

• A low-power low-cost frame buffer with dynamic
power-quality trade-off is developed to adapt to the
video content (i.e., macroblock characteristics) during
run-time (Section IV-D).

• A comprehensive suite of simulations on the pro-
posed technique is performed and the enriched results
are discussed, including the performance, circuit-level
power efficiency, video-level power efficiency, number
of truncated bits, and output quality of various mobile
videos (Sections VI-A, VI-B, VI-C, and VI-D).

• An extensive statistical analysis demonstrates the effec-
tiveness of the proposed technique in achieving signif-
icant bit truncations and power savings as compared
to the state-of-the art, particularly for the videos with
medium or high variance (Section VI-E).

To the best of the authors’ knowledge, this is the first work
that seamlessly integrates ROI knowledge, i.e., ‘‘macroblocks
of interest’’, into the hardware design process.

The organization of the paper is as follows. A review of
low-power video memory designs is provided in Section II,
Section III presents the macroblock variance and ROI study,
and Section IV discusses the proposed technique. We discuss
the evaluation methodology and results in Sections V and VI
respectively, and finally, we conclude the paper in
Section VII.

II. STATE OF THE ART
A vast amount of research has been conducted to improve
the power efficiency of video data storage. State-of-the-art,

power-efficient video memories consist of either approxi-
mate memory with application-level information [8]–[12]
or viewer-aware memories with an awareness of viewer’s
experience [4]–[7]. In this section, some of the existing work
related to the proposed technique are briefly reviewed, and the
detailed comparison analysis will be provided in Section VII.

A. APPROXIMATE VIDEO-SPECIFIC MEMORY
Researchers have presented various low-power video mem-
ory design techniques. Chang et al. [8] presented a hybrid
6T + 8T SRAM to achieve quality-power optimization.
Gong et al. [9] developed a hybrid 8T + 10T memory
for power savings based on the correlation between most-
significant-bits (MSBs) of video data. In [10], a heteroge-
neous sizing scheme was presented to reduce the failure
probability of conventional 6T bitcells. The video memory
presented in [11] used the Least-Significant-Bits (LSBs)
of video data to store the MSBs’ error-correction-code
(ECC). Kazimirsky et al. [12] developed a hybrid SRAM +
DRAM memory to store MSBs in robust SRAM bitcells and
LSBs in error-prone DRAM bitcells, leading to a tolerable
output quality with power reduction. However, all of those
video memory designs were developed without considering
viewer’s experience.

B. VIEWER-AWARE VIDEO MEMORY
Wehave investigated viewer-aware low-power videomemory
techniques in [4]–[6]: where an increased amount of ambient
luminance allows for a larger number of bits to be truncated
without noticeable degradation to the viewers. Very recently,
we studied the impact of video content characteristics
on viewer’s experience to enable video content-adaptive
memory with dynamic energy-quality tradeoff [7]. However,
the technique determined the number of truncated LSBs
based on the averaged plain macroblock percentage of an
entire video sample; therefore, it was only effective to store
low-motion videos with a stationary camera or containing a
reporter in a video cast use-case. Additionally, this technique
may result in noticeable distortion, e.g., a banding distortion
caused by bit truncation, which negatively influenced the
viewer’s experience.

The common feature of these viewer-aware storage
techniques is that the same number of the truncated bits were
applied on an entire video. In contrast, the technique proposed
in this paper realizes content adaptation and ROI awareness
within each video frame, thereby maximizing the number of
truncated bits while maintaining the video quality.

III. OVERVIEW OF THE PROPOSED TECHNIQUE
In this section, we first present the motivation of the proposed
technique that introduces ROI awareness as bit truncation is
applied for power savings. Then, the high-level overview of
the proposed technique is shown.

A. MOTIVATIONAL EXAMPLE
Researchers conducted studies on the human visual system’s
(HVS) performance and concluded that viewers usually
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FIGURE 2. Observer discernable flaws in the facial region due to a
‘‘banding effect’’ on the face when comparing (a) and (b) caused the
overall quality of the frame to become unacceptable at 3 truncated bits
(Video tag: wF6lvdXXwc4 from [14]).

pay more attention to one or a few areas of a video and
the region of concentration is called Region-Of-Interest
(ROI) [13]. For example, in video conferencing applications,
viewers typically pay more attention to the face regions
than other areas. In video surveillance, the facial regions
are what viewers concentrate most on in consecutive
frames. Accordingly, ROIs have higher contribution towards
the overall visual quality than other areas. Consequently,
if truncation-caused banding distortion appears in ROIs, this
will negatively influence a viewer’s experience. Fig. 2 shows
one example. The output quality of the video (Video tag:
wF6lvdXXwc4 [14]) using the technique in [7] is shown
in Fig. 2 (a). Since the banding distortion caused by bit
truncation appears on the reporter’s face, viewers were

FIGURE 3. Proposed region-of-interest and macroblock texture
framework.

less likely to accept the displayed degradation due to this
particularly noticeable distortion, as emphasized in [7].

Therefore, the motivation for this work arises from the
following two observations:
1) In a video frame, the distortion in ROIs is more

noticeable by viewers. Accordingly, if ROIs can be extracted
and protected from truncation, the video quality would
be improved from the viewer’s perspective (Fig. 2 (b)).
A comparison of the report’s face using the technique in [7]
and the proposed technique with ROI awareness is shown in
Fig. 2 (c).
2) There existed a positive correlation between power

savings and the number of bits truncated in a video decoder’s
frame buffer memory [7]. To optimize the power efficiency,
it would be beneficial to increase the number of truncated bits
in other regions which are not ROIs: the truncation regions.

B. OVERVIEW OF THE PROPOSED CONTENT-ADAPTABLE
ROI-AWARE VIDEO STORAGE
Fig. 3 shows the proposed content-adaptable ROI-aware
video storage technique. During the traditional mobile video
streaming process, first, from (1) in Fig. 3, the mobile
device requests a video for display from the cloud. Then, the
streaming servers process the requested video by encoding
and transmitting the encoded bitstream to the mobile device
for decoding and display, (2) in Fig. 3. During this process,
multiple memories are needed for storing the intermediate
and final results of the frame data. In particular, the reference
macroblock, frame memory, and display memory, which
store the decoded video frames, are accessed very frequently,
and they have a profound impact on the system’s overall cost
and power consumption. The proposed technique extracts
ROIs in the cloud server and transmits the truncation region
data together with the encoded bitstream to themobile device,
(3) in Fig. 3, to further reduce the mobile device’s power
consumption from computational overhead. The mobile
device hardware video decoder receives the truncation region
data and makes memory bit-truncation decisions for greater
power savings with less perceived quality loss than [7].
To optimize the truncation decision logic of the mobile device
hardware, which further improves power consumption, either
no truncation or 3-bit truncation is applied to the truncation
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regions. Explicitly, the proposed technique is detailed as
follows.

1) ROI AWARENESS
ROI has been recently applied for different research areas
for video system optimization, such as wireless transmis-
sion [15], virtual reality (VR) [16], and video summariza-
tion [17]. The proposed technique introduces ROI awareness
into video storage. Specifically, to minimize the complexity
and computational overhead, we focus on the faces as ROIs
in our analysis based on the basic machine learning facial
detection OpenCV model [18]. Different algorithms, such as
user attention model [13], motion-based models [17], and
machine learning models [19], can be applied in our future
investigations to extract different ROIs. It should be noted
that the complexity of ROI extraction algorithms is a trade-off
between video quality, computational complexity, and power
consumption. A simple ROI extraction algorithm will save
compute resources and power from video encoding. Also, the
algorithmmay transmit fewer truncation region bits to mobile
devices, thus more pixel bits will be truncated for power
savings in the mobile devices. The drawback is that it will
influence the video quality negatively. Alternatively, a more
complex ROI algorithm will identify additional regions and
therefore, can convert a video without ROI to a video with
ROI, which will benefit the video quality, but it will reduce
the power savings due to the less truncated bits and increased
computational complexity.

2) VIDEO CONTENT ADAPTATION
After the ROIs to preserve are detected and captured by the
framework ROI Identifier, it then searches for regions of low
variance measured by the percentage of plain macroblocks
(MBs). Specifically, a MB defines an area of 16 × 16 pixels
within a frame. An attribute associated with MBs is how
‘‘Textured or Plain’’ they are. A Plain MB is one in which the
variance of intensity within the MB is less than or equal to
the threshold value. It has been concluded in [7] that textured
MBs are less susceptible to bit-truncation. We will adopt
the pre-established method from [20] for determining the
variance in a MB.

VMB =
∑15

i=0

∑15

j=0
(P (i, j)− ρMB)2 � 8 (1)

MB =

{
Plain, if(VMB ≤ Thlow)
Textured, Else

(2)

Equations (1) and (2), where ρMB is the average
brightness within the MB, VMB is the texture variance
within the MB, and traditionally, Thlow is defined as a
value of 1.25 [21].

3) TRUNCATION REGION EXTRACTOR
After ROIs are identified on the server, a truncation
region extractor encodes the truncation region data using
a proprietary protocol per frame and transmits in synchro-
nization with the encoded video transmission to the mobile

device. The truncation region data is decoded onboard the
mobile device’s hardware video decoder in a novel Memory
Bit Truncation Manager (MBTM) hardware unit: which
truncates a novel frame buffer memory through the use of
unique control YUV truncation signals. The video decoding
and bit truncation processes occur in lockstep.

4) 3-BIT TRUNCATION
Truncation is performed in the YUV (Y’CbCr) color
space [22], inferring that any truncation is done to the YUV
color values. The memory designed in [7] truncated 1, 2, or
3 bits in the Least Significant Bits (LSBs) of the Y vector1

of all frames within an entire video as a blanket truncation.
The proposed technique will enable a different amount of
truncated bits for each region within each frame within an
entire video. To minimize the implementation overhead, only
3-bit truncation is adopted in the new frame buffer, which
will be discussed in Section IV-D. Meanwhile, the proposed
technique can identify bit-truncation for each Y, U, and V
vector of the frame separately for each truncation region
in each frame, instead of only truncating the Y vector as
a blanket truncation across the entire video as the existing
techniques [4], [5], [7]. Furthermore, the proposed technique
is expected to enable additional bit truncations as compared
to existing techniques. Also, to minimize the video quality
degradation caused by bit truncation, the developed frame
buffer truncates three LSBs to the optimal value ‘‘100’’ [7],
instead of truncating the values to ‘‘000’’.

Fig. 4 shows the Akiyo video sample using the proposed
technique. The extracted preserved ROI region is high-
lighted in pink. All truncation regions within a frame are
identified, including the following seven possible truncation
combinations: (1) Green, Y vector truncation; (2) Blue,
U vector truncation; (3) Yellow, V vector truncation; (3) Dark
blue, YU vectors truncation; (5) Dark Yellow, UV vector
truncation; (6) Dark green, YV vectors truncation; and (7)
Grey, YUV vectors truncation. Each of these combinations
would be encoded in the truncation region data for theMBTM
to generate control signals for memory bit truncation in the
video decoding process.

To conclude, our proposed technique truncates the chroma
sub samples within each frame as well as the luminosity:
Y, U, and V vectors. Previous research only targeted lumi-
nosity, Y, of a video for truncation, while chroma samples
were disregarded for the entire video. Also, our technique
preserves ROIs that impact viewer perception most, while
enabling greater truncation for each Y, U, and V vector
for the truncation regions with textured MBs. Accordingly,
the proposed technique will realize a greater number of
truncation while preserving visual quality. The system-level
and circuit-level implementations of the proposed technique
will be discussed in Section IV.

1The word vector means all bytes of a component – Y, U, or V – in one
frame.
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FIGURE 4. Akiyo from [28], sample visualized, as generated internal to
the proposed method’s frame parsing process. Pink, preserved ROI. Seven
possible truncation combinations: 1. Green, Y vector truncation. 2. Blue,
U vector truncation. 3. Yellow, V vector truncation. 4. Dark blue, YU vectors
truncation. 5. Dark Yellow, UV vector truncation. 6. Dark green, YV vectors
truncation. 7. Grey, YUV vectors truncation.

IV. PROPOSED TECHNIQUE: SYSTEM LEVEL AND
CIRCUIT LEVEL IMPLEMENTATION
This section presents the system-level and circuit-level
implementation of the proposed technique.

A. SYSTEM-LEVEL IMPLEMENTATION: VIDEO STREAMING
PLATFORM
Fig. 5 shows the developed system-level video streaming
platform. As shown, a Raspberry Pi [23] microcontroller
was used to serve as a video streaming server with which a
mobile device would communicate and retrieve video data.
Also, we utilized a Z-Turn 7020 [24] board and synthesized
an H.264 video decoder into the on-board Xilinx Zynq
7020 Field Programmable Gate Array (FPGA) which would
operate as a mobile device. Finally, we captured the decoded
video data via a Magewell [25] HDMI Video Capture &
Display Device.

FIGURE 5. H264 video stream demonstration platform hardware system.

The corresponding block diagram for Fig. 5 is illustrated
in Fig. 6. The video streaming process is kicked-off by a
command from the mobile device to the server to retrieve
an encoded H.264 video stream over Secure Copy Protocol
(SCP) [26]. The mobile device sends the initial kick-off
command to the server over a serial terminal on a PC
interfaced with the mobile device over USB. The server then
processes the video stream requested by the mobile device
by both transmitting an H.264 encoded format of the video
stream over SCP to the mobile device and parsing the frames
for truncation region information.

After the video frame is parsed on the server, the truncation
region information is transmitted over GPIO per frame. In our
developed system, the protocol is defined in Table 1. Only
the truncation region information of the frames that would
be truncated is transmitted. The preserved ROI information
will not be transmitted as these regions are identified prior
to the transmission on the server and preserved. As listed
in Table 1, the first index, index 0, denotes the current
frame number parsed. The second index, index 1, denotes
the number of truncation regions to truncate. Then the next
indices denote the first three YUV truncation signal bits
plus two sets of XY coordinates denoting the left top and
right bottom corners of rectangles grouping the affected
truncation region. These three indices repeat for each region
called out by the ‘‘Number of Regions’’, index 1. The GPIO
interface data width bit size of the developed system is 22-
bits per index. The 22-bit distribution is to account for a
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FIGURE 6. Mobile video steaming system block diagram.

TABLE 1. Truncation region GPIO protocol. (a) Server-to-mobile device. (b) Mobile device-to-server.

maximum of 211 × 211 pixel addressing – a max resolution
of 1,920 × 1,080 – totaling 22 bits. There is an additional
2 handshaking bits between the server and mobile device to
denote data reception confirmation in-order to transmit the
next index.

This truncation region information will be transmitted to a
MBTM for processing in the mobile device side, as discussed
in Section IV-B. The MBTM will generate control signals
for the frame buffer memory, thereby determining which
sub-pixels – from Y, U, and/or V – shall be truncated
for each frame written to the frame buffer memory, which
will be detailed in Section IV-D. Finally, the decoded and

bit-truncated frame is output over HDMI from the mobile
Device and captured by the Video Capture & Display
Device.

B. MEMORY BIT TRUNCATION MANAGER (MBTM)
The MBTM implemented into the H.264 decoder parses the
protocol data that is transmitted by the server’s Truncation
Region Extractor. The flow is broken down as follows. First,
from Fig. 7 (a), the encoded frame is transmitted via SCP to
the mobile device. Fig. 7 (b) illustrates the truncation regions
determined to be bit-truncation capable on a sub-frame vector
level: Y vector, U vector, and V vector each encompassing
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FIGURE 7. (a) Encoded frame 175 from Johnny_1280 × 720_60 video [28].
(b) Visual of areas being truncated. 45 regions total. (c) Output decoded
frame. 2,282,496 bits truncated.

all the sub-frames summing to a frame. From Fig. 7 (b),
the gray areas denote the truncation regions determined to
be bit-truncation capable for all Y, U, and V vectors. The
areas in boxes are regions where only 1 or 2 vectors were
determined to be bit-truncation capable. Two coordinates,
top-left and bottom-right, are highlighted in Fig. 7 (b) for each
of these regions to show how the truncation region data was
used to determine the regions to truncate using the protocol
in Table 1. A total of 61 regions to truncate are shown in
Fig. 7(b). Fig. 7 (c) shows the resultant frame after Fig. 7 (a) is
decoded using the identified truncation region information.
As shown, the preserved ROI around the face, pink region
from (b), is not truncated to avoid visual quality degradation.
The frame is decoded normally, but when it is written into the
frame buffer, the transmitted truncation region information
is used to control the T_Y, T_U, and T_V control inputs

to truncate the frame buffer memory as it is written. These
control inputs are provided to [28] in detail in Section IV-D.

C. H.264 DECODER AND MBTM INTEGRATION
A H.264 video decoder is implemented based on the Open
Source Osenlogic OSD10 decoder IP [27]. This decoder
was capable of decoding baseline profile level 3.1 encoded
bitstreams. The slice types supported were I-Slice, SI-Slice,
P-Slice, and SP-Slice [28]. The entropy coding profile
supported was Context-Adaptive Variable-Length Coding
(CAVLC). The decoder took an H264 Network Abstraction
Layer (NAL) bitstream and output YUV 4:2:0.

During the NAL bitstream parsing process, the bitstream is
parsed into raw bytes of syntax elements from the Raw Byte
Sequence Payload (RBSP). Within the RBSP, therein lies the
slice layers. Ignoring the Sequence Parameter Set (SPS) and
the Picture Parameter Set (PPS), the Instantaneous Decoder
Refresh Access Unit (IDR Slice(s)) and the slice layer
includes all slice headers and slice data for the frames that
shall be truncated using the MBTM. H.264/AVC defines a
frame as an array of luma samples and two corresponding
arrays of chroma samples: denoted as YUV.

Specifically, the slice header includes the parameters
first_mb_in_slice, which indicates the position of the first
macroblock in the slice data, and frame_num, which repre-
sents the order in which a video decoder shall decode the
encoded frames. This is not the same as the display order or
Picture Order Count (POC), which is the order in which the
frames are displayed. The frame_num parameter is used to
determine which frames during the decoding process would
be susceptible to YUV bit-truncation by the MBTM and the
first_mb_in_slice is used to determine the starting coordinates
of the macroblocks susceptible to bit-truncation. The slice
data included all the macroblocks of the slice.

After the MBTM determined that a frame would be
truncated, through a conditional match between the frame
number parameter fromTable 1 (a) and frame_num, a running
count of the current macroblock index was kept track
of internally to the MBTM from the slice data starting
with the index of first_mb_in_slice. After the MBTM
determined that a macroblock would be truncated, through
a conditional match of the running macroblock index and
the truncation region given by the two indices from Table 1
(a) that indicate the rectangular region which YUV truncation
would be applied, the MBTM passes through the YUV
truncation signal, from Table 1 (a), to the frame buffer
which would result in the macroblock being truncated to the
desired amount. An internal signal denoting the number of
macroblocks truncated in the frame is then incremented. After
all the macroblocks desired to be truncated in the frame are
truncated, denoted by the number of ROI parameter from
Table 1 (a), then Table 1 (b), the Send Frame Flag is set
then reset by the MBTM over GPIO to signal the next frame
information to truncate. From Table 1 (b), the Frame Number
Request index is used to fetch any frame index truncation
information for macroblocks that required multiple frames

26836 VOLUME 10, 2022



A. Haidous et al.: Content-Adaptable ROI-Aware Video Storage for Power-Quality Scalable Mobile Streaming

FIGURE 8. Circuit-Level implementation of the proposed frame buffer memory.

FIGURE 9. Timing diagram of the frame buffer circuit.
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FIGURE 10. Hardware FPGA system implementation results without BTM.
(a) On-Chip Power, Total Power: 2.203W. (b) Resource allocation.

for prediction. This process is repeated until the end of the
NAL bitstream.

The trade-off with utilizing the BTM is the additional
GPIO parallel bitstream overhead required to truncate the
macroblocks in each frame. Each frame parsed had an
absolute worst case overhead of approximately 380,738
additional bits to transmit using the protocol from Table 1.
This worst case is calculated assuming every macroblock
with 16 × 16 pixels in a maximum resolution of 1,920
× 1,080 would be truncated differently per frame in a
video. On average, however, the number of additional
bits transmitted per frame is 1,200, because the maximum
resolution of each frame is 1920 × 1080 and the truncation
regions are combined to encompass a greater area in the
video to save on bits transmitted: on average 50 truncation
regions per frame. With a 1920 × 1080 video at 30 frames
per second progressive (1080p 30fps) or a 1280× 720 videos
at 60 frames per second progressive (720p 60fps), i.e. 5,000
kbps bit rate, the worst case percentage overhead would be
7.62% with an average of 0.02% per frame. The protocol
utilized is one of the simplest methods to implement the
proposed technique.

D. CIRCUIT-LEVEL IMPLEMENTATION OF THE PROPOSED
FRAME BUFFER MEMORY
During the video decoding process, multiple memories are
needed. In particular, the frame buffer memory is accessed
very frequently and it has a profound influence on the
system’s overall cost and power consumption [7]. In this
paper, a new frame buffer is designed, and the circuit-level
implementation is shown in Fig. 8. Specifically, the logic
in the truth table highlighted in yellow was designed to be
supported by the MBTM. Here, T_Y, T_U, and T_V are
utilized to truncateY,U, andV byte from theword. Eachword
consists of a Y, U, and V byte. During theWrite Enable (WE)
phase of the frame buffer memory access, if either control
line of T_Y, T_U, and / or T_V are asserted, the memory
would truncate the 3-LSB of the optimal asserted vector as
‘‘100’’ [7].

The proposed frame buffer has M words and each word
consists of N bits. To evaluate the functionality and measure
average power consumption of this proposed circuitry, a
128-word by 24-bits memory array is designed. Here, input
and output pins are denoted as data[23:0] and out[23:0]
respectively. Bits 23-16 are named Y byte, bits 15-8 are
named U byte, and bits 7-0 are named V byte. The memory
implemented had a driver and sense amplifier for writing and
reading data. These enabled bit truncation according to T_Y,
T_U, and T_V control signal activation. If T_Y, T_ U, and
T_V are all de-asserted as logic ‘0’, then the frame buffer
would operate as a traditional memory device where the sense
amplifier would operate with a supply voltage (VDD) and
pre-charge signal phi2b. When the T_Y signal is asserted as
logic ‘1’, the peripheral circuitry would generate two signals:
y! which is the inverted value of T_Y and y_pre! which is
inverted value of the pre-charge enable signal. These two
signals are used to control the sense amplifier for the Y byte’s
3-LSBs, thereby enabling truncation. During this process, the
VDD for this sense amplifier remains grounded and the pre-
charge signal would be reactivated. As a result, the power
consumption of this portion of circuitry will be reduced as
compared to the normal operation. During the read back
operation, the 3-LSBs are generated as ‘‘100’’ though use
of three 2:1 multiplexers in-place of regular of data output.
When the bit truncation is asserted, these multiplexers would
select ‘‘100’’ through control signals y!, u!, or v!. Otherwise,
these multiplexers would pass normal readout data values.
In addition, the VDD of all the 3 LSBs of each byte are also
controlled by the corresponding control signals y!, u!, and v!.
During the truncation, VDD for LSBs can be powered off to
save power consumption and multiplexers will select ‘‘100’’
as the output data, thereby achieving low-power operation.
The detailed timing diagram and power efficiency of the
proposed memory will be discussed in Section VI.

V. EXPERIMENTAL METHODOLOGIES
This section discusses the metrics, methods, and strategies
used to evaluate the effectiveness of the proposed technique.
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FIGURE 11. Hardware FPGA system implementation results with BTM.
(a) On-Chip Power, Total Power: 2.271W. (b) Resource allocation.

FIGURE 12. Power savings (one word) of the frame buffer circuit.

The testing and analysis setup used to generate the experi-
mental results is also discussed.

A. VIDEO SELECTION
To verify the effectiveness of the proposed technique, such
as video quality, power savings, and number of truncated
bits, 74 videos with diverse characteristics were selected
from Xiph.org Video Test Media [29]. Of those videos,

60 videos contain facial features to enable ROI preservation
using the proposed technique. All videos were converted to
the YUV 4:2:0 chroma subsampling standard for ease of bit-
truncation. The results are presented in Sections V-B to D.
We further conduct statistical analysis using all 889 videos
of 1080p resolution or lower selected from the YouTube
UGC dataset [30] and Xiph.org Video Test Media [29].
Of those 889 videos, 699 videos contain facial features for
ROI analysis, which will be detailed in Section VI-E.

B. VIDEO FRAME QUALITY METRICS
Existing video quality metrics such as Peak Signal-to-Noise
Ratio (PSNR) and structural similarity (SSIM) [31], which
are used widely to evaluate the video quality, fail to incor-
porate the importance of ROI. This is because these metrics
weigh all pixels of the video equally, regardless of the ROI
impact on user awareness [32]. For this reason, an additional
video quality metric – Weighted PSNR (WPSNR) – is also
used in this paper to evaluate the quality of videos with
ROI [22], which is defined as [33]:

WPSNR = 10log10(255
2/Dframe)

Dframe = α ∗MSE
(
f, f′

)
+ (1− α) ∗MSE

(
f, f′

)
(3)

where MSE stands for the Mean Squared Error between the
original frame and after truncation while α (alpha) is defined
as the weight that the ROI would have. The α value will
be a constant value of 0.9 following the previous research
in [22]. WPSNR is a metric that can be used to evaluate
quality for videos with ROI. Videos without ROI information
are evaluated using both PSNR and SSIM [32].

C. SYSTEM- AND CIRCUIT-LEVEL IMPLEMENTATION
The hardware system platform from Fig. Fig. 5 implemented
an H264 decoder synthesized into a Xilinx Zynq XC7Z010
FPGA fabric. The H264 decoder IP Core was designed using
the Xilinx Vivado 2019.2 [34] software design suite. This
same decoder is modified to include an MBTM. The FPGA
was commanded via an ARM Cortex-A9 Processor running
on a Linux Operating System through a custom baseband
driver.

The circuit-level frame buffer is implemented using a 45nm
CMOS technology [35]. The supply voltage is 1.0V. The
memory size is 128 words at 24 bits per word.

D. VIDEO QUALITY EVALUATION
All selected videos were analyzed using an in-house custom
software tool. The tool operated in the following three-step
process: (i) Load one original video frame from memory; (ii)
Apply both the method in [7] and the proposed method to the
original frame and generate the truncated frame using each
method; and (iii) Compare the frames generated against the
original frame and calculate the PSNR, SSIM and WPSNR
values. With data points collected on a per-frame basis, the
average PSNR, SSIM and WPSNR of each video stream was
calculated and compared.
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TABLE 2. Summary of system overhead/cost using the proposed method at 1920 × 1080 resolution.

E. STATISTICAL HYPOTHESIS VALIDATION
From the proposed method, the following hypothesis was
conjectured: the differences between the method in [7] and
the proposed method follow a Weibull distribution. This
should hold true for power savings and different video
quality parameters including PSNR, SSIM, and WPSNR.
To support this hypothesis, a goodness of fit regression
test was preformed to determine if the data falls within
the probability plot of a Weibull distribution. The intention
behind this analysis was to identify patterns in the output
videos that serve to estimate the differences in quality and
noise for any given input video. If the data follows this
hypothesis, this would suggest that the sample set of videos is
of adequate size and as a result, no more videos would need
to be tested.

VI. EXPERIMENTAL RESULTS
A. IMPLEMENTATION OVERHEAD
Fig. 10 and Fig. 11 show the post-implementation results of
the baseline H264 decoder and the H264 decoder modified
to include an MBTM. When comparing both figures, one
observes that the Lookup Table (LUT) overhead, which is
the additional logic gates required for the proposed design
over the baseline, was 204 LUTs or a 0.38% increase in
area. The I/O, which was used for the server-to-mobile device
interface, increased by 37, or 29.6%. The power consumption
of the modified decoder also increased by 0.068 watts or
0.03%: most of which was attributed to the increased number
of I/O. Finally, the Worst Negative Slack (WNS) increased
by 0.011ns, which was within acceptable tolerance for this
system as any positive value means that the critical path
passes timing constraints. Overall, this additional overhead
was negligible when compared against the benefits in
power savings and quality improvements achieved using the
proposed technique.

Table 2 summarizes the implementation overhead of the
proposed technique with a video resolution of 1920 × 1080,
which is the maximum resolution supported by the system.
It can be seen that the proposed technique comes at a
cost of bitrate, network overhead, and logic gate overhead.
Specifically, the mobile device needs to receive 1,200
additional bits on average per frame from the server, which is
a 0.02% increase on average per frame, and increases network
uptime by 240µs to transmit the protocol’s additional bits.

Also, it needs 204 additional LUTs to implement the
proposed method, which results in 0.38% area overhead.
The primary advantage of the proposed method is the power
savings enabled by the decoder frame buffer memory, which
will be discussed in detail as follows.

B. CIRCUIT-LEVEL FRAME BUFFER TIMING DIAGRAM
The proposed frame buffer is shown in Fig. 8 and the
simulation timing diagram is shown in Fig. 9. In this
waveform, phi2b, T_Y, y!, and y_pre! denote the pre-charge
(for un-truncated bits), bit truncation enable for Y byte, power
supply for truncated bitcell’s (last 3 LSBs of Y byte), and pre-
charge deactivated signal for truncated bit cells, respectively.
T_U and T_V controlled the bit truncation for U and V
bytes respectively. Write and read enable signals initiated the
write and read operations for the memory accordingly. Data
[23:0] were the three bytes of each word of the proposed
memory buffer. Here, blue to red lines stand for ‘‘don’t
care’’ regions. The red lines denote where the rising clock
edge was initiated for write and read operations. Finally, the
green lines denote that the write and read operations were
enabled. All 8 truncation permutations and traditional read
and write operations were presented in the timing diagram as
an exhaustive simulation of the frame buffer circuit.

It should be noted that, if the bit truncations were initiated,
then 3 LSBs were truncated from the selected byte/bytes
based on the control signals T_Y, T_U, and T_V. During
the read operations, the 3-LSBs of the truncated bytes would
output ‘‘100’’ bits through the utilization of 2:1 multiplexers
instead of being read from memory to save power.

C. CIRCUIT-LEVEL FRAME BUFFER POWER
SAVING ANALYSIS
Fig. 12 presents the power consumption of the proposed
frame buffer in all eight possible conditions, including seven
truncation cases and one baseline case without bit truncation.
Specifically, the eight cases include: (i) No truncation with
control signals T_Y & T_U & T_V = ’0’, (ii) Y vector
truncation with T_Y = ’1’, (iii) U vector truncation with
T_U = ’1’, (iv) V vector truncation with T_V = ’1’, (v) Y
and U vectors truncation with T_Y & T_U = ’1’, (vi) U
and V vectors truncation with T_U & T_V = ’1’, (vii) V
and Y vectors truncation with T_V & T_Y = ’1’, and (viii)
YUV vectors truncation with T_Y & T_U & T_V = ’1’.
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TABLE 3. Visual comparison of selected video frames.

As discussed in Section III-B, for the truncated vectors, the
three LSB will be truncated to ‘‘100’’ to maximize power
savings. All 8 truncation cases presented in Fig. 12 are tested
in 6 ways: when written (‘0’ to ‘0’, ‘0’ to ‘1’, ‘1’ to ‘0’, ‘1’ to
‘1’) and when read back (‘0’ & ‘1’). The power consumed in
each case was calculated, and then the average is presented.

At first, a random word was initialized with (A5A5A5)16,
then the same memory word was immediately read back
with (F0F0F0)16, then all the ‘1’s and ‘0’s written and
read received the same priority in the power consumption
calculations. The same word consumed 3.90E-4 W power
without any bit truncation. When the circuitry selected any
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TABLE 4. Select ROI videos analysis results.

T_Y, T_U or T_V control option, where 3-LSBs were
truncated from each one selected, 6.67% power was saved

when compared against no bit truncation. When T_Y& T_U,
T_Y & T_V or T_U & T_V were selected, where 3-LSBs
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TABLE 5. Select results of non-ROI videos.

TABLE 6. Comparision with prior work.

were truncated from each selected byte, then 13.33% power
was saved when compared against no bit truncation. Finally,
when T_Y, T_U, and T_Vwere selected for truncation, where
3-LSBs were truncated from each selected byte, then 19.74%
power was saved. The supply voltage for this simulation was
1V, where the proposed frame buffer circuit can operate to
specification and had no faulty bit(s).

D. VIDEO VISUAL QUALITY COMPARISONS
Table 3 shows visual frame comparisons for three selected
videos with ROI between the proposed method and [7]. It can
be seen that the proposed technique enables significant visual
quality improvement as compared to [7]. Specifically, for
the Foreman_cif video, due to the truncated LSBs in [7],
the man’s cheeks, forehead, and hat shadows experience
noticeable banding distortion, negatively affecting video
quality. Alternatively, the proposed ROI-aware technique
effectively reduces the banding distortion and improves the

visual quality. Similarly, with [7], the mother_daughter_cif
demonstrates banding distortion around the cheeks and
hair, and the carphone_qcif video suffers from discoloration
around the cheeks and chin. The introduced ROI awareness of
the proposed technique effectively avoids losing the quality of
videos. Another observation from Table 3 is that the proposed
technique achieves a much higher WPSNR value of all three
videos. Amore detailed analysis onWPSNRwill be provided
in next sub-section.

E. OBJECTIVE VIDEO QUALITY AND BIT TRUNCATION
ANALYSIS
Table 4 compares WPSNR values and the number of
truncated bits of 60 videos with ROI using the proposed
technique to the state-of-the art [7]. As shown, the proposed
technique can enable 26.46% additional truncated bits as
compared to [7]. Meanwhile, with the ROI awareness, the
proposed technique can effectively enhance the quality of
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FIGURE 13. Impact of Select video content characteristics on the effectiveness of the proposed technique,
compared to old technique.

the majority of videos. On average, the proposed technique
can increase the WPSNR values by 20.17%, as compared
to [7].

We further analyzed the impact of the MB variance
characteristics (low, medium, and high variance) on the
effectiveness of the proposed technique. The results are
shown in Fig. 13. As can be seen, the WPSNR improvement
strongly depends on the MB variance of videos. Specifically,
videos with high variance achieve the most significant quality
improvement using the proposed technique, with 47.31%
WPSNR increase on average. With the proposed technique,
all videos with medium variance also demonstrate quality
improvement, with 13.74% WPSNR increase on average.
However, the proposed technique shows little video quality
improvement for videos with low variance and even results
in minimal video quality degradation (with 1.75% WPSNR
loss on average. This suggests that the proposed technique is
particularly effective for videos with high and medium MB
variance.

We compared the video quality of 14 videos without
ROI using the proposed technique and the state-of-the
art [7]. As shown in Table 5, the proposed technique
can enable a much larger number of truncated bits, with
quality degradation as compared to [7]. On average, 44.61%
additional truncated bits can be achieved for videos without
ROI, with 3dB PSNR loss. To further assess the video quality
loss induced by the proposed technique, the SSIM value
of each video was evaluated. As observed in Table 5, the
average SSIM with proposed technique and the design [7]
is 0.9726 and 0.9891, respectively. Using the proposed
technique, for the majority videos (13 out of 14), the SSIM
value is much higher than 0.95, which is the acceptable SSIM

threshold value [36]; only one video (i.e., bridge_far_cif)
results in a SSIM of 0.9453, which is very close to the
acceptable SSIM value (i.e., 0.95 [36]). It can be concluded
that the proposed technique can result in significant number
of truncated bits while delivering an acceptable perceived
quality.

F. VIDEO-LEVEL POWER SAVING ANALYSIS
To compare the power effectiveness of the proposed ROI-
aware technique to the traditional memory design and the
state-of-the art [7], we model the power consumption of the
memory for a video as:

P (Videoi) =
1
Ni

Ni∑
j=1

Pk (j)

k ∈ (0, 1, 2, 3) (4)

where Ni is the total number of bytes for the video i, Pk (j)
is the normalized power consumption to store byte j with
k truncated bits. For the proposed memory, k = 3; for
the traditional memory, k = 0; for the memory in [7],
k = 0, 1, 2, or 3. For a fair comparison, the normalized
power consumption Pk (j) is based on the power consumption
reported in [9]. The results are listed in Table 6 and Table 5.
As observed, the proposed technique only consumes 83.79%
and 76.56% total power on average for videos with ROI
and videos without ROI, respectively, as compared to the
traditional memory. Also, the proposed technique achieves
3.06% and 8.26% power savings for videos with ROI and
videos without ROI, respectively, as compared to [7]. It is
worth mentioning that, our analysis only considers the facial
features as ROI of videos and integrating advanced ROI
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identification algorithms will covert videos without ROI to
videos with ROI, thereby further increasing the effectiveness
of our proposed technique to general videos.

G. STATISTICAL ANALYSIS
In order to verify that the selected video analysis results are a
representation of the full population of all videos, we further
carried out a statistical analysis based on 889 different videos,
as discussed in Section V-A. Specifically, the Pearson’s Chi-
square test [37], which is also known as the Chi-Squared
goodness-of-fit test, is used in our analysis. The goodness-
of-fit test checks whether the sample data is likely to be from
a specific theoretical distribution, and therefore represents the
data expected in the actual population. The idea is, if the
sample data does fit an expected distribution, then it shows
that the sample data represents the full population of the
video data in existence. The statistical results will either reject
or accept the working statement called the null hypothesis,
H0, which is the opposite of the alternative hypothesis, H1.
To reject or accept the null hypothesis, several methods
exist, one of which is the Probability value method i.e.
P-Value method. The P-Value is the evidence against the
null hypothesis, i.e., the smaller the P-Value, the stronger
the evidence that the null hypothesis should be rejected.
The P-Value method is based on a critical value, which is
determined based on the distribution. For example, if we are
dealing with a normally distributed population – which we
are according to our statistical results shown later, this critical
value is a z-score. The z-score is a value that is then used to
lookup the P-Value in a Standard Normal z-table, which is
used to then test the null hypothesis. If a P-Value is greater
than an alpha or α value of 0.05, then the statistical results are
‘‘not significant’’ and thus, the null hypothesis is accepted.
However, if the PValue is less than or equal to α values of
0.05 or 0.01, then the results are ‘‘significant’’ or ‘‘highly
significant’’ respectively, and thus, the null hypothesis is
rejected in favor of the alternative hypothesis. The rejection
regions depend on the confidence level that the results are
significant, e.g., if a confidence level is 95%, then an α value
of 5% or 0.05 is chosen: 100% - 95%.

In our analysis, the null hypothesis for the Chi-Squared
goodness-of-fit test, H0, is, ‘‘For the given set of video
data points, a specified distribution accurately represents the
data’’, and therefore, the alternative hypothesis, H1, is, ‘‘For
the given set of video data points, a specified distribution
does not accurately represent the data.’’ Hence, the goal of
the statistical analysis is to validate the null hypothesis and
thus deduce that the specified distribution would fit the data.
To achieve this statistical result, P-values were calculated
for three different video categories – low, medium, and high
variance – for power savings and three different video quality
metrics (i.e., PSNR, SSIM, and WPSNR). In our analysis,
we used the MathWave Technologies EasyFit software [38],
to identify the Chi-Squared goodness-of-fit test, in order to
determine the type of distribution.

FIGURE 14. Histogram of SSIM distributions between the truncation
method in [7] and the proposed method shown. With Weibull distribution
parameters and Number of data points. All distributions that fall within a
99% Confidence Interval.

FIGURE 15. Histogram of power savings, measured in percentage
improvement, between the truncation method in [7] and the proposed
method. With Weibull distribution parameters and Number of data
points. All distributions that fall within a 99% Confidence Interval.

FIGURE 16. Histogram of quality distributions between the truncation
method in [7] and the proposed method shown. With Weibull distribution
parameters and Number of data points. All distributions that fall within a
99% Confidence Interval.

The results are shown in Fig. 14-16. Specifically,
Fig. 14 demonstrates how categorizing the data creates
clear groupings when comparing the truncation method
in [7] to the proposed method. The figure shows three
distinct 3-parameter Weibull distributions that describe the
quality improvement between the proposed and [7]. These
Weibull distributions are within the 99% confidence interval
required. All distribution reports a P-value greater than 0.98,
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FIGURE 17. Histogram of PSNR noise increase between the truncation
method in [7] and the proposed method shown. With Weibull distribution
parameters and Number of data points. All distributions that fall within a
99% Confidence Interval.

implying that we cannot reject the null hypothesis and accept
this distribution as a possible representation of the data.
Fig. 15 shows the power savings distribution for each video
type as a 3-parameter Weibull distribution. Power savings
is reported as a percentage increase, using the total number
of bits truncated in each video and the power consumption
shown in Fig. 12. All of these distributions pass the 99%
confidence interval. Fig. 17 shows the probability of noise
increase in a random video stream. All distributions shown
fall into the category of Weibull distributions with a 99%
confidence interval. Fig. 14 shows the probability of quality
drop measured in SSIM for a random video stream, with
a 99% confidence interval that the probability lies within a
Weibull distribution. The most notable differences between
Fig. 17 and Fig. 14 is that the Medium and Low Variance
videos show very little difference for the SSIM loss, whereas
the loss is very distinct in the PSNR distribution The
preformance of the proposed method was better according
to SSIM as compared to PSNR, since PSNR preforms the
comparison between the entire image without considering the
user’s perception.

It was determined that because all videos are compared to
themselves for improvement, e.g., video after the proposed
method is applied verses the original video, video resolution
has no statistical impact in the data set. Power Consumption
will be presented by improvement percentage, thus ignoring
linear growth in watts saved in larger scale videos. Similarly,
it is statistically sound that a larger dataset is not needed to
affirm the distributions. As all distributions shown fall within
the 99% confidence interval, there is only a 1% chance that
the data collected is far from the specified distribution.

In summary, videos categorized as high variance show
the biggest improvements in WPSNR quality, the most
power saving by percentage, and introduce the least noise
as measured by PSNR and SSIM. With medium variance
videos also saving on power consumption, with a more
noticeable drop in quality and increase in noise. As such,
videos classified as low variance often have little to gain

using this method, and sometimes even cause video quality
degradation.

VII. COMPARISON WITH PRIOR WORK
Table 6 compares this work against state-of-the art low-power
video memory designs. As shown, our proposed memory
enables more-flexible run-time power-quality adaptation
according to video content characteristics of each frame,
while considering the important regionwithin one frame from
a perceptual point of view.

A. COMPARED TO STATE-OF-THE-ART APPROXIMATE
VIDEO MEMORIES
To enhance the power efficiency of video storage, approxi-
mate video-specific memories have been developed to store
the MSBs of video data in more robust memory bitcells, such
as more-than-6T SRAM bitcells [8], [9], upsized 6T [10].
In order to minimize the video quality loss, those techniques
typically store MSBs in reliable bitcells (e.g., 8T, 10T,
or upsized 6T), thereby leading to a tolerable output quality
degradation. However, those approximate video memory
designs usually bring large implementation overhead (e.g.,
up to 52% [9]). More importantly, for those techniques, the
achieved video quality is fixed during design-time, so they
lack of adaptation at run-time to meet different requirements
of a variety of video applications.

B. COMPARED TO STATE-OF-THE-ART ADAPTIVE
VIDEO SRAM
Recently, in order to enable run-time power-quality adap-
tation, several video SRAM designs have been presented,
such as data-dependent memory [39], SRAM with selective
hamming (15,11) [11], and SRAMwith error-correction-code
(ECC) adaptation [40]. The data-dependent SRAM consists
of 10T bitcells and associated conditional pre-charge circuitry
to adapt to the stored data’s statistical dependencies. The
developed SRAM with selective hamming (15,11) [11] can
switch between no ECC and hamming (15,11) based on
the quality requirement of the video applications. The very
recent SRAMdesignwith ECC adaptation [40] supports three
different power-quality tradeoff levels, including hamming
code-74, hamming code-1511, and no ECC. However, those
adaptive memory designs focus on efficiency optimization
while maintaining an acceptable video quality, such as
keeping the PSNR values above 30 dB [11], [40], and they did
not consider the viewer’s experience in the memory design
process. Therefore, they may cause large and inefficient
design margins.

C. COMPARED TO STATE-OF-THE-ART VIEWER-AWARE
VIDEO MEMORY
By introducing viewer’s experience to video memory
design process, we have studied that memory failures can
be leveraged to improve video system power efficiency
without sacrificing viewer’s experience [4]–[6]. The basic
idea is that in high noise-tolerance viewing contexts with
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high-illuminance levels, memory failures are intentionally
introduced by adaptively disabling LSBs of the video data
stored in memories. This line of studies illustrates a new
dimension of power savings for hardware design through
the introduction of memory failures. However, those designs
did not consider the variance of different videos and they
are not sufficient to support videos with various content
characteristics.

D. COMPARED TO STATE-OF-THE-ART CONTENT-AWARE
VIDEO MEMORY
The content-aware SRAM presented in [7] is another recent
viewer-aware memory design that can enable run-time
power-quality adaptation based on the content characteristics
of video applications. However, it adapts the number of
truncated LSBs of video data based on the average plain
macroblock percentage of an entire video sample, so it is not
suitable for the videoswith frame-level difference. Section VI
provided detailed comparison results and analysis between
the proposed memory and memory presented in [7], in terms
of power savings, video quality, number of truncated bits.
It concludes that the proposed memory enables an average of
26.46% additional truncated bits, 3.06% power savings, and
20.17% WPSNR improvement for ROI videos, as compared
to in [7].

E. COMPARISON SUMMARY
In our developed video memory technique, the ROI regions
are identified and utilized to enable intelligent tradeoff
between video quality and power efficiency of video
storage in mobile devices. Accordingly, the proposed mem-
ory enables run-time quality adaptation with significantly
reduced pixel bits and further power savings, as compared
to existing techniques. To the best of our knowledge, this is
the first work that can adapt the video storage to frame-level
video content and important regions from viewer’s perceptual
experience point of view. Our proposed ROI-aware video
memory is orthogonal to existing viewer-aware or data-
dependent schemes and therefore can be simultaneously
utilized to further optimize power efficiency.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a video content-adaptable
Region-of-Interest (ROI)-aware video storage technique to
optimize the power efficiency. The ROI of videos is identified
and protected to preserve the video quality, while other
regions are truncated with 3-LSB truncation for power
savings. To support the proposed method, a low-power frame
buffer was developed that implemented 3-LSB truncation
which enabled runtime quality and power adaptation. Our
results show that the proposed technique only uses 83.79%
and 76.56% of the power on average for videos with ROI
and without ROI respectively, as compared to the traditional
memory and the state-of-the art [9], respectively. Meanwhile,
the proposed technique can increase the quality (i.e. WPSNR
values) by 20.17% on average for the videos with ROI

and 26.46% additional truncated bits as compared to [9].
For the videos without ROI, the proposed technique can
realize 44.61% additional truncated bits and 8.26% power
savings as compared to [9], while maintaining a healthy
above 40dB PSNR and 0.95 SSIM. This paper focuses on
the facial features as ROI of videos; our future investigations
would include extensions of ROI identification to deal with
general videos. Additionally, psychological experiments will
be conducted to access the visual experience of viewers for
hardware optimization.
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