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Abstract

We recently extended our Parker-type transport equation for energetic particle interaction with numerous dynamic
small-scale magnetic flux ropes (SMFRs) to include perpendicular diffusion in addition to parallel diffusion. We
present a new analytical solution to this equation assuming heliocentric spherical geometry with spherical symmetry
for all SMFR acceleration mechanisms present in the transport theory. With the goal of identifying the dominant
mechanism(s) through which particles are accelerated by SMFRs, a search was launched to identify events behind
interplanetary shocks that could be explained by our new solution and not classical diffusive shock acceleration. Two
new SMFR acceleration events were identified in situ for the first time within heliocentric distances of 1 astronomical
unit (au) in Helios A data. A Metropolis–Hastings algorithm is employed to fit the new solution to the energetic proton
fluxes so that the relative strength of the transport coefficients associated with each SMFR acceleration mechanism can
be determined. We conclude that the second-order Fermi mechanism for particle acceleration by SMFRs is more
important than first-order Fermi acceleration due to the mean compression of the SMFRs regions during these new
events. Furthermore, with the aid of SMFR parameters determined via the Grad–Shafranov reconstruction method, we
find that second-order Fermi SMFR acceleration is dominated by the turbulent motional electric field parallel to the
guide/background field. Finally, successful reproduction of energetic proton flux data during these SMFR acceleration
events also required efficient particle escape from the SMFR acceleration regions.

Unified Astronomy Thesaurus concepts: Heliosphere (711); Interplanetary particle acceleration (826); Solar
energetic particles (1491); Interplanetary physics (827)

1. Introduction

Since the late 1970s, the discussion surrounding increased
fluxes of energetic particles has been dominated by shock
acceleration and specifically diffusive shock acceleration (DSA;
Jones & Ellison 1991). DSA describes the mechanism by which
particles interact multiple times with the same shock via diffusive
effects to amplify energy gain (Drury 1983). A single interaction
with the shock would only result in miniscule energy gain
proportional to the compression ratio, but diffusion effects allow
the particles to interact with the shock multiple times, whereby the
particles can achieve very high energies. The famous result
of DSA is that the spectra for accelerated particles depends on
the compression ratio of the shock (r) via a power-law index of
−3r/(r− 1) (Jones & Ellison 1991). Steady-state DSA theory
predicts that the accelerated energetic particle flux enhancements
should peak at the shock structure itself, but numerous flux
enhancements have been reported that do not coincide with shock
structures. In order to address this issue, many studies have
introduced time-dependent DSA effects (Cane et al. 1988; Lario
et al. 2003; Zank et al. 2015). However, recent observations show
unusual energetic particle flux enhancements that appear unrelated
to DSA (Khabarova & Zank 2017), suggesting that acceleration
processes that are related to magnetic reconnection in the solar
wind could explain these anomalous flux enhancements (Khabar-
ova et al. 2016; Khabarova & Zank 2017; Zhao et al. 2018).
Many of these anomalous flux enhancements have been observed

relatively far downstream of traveling shocks, i.e., farther than an
effective diffusion length scale away from shock-accelerated
particles (Zhao et al. 2018). Recent developments have stressed
the intimate connection between shocks, strong turbulence, and
magnetic reconnection (Karimabadi et al. 2014; Matsumoto et al.
2015; Zank et al. 2015; Vlahos & Isliker 2018).
While there has been a general consensus that efficient

magnetic reconnection related energetic particle acceleration
occurs in solar flare events near the surface of the Sun, until
recently no evidence had been found that magnetic reconnection
processes played an important role in energetic particle accelera-
tion in the solar wind (e.g., Gosling et al. 2005). After reanalyzing
the reconnection events studied by Gosling et al. (2005) on longer
timescales, Khabarova & Zank (2017) discovered evidence for
suprathermal particle acceleration. The authors theorized that the
acceleration could be caused by dynamic magnetic islands in
turbulent regions that often coexist with current sheets experien-
cing magnetic reconnection (Khabarova et al. 2016; Malandraki
et al. 2019), and they suggested that the kinetic transport theories
of Zank et al. (2014) and le Roux et al. (2015) could explain their
findings. The necessity for these theories arises because fully
kinetic simulations lack the ability to operate on the large scales
needed to explain spacecraft observations.
The abovementioned kinetic transport theories describe how

distributions of suprathermal particles in the solar wind are
accelerated by a region of dynamic small-scale magnetic flux ropes
(SMFRs). SMFRs may be defined as quasi-helical coherent
nonlinear magnetic field structures that are advected with the solar
wind flow (Zank et al. 2017). They consist of a twist (“island”)
component that exists in a 2D plane perpendicular to an axial
(“guide”) field (Cartwright & Moldwin 2010). These structures
can be thought of as a manifestation of the perpendicular
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wavenumber component of magnetohydrodynamic (MHD) shear
Alfvén waves that have a zero phase speed (Zank et al. 2017),
and are classified as part of a quasi-2D turbulence component that
naturally forms perpendicular to a significant guide field (Zank
et al. 2017). Two-dimensional MHD turbulence is considered by
some to be the dominant MHD turbulence component in the
large-scale inner heliospheric solar wind at lower helio latitudes
(Matthaeus et al. 1990; Zank & Matthaeus 1992, 1993; Bieber
et al. 1996; Hunana & Zank 2010; Zank et al. 2017). There is
evidence that SMFRs form more densely near large-scale,
turbulently reconnecting current sheets such as the Heliospheric
Current Sheet and current sheets associated with Interplanetary
Coronal Mass Ejections and Corotating Interaction Regions
(Cartwright & Moldwin 2010; Khabarova et al. 2015, 2016;
Khabarova & Zank 2017; Hu et al. 2018). A key aspect of
SMFRs is that they are dynamic; they can merge (Khabarova
et al. 2015, 2016; Chian et al. 2016; Zheng et al. 2017), contract,
and expand. The dynamics of SMFRs generate electric fields that
lead to particle acceleration. Building on the results from kinetic
simulations (Drake et al. 2006, 2013; Li et al. 2015), Zank et al.
(2014) and le Roux et al. (2015) developed comprehensive
focused transport equations to describe the impact of a field of
SMFRs on a distribution of energetic particles.

In these focused transport equations, there are four basic
SMFR acceleration mechanisms that particles exploit for energy
change: SMFR compression acceleration, SMFR parallel shear
flow acceleration in the incompressible limit, acceleration by the
component of the turbulent motional electric field force
generated in merging SMFRs parallel to the guide/background
magnetic field, and acceleration by the parallel component of the
non-inertial force associated with the acceleration of the SMFR
flow (le Roux et al. 2018). le Roux et al. (2015) showed how the
systematic and stochastic acceleration rates due to these
mechanisms yield first- and second-order Fermi acceleration
rates. It is not yet known which of these mechanisms dominates
in the acceleration processes in the large-scale solar wind.

Zank et al. (2014) and le Roux et al. (2015) derived Parker–
Gleeson–Axford type (henceforth Parker) transport equations
from their focused transport equations, to facilitate analytical
studies. Even though this limited the applications of the theory to
energetic particles with nearly isotropic distributions due to pitch-
angle observed SMFR acceleration, observations were still well-
reproduced. For example, Zhao et al. (2018) accurately modeled
the flux enhancements and spectral characteristics of energetic
particles in an SMFR region at 5 au by using mostly first-order
Fermi SMFR compression acceleration in the 1D steady-state
analytical solution of the Parker transport equation in planar
geometry (see Figure 3 from that publication). le Roux et al.
(2019) made further progress by presenting an analytical solution
that, for the first time, unified all the SMFR acceleration
mechanisms in their Parker transport equation. They showed that
both first- and second-order Fermi mechanisms can reproduce
enhanced energetic particle fluxes in SMFR regions at 1 au
reported in Khabarova & Zank (2017). Both studies needed to
introduce a simple escape term to steepen analytical spectral
slopes of particles accelerated by SMFRs to be in agreement with
observed spectral slopes. However, le Roux et al. (2019)
discovered an increased hardening of the accelerated spectra
deeper into the SMFR acceleration region that is significantly
stronger for first-order Fermi SMFR acceleration. This highlights
a key difference between systematic (first-order Fermi) and
stochastic (second-order Fermi) acceleration that can potentially

serve as a method for identifying the dominant SMFR acceleration
mechanism in observations. Identification of the dominant SMFR
acceleration mechanism in the large-scale solar wind remains an
unsolved problem that this paper intends to shed more light on.
In this paper, the analytical solution of le Roux et al. (2019) in

planar geometry is extended to a heliocentric spherical geometry in
order to study the additional effects of solar wind expansion and the
radial variation of transport mechanisms on the SMFR-accelerated
particles. Solutions are presented for the case where all SMFR
acceleration mechanisms are included, and then for individual
SMFR acceleration mechanisms acting alone. A search was
launched to find observational evidence of SMFR acceleration
events within 1 au behind interplanetary shocks. We present two
new SMFR acceleration events identified within 1 au for the first
time. The solution including all SMFR acceleration mechanisms is
fit to the two new events via a Metropolis–Hastings algorithm
(Zhao et al. 2019), which is a Markov Chain Monte Carlo
technique, giving an estimate for the transport parameters
associated with each SMFR acceleration mechanism. The transport
parameters associated with each SMFR acceleration mechanism are
then scrutinized to determine their relative physical significance so
that a dominant mechanism may be identified. On this basis, we
present evidence below that second-order Fermi SMFR accelera-
tion dominated first-order Fermi SMFR acceleration in these two
events. Furthermore, Grad–Shafranov reconstructions of SMFRs
occurring during these events were performed. As reported below,
the evidence suggests that second-order Fermi SMFR acceleration
is dominated by the SMFR mechanism associated with the parallel
component of the turbulent motional electric field force. In addition,
efficient particle escape from the SMFR acceleration region is
necessary to reproduce observed spectral slopes and spatial profiles.

2. Analytical Approach

We recently extended our Parker-type transport equation for
energetic particle interaction with numerous dynamic SMFRs
(le Roux et al. 2015, 2016, 2018, 2019) to include perpend-
icular diffusion in addition to parallel diffusion (more detail
will be presented in a future publication). In a somewhat
simplified form, this equation reads
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where f (x, p, t) is the direction-averaged energetic particle
distribution function that depends on the particle position x,
momentum p, and time t. In Equation (1), u0 is the solar wind
flow velocity, buE

I
0 is the advection velocity along the

background magnetic field with unit vector b0 induced by the
particle interaction with the mean turbulent motional electric field
in the SMFRs parallel to b0, · u I

0 refers to the combined
divergence of the solar wind flow velocity and the mean
divergence of the SMFR flow velocity, κI is the energetic particle
diffusion tensor, Dpp

I is the momentum diffusion coefficient for
energetic particles undergoing second-order Fermi acceleration
during interaction with SMFRs, τesc is the timescale on which
particles escape from the SMFR acceleration region, and Q is the
particle source for injection into the SMFR acceleration region.
Equation (1) models advection of energetic particles by the large-

2
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scale solar wind flow and mean turbulent motional electric field
in SMFRs (second term), adiabatic energy changes of energetic
particles induced by the divergence of the solar wind flow and
mean turbulent motional electric field in SMFRs (third term),
energetic particle diffusion along and across the mean magnetic
field due to scattering by SMFRs (fourth term), stochastic or
second-order Fermi acceleration of energetic particles in response
to SMFRs (fifth term), coherent transport along the average
magnetic field and in p-space in response to the mean turbulent
motional electric field (sixth term), particle escape from the
SMFR acceleration region (penultimate term), and injection of
particles into the SMFR acceleration region (last term).

In order to facilitate an analytical solution, we express
Equation (1) in a heliocentric spherical coordinate system,
imposing spherical symmetry. We assume spherical instead of
Cartesian geometry (le Roux et al. 2019), thus allowing us to
impart a more realistic radial dependence to the transport
coefficients—instead of constant coefficients, as is the case for
previous analytical solutions in Cartesian geometry—and
model the effect of spherical solar wind expansion on energetic
particle transport (Zhao et al. 2018; Adhikari et al. 2019; le
Roux et al. 2019). Then Equation (1) becomes

where we assumed that both rr
Ik and uE

I are independent of p for
simplicity. In Equation (2), we assumed a solar wind flowing
out radially from the Sun according to u0= u0er, where the
solar wind speed u0 is constant. The advection velocity buI

E
0 is

projected in the heliocentric radial direction according to
( · ) ( )b eu u cosI

E
r I

E
0 y= , where ψ is the average angle between

the radial direction and the assumed spiral interplanetary
magnetic field. In the adiabatic energy change term, we model
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where term 1 indicates adiabatic cooling of energetic particles
in the radially expanding solar wind outflow, and term 2
represents adiabatic heating or first-order Fermi acceleration of
energetic particles due to the mean SMFR compression rate
defined as · UI

ICOMn dá ñ = -á ñ, where δUI is the plasma flow
velocity inside SMFRs. The last term models adiabatic cooling
(uEr> 0) or adiabatic heating (uEr< 0) due to radial expansion

or compression of uEr. The radial diffusion coefficient rr
Ik is

determined from the projection of the parallel diffusion
coefficient I

k and perpendicular diffusion coefficient Ik^ in
the heliocentric radial direction according to the expression
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based on the assumption that D r1pp
I µ . We also model

τesc∝ 1/r according to ( ( ))r r r v r1 esc 0 esc 0 esct t= = . Note

that we specified u0,
I
COMná ñ, uEr, K, and D0 are independent of

r and p and have units of speed. Finally, we inject a source of
energetic particles with momentum p0 at a position r0 into the
SMFR acceleration region specified to be
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where dN/dt is a constant rate at which particles are injected
into the SMFR acceleration region. While, in reality, one would
expect a full momentum spectrum from the background pool of
suprathermal particles in the solar wind to be injected into the
SMFR acceleration region with a minimum momentum of
about p=mpu0, we believe injecting a monoenergetic source
can be approximately justified by choosing p0=mpu0, where
most particles in the suprathermal source spectrum can be
found.
To set Equation (2) up for an analytical solution, we apply

the above assumptions and introduce a new variable
( )z p pln 00= > , which results in

Under these assumptions, the solution to Equation (4) is

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )

( )

( ( )) ( ( ) ˜ ( ))

˜

5

f r p
dN dt

r p A

r

r

p

p

K b r r
A

p p a r r

,
32

ln
1

ln ln ,

a aB A B A

3
0
2

0
3

0

2

0

2

0 0
2

0 0
2

p k
=

´ + +

- -

*

*

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

[ ( )] [ ( ( ))]

( ) ( )

f

t
u u

f

r r r
r u u

p f

p r r
r

f

r

p p
p D

f

p
u

p
p
f

r

f
Q

cos
1

cos
3

1

1 2

3
cos , 2

I
E I

I
E

rr
I

pp
I

I
E

0 2
2

0 2
2

2
2

esc

y y k

y
t

¶
¶

+ -
¶
¶

-
¶
¶

+
¶
¶

=
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

- +

⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

( )

( ) ( ) ( )

f

r

u u

r

f

r

u u D

r

f

z

D

r

f

z

u

r

f

r z

fv

r

dN dt

r p
r r z

3 1 2 3 2 3 1

2

3 16
. 4

Er Er
I

Er

2

2
0 0 COM 0

2

0
2

2

2

2
esc
2 2

0
3

0
3 0

k
k

n
k

k k k p k
d d

¶
¶

-
- - ¶

¶
-

- - + á ñ - ¶
¶

+
¶
¶

+
¶
¶ ¶

- = - -

3

The Astrophysical Journal, 933:80 (41pp), 2022 July 1 Van Eck et al.



where K0 is a modified Bessel function of the second kind and

See Appendix A for details. This solution in spherical
geometry is an improvement on the one presented in le Roux
et al. (2015) because it includes all the transport effects of the
parallel turbulent motional electric field parallel to the guide
field (advection, adiabatic energy changes, acceleration effects
from the mixed-derivative transport term, and second-order
Fermi acceleration) while the earlier spherical solution only
included the contribution from second-order Fermi accelera-
tion. In order to avoid the solution becoming complex,
which would be nonphysical, we require A* > 0 so that

( )u D1 9 0Er
2

0k- > . Interestingly, this mirrors the require-
ment given in le Roux et al. (2019; see discussion after
Equation (21)) that arose from the need to retain causality in
their solution, otherwise particles would travel further than
their speed would allow. le Roux et al. (2019) also found that
imposing causality suggests that the acceleration by the
turbulent motional electric field parallel to the guide/back-
ground magnetic field must be such that the contribution from
second-order Fermi acceleration must dominate the contrib-
ution from the mixed-derivative transport term (third to last
term in Equations (1) and (2)). This idea is supported by the
data fits presented below (see Section 4), where acceleration by
the mean turbulent motional electric field parallel to the guide
field is suppressed even further than in the above limit.

2.1. High-energy Limit

In the high-energy limit p/p0? 1 for r> r0, the full solution
(5) simplifies to

after taking the large-argument limit of the modified Bessel
function. See Appendix B for details. Because in this limit the
p/p0-term dominates in the Bessel function, the limit behaves
as the solution would near the source (i.e., r= r0). Rearranging
the exponent of the r/r0-term in the limit shows

Again, see Appendix B for details. If the requirement
D u9 Er0

2k > is satisfied as we assume, then it is easy to see
that, if u2 2I

COM 0n ká ñ > > , the exponent of the r/r0-term is
positive, as is required for spatial peaks to form in the solution.
The latter inequality needs to be imposed because we assumed
uEr< 0, as was done in previous studies (Zank et al.
2014, 2015; le Roux et al. 2016, 2018, 2019). It is important
to note that the exponent is only positive (i.e., there is an
increase in the particle distribution function with increasing
radial distance) for u0> 0 when particle advection by the
radially outward solar wind flow and radial particle diffusion
both occur in the radially outward direction beyond the
injection position (r> r0) as was discussed in le Roux et al.
(2018, 2019). The large radial distance limit (see Section 2.2
below; i.e., r? r0 and p> p0) will show a decrease in the
distribution function as the radial position increases. Combin-
ing that with the results from this section means that peaks
naturally form in the solution upstream of the injection point
(r> r0), indicating that particles are “injected” into the SMFR
field closer to the Sun than where the peaks in the distribution
function are occurring. It appears that, in previous modeling
efforts, it was assumed that peaks in the particle spatial profiles
formed closer to the Sun than the injection position, which
implies that the observer is in a moving frame in which the
solar wind flow appears to go sunward (Zhao et al. 2018;
Adhikari et al. 2019) in order to ensure that particle advection
by the solar wind and particle diffusion is in the same direction.
Because we chose a heliocentric spherical geometry and we

operate in the observer frame (i.e., the spacecraft frame), we
view the events in the opposite manner, i.e., particles are
injected closer to the Sun and peaks in the spatial profiles form
further away from the Sun.
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2.2. Large Radial Distance Limit

In this limit, where r? r0 and p> p0, we find that the full
solution (5) simplifies to

and if the condition
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])u2 0k - ), the exponent of r/r0 will be negative overall. See

Appendix C for details. In Section 4, we will show that the data
fits suggest that vesc (which accounts for particle escape from the
SMFR region) is the dominant parameter in this inequality, thus
resulting in its fulfillment. Therefore, when r/r0? 1, the
distribution function decays with increasing radial distance.
Assuming that the distribution function is continuous and thus a
differentiable function from r≈ r0 to r? r0 implies that, since
the high-energy limit at r≈ r0 yielded an increasing distribution
function and the large radial distance limit a decreasing
distribution function with increasing radial distance, there must
be a peak in the distribution function in between.

2.3. Individual SMFR Acceleration Mechanism Limits

2.3.1. Second-order Fermi Acceleration

To reach the limit in the complete solution where second-order
Fermi acceleration by SMFRs is the dominant SMFR acceleration
mechanism, we let uEr→ 0 and 0I

COMná ñ  . This gives the result
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See Appendix D for details. By comparing this solution to the
solution for second-order Fermi acceleration in the case of
planar geometry (see Equation (28) in le Roux et al. 2019), we
see that our solution includes additional effects related to
spherical geometry. For example, the factor u0/2κ in the
argument of the exponential that contains x− x0 in le Roux
et al. (2019) becomes the exponent of r/r0 with the addition of
a geometric factor (u0/2κ→− (1− u0/2κ)), and the
exponent of (p/p0) gets modified by the term− u0/3D0

(−3/2→−3/2(1+ 2u0/9D0). The former indicates that, for
a peak in the particle distribution to form upstream of the
injection point, the ( )r r0 1- factor must be overcome, while
the latter implies a competition between adiabatic cooling by

the radially expanding solar wind that steepens the accelerated
particle spectrum and second-order Fermi acceleration by
SMFRs that has a hardening effect on the spectrum.
If we choose D0? u0; κ; vesc to determine the hardest

possible accelerated spectrum due to second-order Fermi
acceleration, which occurs upstream of the injection point
r> r0, we get
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Because adiabatic cooling becomes negligible in the limit of
strong second-order Fermi acceleration, the hardest possible
spectrum has the same power-law index as in the case of planar
geometry, namely, −3/2 (see Equation (28) in le Roux et al.
2019). The hardest possible spectrum at the injection position
r= r0 for high-energy particles is obtained when we take the
limit r→ r0 and apply the large-argument limit to the modified
Bessel function that results in
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Thus, the hardest possible accelerated spectrum for second-
order Fermi acceleration in the test-particle limit at high
energies has a power-law index that varies between −3 at the
injection position to −3/2 beyond the injection position
(r> r0) inside the SMFR region, indicating spectral hardening
beyond the injection position as monoenergetic source particles
are accelerated to increasingly high energies in a diffusive
manner.

2.3.2. Acceleration by the Mean Turbulent Motional Electric Field
Parallel to the Guide/Background Magnetic Field

This limit follows by letting D0→ 0, 0I
COMná ñ  and

allowing u u 1Er Er - = * to dominate. Then,
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where I0 is the modified Bessel function of the first kind and
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See Appendix E for details. Note that this solution limit models
acceleration effects from the average turbulent motional electric
field parallel to the guide/background field through both the
mixed-derivative transport term and the term that includes the
large-scale divergence of uEr

 (see Equations (2) and (3)). We
use the latter term to model adiabatic heating (u 0Er

 > ) of
energetic particles and how it weakens with increasing radial
distance from the Sun. This solution improves on the one
presented in le Roux et al. (2019; see Equation (30)) because it
utilizes the modified Bessel function of the first kind (I0) rather
than an ordinary Bessel function of the first kind (J0), which
oscillates between positive and negative numbers. Thus,
unphysical negative values for the distribution function are
avoided when the argument of J0 grows too large with
increasing momentum values and distance relative to the
injection position as a consequence of the presence of the
escape term. In the new solution, the modified Bessel function
ensures that such oscillations in the distribution function do not
occur. This improvement came about because, in spherical
geometry, the divergence of uEr contributes to particle energy
changes, whereas in previous solutions in Cartesian geometry,
this effect is absent. Another consequence of the divergence of
the uEr is that the distribution function forms a smooth peak
beyond the injection position, similarly to the other SMFR
acceleration mechanisms, instead of a plateau as predicted by
the original solution of Zank et al. (2014) without escape
effects. If we take u uEr 0* , we recover the same accelerated
spectrum limit at the source as Zank et al. (2014) and le Roux
et al. (2019), i.e., f (r0, p)∝ p−3/2. Similarly, if we take
u uEr 0* and u vEr esc* , we can recover the result from Zank
et al. (2014) where the spatial profile resembles a plateau.

2.3.3. First-order Fermi (Compression) Acceleration

When uEr→ 0 and D0→ 0, the full solution yields the limit
of mean SMFR compression acceleration given by

See Appendix F for details. This solution mirrors that given in
le Roux et al. (2019; see Equation (27)), with the exception that
the factor u0/2κ in the argument of the exponential that
contains x− x0 in le Roux et al. (2019) becomes the exponent
of r= r0 here with the addition of a geometric factor
(u0/2κ→− (1− u0/2κ)). As in le Roux et al. (2019), when
the compression rate increases (larger values of I

COMná ñ), the
acceleration due to the SMFRs becomes more efficient across
all energies. When u 1I

COM 0 ná ñ , the acceleration spectrum
approaches f (r, p)∝ p0. As will be shown in the data fits later,
u0> κ in the two events examined in this study. Thus, the
exponent of r/r0 will be positive while the exponential
including ( ( ))r rln 0

2 will be negative if uI
COM 0ná ñ > ,

disposing the solution to form peaks upstream of the injection
point r= r0. Again, like le Roux et al. (2019), we find that the
downstream spectrum cuts off at the injection momentum
because first-order Fermi acceleration systematically energizes
the source particles with p= p0.

3. SMFR Acceleration Events Observed within 1 au

This study considered SMFR acceleration events observed
by the Helios A spacecraft within 1 au. Previous modeling
attempts have been limited to SMFR acceleration events
observed at 1 au and beyond. Events were identified by
examining energetic particle counts behind interplanetary
shocks observed by Helios A’s Experiment 8 (E8), the Low-
Energy Electron and Ion Spectrometer (Porsche 1975). We
decided to use data from the E8 detector because of its
suitability for investigating the nonrelativistic suprathermal
particle populations described by our transport theory. We
chose to search behind interplanetary shocks because of the
potential for particles being accelerated by these SMFRs to
serve as an injection source for DSA. Fast forward shocks were
chosen from the ipshock.fi4 database. SMFR acceleration
events were identified when enhancements in the energetic
particle flux were found to coincide with the occurrence
of SMFRs in Helios data identified by Chen & Hu (2020)
using Grad–Shafranov reconstruction methods. In support of
this approach, we note that previous analyses of low-
frequency turbulence properties during potential SMFR accel-
eration events confirmed that the turbulence is dominated by
SMFRs rather than Alfvén waves (Malandraki et al. 2019;
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Zhao et al. 2019) because of the strong negative residual energy,
small cross helicity, and large uniform magnetic helicity, for
example. While difficulties arose due to gaps in the Helios A
data, two events with profiles fitting the theoretical predictions
were found.

3.1. SMFR Acceleration Event of 29 April 1978

The first event occurred behind an interplanetary shock
which passed Helios A at 03:49:33 UT on 29 April 1978 (day
119.16) when the spacecraft was near its perihelion (∼0.3 au),
which is closer to the Sun than any previously reported SMFR
acceleration event. Figure 1(a) displays the particle counts for
six different energy channels from 44 to 174 keV of the E8
detector. Although there is a significant data gap near the time
of the interplanetary shock (denoted by the red dashed line
labeled “Shock”), it is reasonable to conclude that the particle
counts for each energy channel are peaking near the
interplanetary shock, as is predicted by classical DSA theory.
The particle count decreases with time behind the interplane-
tary shock during days 119–120.5 until a new peak occurs

during the period from days 120.5–122. This peak cannot be
easily be explained by classical DSA theory, because the
associated particles are more than an effective diffusive length
scale away from shock-accelerated particles at these energies
(Zhao et al. 2018). Panel (b) displays the magnetic field in the
RTN coordinate system gathered from the Helios A (E2) 40 s
data. Panels (c)–(f) show the average proton flow speed, the
proton density, the proton temperature, and the plasma beta,
respectively. All the results presented in this figure are direct
plots of Helios A (E1) 40 s data, except for the plasma beta
values, which were calculated using the magnetic field, proton
density, and proton temperature data.
Based on the combination of plasma and magnetic field data,

we note an apparent interplanetary shock that occurs at around
14:00:00 UT on 2 May 1978 (day 122.6), which is not recorded
in the ipshock.fi database. This omission could be caused by
data gaps immediately following the time that the apparent
interplanetary shock passes the spacecraft. Because of the
significant gaps in the energetic particle data, we cannot
conclusively state that particle counts peak at the interplanetary
shock location, but the corresponding jumps in the magnetic

Figure 1. (a) The particle counts from 44 to 174 keV registered by the E8 detector on Helios A. The interplanetary shock that passed by Helios A on 29 April 1978 at
03:49:33 UT is denoted by the dashed red line. The gray bars represent the time and duration of SMFRs identified by Chen & Hu (2020). (b) The magnetic field
presented in the RTN coordinate system, (c) the proton flow speed as measured in the spacecraft frame, (d) the proton number density, (e) the proton temperature,
(f) and the plasma beta presented as time series.
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field, proton flow speed, proton density, and proton temperature
(the proton temperature dips just before the corresponding
jump, making it appear to decrease while the other quantities
increase) around that time indicate that an interplanetary shock
is present. We do not believe that this interplanetary shock
contributes to the acceleration of particles in the region of
interest (days 120.5–122) either, because the associated
particles are clearly more than an effective diffusive length
scale away from shock-accelerated particles at these energies
(Zhao et al. 2018). Two periods where particle acceleration
could be influenced by mechanisms not associated with SMFRs
are days 120.5–120.75 and 121.25–121.5. Both periods are
marked by noticeable increases in the proton flow speed and
proton temperature, with less significant increases in the proton
density. However, because significant portions of the data
including energetic particle fluxes are missing, no conclusive
interpretation of these two periods in terms of efficient particle
acceleration by shocks or compression regions can be made.
We admit that these periods could have some effect on the
particle acceleration during the entire time interval we associate
with SMFR acceleration, but in the absence of clear evidence to
the contrary, we chose to model the entire time interval as if it
were dominated by SMFR acceleration.
Focusing on the data that do not appear to follow classical

DSA theory (days 120.6–122), we normalize the particle fluxes
to a selected injection point (see Figure 2 top) in order to
demonstrate that it follows the prediction of our SMFR
transport theory. The gray bars represent the time and duration
of SMFRs identified and reconstructed using the Grad–
Shafranov method in Chen & Hu (2020). We also use the
combined magnetometer (E1) and plasma data (E2) to search
for evidence of Alfvén waves propagating in the region we
attribute to SMFR acceleration (days 120.6–122), as they can
also accelerate particles.
To identify regions where Alfvén waves are present, we

calculate the normalized cross helicity and normalized residual
energy using the method of Zank et al. (2011; see Equations
(2)–(6) in the publication). Alfvén waves propagating solely in
one direction are identifiable by a normalized cross helicity of
±1 and a normalized residual energy that approaches zero. We
note that the period between day 120.8–121.2 corresponds to
the normalized cross helicity maintaining a value of ∼−1 and
the normalized residual energy hovering around a value of zero
(see Figure 2 middle and bottom). This lends credibility to the
idea that Alfvén waves are propagating during this time period
and are moving antiparallel to the magnetic field. Although
Alfvén waves are expected to accelerate suprathermal particles
in general, we note that standard quasi-linear theory predicts
that the associated Parker-type transport for energetic particle
interaction with parallel propagating Alfvén waves will only
efficiently accelerate energetic particles (those with speed
v? vA0) stochastically if significant Alfvén wave propagation
occurs in both directions, i.e., parallel and antiparallel to the
magnetic field (e.g., see Equation (114) in le Roux &
Webb 2007). On this basis, we rule out any significant
acceleration contribution from Alfvén waves.
A selected few of the identified SMFRs for this SMFR

acceleration event were fully reconstructed and displayed in
Figure 3. SMFR parameters that are found in the theoretical
expressions of the SMFR acceleration mechanisms were
calculated for all identified SMFRs of this SMFR acceleration

Figure 2. Top: The flux-enhancement profile we attribute to SMFR
acceleration occurring downstream of the shock that passed by Helios A on
29 April 1978 at 03:49:33 UT (see Figure 1). The “x” symbols represent the
measured flux normalized to the chosen injection point (dashed vertical line),
and the dashed lines are a cubic interpolation of the measurements. Middle:
The normalized cross helicity. Bottom: The normalized residual energy.
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event and presented in Table 1. The bottom two reconstructions
in Figure 3 indicate that some identified SMFRs could be
merging (note the presence of x points, which suggest the
merging to be caused by magnetic reconnection at the adjacent
boundaries between the SMFRs). This suggests that these
SMFRs are dynamic and may be generating reconnection
electric fields that can accelerate particles (Drake et al. 2013).

Compared to SMFRs identified in Zhao et al. (2018) near
5 au, those identified near 0.3 au are significantly smaller and
have stronger magnetic fields, which is consistent with trends
in SMFR radial evolution reported in Chen & Hu (2020),
according to which SMFRs grow in size (Chen et al. 2019) and
develop weaker magnetic field strengths with increasing radial
distance from the Sun. These features can explain why the flux
enhancement in Zhao et al. (2018) is much larger than the one
for this event. Smaller SMFRs with stronger magnetic fields
are more active and thus are better at accelerating particles
than SMFRs that are larger with weaker magnetic fields

(Xia & Zharkova 2020). As a thought experiment, consider two
SMFR regions: one of them is not as effective at accelerating
particles as the other, and both of them are observed by the
same spacecraft over a specific energy range. We would
observe a higher overall flux-enhancement in the region where
the SMFRs are less effective at accelerating particles, because
the more effective SMFR region would accelerate the particles
out of the energy “field of view” more quickly and thus the
spacecraft would observe fewer particles resulting in a smaller
flux enhancement.

3.2. SMFR Acceleration Event of 1 May 1980

The second event with a flux-enhancement profile consistent
with our theoretical prediction occurs between 30 April 1980
and 2 May 1980 (days 121–123 of 1980). It is not associated
with any previously identified interplanetary shock in the
ipshock.fi (see footnote 4) database; however, upon inspection

Figure 3. Grad–Shafranov reconstructions of some SMFRs from the 29 April 1978 event identified by Chen & Hu (2020). Displayed are the 2D SMFR twist or island
field component (black contour lines) and the out-of-plane axial (guide) field component (colored regions). The white and green arrows indicate the magnetic field and
flow vectors, respectively, along the spacecraft path.
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Table 1
SMFR Observations

Start End uI
2dá ñ c

Is B0 BI
2dá ñ 〈Np〉 LI

c
^

Time (UT) Time (UT) (m s−1) (unitless) (nT) (nT) (#/cm3) (au)

1978/4/30 17:00 1978/4/30 17:17 3.95E+04 9.34E-01 39.5523 19.33809988 57.63569722 0.001060619
1978/4/30 17:34 1978/4/30 18:08 7.14E+04 9.63E-01 32.6377 29.10176697 57.23493734 0.003150366
1978/4/30 19:20 1978/4/30 19:31 9.30E+04 9.80E-01 21.983 38.90315921 57.75457083 0.001644178
1978/5/1 0:53 1978/5/1 1:17 5.54E+04 9.39E-01 37.1447 26.09866139 55.635584 0.001178695
1978/5/1 1:46 1978/5/1 1:55 55367.87772 9.39E-01 19.3252 37.00618215 51.417725 0.001497344
1978/5/1 2:10 1978/5/1 2:22 37473.86266 9.22E-01 40.2876 17.19432374 51.854975 0.000339318
1978/5/1 10:11 1978/5/1 10:21 105020.499 9.52E-01 9.2575 49.33486637 57.97794091 0.001786635
1978/5/1 11:39 1978/5/1 11:49 102939.9453 9.82E-01 26.5092 41.61367016 59.63619545 0.001815884
1978/5/1 12:20 1978/5/1 12:34 114174.5581 0.9942341282 13.7565 43.27189812 59.79973 0.002495485
1978/5/1 21:20 1978/5/1 21:28 59845.87099 9.16E-01 45.8093 18.010629 53.47587778 0.001337191
1978/5/1 21:43 1978/5/1 22:33 117373.879 0.9727307059 15.3379 46.49261638 50.34004755 0.008727736

1979/1/13 13:29 1979/1/13 13:39 31582.795923 0.978581 4.706175 5.616962 10.78367182 0.000738081
1979/1/13 15:56 1979/1/13 16:50 9219.280624 −0.091884 7.357643 2.386892 7.504899822 0.009261096
1979/1/13 22:11 1979/1/13 22:23 23510.228186 0.946 6.529207 3.666973 5.644365 0.002444808
1979/1/13 22:43 1979/1/13 23:06 17436.000791 0.906223 7.23788 2.809392 5.5472375 0.004317586
1979/1/14 0:02 1979/1/14 0:15 10897.202845 0.748169 5.594426 2.345583 6.496817857 0.002711886
1979/1/14 0:38 1979/1/14 1:11 18415.440189 0.775234 4.479085 3.821926 6.729927304 0.002779401
1979/1/14 1:12 1979/1/14 1:43 11707.430776 0.882216 6.567754 2.104939 6.709254922 0.005706318
1979/1/14 1:45 1979/1/14 1:52 9635.574807 0.931597 6.073147 1.741567 8.462316111 0.001408441
1979/1/14 2:03 1979/1/14 2:28 12848.820911 0.905934 6.060181 2.376599 7.8356642 0.004592346
1979/1/14 3:42 1979/1/14 3:54 11335.039278 0.978192 7.111864 1.166138 6.386031667 0.002434228
1979/1/14 6:02 1979/1/14 6:09 29171.467761 0.615438 2.990586 7.212804 4.762549444 0.000685696
1979/1/14 6:51 1979/1/14 7:03 15999.90543 0.821127 7.859558 3.168786 5.109368929 0.001008443

1979/4/2 13:34 1979/4/2 13:43 6248.256118 0.056152 6.93043 2.324766 7.8424185 0.001162612
1979/4/2 15:20 1979/4/2 15:31 2817.628615 −0.128547 3.460604 4.236088 8.361669167 0.001461269
1979/4/2 17:28 1979/4/2 17:35 7227.949739 −0.037886 8.050103 2.475049 9.097792222 0.001142702
1979/4/2 18:29 1979/4/2 18:40 11062.798069 −0.789201 12.711667 2.754937 13.101735 0.001526583
1979/4/2 19:52 1979/4/2 20:01 22379.321896 −0.630645 3.383423 10.271583 14.9121575 0.000403295
1979/4/3 4:03 1979/4/3 4:16 33943.438629 −0.836949 4.709034 2.948144 9.881651429 0.001809008
1979/4/3 4:34 1979/4/3 4:48 149072.120907 −0.385908 10.360258 4.358445 10.12154156 0.001988163
1979/4/3 8:30 1979/4/3 8:53 5092.689167 0.231755 6.108708 2.701511 17.37970833 0.003167769
1979/4/3 9:56 1979/4/3 10:05 19038.407114 0.838505 0.748631 5.269143 17.373675 0.000892806
1979/4/3 10:59 1979/4/3 11:08 12179.154587 0.343778 5.526578 8.823641 9.277569545 0.001021766
1979/4/4 17:21 1979/4/4 17:35 15475.756622 0.733754 6.234427 4.090045 10.68308533 0.002320904
1979/4/4 17:46 1979/4/4 18:06 16328.525294 0.927246 6.429199 1.447801 13.85543636 0.003159776
1979/4/4 23:42 1979/4/4 23:59 31182.869564 0.899677 11.597689 3.003421 13.06355686 0.002707873
1979/4/5 0:13 1979/4/5 0:20 48255.612308 0.790618 7.355401 3.786946 13.12169722 0.001500694
1979/4/5 0:22 1979/4/5 0:33 21089.996485 0.815199 8.95197 1.69226 12.97961875 0.000219332
1979/4/5 3:22 1979/4/5 3:42 19204.379353 0.113332 10.188855 1.741686 15.75027905 0.003431501
1979/4/5 6:54 1979/4/5 7:02 9408.451351 0.507566 2.10822 5.706763 17.1071537 0.001239645
1979/4/5 8:15 1979/4/5 8:28 20131.230211 0.585085 4.106191 8.591082 19.03616857 0.000544151

1980/4/30 6:30 1980/4/30 6:42 5619.648563 −0.4333929191 8.8235 3.237798476 21.10045 0.001522111
1980/4/30 7:58 1980/4/30 8:56 2544.519129 −0.2345587774 6.2029 3.249310455 25.54635602 0.005681726
1980/4/30 9:49 1980/4/30 11:13 7030.402727 −0.1709014985 1.3863 5.883930386 25.03690647 0.009779977
1980/4/30 12:20 1980/4/30 12:29 3254.442615 0.460509272 6.8429 2.480049622 22.901415 0.000889523
1980/4/30 12:39 1980/4/30 14:34 5230.140303 −0.1221202688 3.6523 7.273536354 19.06261509 0.013946702
1980/4/30 14:35 1980/4/30 14:48 6492.8599 −0.2620979159 6.6234 6.106578079 17.74823055 0.001696744
1980/4/30 17:32 1980/4/30 17:41 10204.29241 −0.7912913145 4.869 4.941280652 30.077625 0.000519069
1980/4/30 17:41 1980/4/30 18:01 2199.308383 −0.08705006752 7.1919 5.192191956 30.7926119 0.001850207
1980/4/30 18:06 1980/4/30 18:54 5922.555421 −0.3673287668 6.9697 7.510142716 32.56823571 0.004285177
1980/5/1 5:18 1980/5/1 5:29 3521.778709 0.5268246802 7.8429 2.34552285 39.63756667 0.00135991
1980/5/1 5:45 1980/5/1 6:09 9580.540453 −0.5556051081 6.09 7.528737818 40.699922 0.002708765
1980/5/1 6:19 1980/5/1 6:32 9291.804766 0.1278730727 33.0064 9.955184459 66.42427976 0.002153308
1980/5/1 6:43 1980/5/1 7:22 16410.41186 0.4366267152 25.7165 15.47975839 60.977065 0.005829488
1980/5/1 7:22 1980/5/1 9:39 27122.02999 0.2215075915 11.7917 19.40783582 80.20660399 0.017400195
1980/5/1 10:48 1980/5/1 12:08 21662.15762 0.6689472525 17.4255 10.64762965 26.56091914 0.011166135
1980/5/1 12:41 1980/5/1 12:52 29642.4958 0.741710694 9.4793 17.11460987 34.97941667 0.000855321
1980/5/1 13:51 1980/5/1 15:05 34916.25032 0.3911194504 37.7558 33.62767888 55.38393667 0.007732391
1980/5/1 17:25 1980/5/1 17:33 13732.40147 −0.3620685724 11.1614 9.174181892 29.87225833 0.000966312
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of the plasma and magnetic field data (see Figure 4), we note that
there is a sharp jump in the magnetic field (b), the proton flow
speed (c), the proton density (d), and the proton temperature (e)
around day 122.25, which normally corresponds to an inter-
planetary shock. This could have gone unnoticed in the detection
algorithm, due to missing periods of data that correspond well
with the missing data in the particle counts data set. It is distinct
from the 29 April 1978 SMFR acceleration event because the
previous event seems to interrupt the decay of particle intensity
after the interplanetary shock passes for just under a day and a
half, whereas this event lasts for two days, occurs closer to an
apparent interplanetary shock, and has a higher amplification
factor. It appears that the overall decrease in the enhanced
energetic particle flux before day 122.6, which we associate with
SMFR acceleration, gets modified significantly by the more
abrupt rise in the energetic particle flux peaking at the apparent
interplanetary shock occurring on day 122.25. This implies that
the energetic particle population undergoing DSA and the
population experiencing SMFR acceleration are not clearly
separated, such as in the 29 April 1978 SMFR acceleration event
discussed above, so that some particles could be experiencing
both DSA and SMFR acceleration. This could be another
example of where a fraction of SMFR-accelerated particles are
injected into DSA and vice versa (see also, Khabarova &
Zank 2017), and where SMFR-accelerated energetic particle
populations can thus serve as a significant source of suprathermal
particles for injection into DSA at interplanetary shocks that have
space weather implications. We also note a compression that
corresponds to a gradual increase in the magnetic field, proton
flow speed (a bit out of phase), and proton density, but an
unexplained dip in the proton temperature that aligns with an
SMFR identified in Chen & Hu (2020) that occurs from 1 May
1980 13:51:00–15:05:00 UT (day ∼122.6). Since We estimate
this compression to have a width of approximately ∼0.008 au,
making it much broader than the apparent interplanetary shock

that passed Helios A on 1 May 1980. Because of the broadness,
most particles cannot sample the full compression during one
gyro-orbit. Therefore, we expect that acceleration due to this
compression will be less significant when compared to DSA by
the apparent interplanetary shock and acceleration due to SMFR
acceleration. Evidence in support of this view includes the results
from our data fits suggesting that the radial diffusion coefficient is
quite small. Consequently, the energetic particles will be unable to
sample the full compression ratio of the compressive structure
(the radial mean free path is less than the width of the
compression) whereby diffusive compression acceleration
becomes less efficient than DSA. In summary, we only expect
the shock to have a significant modifying effect on the enhanced
energetic particle fluxes associated with SMFR acceleration.
However, since this modifying effect occurs more toward the end
of the decrease in the enhanced flux of SMFR-accelerated
particles, we consider this to be a secondary effect on the overall
enhanced flux profile that can still be fitted with our theoretical
solution for SMFR acceleration, as is shown below.
Examining the data downstream of the apparent interplanetary

shock, we note that the amplification factor of the enhanced
energetic particle fluxes that we associated with SMFR
acceleration (see Figure 5) at ∼0.59 au is greater than that of
the 29 April 1978 event at ∼0.3 au (a factor of nearly two
increase in radial distance), but that the amplification factor is
still less than reported for the SMFR acceleration event reported
at 5 au by Zhao et al. (2018). This additional result strengthens
our contention that the energetic particle flux amplification factor
for SMFR acceleration events grows as these events are advected
with the radially expanding solar wind to larger distances from
the Sun, where SMFRs expand and get weaker as reported by
Chen & Hu (2020; see discussion in Section 3.1). Also, because
the duration of the event is longer than the 29 April 1978 event,
it follows that more SMFRs are involved in the acceleration
process—and even though there are significant data gaps, this

Table 1
(Continued)

Start End uI
2dá ñ c

Is B0 BI
2dá ñ 〈Np〉 LI

c
^

Time (UT) Time (UT) (m s−1) (unitless) (nT) (nT) (#/cm3) (au)

1980/5/1 19:10 1980/5/1 19:44 18259.06253 0.1938797066 25.7985 8.087129145 10.70145033 0.006585194
1980/5/1 20:02 1980/5/1 20:15 30413.0807 −0.5886443355 10.7251 11.68827886 14.88946393 0.002481809
1980/5/1 20:23 1980/5/1 21:16 25153.28794 −0.2517995594 24.3184 3.947291694 9.884305185 0.009003335
1980/5/1 21:26 1980/5/1 21:59 43981.68448 −0.7046039702 20.8502 14.84985393 9.785928382 0.002660882
1980/5/1 21:59 1980/5/1 22:18 20313.69948 −0.3410887334 23.5144 8.754573561 8.767843625 0.003750942
1980/5/2 7:54 1980/5/2 8:09 18715.60581 −0.522761734 13.8625 8.655747658 9.638555938 0.000669541
1980/5/2 8:50 1980/5/2 9:35 23445.95797 −0.733826612 11.9127 5.328218615 13.14791902 0.005920254
1980/5/2 10:26 1980/5/2 10:44 33102.55953 −0.893070396 11.6653 6.342877606 10.05700961 0.002606147
1980/5/2 10:54 1980/5/2 11:05 9358.927044 −0.8571500956 15.0898 1.852051044 10.44030917 0.001350575
1980/5/2 11:49 1980/5/2 12:06 70447.6358 −0.982181279 8.4785 11.10432413 9.032806667 0.003508634
1980/5/2 12:09 1980/5/2 12:18 21400.0475 −0.8747740701 11.9188 4.836269291 14.188625 0.001966541
1980/5/2 12:38 1980/5/2 12:47 21400.0475 −0.8747740701 11.9012 3.907375421 11.1641545 0.001380751
1980/5/2 13:33 1980/5/2 13:42 18577.17 −0.6439687796 9.9492 8.035681327 12.5821225 0.002248492
1980/5/2 16:15 1980/5/2 16:33 30228.15028 −0.8937573121 2.4539 6.821950389 10.22980474 0.003833451
1980/5/2 17:12 1980/5/2 17:30 19485.94956 −0.4926386892 10.8015 7.950812162 8.842733816 0.003239536
1980/5/2 17:42 1980/5/2 17:51 18452.60938 −0.4972097668 5.9732 4.839345464 9.26709 0.001413257
1980/5/2 17:56 1980/5/2 18:31 12516.75384 −0.6223592262 10.621 3.084996426 9.763558333 0.006484823
1980/5/2 18:35 1980/5/2 18:53 28607.19971 0.5694507492 2.5561 9.972858452 10.43384895 0.003910748
1980/5/2 18:56 1980/5/2 19:04 12521.50254 −0.8658756983 10.0196 2.590117474 9.144293333 0.000954613
1980/5/2 19:33 1980/5/2 19:54 16543.21917 −0.1404174398 9.9673 3.484357061 7.680447853 0.002669053

Note. These values are calculated from Grad–Shafranov reconstructions of the SMFRS identified in Chen & Hu (2020). Individual SMFR events are separated by an
added horizontal line.
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event represents an opportunity to do a statistically significant
study on SMFRs that are actively accelerating particles (see
Table 1 for SMFR parameters and Figure 6 for Grad–Shafranov
reconstructions of selected SMFRs from the acceleration region).

We performed the same analysis as we did for the previous
event, to determine whether the region we attribute to SMFR
acceleration could be dominated by Alfvén waves. The analysis
was inconclusive. The results exhibit large fluctuations in the
normalized cross helicity and normalized residual energy
immediately downstream of the apparent interplanetary shock,
while yielding little information concerning the presence of
Alfvén waves overall, and thus are not included.

3.3. SMFR Acceleration Events of 3 April 1979

Two SMFR acceleration events were identified, with one on
either side of the interplanetary shock that passed by Helios A
on 3 April 1979 at 19:45:57 UT (red dashed line labeled

“shock” in the top left panel of Figure 7). The first event can
only be partially explained and the second event cannot be
explained with our theory. During Event A (ahead of the
interplanetary shock), particle counts begin to increase around
day 92.75 in 1979 and then fall back down to background
levels near day 93.5, before the counts spike near the shock
crossing later that day. The bottom left panel of Figure 7 shows
the fluxes measured by the E8 detector from 21 to 353 keV for
event A after normalizing them to the chosen injection point
(red dashed line labeled “Injection Point”). While there is no
consistent pattern in the flux-enhancement profile between 21
and 44 keV, it can be seen that the flux-enhancement profiles
from 44 to 353 keV decrease in their amplification factor as
energy increases, which is the opposite of what is predicted by
our transport theory. However, the bottom right panel of
Figure 7 shows the flux-enhancement profiles from 353 to 677
+ keV of event A, which match the predictions from our

Figure 4. The top panel (a) shows the particle counts from 21 to 110 keV registered by the E8 detector on Helios A. The gray bars represent the time and duration of
SMFRs identified by Chen & Hu (2020). The other panels show: (b) the magnetic field presented in the RTN coordinate system, (c) the proton flow speed as measured
in the spacecraft frame, (d) the proton number density, (e) the proton temperature, (f) and the plasma beta, presented as a time series.
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transport theory. Event A was not selected for the data fits, due
to the plateau-like shape of the curves above 353 keV, which
cannot be captured by the solution given by Equation (5).

The parameters of the SMFRs associated with this
anomalous event can be found in Table 1. Our theory for
SMFR acceleration applies in the limit that the energetic
particle gyroradius is considerably less than the mean SMFR
width, but the particles are still able to traverse and interact
with numerous active SMFRs in order to experience efficient
acceleration. This yields the theoretical prediction that the
energetic particle flux amplification factor increases with
particle energy. However, if the gyroradii in some SMFR
acceleration event compared to the average SMFR width were
considerably reduced, the lower suprathermal energy particles
could get trapped inside SMFRs, thus being less likely to
encounter active SMFRs that generate efficient energy gain.
This could then produce the inverse relationship where the flux
amplification factor decreases with increasing particle energy.
The more mobile higher-energy particles, on the other hand,
would still be able to interact with numerous active SMFRs to
experience efficient acceleration and adhere to the flux
amplification relationship predicted by our theory. This implies
that, for some SMFR acceleration events, there should be a
gyroradius threshold value such that, for gyroradii smaller than
the threshold value, the inverse flux amplification relationship
holds. For gyroradii larger than the threshold value flux, the
amplification relationship predicted by the theory applies. We
use the SMFR parameters given in Table 1 to calculate the
average gyroradii for each energy channel available for Helios
A E8 data normalized to the average SMFR width LI

c
^. The

results of these calculations are presented in Table 2, where we
can see that, above 353 keV, the gyroradii are above 7% of the
average SMFR scale length. These are similar to the values
calculated for the 29 April 1978 event (see again Table 2),
which better follows the predictions of our transport theory.
This could be a threshold value above which particles can more
freely move from one SMFR to another and thus are more
likely to encounter more active SMFRs and gain energy.

However, the values calculated for the 1 May 1980 event are
significantly smaller during an event that follows the predic-
tions of our theory, so this is not an exact value (see Table 2).
The event behind this interplanetary shock does not demon-
strate this same behavior.
Event B (behind the interplanetary shock) is similarly

puzzling, in that it demonstrates the same inverse amplification
factor effect as event A. The interplanetary shock passed Helios
A on 3 April 1979 at 19:45:57 UT, and the particle counts peak
near the shock structure, as predicted by classical DSA theory.
The particle counts then decay after the interplanetary shock
passes, until day 94.5, where they reach background levels
again. Around day 94.75, they begin to rise again and are far
enough separated from the interplanetary shock to not be
associated with it. From 56 to 279 keV, the flux-enhancement
profiles amplification factors decay for rising energy, which
cannot be captured by our transport theory. The parameters of
the SMFRs associated with this anomalous event can be found in
Table 1. Following the same procedure as above, we see that the
gyroradii for each energy channel are not quite as large,
compared to the average SMFR scale length, as they are for the
previous event (see Table 2 for calculated values). However, the
gyroradii do approach the threshold that was discussed above.

3.4. SMFR Acceleration Event of 13 January 1979

Another event that demonstrates a flux-enhancement profile
that is not consistent with our transport theory occurs after an
interplanetary shock that passes Helios A on 13 January 1979 at
08:00:21 UT. Figure 8 (left panel) shows the particle counts
associated with the event. The particle counts peak just before
the interplanetary shock passes Helios A and quickly decays
downstream, following the predictions of classical DSA theory.
Nearly half a day after the interplanetary shock passes (day
13.7), we see a smaller-sized jump, followed by a plateau in the
particle counts until day 14.1, where the counts fall back down
to background rates. Figure 8 (right panel) shows the flux-
enhancement profile for 21 to 174 keV protons. The amplifica-
tion factor associated with the plateau for each energy channel
decreases with increasing particle energy. As in the previous
example (Section 3.3), we believe that the inability of the
particles to escape relatively “quiet” SMFRs could cause this
inverse amplification factor to come about, and this can be
demonstrated by the particle gyroradius being significantly
smaller than than the perpendicular scale width of the SMFR
(see Table 1 for the reconstructed SMFR parameters). Table 2
demonstrates the calculated gyroradii for each energy channel
during the event, which reveals that they are smaller than 1% of
the size of the SMFR. This lends credibility to the idea that these
particles are “trapped” in the SMFRs and cannot easily escape.

4. Fits of SMFR-accelerated Energetic Particle Data

We fit the data for each new SMFR acceleration event using a
Metropolis–Hastings Algorithm as described in Zhao et al. (2019)
and Bonamente (2013), the underlying assumption being that
each measurement is distributed as a Gaussian random variable.
Then the likelihood of a set of parameters can be estimated by the
chi-squared parameter: ( ( ))X fi i i i

2 2 2c q s= S - where Xi are
the in situ flux measurements, fi(θ) are the calculated model values
for each set of parameters (θ), and σi are the variance values for
each measurement. Because of the assumptions associated with
the Parker-type transport equations (i.e., the particle distributions

Figure 5. The flux-enhancement profile for the 1 May 1980 SMFR acceleration
event at 0.59 au. The “x” symbols represent the measured flux normalized to
the chosen injection point (dashed vertical line), and the dashed lines are a
cubic interpolation of the measurements. The gray bars represent the time and
duration of SMFRs identified by Chen & Hu (2020).
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are nearly isotropic), the data to be used for the fitting technique
were calculated by averaging the particle counts over each of the
16 directions (from facing directly at the Sun rotating 360° in the
ecliptic plane) in the E8 detector for a single energy channel
( ( )x m x1 1

16
dirá ñ = S , where m is the number of measurements

that are not missing) and then normalizing it to the energy range
of the bin it was recorded in. Because we only use the E8 detector
from Helios A, the geometric factor for each energy bin is the
same. Therefore, to replicate a flux from one energy bin
normalized to a flux from another energy bin, we can simply
take particle counts for an energy bin divided by the energy range
of that bin and normalize it to the same value for another energy
bin. Xi was calculated by taking the minimum energy bin data
from a specific event and normalizing it to the maximum

energy bin data at the chosen injection point (i.e., Xi =
( ) ( )x r p x r p, ,i min 0 maxá ñ á ñ). The variances are then calculated in

the typical manner ( ( ( )( )) ( )m m x X1 1i i
2

1
16

dir
2D = - S - );

however, for the data fit, we use the normalized variance (i.e.,
( )x r p,i i

2 2
0 max

2s = D á ñ ). It should be noted that measurements
that only include data from one direction (i.e., m= 1) are not used
for the data fits. The model values are estimated by calculating the
differential intensity from the analytical solution of the distribu-
tion function (see Equation (5)) using J(r, p)= p2f (r, p), which
was normalized in the same way as the other quantities (i.e.,

( ) ( ) ( )f J r p J r p, ,i i min 0 maxq = ). This is done to include the
physics that is contained in the exponent of the p/p0 term—

otherwise, normalizing by the same energy would eliminate the
p/p0 exponent altogether. By normalizing the lowest-energy flux

Figure 6. Grad–Shafranov reconstructions of some SMFRs from the 1 May 1980 event identified by Chen & Hu (2020). Displayed are the 2D SMFR twist or island
field component (black contour lines) and the out-of-plane axial (guide) field component (colored regions). The white and green arrows indicate the magnetic field and
flow vectors, respectively, along the path of the spacecraft.
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data (which should have the higher flux because there are more
low-energy particles than high-energy particles) to the higher-
energy flux, we seek to accentuate the differences between the
model and the data, thus decreasing the amount of time needed to
run the fit. Each Markov Chain is run for 106 steps. Five of the six
parameters that are included in the model are varied
(D u v, , , ,Er

I
0 esc COMk ná ñ) to find the best-fit parameters (u0 is

calculated from the average plasma data observed by Helios A).

4.1. The SMFR Acceleration Event of 29 April 1978

Figure 9 shows the full theoretical solution (5) (solid lines)
as fitted to the Helios A energetic particle data at 0.3 au (“x”
symbols) with the Metropolis–Hastings algorithm. The theor-
etical fit is determined by finding the best-fit parameters, which
are presented in Figure 10 and Equation (13). It is clear from
Figure 10 that D0, κ and vesc have well-defined peaks with
values much larger than the magnitude of the peak value for uEr
that is much smaller than the limiting value for uEr inferred

from the condition u D9 1Er
2

0k < , which is discussed above.
The best-fit parameter for I

COMná ñ, on the other hand, has a
nearly uniform distribution, indicating that the best-fit solution
to the data is largely insensitive to its value. This can be
understood by examining where I

COMná ñ occurs in solution (5).
Consider first the dependence of the exponent of r/r0 on

I
COMná ñ in solution (5), given by

⎛
⎝

⎞
⎠

( ( )[⟨ ⟩ ])
( )

/ / /

/

a a
B

A

u u

u D u u u u

u D

2
1

2

6

3 1 3 2

1 9
.

Er

Er
I

Er Er

Er

0

0 COM 0
2

0
2

0


k

k
n k k

k

- = - -
-

+
- - + -

-

Since we already know that the best data fit requires a relatively
small value for |uEr|, we can approximate the denominator of
the last term to be one while neglecting the term with uEr

2 . Then,
by determining the median and standard deviation values for

Figure 7. Top left: Particle counts from 56 to 279 keV in the E8 detector from Helios A showing the interplanetary shock that occurred on 3 April 1979 at 19:45:57
UT and the two anomalous flux-enhancement events nearby on both sides. Top right: Flux-enhancement factor increases inversely with particle energy for Event B
behind the shock, contrary to the theoretical prediction. Bottom left: Flux-enhancement factor increases inversely with particle energy below 353 keV for Event A
ahead of the shock. Bottom right: Flux-enhancement factor increases with particle energy as predicted by the theory for Event A above 353 keV ahead of the shock.
The gray bars represent the time and duration of SMFRs identified by Chen & Hu (2020).
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Table 2
Calculated Gyroradii for Each SMFR Event

Event Rsc (au) Energy (keV) 21–27 27–35 35–44 44–56 56–71 71–90 90–110 110–137 137–174 174–222 222–279 279–353 353–444 444–563 563–677 677+

1978/4/29 0.3 ( )r L 10g I
c 2
^

- 4.558 5.180 5.847 6.579 7.414 8.348 9.304 10.339 11.602 13.092 14.725 16.539 18.573 20.877 23.166 25.984

1979/1/13 0.93 ( )r L 10g I
c 3
^

- 1.502 1.707 1.927 2.168 2.444 2.751 3.066 3.408 3.824 4.315 4.853 5.451 6.121 6.881 7.635 8.564

1979/4/3 A 0.74 ( )r L 10g I
c 2
^

- 1.733 1.969 2.223 2.501 2.818 3.173 3.537 3.930 4.410 4.976 5.597 6.287 7.060 7.936 8.806 9.877

1979/4/3 B 0.74 ( )r L 10g I
c 2
^

- 1.563 1.776 2.005 2.256 2.542 2.862 3.190 3.545 3.978 4.489 5.049 5.670 6.368 7.158 7.943 8.909

1980/5/1 0.59 ( )r L 10g I
c 3
^

- 1.033 1.174 1.325 1.491 1.680 1.892 2.109 2.344 2.630 2.967 3.338 3.749 4.210 4.732 5.251 5.890

Note. Gyroradii were calculated using the average energy from each bin. The heliocentric distance of the spacecraft is also noted for each event in the second column.
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each parameter from Figure 10, we find that

( )

D

u

u
u

u
v

u

u

6.41 2.35 10 ,

9.18 0.05 10 ,

5.66 1.70 10 ,

8.99 2.61,

4.15 6.27. 13

Er

I

0

0

1

0

2

0

2

esc

0

COM

0

k

n

=  ´

=  ´

=-  ´

= 

á ñ
= 

-

-

-

Plugging in the median values for all parameters in the
expression for the exponent of r/r0—except I

COMná ñ, for which
the maximum value (i.e., u 10I

COM 0ná ñ  ) is specified—
reveals that the last term of the exponent is an order of
magnitude lower than the first term (≈−0.2 as compared
to≈ 4). Therefore, even if I

COMná ñ is maximized, it has minimal
effect on the exponent of r/r0.

Second, in the argument of the modified Bessel function in
solution (5), I

COMná ñ is present in b, according to the expression

Following the same procedure as for the previous term, we see
that the combined size of the first term in b containing the
geometric factor (size ≈16) and the escape term (size ≈90) is
an order of magnitude greater than the final term (≈6), meaning
that in b the importance of I

COMná ñ is also minimal. Since b and
the exponent of r/r0, which are both weakly dependent on

I
COMná ñ, predominantly determine the spatial profile of the

solution, it stands to reason that the fitting method cannot locate
a highest probable value for I

COMná ñ. Thus, we can reasonably

rule out first-order Fermi acceleration due to the mean SMFR
compression rate as the dominant SMFR acceleration mech-
anism in this event.
Similarly, given that uEr is minimized by the fitting

technique, combined with the fact that a large uErvalue causes
u D1 9 0Er
2

0k- < , which leads to the full solution
(Equation (5)) becoming complex, we can conclude that
acceleration by the mean turbulent motional electric field
parallel to the guide field, as expressed collectively by the
combination of the mixed-derivative transport term (fifth
transport term of Equation (4)) and the term modeling adiabatic
heating for uEr< 0 (in third transport term in Equation (4)),
cannot dominate SMFR acceleration in these SMFR accelera-
tion events. This leaves the second-order Fermi SMFR
acceleration mechanism (D0) as the SMFR acceleration
mechanism that does most of the work accelerating particles.
Che & Zank (2020) come to a similar conclusion using a
particle-in-cell (PIC) simulation to investigate electron accel-
eration in an electron Kelvin–Helmholtz instability. The
authors also agree that the SMFR acceleration mechanism
due to island contraction is inefficient compared to the second-
order Fermi process associated with stochastic inductive
electric fields. In the interest of supporting this argument, we

plot the second-order Fermi solution (Equation (8)) with the
data in Figure 11 where the best-fit parameters from
Equation (13) are used, showing that with second-order Fermi
acceleration alone, one comes close to reproducing the
observed flux enhancements. Nonetheless, a good reproduction
of the observed flux enhancements does require a minor
contribution from the mean parallel turbulent motional electric
field in SMFRs collectively through the mixed-derivative
transport term and the adiabatic heating term, as well as the
term for first-order Fermi acceleration due to the average

Figure 8. Left: Particle counts from 21 to 174 keV in the E8 detector from Helios A, showing the interplanetary shock that occurred on 13 January 1979 at 08:00:21
UT (shown as the red dashed line) and an anomalous flux-enhancement event immediately downstream of the shock. Right: Flux-enhancement factor increases
inversely with particle energy, contrary to the theoretical prediction.

⎛
⎝

⎞
⎠

( ) ( ( )[⟨ ⟩ ])
( )

/ / /

/
b

u u v D D u u u u

u D
1

2 4

3 1 3 2

1 9
.Er

I
Er Er

Er

0
2

esc 0 0 COM 0
2

0
2

2
0k k k

n k k
k

= -
-

+ +
- - + -

-

17

The Astrophysical Journal, 933:80 (41pp), 2022 July 1 Van Eck et al.



Figure 9. Full solution fit for the 29 April 1978 SMFR acceleration event energetic proton fluxes observed at 0.3 au for various particle energies. The energies follow
the same color code as in Figure 2. The “x” symbols represent data points, the solid curves denote the fit of the full analytical solution to the data with the Metropolis–
Hastings Algorithm, and the dashed lines represent a cubic interpolation of the data. Both the data and the theoretical curves for all particle energies were normalized
to a value of one at the chosen particle source injection point indicated by the vertical dashed red line. The gray bars represent the time and duration of SMFRs
identified by Chen & Hu (2020).
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Figure 10. Probability distributions of fitting parameters normalized to the solar wind speed u0 for various transport coefficients appearing in the analytical solution for
SMFR acceleration as generated by the Metropolis–Hastings Algorithm for the 29 April 1978 SMFR acceleration event.
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Figure 11. Second-order Fermi acceleration solution fit to the 29 April 1978 event energetic proton fluxes observed at 0.3 au for various particle energies. The
energies follow the same color code as in Figure 2. The “x” symbols represent data points, and solid curves denote the fit of the full analytical solution to the data with
the Metropolis–Hastings Algorithm. Both the data and the theoretical curves for all particle energies were normalized to a value of one at the chosen particle source
injection point indicated by the vertical dashed line. The gray bars represent the time and duration of SMFRs identified by Chen & Hu (2020).
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SMFR compression rate. A minor role for the mixed-derivative
transport in SMFR acceleration featured also in the results
presented by Zhao et al. (2018).
Inspection of the best-fit values of the transport parameters

listed in Equation (13) emphasizes that a strong escape term

(large values for vesc) is vital to reproducing the observed
spectral slopes (see Figure 12, where the spectral slopes
excluding escape, the blue lines, are entirely too hard to
reproduce observations, the “x” symbols) and spatial profiles.
Consider now the expression for the spectral power-law index

Figure 12. Observed energetic proton spectral flux data (“x”-symbols) of the 29 April 1978 SMFR acceleration event at 0.3 au as a function of particle kinetic energy
in keV normalized to the flux value of the lowest energy bin. The solid red lines indicate the best fit of the full analytical solution to the data with the aid of the
Metropolis–Hastings algorithm, while the blue lines represent the analytical solution without particle escape from the SMFR region.
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predicted by the full solution in the high-energy limit at the
particle injection position given by

By inserting the best-fit values of Equation (13) into this
expression, we estimate that α= 2.39 ( f (p)∝ p−2.39) in the
absence of particle escape (vesc= 0). This spectra is harder than the
hardest possible accelerated spectrum due to second-order Fermi
acceleration at the injection position (α∼ 3 at r= r0). Both other
mechanisms allow for spectral slopes that are much harder than
α∼ 3 at the injection position (for compression acceleration α∼ 0
in the strongest case, and for acceleration due to the component of
the mean turbulent motional electric field parallel to the guide
magnetic field as represented collectively by the mixed-derivative
transport term and the adiabatic heating term α∼ 3/2). This
confirms our conclusion that, while second-order Fermi plays a
dominant role in accelerating the particles, acceleration of the
particles by the component of the mean turbulent motional electric
field parallel to the guide/background magnetic field as
represented collectively in the mixed-derivative transport term
and the adiabatic heating term, as well as by the mean compression
of the SMFR field, must play a non-negligible secondary role.

If we restore particle escape in the expression for α, we find
that α increases strongly from α= 2.39 to α= 4.71. This
illustrates the large role particle escape from the SMFR
acceleration region plays in steepening the SMFR-accelerated
particle spectrum to produce good fits of the theoretical solution
to the data as shown in Figure 12. We also investigated the
possibility that some of the spectral steepening can be attributed
to self-consistent SMFR acceleration, where the energy
exchange between energetic particles and SMFRs should be
taken into account. For this purpose, we calculated the average
magnetic pressure in the magnetic (twist) component for the
identified SMFRs during this acceleration event and compared it
to the pressure calculated from the energetic particle spectra. We
find that the pressure in SMFR-accelerated particles is many
orders of magnitude less than the magnetic pressure in the
SMFRs, which leads to the conclusion that this event does not
represent a time period when energetic particles are accelerated
in a self-consistent manner by SMFRs. This confirms the
correctness of using a test particle to model SMFR acceleration
of energetic particles, and suggests that the escape term
represents particles escaping from the SMFR region exclusively.

Another striking feature of the fit values in Equation (13) is
how small the radial diffusion coefficient κ is. We speculate
that, because the particles do not diffuse efficiently (κ is
minuscule compared to other transport parameters; see
Equation (13)), the ability of particles to freely move from
one SMFR to another is primarily determined by the escape
term, thus explaining its stature the data fit.

4.2. The SMFR Acceleration Event of 1 May 1980

As discussed above, we expect the shock, but not the
compression, to have a significant modifying effect on the
enhanced energetic particle fluxes associated with SMFR

acceleration. However, since this modifying effect occurs more
toward the end of the decrease in the enhanced flux of SMFR-

accelerated particles, we consider this to be a secondary effect on
the overall enhanced flux profile that can still be fitted with our
theoretical solution for SMFR acceleration. The results from
applying the Metropolis–Hastings algorithm to the 1 May 1980
event are eerily similar to those for the event in the previous
section. Figure 13 displays the full theoretical solution
(Equation (5)) fit (solid curves) that the Metropolis–Hastings
algorithm determined for these data (“x” symbols). The results of
the Metropolis–Hastings algorithm for each fitting parameter are
displayed in Figure 14, from which we determined the median
and standard deviation values for all the fitting parameters:
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Examining the fitting parameters in Figure 14 and
Equation (14) for this SMFR acceleration event observed at
∼0.59 au leads to the same conclusions as for the acceleration
event at∼0.3 au discussed in the previous section. As before, the
fitting values for the mean SMFR compression rate I

COMná ñ,
which determines first-order Fermi SMFR acceleration due to
the mean SMFR compression rate, has a relatively uniform
distribution in Figure 14 because of its low impact on the spatial
profile of the solution. The fitting parameter uEr associated with
acceleration by the mean turbulent motional electric field parallel
to the guide/background magnetic field is again minimized by
the fitting procedure to be much smaller than the condition for a
real solution (u D9 1Er
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0k < ). As in the previous acceleration

event, this implies that second-order Fermi SMFR acceleration
must be the dominant SMFR acceleration mechanism. This is
confirmed by Figure 15, in which the second-order Fermi
solution of Equation (8) (solid curves) is compared with the
observations (“x” symbols). Similarly to the case of the 29 April
1978 event, here we see that the second-order Fermi mechanism
alone brings one close to reproducing the observations, but that
the other SMFR acceleration mechanisms are needed for a good
data fit. Both first-order Fermi SMFR acceleration due to the
mean SMFR compression rate, as well as acceleration by the
mean turbulent motional electric field parallel to the guide field
manifested in the mixed-derivative and the adiabatic heating
transport terms, play a secondary but significant role in
accelerating the particle population.
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Figure 13. Same format as Figure 9.
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Figure 14. Probability distributions of fitting parameters normalized to the solar wind speed u0 for various transport coefficients appearing in the analytical solution for
SMFR acceleration as generated by the Metropolis–Hastings Algorithm for the 1 May 1980 SMFR acceleration event.
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As in the previous event, we note that the escape term is
large in comparison to the other transport parameters and that
a self-consistent acceleration approach to modeling SMFR
acceleration is not needed. Assuming no particle escape
(vesc= 0), we find that our solution produces a hard
accelerated spectrum with a power-law exponent α= 2.85
in the high-energy limit based on the fitting parameters listed
in Equation (14) ( f (p)∝ p−2.85), indicating a somewhat
steeper spectrum compared to the previous event. Since the
hardest possible accelerated spectrum for second-order Fermi
acceleration in the high-energy limit is α= 3, as discussed
above, this is additional confirmation that other SMFR
acceleration mechanisms do also contribute to SMFR
acceleration. Such a hard spectrum cannot reproduce the
observed spectral slopes (see Figure 16; blue lines represent
the model without escape, and the “x” symbols represent the
observations). When particle escape is retained (red lines in
Figure 16), we estimate a substantial increase for α, such that
α= 4.77, thus generating the much steeper spectra needed
for reproducing the observed spectral slopes as shown in
Figure 16. This once again emphasizes the prominent role
particle escape from the SMFR acceleration region plays in
providing a good fit to the observations. As before, we
investigated the possibility that some of the spectral
steepening should be ascribed to self-consistent SMFR
acceleration, by calculating the magnetic field pressure in
the SMFRs and the pressure in the energetic particle
spectrum. Once again, the pressure in the energetic particle
spectrum was calculated to be many orders of magnitude
lower than the pressure in the SMFR magnetic fields, thus
supporting our test-particle approach to SMFR acceleration
—which is simply too inefficient for a self-consistent
approach—and ruling out that some of the escape should
be attributed to self-consistent acceleration. Finally, the
fitting approach again produced a small value for the radial
diffusion coefficient (κ). Since efficient SMFR acceleration

depends on particles being able to move freely between
SMFRs, as discussed above, the large escape term might
suggest a way to compensate for the lack of radial diffusion.

5. Individual SMFR Mechanisms of Second-order Fermi
Acceleration

As was demonstrated in Section 4, we have determined that
second-order Fermi SMFR acceleration is more important than
first-order Fermi acceleration produced by the mean SMFR
compression rate, as well as acceleration by the mean turbulent
motional electric field parallel to the guide/background
magnetic field, as it features collectively in the mixed-
derivative transport term and the transport term containing
the divergence of uEr. It still needs to be determined which of
the four basic SMFR acceleration mechanisms (those asso-
ciated with SMFR compression (superscript “COM”), the
component of SMFR shear flow parallel to the SMFR magnetic
island field component (superscript “SH”), the parallel
component of the non-inertial force associated with the
acceleration of the SMFR flow parallel to the SMFR magnetic
island field component (superscript “ACC”), and the comp-
onent of the turbulent motional electric field force parallel to
the guide field (superscript “E”)) feature predominantly in
second-order Fermi acceleration. Another complication is that
these four mechanisms manifest themselves in both second-
order Fermi acceleration due to energetic particle pitch-angle
scattering in mean SMFR fields and in second-order Fermi
acceleration due to fluctuations in SMFR fields. We choose to
focus on the second-order Fermi associated with fluctuations in
the SMFR fields. This is supported by recent PIC simulations
of magnetic reconnection that emphasize second-order Fermi
acceleration by random fluctuations in parallel electric fields as
the main source of electron acceleration on small scales (Che &
Zank 2020), and by previous observations in the large-scale
solar wind that low-frequency turbulent motional electric fields
parallel to the background magnetic field tend to be random
(have a small average value; Marsch & Tu 1992). After having
averaged over a finite particle speed interval consistent with the
range of the observed accelerated particle spectra, the
expressions of D0 for each of the mechanisms are

where LI∥ is the SMFR length along the guide field L2 I
c» ^

(Weygand et al. 2011); LI
c
^ is the average SMFR diameter; γ is

the Lorentz factor; vA0 is the Alfvén speed due to the guide
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Figure 15. Same format as Figure 11.
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field; BI
2dá ñ refers to the average magnetic energy density in the

magnetic island (twist) component of SMFRs; B0
2 is associated

with the magnetic energy density in the guide field; di is the ion
inertial scale, or the gyroradius for the guide field if the particle

speed equals the Alfvén speed due to the guide field

( )d r v v
m v

eB

m

eB

B
;i g A

p A p
0

0

0 0

0

0 0m r
= = = =

Figure 16. Observed energetic proton spectral flux data (“x” symbols) of the 1 May 1980 SMFR acceleration event at 0.59 au as a function of particle kinetic energy in
keV normalized to the flux value of the lowest energy bin. The solid red lines indicate the best fit of the full analytical solution to the data with the aid of the
Metropolis–Hastings algorithm, while the blue lines represent the analytical solution without particle escape from the SMFR region.
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rA
I is the Alfvén ratio of the magnetic island component of
SMFRs, defined in le Roux et al. (2018) as
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Details can be found in Appendix G. Note that these
expressions were derived in the strong scattering limit (thus
justifying our the assumption of near-isotropic energetic
particle distributions) for suprathermal particles (vA0/v? 1)
assuming that random magnetic mirroring forces in SMFRs are
the main cause of energetic particle pitch-angle scattering. The
fast diffusion limit was imposed ( L Uc I I

2 1 2t t d= á ñk ^^ ,
where τc is the SMFR turbulence correlation time), thus
ensuring that energetic particles efficiently interact with
multiple dynamic SMFRs, because our transport theory relies
on the idea that efficient SMFR acceleration requires interac-
tion with numerous SMFRs, as suggested by 3D simulations of
magnetic reconnection (Dahlin et al. 2017; Che & Zank 2020;
Li et al. 2021).

To accurately assess the strength of each mechanism during
an SMFR acceleration event period, we calculate an average for
each quantity featuring in the expressions listed in
Equation (15) above. This is made difficult by the issue of
significant gaps in Helios A data. To alleviate this issue, we
weight each individual SMFR’s parameters by its duration

divided by the total duration of the SMFR acceleration event
not including the time where measurements are missing. The
weighted SMFR parameters are all added together to give an
average SMFR parameter for the entire SMFR acceleration
event. These calculations are based on parameters determined
for each individual SMFR identified with the Grad–Shafranov
method (Chen & Hu 2020) during every SMFR acceleration
event discussed in this paper (see Table 1 for a complete list of
the identified SMFRs including the specified parameters). Even
though our transport coefficients were derived in the strong
guide field (B BI0

2 1 2 dá ñ ), we assume that the transport
coefficients are still reasonably accurate when B BI0

2 1 2 dá ñ .
On this basis, we neglected the contribution of SMFRs for
which B B2 I0

2 1 2d< á ñ .
Using this method, the values for the calculated values of the

separate D0 mechanisms are reported for two SMFR accelera-
tion events observed at distances less than 1 au from the Sun in
Table 3. Comparing the calculated D0values for each second-
order Fermi SMFR acceleration mechanism in Table 3 to the
total D0values for all second-order Fermi SMFR mechanisms
needed to fit the full solution (5) to the observed energetic
particle fluxes of two SMFR acceleration events with the
Metropolis–Hastings algorithm (see the D0 values presented in
Equations (13) and (14)) reveals that only one second-order
Fermi mechanism has a D0value on an order that is at or above
that of the total D0value we obtained from the data fits. This
mechanism is the one associated with second-order Fermi
acceleration by the variance of the turbulent motional electric
field parallel to the guide/background field. A concern arises
due to the fact that the D0-values estimated for this second-
order Fermi mechanism are much larger than the total D0values
for second-order Fermi mechanisms obtained with the data fits.
This could be explained by the fact that there are significant
gaps in the data. If the data gaps do represent time periods
without SMFRs and are taken account in the averaging process,
this could very well lower the average D0values for this
acceleration mechanism to match up with the total D0values
predicted by the data fits.

6. Summary and Conclusions

le Roux et al. (2019) presented an analytical solution of a
Parker transport equation for energetic particle interaction with
SMFRs in planar geometry, which unified for the first time all
the SMFR acceleration mechanisms present in the equation.
The solution is only valid for constant transport coefficients. In
this paper, we extended the solution to spherical geometry.
This enabled us to study the effect of the radial variation of the
transport mechanisms, as well as additional transport mechan-
isms such as adiabatic energy loss in the radially expanding
solar wind flow, on particle acceleration by SMFRs. Our main

Table 3
SMFR Mechanism Calculations

Event Itk^
I


tk D uICOM
0 0 D uIACC

0 0 D uISH
0 0 D uIE

0 0 K0/u0
(Spacecraft Position) (hr) (hr)

1978/4/29 Ck = 1 5.002E-3 6.017E-4 5.807E-4 6.647E-8 5.479E-3 1.673 3.537E-3
(0.3 au) Ck ≠ 1 4.245E-3 7.180E-4 6.615E-4 7.802E-8 6.472E-3 1.881 3.001E-3

1980/5/1 Ck = 1 9.91E-2 1.54E-3 7.44E-4 2.50E-9 3.17E-6 13.24 1.97E-2
(0.59 au) Ck ≠ 1 1.40E-1 1.10E-3 5.27E-4 1.71E-9 2.20E-6 9.45 2.78E-2

Note. Calculations were performed using values presented in Table 1 in Equation (15). Individual SMFR events are separated by an added horizontal line.
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goal was to fit the new solution to observed SMFR acceleration
events in the inner heliosphere as a vehicle to make the first
serious attempt to discover the dominating SMFR acceleration
mechanisms in the inner heliosphere, which is still an unsolved
problem. Two new events that were identified in Helios A E8
data cannot easily be explained by classical steady-state DSA
theory: one of these events occurred when Helios A was near
its perihelion (∼0.3 au), and another when Helios A was near
0.59 au. These events were identified as SMFR acceleration
events because they overlap with previously identified SMFRs
(Chen & Hu 2020) and their flux enhancements match
predictions from our transport theory, namely that the associated
amplification factor increases with particle energy. They are the
first events of their kind to be identified and studied inside a
radial distance of 1 au. A Metropolis–Hastings algorithm (Zhao
et al. 2019) was employed to determine the best-fit parameters
corresponding to each SMFR acceleration mechanism in the full
solution (Equation (5)) for modeling the SMFR acceleration
events. Combining the results from this effort with results from
Grad–Shafranov reconstructions of SMFRs identified in the
SMFR acceleration region, we determined that

1. Second-order Fermi SMFR acceleration plays a more
important role in energetic particle acceleration by
SMFRs than first-order Fermi SMFR acceleration due
to the mean SMFR compression rate, as well as
acceleration by the mean turbulent motional electric field
component parallel to the guide/background magnetic
field from the combination of the mixed-derivative
transport term with the adiabatic heating term for the
presented events, though these secondary mechanisms
play a non-negligible role.

2. The second-order Fermi acceleration during these events
is dominated by the SMFR mechanism associated with
fluctuations in the turbulent motional electric field
parallel to the guide/background magnetic field.

3. SMFR acceleration appears to become less efficient with
increasing radial distance from the Sun.

4. Particles must be allowed to efficiently escape the SMFR
acceleration region in order for observed spectral slopes
and spatial profiles to be accurately reproduced.

5. For these events, the energetic particle pressures are too
low to have a significant backreaction effect on SMFR
structures, thus justifying our test-particle approach to
energetic particle acceleration SMFRs.
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Appendix A
Full Solution

Grouping terms in Equation (4), we see
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Next, we apply the Laplace transform to Equation (A1) ( ( ) ( )f r dze f r z, ,z
0òm = m¥ - ). By assumption, the transport coefficients in

Equation (A1) (i.e., u0, D0, uEr, κ, vesc, and
I
COMná ñ) are all independent of z. Similarly, because z= 0 means p= p0 and we are only

interested in particles where p> p0, we ignore terms where z= 0. After applying the transform, Equation (A1) becomes
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To solve Equation (A2), we first solve the homogeneous equation. For this purpose, we compare the homogeneous equation with
(5.2.30) from Morse & Feshbach (1953):
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Inspection of the expressions for λ+ and λ− shows that λ+= λ1 and λ−= λ2. Therefore, going forward we define λ+= λ1 and
λ−= λ2. It can then be shown that the term inside the square root is
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The solution to the homogeneous version of Equation (A2) can be expressed as f C r C r= +l l
+ -+ -, where C+ and C− are

constants. We complete the square inside the square root to simplify the algebraic steps that follow. In general,
Aμ2+ Bμ= A(μ+ B/2A)2− B2/4A, and we get
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Following Morse & Feshbach (1953), we apply the method of variation of parameters to get a solution to the inhomogeneous
Equation (A2):
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where H(r− r0) is a step function at r= r0. Following the same process results in
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After incorporating these results into Equation (A4):
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To get the above expression, we applied ( ) [ ( )]r r x r rexp lnx
0 0= -- and [ ] ( ) ( )iax ax i axexp cos sin- = - + - , and eliminated the

integral with an odd integrand. After evaluating the remaining integral using the Fourier cosine transform #27 on p. 17 from Erdélyi
(1954), we get
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where K0 is the zeroth modified Bessel function of the second kind. Following the same steps, it can be shown
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Applying these results to the inverse Laplace transform of Equation (A5) results in
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The two terms of the solution can be unified into a single expression whereby the step functions can be discarded
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The terms in the solution are
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Appendix B
High-energy Limit

Here, we use the large-argument limit of the modified Bessel function of the second kind, ( ) ∣ ∣K w we w2 , 1w
0 p~ - , as a

consequence of assuming that the momentum is much greater than the injection momentum, p/p0? 1, and requiring that r/r0> 1.
Applying this to Equation (A6) yields
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Analysis of the r/r0 exponent shows that it is clearly positive. Thus, for increasing radial distances r> r0, sufficiently close to r= r0,
the particle distribution function increases. The exponent of r/r0 can be written as
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Applying the constraint u D0 1 9 1Er
2

0k< - < means that the −1 in the second term is dominated by the positive term with
u D1 9Er
2

0k- in the denominator.

Appendix C
Large Radial Distance Limit

In this limit, we assume that the radial position, r, is much greater than the injection position r/r0? 1, p/p0> 1, and apply the
large-argument limit to the modified Bessel function of the second kind. Applying these assumptions to Equation (A6) gives
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Upon examining terms, it is clear that b> 0 and real if D u9 Er0
2k > , whereby the final term in the exponent of r/r0 has a negative

contribution to the exponent as a whole. Defining ( [ ])/ / /q D u u u u3 1 3 2I
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0n k k= - á ñ - + - , we see that the exponent
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Examining the terms including q/A
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, and assuming that ∣ ∣A D u0 4 6Er0 k k>  >* , we thus conclude that the term under the

square root is larger in magnitude than the term outside the square root. Then, if q> 0 and uEr< 0, the whole exponent is negative,
but if we allow q< 0, then the individual terms need to be examined to determine the sign of the exponent. From the condition
above, we know ∣ ∣D u4 6Er0 k k> . This can be expressed as

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
G

u u u

D

q

A

u u D q

D A
F1

2 6
1

2 4
,Er Er Er0

0

0 0

0k k
k

k k
k

= - -
-

+ < - -
-

+ =
* *

and in general, if we take three numbers (F, G, and M) that obey F>G and M> 0, then it must follow that F M G2 + > .
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the distribution function decreases with increasing radial distance in the large radial distance limit.

Appendix D
Second-order Fermi Limit

The second-order Fermi acceleration limit is obtained by letting uEr→ 0 and 0I
COMná ñ  in the complete solution given by

Equation (A6). This yields
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In the limit of strong second-order Fermi acceleration (D0? 1), we can simplify the argument of the modified Bessel function before
taking its large-argument limit. Then, solution (D1) simplifies to
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which yields the hardest possible power law in momentum with an exponent of− 3/2. Note that taking the strong acceleration limit
close to the particle source (r→ r0) produces a softer power law with exponent −3 because then
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This yields that the accelerated particle spectrum tends to becomes harder with increasing radial distance upstream of the particle
injection position (r= r0) as particles with different energies diffuse in the direction of the solar wind flow.

Appendix E
Limit of Acceleration by the Mean Turbulent Motional Electric Field Parallel to Guide/Background Magnetic Field

E.1. Solution from the Parker Equation

Going back to (A1), ignoring terms containing I
COMná ñ and D0, and assuming that uEr=− |uEr|< 0 (defining ∣ ∣u uEr Er= * ), we get
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Applying the Laplace transform to (E1) as before gives
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As was done above, we apply the approach by Morse & Feshbach (1953) to solve this second-order partial differential equation
containing the effects of spherical geometry. We find that

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )u u u u u u v

u u1
2 3

1
2 3

2

3
.Er Er Er Er

Er
0 0

2
esc

0l
k

m
k k

m
k k

m
k

= - -
+

+  - -
+

+ + - -
* * * *

*

The argument of the square root can be rewritten as
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The method of variation of parameters is applied to produce the solution:
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Consider the inverse Laplace transform of the solution for f after introducing the new variable u3 Erm k= *

[ ( ( ) )]u u u u 2Er Er0 0e k+ - +* * . After evaluating this inverse transform with the aid of the inverse Laplace transform (24) listed
on page 248 of Erdélyi (1954), we finally get
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where J0 is the Bessel function of the first kind and ( )( ( ) )u u u u u u v1 1Er Er Er0 0 0 escn k k= - + - + +* * * . The oscillatory

nature of the solution generated by the presence of J0, which can cause f0 to become negative, can be removed if we assume that ν is
imaginary. We now have two options. One possibility is that ( )u u1 0Er0- <* and ( ( ) )u u u u1 0Er Er0 0 k+ - + >* * . Since this
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approach yields a modified Bessel function of the first kind I0 that increases with radial distance, the desired peak in the particle
distribution can only be achieved if the exponent of r/r0 is negative—which is not the case. Thus, we choose the remaining option,
where ( )u u1 0Er0- >* and ( ( ) )u u u u1 0Er Er0 0 k+ - + <* * . The first inequality indicates that u uEr 0>* . The second is a bit
more more difficult to interpret, but reveals that uErk < * . For ν to be imaginary, the first term in the expression for ν must be more
important than the second term vesc/κ. This follows by imposing the additional requirement that u vEr esc>* . More simply, ν will
become imaginary by taking the large uEr* limit. When ν is imaginary, we can apply Iν(z)= em( i ν π/2)Jν(ze

±(iπ/2)). Using the Euler
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where ( )( ( ) )u u u u u u v1 1Er Er Er0 0 0 escn k k= - - + - + -* * * * .

E.1.1. Limit from the Full Solution

Starting with (A6) (the full solution containing all the acceleration mechanisms), we investigate what approach we need to follow
to recover (E2). To start, we assume that 0I

COMná ñ  , D0→ 0, and u uEr Er= - * , whereby
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By applying the limit D0→ 0, the expression for A D u u9 9Er Er0
2 2 2 2k k k= -  -* * * . Following the same assumptions,
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Therefore, the exponent of r/r0 becomes
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The argument of the last square root in the Bessel function of (A6) can be simplified to become
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Applying these results to (A6) gives
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A Hankel function can now be introduced using the identity ( ) ( ) ¯ ( )( )K w i e H we2n
in

n
i2 2 2p= - p p- - , where H̄ is the Hankel function

or Bessel function of the third kind valid for− (π/2)< ph(w)< π. Considering that ν, u3 Erk * , and z are all positive, then only the
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last square root can affect the phase of the total argument of K0. If we specify a phase of π/2 (x= ix‘, where x‘> 0 in the identity), it
implies in our application of the identity that the last square root must be real. Our requirement is then ( )z u r r2 3 ln 0Er 0k+ >* .
Since z> 0 by assumption, the inequality can only be violated when r< r0 sufficiently. To fulfill the inequality in this case, we
introduce the additional constraint ( )u z r r3 2 ln 0Er 0k + >* . After incorporating the Hankel function, and the abovementioned
inequalities in terms of Heaviside step functions, the solution becomes
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Note that ¯ ( ) ( ) ( )( )H z J z iY z0
2

0 0= - . Since we are not interested in the imaginary part of the solution (the distribution function should

be real), we discard Y0 in order to reproduce (E2) exactly, except for a factor of one half out front, because then
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Appendix F
Compression Acceleration Limit

F.1. Solution from the Parker Equation

Going back to Equation (A1) and ignoring terms that include uEr and D0, we get
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By applying again the approach outlined in Morse & Feshbach (1953), it can be shown that
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With the aid of the method of variation of parameters, we find that
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where ( )p u v u1 2 30
2

esck k m k¢ = - + + * and [ ( ) ]u p u v3 1 20
2

escm k k k= ¢ - - -* . After evaluating the inverse
Laplace transform of solution f with the aid of transform #6 on p. 246 in Erdélyi (1954), we finally get
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At the particle source position r= r0, this solution simplifies to a pure power law in momentum given by
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F.2. Compression Acceleration Limit of the Full Solution

Starting with (A6) (the full solution containing all the acceleration mechanisms), we want to see what limits we can take to get
back (F2) (the solution only including compression acceleration). To begin, we set uEr= 0. This gives the following simplifications:
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which means the distribution function becomes
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After defining q=− u*/3D0 and letting D0→ 0, we find that |q|? 1, and thus ( ) ( )b u v D q1 2 20
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us examine the argument of the modified Bessel function:
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Note the ordering of the size of the terms in the square roots given that |q|? 1 and D0= 1. This means that both square roots can be
simplified to x1 + , where x= 1 followed by a Taylor expansion on each about x= 0 (i.e.,

x x x x1 1 2 8 16 ...2 3+ = + - + - ). Keeping the first two terms of each expansion only, we see that the argument of the
modified Bessel function becomes
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Here, ε= 1, and therefore D0∼O(ε), q∼O(1/ε). Because we have a term of O(1/ε), we can apply the large-argument limit of the
modified Bessel function ( ( )K z z elim 2z

z
0 p=¥

- ). In order to reobtain (F2), we keep only the term of O(1/ε) in the square root,
because it gives the dominant contribution. However, in the exponent of the large-argument limit, only the terms of O(1) and O(ε) are
retained so as not to let the solution decay to zero:
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Plugging in this result, we see
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thus reproducing (F2).

Appendix G
The Separate Second-order Fermi SMFR Acceleration Mechanisms

le Roux et al. (2019) introduce their pitch angle averaged momentum diffusion coefficient as

( )D D D D , G1pp
I

pp pp
Icoh

pp
Istoch0= + +

which is made up of three different classes of momentum diffusion (le Roux et al. 2019). Dpp
0 deals with momentum diffusion due to

energetic particles undergoing pitch-angle scattering when interacting with the large-scale solar wind fields, and can be written as

⎜ ⎟
⎡

⎣
⎢
⎛
⎝

⎞
⎠
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⎥( ) ·b b

E u
bD p
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p v

d

dt v

1

5
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1
,pp

I I
0 2

0 0
sh 2

2

2
2 0 0

0

2 1

2

 s
k k

= + -

where σsh is the solar wind shear flow tensor, E0 is the nonideal background electric field, du0/dt represents the acceleration of the
solar wind flow, and I1

k and I2
k denote the parallel diffusion coefficient as a consequence of particle pitch-angle scattering by

random magnetic mirroring forces in SMFRs that originate from the first anisotropic moment (superscript of “1”) of the focused
transport equation and the second anisotropic moment (superscript of “2”) of the focused transport equation, respectively.
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Dpp
Icoh makes up the second class of momentum diffusion generated because particles undergo pitch-angle scattering while they

interact with mean SMFR fields (le Roux et al. 2019):
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which is made up of four separate SMFR mechanisms that all accelerate particles. I
COMná ñ represents the average SMFR compression

acceleration rate, I
INCná ñ is the average incompressible parallel shear flow acceleration rate, I

ACCná ñ is the mean SMFR parallel flow

acceleration, and E
Iná ñ is the acceleration rate associated with average turbulent motional electric field parallel to the guide/

background magnetic field (le Roux et al. 2019).
The final class of momentum diffusion, Dpp

Istoch, is caused by particles responding to statistical fluctuations in the SMFR fields and
can be expressed as (le Roux et al. 2019)
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where ( )I
COM

2dná ñ is the variance in the SMFR compression rate, I
REFdn represents random fluctuations in the energetic particle pitch-

angle rate of change due to fluctuations in the magnetic mirroring force in the SMFRs, ( )I
REC

2dná ñ is the variance in the acceleration

rate due to fluctuations in turbulent motional electric field parallel to the guide/background magnetic field, ( )I
INC

2dná ñ is the variance
in the SMFR incompressible parallel shear flow acceleration rate, and ( )I

ACC
2dná ñ is the variance in the parallel reconnection electric

field acceleration rate. See Equations (10)–(12) in le Roux et al. (2019) for details. Each momentum diffusion term is weighted by
one of two timescales that determines its contribution to the total momentum diffusion coefficient. The two timescales of note are the
scattering timescale ( vI1 2

k or vI2 2
k ) and the decorrelation timescale (τdec). The scattering timescale is defined as the average

timescale on which we would expect energetic particles to experience scattering and diffuse due to interaction with smaller,
gyroscale-size SMFR scattering centers. These scattering centers are assumed to be present inside the main larger-scale SMFRs with
which the energetic particles interact at the same time, the latter with gyroradii much smaller than the width of the main SMFRs. The
decorrelation timescale, on the other hand, describes the timescale on which particles, diffusing inside the main, larger-scale SMFRs,
experience decorrelated electromagnetic fields and plasma flow associated with the main SMFRs (diffusive crossing timescale). See
le Roux et al. (2015) for more information. Thus, our theory operates in the strong scattering limit whereby the Parker-type transport
equation we apply in this paper, limited to cases where the distribution function is nearly isotropic due to strong scattering, is an
appropriate choice. Therefore, we expect the scattering timescale to be the smallest timescale in our problem. Consequently, because
particles are scattering continuously inside SMFRs, we expect the scattering timescale to be the smallest timescale in the problem.
Similarly, because particles are scattering the whole time that they are inside SMFRs, we expect vI

dec
1 2 t k and vI2 2

k , so we

only retain the terms that do not include vI1 2
k or vI2 2

k .

Therefore, only the third class of momentum diffusion Dpp
Istoch remains. This class focuses on stochastic acceleration due statistical

fluctuations in SMFR flow and fields. In Dpp
Istoch, there are four stochastic acceleration mechanisms, as discussed above, which we

label now as Dpp
IE because of the variance in the turbulent motional electric field parallel to the guide/background magnetic field

( )EI 2dná ñ , Dpp
IACC due to the variance in the acceleration of the plasma flow parallel to the SMFR magnetic island field component

( )I
ACC

2dná ñ , Dpp
ISH because of the variance in the SMFR plasma shear flow parallel to the SMFR magnetic island field component

( )I
INC

2dná ñ , and Dpp
ICOM due to the variance in the SMFR flow compression rate in the 2D plane perpendicular to the guide/background

magnetic field of the ( )I
COM

2dná ñ . After recasting the four variance expressions in a useful form for application to observations of
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SMFRs (for more details, see le Roux et al. 2018), the momentum diffusion coefficients can finally be expressed as
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where LI∥ is the SMFR length along the guide field L2 I
c» ^ (Weygand et al. 2011); LI
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^ is the SMFR diameter; γ is the Lorentz factor;

vA0 is the Alfvén speed due to the guide field; BI
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c
Is is the normalized cross helicity in the island plane; Z/A is the atomic number over the atomic mass number in AMU; mp is the rest

mass of a proton; and 〈Np〉 is the average particle density in the SMFR. The ck term,
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). However, because the

analytical solutions only apply to D r Dpp
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0 0= values for momentum diffusion that are independent of particle speed, even though

all the contributions to Dpp
Istoch are a function of particle speed, we average the above expressions over a specified range of particle

speeds consistent with the observed range of SMFR acceleration events:
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where vmax and vmin are determined from the energy ranges over which each event is fit.
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