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Abstract— Recent studies demonstrated the vulnerability of
control policies learned through deep reinforcement learning
against adversarial attacks, raising concerns about the applica-
tion of such models to risk-sensitive tasks such as autonomous
driving. Threat models for these demonstrations are limited
to (1) targeted attacks through real-time manipulation of
the agent’s observation, and (2) untargeted attacks through
manipulation of the physical environment. The former assumes
full access to the agent’s states/observations at all times,
while the latter has no control over attack outcomes. This
paper investigates the feasibility of targeted attacks through
visually learned patterns placed on physical objects in the
environment, a threat model that combines the practicality
and effectiveness of the existing ones. Through analysis, we
demonstrate that a pre-trained policy can be hijacked within a
time window, e.g., performing an unintended self-parking, when
an adversarial object is present. To enable the attack, we adopt
an assumption that the dynamics of both the environment and
the agent can be learned by the attacker. Lastly, we empirically
show the effectiveness of the proposed attack on different
driving scenarios, perform a location robustness test, and study
the tradeoff between the attack strength and its effective-
ness. Code is available at https://github.com/ASU-APG/
Targeted-Physical-Adversarial-Attacks-on-AD

I. INTRODUCTION

“Attack is the secret of defense; defense is the planning
of an attack.”

– Sun Tzu, The Art of War, 5th century BC

Deep reinforcement learning (RL) has grown tremen-
dously in the past few years, producing close-to-human
control policies on various tasks [1], [2], [3], [4] includ-
ing solving Atari games [2], [5], robot manipulation [6],
autonomous driving [7], [8], and many others [3]. However,
deep neural networks (DNNs) are vulnerable to adversarial
attacks, with demonstrations in real world applications such
as computer vision [9], [10], [11], [12], natural language
processing [13], and speech [14]. Recent studies showed
that deep RL agents, due to their adoption of DNNs for
value or policy approximation, are also susceptible to such
attacks [15], [16], [17].

The threat models in the deep RL domain form two
categories: the first assumes that the attacker can directly
manipulate the states/observations or actions of the agent,

1 PB and YY are with the Active Perception Group at the School of
Computing and Augmented Intelligence, Arizona State University, Tempe,
AZ 85287, USA {pbuddare, yz.yang}@asu.edu

2 TZ is with the College of Engineering, Cornell University, Ithaca, NY,
14853, USA. This work was done while TZ was an intern at the Active
Perception Group, Arizona State University. tz98@cornell.edu

3 YR is with the School for Engineering of Matter, Transport, and Energy,
Arizona State University, Tempe, AZ 85287, USA yiren@asu.edu

Fig. 1: Targeted adversarial attack on autonomous driving
agent using an object fixed to the ground. The attack for-
mulation incorporates the dynamics of the object subject to
the pretrained policy of the agent and the object itself. Left:
initial state. Right: achieved target state. The red, blue, and
pink bounding boxes indicate the learned adversarial visual
patterns, car, and road track, respectively.

while the second performs the attack through physical ob-
jects placed in the environment. Among the first category,
Huang et al. [15] proposed to directly perturb the agent’s
observations at all time steps during a roll-out. Similarly,
Lin et al. [16] proposed to attack during a chosen subset of
time steps. Applications of this type of attacks to autonomous
driving have been shown to be effective [17], [18]. Weng et
al. [19] showed that learning the dynamics of agents and en-
vironments improves the efficacy of the attack in comparison
to model-free methods. This category of threats, however, are
not practical as they require direct access to the agents’
perception modules to modify their observations. Such a
strong prerequisite condition to launch attacks significantly
limits the power of these threats.

For a more feasible approach, researchers studied attacks
where adversarial objects are placed in the environments
to fool DNNs. Such attacks have been proven effective in
general applications such as image classification [20], [21],
[22] and face recognition [23]. Specific to deep RL, Kong
et al. [24] and Yang et al. [25] demonstrated the existence
of physical adversaries, in the form of advertising sign
boards and patterns painted on the road respectively, that
can successfully mislead autonomous driving systems. While
their models are more practical, most of the existing attempts
of this type are not targeted towards reaching a certain
goal state. Instead, they seek to maximize the deviation of
actions in the presence of adversaries from the benign policy.
These loose-end attacks would only be considered effective
when the final state turns out to be disastrous. This is not
guaranteed and thus the attack results vary.
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Launching targeted attacks without direct access to the
agent’s perception modules remains an open challenge. To
achieve this, we use the assumptions that the attacker can
learn differentiable dynamical models that predict the tran-
sition of the environment and has access to the dynamics of
the agent’s own states with respect to the agent’s actions.
We argue that these assumptions are reasonable since the
environment (e.g., a particular segment of the highway) is
accessible to all, including the attacker, and agent dynamics
(e.g., for vehicles) is common knowledge. Lastly, since we
focus on the existence of policy vulnerability, we assume the
agent’s policy model to be white-box.

To the best of our knowledge, our work presented in this
paper is the first to investigate the existence of targeted
attacks on deep RL models using adversarial objects in
the environment. Specifically, we examine the existence of
static and structured perturbations on the environment so that
within a time window, the agent is led to a state that is
specified by the attacker (Fig. 1). If successful, the study
will expose real-world threat models. For instance, a hacker
could place an adversarial billboard sign next to the road to
cause self-driving cars to veer off the track without directly
modifying the cars’ observations.

The contributions of our paper are as follows:
• Our presented attack algorithm generates a static per-

turbation that can be directly realized through an object
placed in the environment to mislead the agent towards
a pre-specified state within a time window.

• We perform ablation studies to show that the choices
of the time window and the attack target are correlated.
Therefore, fine-tuning of the loss function of the attack
with respect to the time window is necessary for iden-
tifying successful attacks.

• We study the robustness of the derived attacks with
respect to their relative locations to the agent, and show
that moving the attack object partially out of the sight
of the agent will reduce the effect of the attack.

II. RELATED WORK

A. Adversarial attacks on RL agents
Adversarial attacks in RL, especially in the deep RL

domain, have gained attention [15], [16], [17] following
those for DNNs [9], [26], [12]. In the Atari environment, Lin
et al. [16] proposed a strategically timed attack which focuses
on finding the right time when an adversarial attack needs
to be performed, and an enchanting attack, a targeted attack
that generates adversarial examples in order to find actions
that lead to a target state. Kos et al. [27] proposed methods
for generating value function-based adversarial examples and
Behzadan et al. [28] studied adversarial attacks on deep Q
networks (DQN) along with transferability to different DQN
models. Further, Pattanaik et al. [29] proposed a gradient-
based attack on double deep Q networks (DDQN) and
deep deterministic policy gradient (DDPG), and developed
a robust control framework through adversarial training.
Weng et al. [19] proposed model-based adversarial attacks
on MuJoCo [30] domains using a target state as the attack

goal similar to the enchanting attack presented by Lin et
al. [16]. More recently, Zhang et al. [31] proposed a state-
adversarial Markov decision process and studied adversarial
attacks on model-free deep RL algorithms. While all these
aforementioned works have shown that deep RL systems are
vulnerable to adversarial attacks, few have explored a target-
controlled attack using a dynamical model as presented in
this work.
B. Physical Adversarial Attacks

There are a few recent works that focused on physi-
cal adversarial attacks [21], [23]. With respect to multi-
agent environments, Gleave et al. [32] primarily focused on
training an adversarial agent to exploit the weaknesses of
traditionally-trained deep RL agents. However, their study,
being in a multi-agent setting, does not allow for physical
objects to be placed in the environment and is different
from the threat model proposed in this paper. Kong et
al. [24] proposed a generative model that takes a 3D video
slice as input and generates a single physical adversarial
example. More recently, the method proposed by Yang et
al. [25] optimizes physical perturbations on a set of frame
sequences and places them directly on the environment using
a differentiable mapping of the perturbations in 2D space
to the 3D space. However, both of these methods do not
consider a target state for the agent to reach in the presence
of physical adversarial examples. Boloor et al. [33] showed
a targeted attack on autonomous driving systems called a
hijacking attack, where the agent takes a targeted path of
actions pre-specified by the attacker. However, our approach
differs by letting the attacker choose a final target state and
using our attack algorithm to internally learn the path of
actions to reach the target.

III. TARGETED ATTACK VIA LEARNED VISUAL
PATTERNS OF PHYSICAL OBJECTS

We formulate our task as attacking a deep RL system
with the adversarial object to be continuously effective at
misguiding the agent, while the agent is moving in the
environment due to the dynamics of the agent. This is a
key difference we claim from existing deep RL attacks that
prior works consider. Such a requirement is necessary for
the goal of manipulating the agent in a non-trivial way,
leading to a guaranteed effective attack. Moreover, unlike
perturbations in the state or actions spaces in existing attacks,
we perturb a static rectangular area fixed to the environment.
In the following section, we introduce the notation, problem
statement, and technical details towards a solution.
A. Notations and preliminaries

Let ot ∈ [0, 1]w×h×c be a grey-scale image with width
w, height h, and channel size c, that represents the state
(scenes) of the underlying Markov decision process (MDP).
In the experiment, ot is the stack of the last four top-down
views of a driving scene, resembling a simplification of data
obtained through LIDAR. We use ot as the most recent image
of the stack. at ∈ [0, 1]n is the action vector chosen by the
agent at time t, and n is the number of continuous actions
to be determined. In the experiment, the actions include the



Fig. 2: Illustration of physical adversarial attack in OpenAI Gym’s CarRacing-v0 environment. The blue panel shows the
crafting of modified observation by adversary through planting and updating the physical object. Adversary creates a new
dynamics model and it is assumed that pre-trained agent policy is known as shown in the green panel. The orange panel
shows the optimization performed by adversary to perform physical adversarial attack by minimizing the loss between
prediction from dynamics model and the predefined target observation.

normalized braking and acceleration rates and the change of
steering angle.

Let π : [0, 1]w×h×c → [0, 1]n be a deterministic policy
learned on the MDP with c equaling 1 to represent grayscale
images, and let

f : [0, 1]w×h×c × [0, 1]n → [0, 1]w×h×c, (1)

be the dynamics model of the environment that gives the
next state ot+1 when action at is taken. We note that the
agent, as a dynamical system, has its own state defined by
normalized δt ∈ [0, 1]k, where k is the number of properties.
In the experiment, δt is represented by the position, velocity,
and steering angle of the vehicle. We denote the dynamics
of the agent as:

g : [0, 1]k × [0, 1]n → [0, 1]k. (2)

We consider attacks in the form of a grey-scale image
(perturbation) in a fixed rectangular area of the environment.
This image, without transformation, is denoted by ∆o, and
its global coordinates by Φ. To integrate this image into
the scene (ot), the following differentiable procedure is
programmed:
(1) The relative position of the adversarial rectangle in
the scene, denoted by pt, is first calculated based on the
agent dynamics, g, the object’s global coordinates, Φ, and
a transformation function, ψ as pt = ψ(δt,Φ), where
δt = g(δt−1, at−1).
(2) Let ones be a matrix of ones. A mask mwt ∈ {0, 1}w×h
is created based on pt and ones using homography estima-
tion, realized through the warp function in Kornia [34]. mwt
only has 1s within the rectangle.
(3) A transformed adversarial image mpt ∈ [0, 1]w×h is
created based on pt and ∆o, again using homography es-
timation.
(4) Lastly, we integrate the adversarial image into the view:

omt = ot � (1−mwt) +mwt �mpt, (3)

where � is the element-wise product. Although the homog-
raphy estimation and warping procedure described above are
similar to [25], our unique differentiable layer implementa-
tion allows solving through gradient-based methods rather
than the local linearization approach presented in [25].

B. Problem statement
Given the initial state o0 (which contains duplicates of

the initial scene), the initial agent state δ0, the pretrained
policy π, the dynamical models f(·, ·) and g(·, ·), and the
transformation function, ψ(δ,Φ), we search for an image ∆o,
with ||∆o||∞ ≤ ε, that leads the agent to a specific target
otarget within the time window [0, T ]. Formally:

min
||∆o||∞≤ε

T∑
t=1

||ot − otarget||22.

s.t. at = π(omt),

omt = ot � (1−mwt) +mwt �mpt
mwt = warp(ones, pt),mpt = warp(∆o, pt),

pt = ψ(δt,Φ), ot+1 = f(ot, at), δt+1 = g(δt, at).
(4)

The dependency of variables involved in this problem is
visualized in Fig. 2. The loss function of Eq. (4) accepts
early convergence of the agent’s state to the target. Notice
that we use scenes without the adversarial perturbation in
evaluating the loss, since the target state is specified before
the attack problem is solved. The use of the learned dynamics
model, agent’s dynamics and a differentiable implementation
of warp together make this problem differentiable with
respect to the perturbation ∆o, allowing the problem to be
solved using gradient-based methods.

C. Learning dynamics of the environment
Here we introduce the procedure for learning a differ-

entiable dynamical model of the environment, which is an
essential step to enable a gradient-based attack. We believe
that addition of this dynamical model explicitly accounts for



state evolution in the attack generation and also the plan of
actions leading to target state. This makes our targeted attack
more feasible and easier by letting the attacker specify a
target state rather than how to reach that target state.

1) Data collection: We first collect data in the format
of (state, action, next state) through multiple rollouts of the
environment. Note that a successfully attacked rollout will
encounter states different from those experienced through the
benign policy, e.g., agent moving out of the highway. To
collect a representative dataset, we perform rollouts using
the pretrained policy with noise of variable strength τ added
to the actions, i.e, at = at + N (0, 1) ∗ τ similar to [25].
The noisy actions help explore the environment, allowing
the adversary to predict the environment dynamics correctly
when approaching the target. The resultant dataset is denoted
by D = {(oi, ai, oi+1)}Ni=1. We note that such data collection
is achievable when launching a real-world attack, as long
as the attacker can sample the state transitions towards the
specified target by using a vehicle with dynamics similar to
the attacked agent.

2) Learning the environment dynamics: Since the envi-
ronment state contains rich information (e.g., time-variant
track and surroundings), feed forward neural networks fail
to generalize well on the dataset. Here we follow Ha et
al. [35] to construct a dynamical model using a variational
autoencoder (VAE) and a mixture-density recurrent neural
network (MD-RNN), denoted by f̂(·, ·;w), which takes in
the environment state and action, and predicts the next
environment state. w are trainable parameters. As in [35],
we use the same combination of mean square error and
Kullback–Leibler divergence as the loss for training the VAE,
and the Gaussian mixture loss for training the MD-RNN.

D. Optimization details
We use Alg. 1 to solve the attack problem (Eq. (4)). During

each iteration, we obtain the state containing the adversarial
image omt as described in Eq. 4 by computing mpt and
mwt. To respect the observation limits seen by the agent, we
clip omt between 0 and 1 so that a valid image is yielded.
The agent then performs an action on omt to get at. Using
the dynamics model, f , future prediction o†t+1 is obtained
to compute the loss. Finally, we backpropagate the sum of
losses within the time window [0, T ] in order to update
perturbation ∆o.

IV. EXPERIMENTS

We use the CarRacing-v0 environment [36] in OpenAI
Gym to demonstrate the existence of adversarial objects
that misguide an otherwise benign deep RL agent. We
used a model-free Actor-Critic algorithm [37] to obtain the
pretrained policy π. The policy is trained with a batch size
of 128 and 105 episodes.

For the dynamical model f̂ of the environment, the VAE
is trained for 103 epochs using the Adam optimizer [38].
We set the batch size to 32 and learning rate to 0.001
with decreasing learning rate based on plateau and early
stopping. For the MD-RNN, we train for 103 epochs using
the same optimizer. We set the batch size to 16, the number

Algorithm 1: Optimization for Targeted Physical
Adversarial attack

Input: Number of Iterations, I , environment env, Attack
length, T , pretrained policy π, dynamics model, f , target
state otarget

Output: learned physical perturbation example, ∆o
i← 0, seed ← random seed
∆o← N (0, 1)
while i < I do

total loss ← 0, t← 0
env.seed(seed)
ot = env.reset()
δt ← initial agent state
while t < T do

pt = ψ(δt,Φ)
mwt,mpt = warp(ones, pt), warp(∆o, pt)
omt = ot � (1−mwt) +mwt �mpt
clip omt between [0, 1]
at = π(omt)
o†t+1 = f̂(ot, at)
δt+1 = g(δt, at)
total loss += d(o†t+1, otarget)
ot+1 ← env.step(at)
t← t+ 1

backpropagate total loss to update ∆o
clip ∆o between [−ε, ε]
i← i+ 1

Return ∆o

of Gaussian models to 5, and the learning rate to the same
value as the training of VAE.

For the attack, we set the time span T to 25 and the
adversarial bound to ε = 0.9. An ablation study will be
done on these hyperparameters in Sec. V-D. We use the same
optimizer as before, and set the learning rate to 0.005 for
I = 103 iterations. We set the adversarial area to be 25
pixels wide and 30 pixels tall.

A. Baselines
To the best of our knowledge, there have been few results

on targeted physical attacks on deep RL agents. Although
the work of Yang et al. [25] is similar to ours, we believe
that their experiment setting is very different from ours and
we thus did not use it as a baseline. Therefore, we use a
baseline where ∆o is drawn uniformly in [0, 1]25×30. By
comparing agent state trajectories in the presence of random
and optimized ∆o, we will show that the proposed attack is
more effective than random perturbations.

B. Evaluation metrics
We introduce two metrics to evaluate the effectiveness of

an attack: actions error and percentage change of value.
The former is defined as the mean square error between
the attacked and benign action values over T timesteps
derived from rollouts with and without the adversarial object,
respectively. The latter is the percentage change of value
from the benign to the attacked rollout, where the value of
a policy is the sum of rewards over [0, T ].

V. EXPERIMENTS AND DISCUSSION

We evaluate these metrics on three driving scenarios,
and compare the trajectories of the agent with and without



TABLE I: Targeted and random attacks in three scenarios. Agent in red boxes. See supplementary video for details.

Scenarios (t = 0) No
attack Optimal attack (t = T ) No

attack Optimal attack Random
attack Target state

Straight

Left turn

Right turn

(a) Straight track (b) Left turn track (c) Right turn track

Fig. 3: Trajectories in the three scenarios with no attack, random attack, and optimized attacks.

the attack. Further, we conduct experiments to evaluate the
robustness of our attack with respect to different locations
of object. Finally, we compare the effectiveness of the attack
with varying time span (T ) and adversarial bound (ε) based
on the evaluation metrics.

A. Attack scenarios

We consider three driving scenarios where the agent with
the benign policy will go straight, left, and right, respectively.
In each of the scenarios, the object is placed at a fixed
location in the environment so that it is observable by the
agent throughout the attack. We specify the target states as
the images shown in Table I.

B. Comparison with the baseline

We compare the trajectories of the agent under the benign
policy, the proposed attack, and the random attacks, with
trajectory visualizations in Fig. 3 and final states in Tab. I.
For the random attack, we conducted 10 independent simu-
lations for each scenario to derive the mean trajectories. The
standard deviations in all three scenarios are negligible. X
and Y axes in the figure represent the global coordinates.

Results show that while our approach successfully mis-
guides the agent in all scenarios, the agent is not affected
as much by the random attacks. Specifically, in scenario 1,

the agent goes straight with and without the presence of
a random attack. In the presence of the proposed attack,
however, the agent deviates from the benign trajectory to
reach the target state. The same happens for scenarios 2
and 3. It is worth noting that by comparing Tab. I and
Fig. 3, we see that the agent reaches the target location
but does not perfectly match the target orientation. For
instance, in the straight track scenario, we can see that the
optimal attack after t = T time steps forces the car to
turn right, partially going off the road, but in the target
state, the car is completely off the road on the right. Further
exploration of the attack objective may potentially improve
the matching of the orientation. Lastly, Table II quantifies
the comparison through the evaluation metrics. The proposed
attack outperforms the random ones on both metrics.

C. Robustness to translation

We study the robustness of our attack with respect to
different global coordinates of the attack object (Φ) placed
in the environment. Specifically, we changed the position of
adversarial object iteratively in x and y directions during
test time with the same learned adversarial pattern. The
experiment is performed on the straight track scenario, with
fixed dynamical models. In Fig. 4, the (x, y) coordinates
represent position of the attack object relative to the actual



TABLE II: Comparison with random noise baseline in terms
of evaluation metrics.

Scenarios Actions Error Change of value (%)

Straight + Random 0.064 0

Left turn + Random 0.069 0

Right turn + Random 0.046 -10.72

Straight + Proposed 0.126 -17.70

Left turn + Proposed 0.138 -32.26

Right turn + Proposed 0.062 -32.15

Fig. 4: Attack robustness heatmap on position of physical
object in scenario 1

object position, (0, 0) in the original attack (i.e., the one
used in the experiments for Tab. I), and the heat map of Fig 4
represents the attack loss of Eq. (4), when the object is moved
accordingly. Therefore the blue region represents more suc-
cessful attacks since the attack loss is lower, whereas the
green region represents relatively unsuccessful attacks as
attack loss is higher. Note that the range of the figure is
bounded by the constraints that the object cannot be on
the track and cannot be out of the scene. From this test, if
the object is moved towards the track (−X direction in the
figure), the attack will still be effective or even better. On the
other hand, if the object is moved away from the track and
partially out of the scene, the attack becomes less effective,
which is reasonable since the agent will have only partial
observation of the attack. Further investigating formulations
of robust attacks will be valuable.

D. Adversarial bounds and Attack length

TABLE III: Adversarial Bounds vs Attack Length

Adversarial
Bound ε

Attack Length T

T = 15 T = 25 T = 30

Attack
Loss

Actions
Error

Attack
Loss

Actions
Error

Attack
Loss

Actions
Error

0.1 0.091 0.064 0.090 0.064 0.088 0.063

0.3 0.088 0.078 0.087 0.069 0.085 0.066

0.5 0.086 0.113 0.077 0.107 0.083 0.070

0.9 0.081 0.125 0.076 0.126 0.078 0.093

Here we perform an ablation study on the attack strength
(ε) and attack time span (T ), by enumerating ε ∈

{0.1, 0.3, 0.5, 0.9} and T ∈ {15, 25, 30}. The results in terms
of the optimal loss of Eq. (4), and the actions error are
summarized in Table III. The experiments are performed
on the straight track scenario, with fixed dynamical models.
From the results, it is evident that larger ε improves the
effectiveness of the attacks. Additionally, as we enlarge the
time window, the actions error decreases in nearly all cases.
Based on our experiments, we believe that if T is smaller,
then the attack has a smaller action space to plan on, causing
it to alter the actions more aggressively than a bigger T .
However, the attack loss increases from T = 25 to T = 30.
By examining the results, we found that this is primarily
because the attack object moves out of the scene between
T = 25 and T = 30. As a result of the limited observation
of the attack object by the agent, the optimizer struggles to
find a way to keep the agent close to the target state, thus the
increased loss. This implies that the time window is coupled
with the choice of the target state, and its careful selection
is important for succeeding in the attack.

VI. CONCLUSION

Even though autonomous driving agents have been in-
creasingly using deep RL techniques, it is possible that
they can be fooled by simply placing an adversarial object
in the environment. While previous studies in this domain
focused on untargeted attacks without long-term effects,
this paper studies the existence of static adversarial objects
that can continuously misguide a deep RL agent towards
a target state within a time window. Using a standard
simulator and a pretrained policy, we developed an algorithm
that searches for such attacks and showed their existence
empirically. For effective search of the attacks, we utilize
differentiable dynamical models of the environment, which
can be learned through experience collected by the attacker.
Our approach has a limitation that the full policy must be
known to the attacker (white-box). Additionally, the attack
highly depends on the size, position, and pattern of the
object. More improvements on these areas are necessary to
better understand the practicality of the threat model. Future
work will study the existence of robust physical attacks in
more complex environments, e.g., with the presence of other
agents and with visual or 3D observations. By demonstrating
the existence of a new type of attack more practical than
digital perturbations, we hope this study can motivate more
rigorous research towards robust and safe AI methods for
autonomous driving.
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