
PyFoReL: A Domain-Specific Language for Formal
Requirements in Temporal Logic

Jacob Anderson
School of Comp. and Aug. Intelligence

Arizona State University
Tempe, AZ, USA

jwande18@asu.edu

Mohammad Hekmatnejad
School of Comp. and Aug. Intelligence

Arizona State University
Tempe, AZ, USA

mhekmatn@asu.edu

Georgios Fainekos
Future Research Department

Toyota Research Institute of North America
Ann Arbor, MI, USA

georgios.fainekos@toyota.com

Abstract—Temporal Logic (TL) bridges the gap between nat-
ural language and formal reasoning in the field of complex
systems verification. However, in order to leverage the expres-
sivity entailed by TL, the syntax and semantics must first be
understood—a large task in itself. This significant knowledge
gap leads to several issues: (1) the likelihood of adopting a TL-
based verification method is decreased, and (2) the chance of
poorly written and inaccurate requirements is increased. In this
ongoing work, we present the Pythonic Formal Requirements
Language (PyFoReL) tool: a Domain-Specific Language inspired
by the programming language Python to simplify the elicitation
of TL-based requirements for engineers and non-experts.

Index Terms—domain-specific language, temporal logic, formal
requirements, requirements-based testing

I. INTRODUCTION

A significant number of formal reasoning frameworks ex-
ist today that aid in the testing of complex requirements
for Cyber-Physical Systems (CPS) [1]–[4]. These tools rely
on different branches of Temporal Logic (TL) to formalize
a system’s requirements against some desired specification.
Consequently, this dependency limits the effective usage of
these tools to experts of TL while increasing the risk of ill-
formed requirements formulated by non-experts [5]. Therefore,
with such obstacles, wide-scale adoption of these frameworks
becomes harder.

In this work, we present a preliminary version of an
ongoing effort of the Pythonic Formal Requirements Language
(PyFoReL) tool: a Domain-Specific Language (DSL) inspired
by Python [6] to ease the requirements elicitation process for
TL-based testing frameworks and tools. Our tool semantically
translates PyFoReL programs into equivalent TL formulas and
reports erroneous requirements to mitigate the risk of wrongly
formed specifications which can lead to wasted effort in the
system testing and verification process. In addition, it supports
several branches of TL including linear temporal logic, metric
temporal logic, signal temporal logic, timed propositional
temporal logic, timed quality temporal logic [7], and spatio-
temporal perception logic [8].

II. PYFOREL

A PyFoReL program consists of a sequence of statements.
Currently, there are six core statements in the PyFoReL tool
as shown in Table I. The statements are categorized into two

types: simple and compound. Compound statements utilize a
block structure—indicated by indentations—whereas simple
statements do not. For statements in sequence, the resulting
translation is the conjunction of each, and nested statements
semantically represent subformulas in the resulting translation.
The statement syntax can be found in the footnote below.

TABLE I
PYFOREL STATEMENT TYPES

Statement Purpose

Declarations Data and time variable declarations

Function Definition Define reusable requirements

Function Call Modularize a requirement

Verbatim Embed TL statements

Conditional Support for implication operators

Temporal Support for temporal features of TL

The semantic translation scheme of a PyFoReL program
is shown in Figure 1. In the following sections, the two
layers and their respective components are reviewed. This
includes the DSL layer which is responsible for translating
PyFoReL programs to TL formulas; and, the TL layer which
is responsible for validating these resulting translations.

A. DSL Layer

Before translation, all PyFoReL programs are validated
syntactically and semantically. This check provides an early
catch for ill-formed requirements.

There are four types of syntactical checks performed: (1)
extraneous inputs, (2) mismatched inputs, (3) block indenta-
tions, and (4) reserved word usages. If any check fails, the
error is reported with the associated line and column number
pair within the corresponding PyFoReL program to assist in
deducing the source of error.

There are two types of semantic checks performed on Py-
FoReL programs: (1) undefined function calls and (2) function
re-declarations. Each error is thrown similarly to the syntactic
errors with additional information such as offending name and
location to facilitate debugging.

†PyFoReL: https://gitlab.com/sbtg/pyforel

https://gitlab.com/sbtg/pyforel


Fig. 1. The Pythonic Formal Requirements Language architecture

B. Temporal Logic Layer

When a complete PyFoReL program is translated without
any errors, it is sent to the TL layer for processing. This
processing aims to alleviate the necessity of understanding
the complex syntax and semantics associated with TL to
effectively debug formal requirements.

The set of procedures include similar steps to that of the
DSL layer (i.e., syntactic and semantic checks). This includes
the following syntactic errors: (1) extraneous inputs and (2)
mismatched inputs; and, the following semantics errors: (1)
variable re-declaration, (2) variable out-of-scope, (3) type
mismatch, and (4) undeclared reference.

III. DEMONSTRATION

As a formal proof of equivalence is ongoing, we have
evaluated the translation of PyFoReL programs through a
number of specifications to demonstrate the equivalencies.
For example, a modified version of the natural language
requirement tested from [8] is showcased as follows:

There is at least one frame in which at least two unique
objects are from the Car class.

where the formal requirement in spatio-temporal logic is:

□∃id1.∃id2(id1 ̸= id2 ∧ C(id1) = Car ∧ C(id2) = Car)

The requirement is developed as a PyFoReL program with
reusable logical components as shown below:

1 func is_car(object obj):
2 verb:
3 "class(obj) == Car"
4
5 func is_not_equal(object obj1, object obj2):
6 verb:
7 "obj1 != obj2"
8
9 eventually: # requirement starts here

10 exists obj1, obj2:
11 is_not_equal(obj1, obj2)
12 is_car(obj1)
13 is_car(obj2)

The resulting translated PyFoReL program produces the
following equivalent spatio-temporal perception logic formula:

eventually (@(EXISTS, obj1, obj2) ((obj1 != obj2) &&
(class(obj1) == Car) && (class(obj2) == Car)))

IV. CONCLUSION AND FUTURE WORK

In this ongoing work, we proposed the PyFoReL tool as a
simplified interface in the elicitation of formal requirements
used in TL-based testing and verification frameworks for
complex CPS. This tool aims to assist system model engineers
and non-experts of TL to develop accurate and extensible
requirements. In future work, the following is planned: (1)
a requirement template system to guide non-experts to write
semantically correct specifications, and (2) a user evaluation
case study on the effectiveness of PyFoReL.

ACKNOWLEDGEMENTS

This work was partially supported by the NSF under grants
CNS-2038666 and IIP-1361926, and the NSF I/UCRC Center
for Embedded Systems.

REFERENCES

[1] D. Ničković and T. Yamaguchi, “Rtamt: Online robustness monitors from
stl,” in International Symposium on Automated Technology for Verification
and Analysis. Springer, 2020, pp. 564–571.

[2] J. Cralley, O. Spantidi, B. Hoxha, and G. Fainekos, “Tltk: A toolbox
for parallel robustness computation of temporal logic specifications,” in
International Conference on Runtime Verification. Springer, 2020, pp.
404–416.

[3] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[4] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-taliro:
A tool for temporal logic falsification for hybrid systems,” in International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2011, pp. 254–257.

[5] A. Dokhanchi, B. Hoxha, and G. Fainekos, “Formal requirement de-
bugging for testing and verification of cyber-physical systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 17, no. 2,
pp. 1–26, 2017.

[6] P. C. Team, Python: A dynamic, open source programming language,
Python Software Foundation, 2021. [Online]. Available: https://www.
python.org/

[7] A. Balakrishnan, A. G. Puranic, X. Qin, A. Dokhanchi, J. V. Deshmukh,
H. B. Amor, and G. Fainekos, “Specifying and evaluating quality metrics
for vision-based perception systems,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1433–
1438.

[8] M. Hekmatnejad, “Formalizing safety, perception, and mission require-
ments for testing and planning in autonomous vehicles,” Ph.D. disserta-
tion, Arizona State University, 2021.

https://www.python.org/
https://www.python.org/

	Introduction
	PyFoReL
	DSL Layer
	Temporal Logic Layer

	Demonstration
	Conclusion and Future Work
	References

