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Lead (Pb) contamination continues to contribute to world-wide morbidity in all countries, particularly low- and
middle-income countries. Despite its continued widespread adverse effects on global populations, particularly
children, accurate prediction of elevated household dust Pb and the potential implications of simple, low-cost
household interventions at national and global scales have been lacking. A global dataset (~40 countries, n
= 1951) of community sourced household dust samples were used to predict whether indoor dust was elevated in
Pb, expanding on recent work in the United States (U.S.). Binned housing age category alone was a significant (p
< 0.01) predictor of elevated dust Pb, but only generated effective predictive accuracy for England and Australia
(sensitivity of ~80%), similar to previous results in the U.S. This likely reflects comparable Pb pollution legacies
between these three countries, particularly with residential Pb paint. The heterogeneity associated with Pb
pollution at a global scale complicates the predictive accuracy of our model, which is lower for countries outside
England, the U.S., and Australia. This is likely due to differing environmental Pb regulations, sources, and the
paucity of dust samples available outside of these three countries. In England, the U.S., and Australia, simple,
low-cost household intervention strategies such as vacuuming and wet mopping could conservatively save 70
billion USD within a four-year period based on our model. Globally, up to 1.68 trillion USD could be saved with
improved predictive modeling and primary intervention to reduce harmful exposure to Pb dust sources.

1. Introduction

Pb poisoning due to their activities (i.e., hand-to-mouth behavior),
developing bodies, and greater ability to absorb Pb relative to adults (e.

Lead (Pb) contamination affects millions of people adversely across g., Egendorf et al., 2020; Gundacker et al., 2021; Mielke et al., 1999).
the world, particularly children, because of their greater susceptibility to This has resulted in high global morbidity, evidenced through
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diminished IQ levels and other neurocognitive impairment (e.g., Meyer
et al., 2008). While blood lead levels (BLLs) have rapidly declined in
many countries following the phase-out of leaded gasoline, particularly
in developed/high-income countries, BLLs continue to be elevated in
many low- and middle-income countries (LMICs) and there is no known
safe level of Pb exposure (e.g., Meyer et al., 2008; Ericson et al., 2021a).

Conservatively, nearly $1 trillion USD in potential life earnings is lost
annually due to Pb-related IQ detriment in low- and middle-income
countries (LMICs), with higher-income countries sharing less of the
global Pb burden (Attina and Trasande, 2013). Lead sources also differ,
with LMICs predominantly having BLLs influenced by Pb sources other
than paint and leaded petrol, such as battery manufacturing or recycling
(Ericson et al., 2021a). Recent estimates in the United States (U.S.) of
potential lost income due to Pb exposure is around $46.2 billion
USD/year for the years 1999-2010 and is disproportionately shouldered
by Black (non-Hispanic) infants (Boyle et al., 2021). For example, Boyle
et al. (2021) estimated a 46-55% greater amount of average grade
school IQ points lost due to blood Pb exposure in Black infants relative to
Hispanic or White infants based on cross-sectional National Health and
Nutrition Examination Survey (NHANES) results in the U.S. Thus, in
addition to uneven global Pb exposure, there can be disproportionate Pb
exposure at the national scale as well.

To combat global Pb pollution an international collaboration of
scientists came together to begin an initiative called “DustSafe” (also
known as “360 Dust Analysis”) to measure and educate the community
about everyday exposures and what they could do to reduce exposure.
This initiative utilizes community scientists to collect household dust for
trace metal (loid) screening (Isley et al., 2022). Results obtained through
this program are used to better assess exposure sources and routes, and
the results are communicated back to the community participants who
supplied the samples. Participants are informed of any potential hazards
and learn of steps they may take to reduce their trace metal exposure. In
addition to informing community members, the collective results of this
work have been used to inform researchers of similarities and dissimi-
larities in household dust pollution at national and global scales (Isley
et al., 2022). Given that BLLs have been shown to relate strongly to
household dust Pb (e.g., Lanphear et al., 1996; Gulson and Taylor, 2017;
Rhoads et al., 1999), these dust data can assist with direct intervention
to reduce potentially elevated BLLs. For example, a simple logistic
regression model based on “DustSafe” Pb data in North America (pre-
dominantly the U.S.) was able to correctly classify elevated (>80 mg/kg)
or low (<80 mg/kg) dust Pb samples 75% of the time, with a sensitivity
of 82% (Dietrich et al., 2022). This model was then incorporated into an
interactive online app (Dietrich et al., 2022) so the general public can
more easily participate in the “DustSafe” program and take intervention
steps if necessary.

This work sought to expand this model to the much larger global dust
dataset to evaluate if and where it would be effective, and whether
adjusting the model would be more effective in particular regions such
as those with similar or differing legacies/sources of Pb pollution
worldwide (e.g., Ericson et al., 2021a). Predictive modeling of indoor
dust Pb concentrations in general has been sparse (Dietrich et al., 2022).
A growing number of predictive models for Pb have appeared for
different environmental media, such as soil (e.g., Obeng-Gyasi et al.,
2021; Schwarz et al., 2013), BLLs and water infrastructure (e.g., Gibson
et al., 2020; Mulhern et al., 2022), and even predictive models for BLLs
based on spatial and spatiotemporal data (e.g., Potash et al., 2020).
However, many predictive models are complex and require extensive
datasets with multiple variables for input. Several models also require
complex machine-learning techniques for the best outcomes (e.g.,
Obeng-Gyasi et al., 2021; Potash et al., 2020). Our recent work has
shown that a simple model with only a few key variables performs well
at predicting elevated Pb in household dust (Dietrich et al., 2022), which
may help to inform risk analysis and interventions.

To assess the usefulness of a global predictive indoor dust Pb model,
we: (1) tested the U.S. based model (Dietrich et al., 2022) on global dust
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Pb data to determine its efficacy; (2) identified modifications required to
improve predictive ability; (3) determined differences in model accu-
racy based on different country groupings; and (4) estimated the po-
tential effects of low-cost household intervention based on modeling
results. The purpose of this work was not to determine exact sources of
Pb and make exposure estimates, but to use crowd-sourced environ-
mental data to help better understand risk factors for indoor dust Pb in
multiple countries.

2. Methods
2.1. Sampling collection and analysis

The DustSafe sampling and data protocols were subject to ethical
review and approval at Macquarie University, Australia (project
#2446); Indiana University, U.S. (project #1810831960); and North-
umbria University, U.K. (project #2598). All dust samples were pro-
vided by community participants via post between 2018 and 2021 from
39 countries (Table 1; n = 1951), predominantly England and Australia
(n = 1524), following the emptying of household vacuum cleaner con-
tents into a clean, polyethylene bag. Participation was promoted
through campaigns online, such as twitter and email, as well as via radio
and open house days. Household dust samples are representative of
composite household dust and uniform instructions for sampling were
provided to all participants. Community participants also completed an

Table 1

Summary data (sample size (n), median and interquartile range (IQR) of Pb
concentrations and housing age) of DustSafe samples with complete or nearly
complete questionnaire responses to accompany Pb concentration measure-
ments. United States samples and modeling results are presented in Dietrich
etal., (2022), with an additional 19 U.S. samples presented in this work (n = 361
total with survey data and Pb concentrations) and 4 Canadian samples (n = 15
total).

Country n Median IQRPb  Median House Age IQR
Pb (mg/ (mg/ (approximate year House
kg) kg) built) Age

(years)

Australia 1254 125 239 1966 60

u.s. 361 31 46 1985 45

England 132 113 124 1939 46

China 49 76 49 2004 13

New Zealand 42 79 149 1969 40

Greece 35 57 58 1993 23

Mexico 33 13 27 1989 26

Croatia 27 61 20 1979 23

Canada 15 54 26 1993 33

Ghana 14 62 53 2007 14

Scotland 5 83 84 1943 30

Wales 5 40 116 1929 30

France 4 102 52 1958 51

Bangladesh 3 159 48 1999

Belgium 3 178 94 1889 73

Cyprus 3 56 17 2004 13

Estonia 3 69 27 1979 53

Germany 3 65 55 1889 69

Iran 3 68 67 2001 14

Malaysia 3 51 9 2007 4

N. Ireland 3 83 48 1990 71

Nepal 3 101 23 1993 14

Netherlands 3 179 200 1904 51

South Korea 3 60 13 1992 10

Barbados 2 87 28 1992 13

Czech 2 38 16 1997 8

Republic

Switzerland 2 742 372 1929 30

India 1 55 1998

Italy 1 272 1994

Northern 1 43 1934

Ireland
Slovakia 1 50 2017
Thailand 1 109 2007
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online questionnaire (e.g., https://www.360dustanalysis.com/soil/get
-started) that collected household data on potentially influencing fac-
tors (e.g., recent renovations, age of home, occupation, etc.). Household
dusts were sieved to <250 pm using either a pre-cleaned stainless-steel
sieve or single-use polypropylene mesh. Pb concentrations were deter-
mined with X-ray fluorescence spectrometry (portable (pXRF) and
energy-dispersive (ED-XRF)) for all samples except for a small subset of
samples from China (inductively coupled plasma atomic emission
spectrometry (ICP-AES)), outlined in Isley et al. (2022). Additionally, a
small subset of samples from China were sieved to 150 pm instead of
250 pm, and the limit of detection (LOD) for Pb ranged from 0.1 to 2
mg/kg depending on the country conducting the analysis (Isley et al.,
2022). Additional details on analytical procedures and quality control
are provided in Isley et al. (2022). U.S. data were also collected
following the same method as reported in Dietrich et al. (2022) and Isley
et al. (2022), with 23 additional samples reported for this work (4 of the
365 samples are from Canada and are included in the “U.S. Model”). As
the majority (n = 1524) of samples were from England and Australia,
there are spatial limitations associated with this dataset. However, over
200 house dust samples were collected from an additional 30+ coun-
tries, which provides a useful and spatially diverse dataset to analyze.

A detailed longitudinal study in one home within England was
conducted to evaluate month to month (March 2020-October 2021)
variability of reported indoor dust Pb concentrations using this sampling
and analysis protocol. However, due to initial monthly reporting indi-
cating elevated Pb concentrations, a washable doormat was placed at
the main doorway/entry threshold into the home, replacing the previous
non-washable doormat, to test how a simple intervention could influ-
ence bulk Pb vacuum cleaner dust concentrations. Greater emphasis was
also placed on shoe removal upon entrance into the home. The same
vacuum cleaner was used throughout the study, used across all rooms
within the home each month, the initial doormats were never vacuumed
but shaken outside, and no “do-it-yourself” or internal home improve-
ments were undertaken during the longitudinal study. The replacement
washable door mats were cleaned and changed every 1-3 weeks and not
vacuumed.

2.2. Metadata analysis

Metadata were provided via an online questionnaire (e.g., htt
ps://www.360dustanalysis.com/soil/get-started). Slight differences in
questionnaires based on location are described in more detail in Isley
et al. (2022). Participant data of hobbies related to metal exposure, such
as fishing, shooting, and metalwork were omitted because of the large
number of hobby types (n = 8), and lack of data provided for most hobby
types [Isley et al. (2022)—Supplementary Fig. 9.7 (n is < 40 for all but 2
hobby types in global data)].

All “Yes” responses were converted to “1,” and all “No” responses
were converted to “0” (Table S1). Housing age data was converted into
binned housing age categories based on Dietrich et al. (2022), and ages
were calculated assuming a sampling date of 2019, as this was when
most samples were collected and the date of actual sample collection
was not directly available. They were reclassified as numeric variables of
0, 1, 2, 3 for the responses, “1980-Present,” “1960-1979,” “1940-1959,”
and “Pre-1940,” respectively (Table S1). These groupings of housing age
were selected based on the common phase-out history of Pb paint in
countries such as the U.S., England and Australia, and because the
binned categories make it easier for community engagement when
developing this variable into a predictive, interactive model/app. While
these housing age categories do not necessarily follow Pb regulatory
practices in many LMICs, we elected to base our model originally on
these categories because it has been shown to be effective in the U.S.
(Dietrich et al., 2022) and the bulk (>50%) of studies included in this
work were collected in countries with similar Pb regulatory legacies to
the U.S. (England and Australia). Thus, if these housing groupings are
found not to be effective in other country groupings, this would suggest
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closer examination of the nuances associated between housing age and
Pb sources in other countries for future work, as the exploratory
breakdown of best housing age categories by individual country is
beyond the scope of this work.

2.3. Logistic regression modeling

Predictive logistic regression modeling was performed in RStudio (R
Core Team, 2021) using the glm () function and the general equation:
log{lp%p} =by+b1* x, + by*xs... + by* ¥, 1)
where p is the probability of an event occurring, by is the intercept, b, is
the regression beta coefficient, and x, is a given predictor variable.

A stepwise algorithm to help identify best logistic regression models
was run using the stepAIC() function in R, based on the MASS package
(Venables and Ripley, 2002). Modeling was based on classifying samples
as “Elevated” or “Low” Pb, with the cutoff as > 80 mg/kg for “Elevated”
Pb. This is based on California’s (U.S.) human health screening level for
soil Pb, which albeit more conservative, is more preventative than
outdated Pb guidelines such as the U.S. EPA’s 400 mg/kg residential soil
standard (e.g., Gailey et al., 2020) and almost certainly represents an
anthropogenic source of Pb in most areas, as average Pb in upper con-
tinental crust is only ~17 mg/kg (Rudnick and Gao, 2003). All data
input into the modeling is freely available, including essential variables
used for the best predictive modeling from the U.S. dataset (Table S1).

Given that Australia and England have similar Pb legacies and reg-
ulatory practices over the past century and comprised the majority of
our DustSafe data, our predictive Pb logistic regression models were
evaluated both on the collective global dataset, as well as a subset of
Australian and English data to determine whether there were significant
differences worth noting. We began with the U.S.-based predictive
model (Dietrich et al., 2022) for evaluation, then, based on those results,
refined our models based on the global dataset. Only samples with
metadata responses were used in the modeling.

2.4. Online app development

The online mobile app for Pb screening built upon the previous
version in Dietrich et al. (2022) for the U.S. The goal was to provide an
easily accessible, user-friendly way for people to evaluate likelihood for
elevated dust Pb in their home, while also learning about Pb in the
environment. The application was built using the shiny, shinydash-
board, shinydashboardPlus, and shinyjs packages in R (Attali, 2020;
Chang et al., 2021; Chang and Borges Ribeiro, 2018; Granjon, 2021).

3. Results/discussion
3.1. Modeling results

The Pb dust predictive model from the U.S. (Dietrich et al., 2022)
resulted in a mean predictive accuracy of 73% Elevated/Low correct
classification of Pb dust concentrations (probability threshold of 0.85)
and a sensitivity of 80% on the global dataset (n = 1653; not including
the U.S.). When omitting Australia and England, the model performed at
64% accuracy with a sensitivity of 39% (n = 267, 0.8 probability
threshold). England alone (n = 132) had 75% predictive accuracy with
the model and 92% sensitivity (0.85 probability threshold). Australia
alone (n = 1254) had a 76% predictive accuracy and 82% sensitivity
(0.85 probability threshold). England and Australia combined (n =
1386) had a predictive accuracy of 76% and sensitivity of 83% (prob-
ability threshold of 0.85). Summary outputs from all scenarios are
available in the Supplement (Supplementary Text S1).

When utilizing global, non-England/Australia, and England/
Australia data for training and testing datasets, no additional significant
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(p < 0.05) predictor variables could be identified besides housing age
category, which alone provided the best modeling outcomes (i.e., based
on overall predictive accuracy, sensitivity, area under the ROC curve
(AUQ)). The English/Australian testing dataset (n = 421; based on 0.7
training/0.3 testing data ratio) produced a predictive accuracy of 76%
and sensitivity of 80% with a probability threshold of 0.55 based on the
housing age model and English/Australian training dataset (Table 2).
For non-English and Australian countries, the housing age predictive
model based on the training dataset predicted accurately 74% of
Elevated vs. Low Pb classification (probability threshold of 0.5), but
with a sensitivity of only 38% (n = 84; Table 2).

Modifying the logistic model from Dietrich et al. (2022) (based
predominantly on U.S. housing dust data with 23 samples added to the
Dietrich et al. (2022) dataset) to include only the housing age category
as a predictive variable improved the predictive accuracy slightly and
maintained sensitivity of the model, even though interior peeling paint
was a highly significant variable (p < 0.01) in the original model
(Table S2). Overall model predictive accuracy on the testing dataset (n
= 109) slightly increased to 85%, while sensitivity remained at 82%
(probability threshold of 0.8). This modified equation became:

log L%’] =2.5632 — 0.9551 (Housing) @

where “Housing” is the housing age category (model output in Supple-
mentary Text S2). Applying this model to all English/Australian data (n
= 1386) resulted in a predictive accuracy of 75% and sensitivity of 81%
(probability threshold of 0.85) (Table 2). Usage of the model on non-
English/Australian data (n = 269) produced a predictive accuracy of
70%, with a sensitivity of 31% (probability threshold of 0.8) (Table 2).

The most effective logistic regression model contains only one vari-
able. While we still contend this is a predictive model by convention (i.
e., an equation that makes the prediction of an outcome based on sample
data), it essentially boils down to a housing age threshold for deter-
mining whether house dust is likely to be elevated in Pb or not. Basically,
any sample that falls in a housing age bin earlier than 1980-Present will

Table 2

Confusion matrix output results for Pb household dust predictive models using
the housing age category variable only. Grey highlighted outputs are based on
models from training datasets of data from this study, while non-highlighted
outputs are based on Equation (2).

Testing dataset of Actual Actual Sensitivity =~ Mean
England and Australia  Elevated Pb  Low Pb Proportion
data (n = 421) Predicted
Correctly
Predicted Elevated 243 42 0.80 0.76
Pb
Predicted Low Pb 61 75
Testing dataset of Actual Actual
non-England and Elevated Low Pb
Australia data (n Pb
=84)
Predicted Elevated 11 4 0.38 0.74
Pb
Predicted Low Pb 18 51
Testing dataset of Actual Actual
England and Elevated Low Pb
Australia data (n Pb
= 1386)
Predicted Elevated 813 153 0.81 0.75
Pb
Predicted Low Pb 188 232
Testing dataset of Actual Actual
non-England and Elevated Low Pb
Australia data (n Pb
= 269)
Predicted Elevated 30 15 0.31 0.70
Pb
Predicted Low Pb 67 157
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result in a predictive outcome of elevated dust Pb. As discussed later,
this corresponds with Pb regulatory history in the U.S., England, and
Australia, where Pb paint was largely outlawed/reduced for home
application in the 1970s.

3.2. Modelling usefulness and effectiveness

While the metadata questionnaire response to interior peeling paint
was a significant predictive variable (p < 0.01) in our North American
dataset (Dietrich et al., 2022), inclusion of this variable was not signif-
icant at the global level (p > 0.05), even with countries relatively
analogous (economically and regarding Pb regulatory history) to the U.
S., such as England and Australia. Furthermore, our work revealed that
although this interior peeling paint variable was highly significant (p <
0.01) in our North American model (Dietrich et al., 2022), omission of
the variable and inclusion of only housing age category slightly
improved overall predictive accuracy (but not sensitivity) with pre-
dominantly the same testing dataset as used in Dietrich et al. (2022).

At the global level, housing age category was the most (and only)
significant predictive factor, resulting in a predictive accuracy >75%
and sensitivity >80% in grouped English and Australian data
(Table 2)—this is the case when using both the modified model devel-
oped from predominantly U.S. data [Equation (2)] and a model based on
a training dataset of English and Australian data (Supplementary Text
S3). This is similar to the predictive accuracy of the housing category
only model [Equation (2)] used on the predominantly Dietrich et al.
(2022) testing dataset (n = 109), which resulted in a sensitivity of 82%
and predictive accuracy of 85%. Graphing the distributions of Pb indoor
dust data by housing age category demonstrates this, particularly in
England and Australia (Fig. 1). This illustrates that housing age category
alone can provide helpful information regarding which homes in the U.
S., Australia, and England contain indoor dust Pb > 80 mg/kg. The
importance of housing age and Pb concentrations has been
well-established in the literature for both soils (e.g., Taylor et al., 2021;
Yesilonis et al., 2008) and house dusts (e.g., Isley et al., 2022; Rasmussen
et al., 2011). Chance alone would result in a sensitivity and predictive
accuracy of ~50% for the logistic regression model, but by just knowing
relative housing age (not even the exact housing age), we can improve
average predictive accuracy to ~75% and sensitivity to ~80% (Table 2).

The housing age category is less useful when grouping together re-
sults from countries outside of the U.S., Australia and England. Sensi-
tivity drops to <40% when both types of housing age models (U.S.-based
and non-English and Australian-based) are used (Table 2), greatly
reducing any real-world usefulness of the models. This is because this
results in false-negative rates of >60%, where many homes with actual
dust Pb > 80 mg/kg will be incorrectly classified as “Low” Pb. In fact,
this would be detrimental from an intervention standpoint, because the
probability by pure chance of correctly classifying elevated versus low
Pb homes would be greater, at 50%.

Because of small sampling size (i.e., n < 15) of paired Pb data and
questionnaire responses in most countries outside of the U.S., Australia,
and England, we could not effectively examine the nuances between
countries grouped together as non-English and Australian data. Logistic
regression requires large datasets, and we wanted to avoid making ex-
trapolations of predictive accuracy on any sampling subsets where n <
100, as even our testing dataset in Dietrich et al. (2022) (n = 102) was
subject to sampling size effects depending on the random subset of
testing data chosen. The data analyzed thus far suggests that housing age
is not as important of a determinant of elevated household dust Pb in
countries outside the U.S., England, and Australia, and that alternative
sources typically not associated with housing age may be responsible for
interior dust Pb concentrations.

A recent literature review compiled by Ericson et al. (2021a) sup-
ports this contention, as they found in LMICs that most studies of BLLs
attributed predominant Pb sources to non-Pb paint sources, such as in-
dustrial emissions. Specifically, non-Pb paint sources also included
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examples such as battery manufacturing or recycling, electronic waste,
metal mining and processing, ceramics, automobile repair, diet, and
bullets (Ericson et al., 2021a). This was further backed in a commentary
reply by Ericson et al. (2021b), where they reemphasized the role of
industrial-related Pb as a main source of elevated BLLs in LMICs, with
only 1.5% of their study (Ericson et al., 2021a) subsamples reporting
lead-paint as a likely exposure source. In high-income countries such as
the U.S., Australia, and England, Pb paint is likely still a large contrib-
utor of current household dust Pb because it still resides in many older
homes and soils (e.g., Dietrich et al., 2022), which explains why housing
age category alone remains a significant predictor variable.

Environmental Pollution 319 (2023) 121039

Fig. 1. Embedded boxplots within violin plots for housing
age categories used in the predictive models, as well as N/A
housing age values (no survey responses). The boxes repre-
sent the interquartile range (IQR) of 25th-75th percentiles of
data, the solid horizontal line is the median, and the whis-
kers represent 1.5 times the IQR. Unpaired Mann-Whitney
test associated p-values between housing age categories are
provided. The y-axis is transformed on a log; scale, and the
dashed red line represents California’s human health
screening level of 80 ppm for soil Pb. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

n=138

NA

n=152

NA

Additionally, it is important to note that Pb paint can end up in house-
hold dust from both inside or outside the home, as exterior peeling paint
may also be tracked in from outdoor soils/dusts. These outdoor soils/-
dusts may also contain Pb from gasoline/industry sources, and it is noted
that there is likely some covariance with housing age and sourcing of Pb
from historic gasoline in soils that are trekked inside. Previous research
examining Pb sources in house dust indicates mixing of indoor and
outdoor sources. House dust Pb in the U.S. was identified as originating
from interior house paint (Dietrich et al., 2022), outdoor soils, and street
dust (Adgate et al., 1998), while house dust Pb in Australia was also
sourced from soil and/or Pb paint (e.g., Doyi et al., 2019; Laidlaw et al.,
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2014).

While not all our non-English and Australian samples were from
LMICs (i.e., Ireland, Greece, New Zealand), many were, such as China,
Bangladesh, Iran, India, and Mexico, and 110 (41%) of our non-English
and Australian paired housing age and Pb concentration samples (used
in modeling) were from countries also included in the Ericson et al.
(2021a) metanalysis of LMICs. Thus, it is reasonable to conclude that
there are significant differences of controls on household dust Pb con-
centrations in homes based on country, particularly in LMICS where Pb
pollution legacy often differs from countries such as England, the U.S.,
and Australia.

3.3. Online app update for Pb screening and potential application and
development

Our previous modeling based on indoor vacuum dust Pb concen-
trations in predominantly U.S. household dust samples led to the
development of an interactive online app (for computers or mobile de-
vices; https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/)
where users could input information about their home (housing age,
interior peeling paint) and our model would then let the user know
whether their home was likely to contain elevated (>80 mg/kg) Pb in
indoor dust (Dietrich et al., 2022). The app links to the “MapMyEnvir-
onment” website (https://www.mapmyenvironment.com/), which
contains a link to the “360 Dust Analysis” project page (where users
could register for our free testing program) as well as links to other free
testing programs for environmental media such as soil and water. Based
on its success in predicting elevated Pb in English and Australian house
dust samples (Table 2), we have expanded the app to now include these
countries. Additionally, because the response of interior peeling paint
was deemed not sufficiently significant in predictive power, this ques-
tion was eliminated for users. While the previous model contained an
option of “not sure” regarding housing age category, we have also
elected to remove it from the app, as it was not a significant individual
predictor in the U.S.-based model (p = 0.12) and none of the English nor
Australian samples contained this response. The logistic regression
model currently used in the app is based on Equation (2). The results
page of the app now links directly to the 360 Dust Analysis page as well
as the MapMyEnvironment sampling map. While still in early roll-out,
the binned housing age categories should make it relatively easy for
users to determine which category to select, even if they are unsure of
their exact home age. This is particularly important for renters, who
often have less knowledge of building information. Future work will
evaluate whether the binned housing age categories are sufficient for the
best user participation through examination of mobile app data and
post-hoc survey responses from users who complete the community
science process from start to finish.

While the predictive modeling for countries outside of the U.S.,
Australia, and England did not perform effectively enough to warrant
inclusion into an interactive app for Pb screening (sensitivity <50%;
Table 2), we envision that through continued sampling and assessment
of results from these countries, there may eventually be enough data to
tailor specific predictive models that contain variables other than
housing age. A key component of this may be different survey questions
for specific countries, such as distance to metal smelters, distance to
battery recycling plants, distance to mining sites, etc., as these industrial
Pb sources are more common in LMICs (Ericson et al., 2021a).
Continued global partnerships with LMIC communities are key to
addressing these current knowledge gaps, particularly because those in
LMICs are the ones mostly adversely affected by elevated BLLs (e.g.,
Attina and Trasande, 2013; Ericson et al., 2021a).

Although the study data were predominantly sourced from three
countries (U.S., England, and Australia), the analytical outcomes pro-
vide a framework for future research endeavors to partner with com-
munity participants to better understand what the main predictors of
household Pb contamination are. While our sample size in LMICs was
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small, we have clearly illustrated the need for more sampling and ana-
lyses in these countries to better decipher the complex nuance in Pb
contamination between countries with differing past and present envi-
ronmental regulations.

3.4. Potential economic impact of simple, low-cost household
interventions based on modeling results

One of the key objectives of our international DustSafe collaboration
is to provide participants with information on how they can reduce their
Pb exposure (Isley et al., 2022), which is particularly relevant where no
government remediation services are provided. The online app provides
an easy way to participate in DustSafe, and model results can provide
users with key data they need for intervention without waiting for
formal dust Pb analysis.

Using the geometric mean Pb dust concentration of all our global
dust samples >80 mg/kg (225 mg/kg; Fig. 2), and assumptions of initial
BLLs based on that mean, effects of household intervention on children’s
(<5 years) BLLs can be estimated (Table 3). Based on our estimations,
which we deem conservative because of using U.S. baseline BLLs instead
of global baseline BLLs, the effects of household intervention (e.g.,
wiping, high filter vacuuming) such as that done in Rhoads et al. (1999)
in multiple homes could result in up to $70 billion USD saved within a
four-year cohort within England, Australia, and the U.S. (Table 3).
Rhoads et al. (1999) was used to estimate effects of simple, low-cost,
household interventions, because they include multiple homes and
children (n = 46 children) and a range of conventional intervention
techniques such as wiping and mopping of floors. Our cost savings es-
timate arises if every family with children <5 years old uses our current
model [Equation (2)] at a sensitivity of 80% and acts on the results
(Table 3). These cost savings are based on the prevention of IQ points
lost due to Pb poisoning, which adversely affects lifetime earnings po-
tential (e.g., Attina and Trasande, 2013; Boyle et al., 2021). If our model
worked at the global scale with the same sensitivity of ~80%, the
earnings potential saved could be up to $1.68 trillion USD within a

(n = 2605) 1378 samples or 52.9% = 80 mg/kg
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Fig. 2. Proportion of global DustSafe samples >80 mg/kg Pb [North America
(Dietrich et al., 2022; 23 additional samples with survey responses in this study,
and all samples analyzed without survey responses as well), and Nigeria (Isley
et al.,, 2022)], with the corresponding smoothed density plot on a log;o scale
x-axis. The dotted vertical line denotes 80 mg/kg.
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Table 3

Estimate of potential life earnings lost from IQ detriment that would be saved within a four-year cohort of children due to correct household intervention based on
predictive modeling results when Pb household dust concentrations are >80 mg/kg. Uncertainty is propagated based on the original range in starting BLLs and
intervention reduction. Essentially, the estimated BLL decline is multiplied by the potential exposed population, then multiplied by the model sensitivity and IQ points
lost per BLL to come up with total IQ points potentially saved through household intervention. That value is then multiplied by lifetime productivity loss estimates per

IQ point decrease, as explained below in order to estimate on a first-order basis how much money is saved from household Pb prevention.

Starting Pb Starting BLL  Intervention BLL Population <5 yrs old Model 1Q points Earnings

concentration (mg/ (pg/dL)” reduction (%)° Decline exposed to household Pb > Sensitivity saved potential saved

kg)* (pg/dL) 80 mg/kg” (millions) (millions)® (trillions USD)’
Global 225 2.4 +1.2 15 + 10 0.36 + 358 0.7 48.7 +16.2 1.10 + 0.37
0.12 0.8 55.7 + 18.6 1.26 + 0.42
0.9 62.6 + 20.9 1.42 + 0.47
Australia, 225 2.4 +1.2 15 +10 0.36 + 13 0.7 1.77 + 0.59 0.04 + 0.01
England, U. 0.12 0.8* 2.0 £ 0.67 0.05 £+ 0.02
S. 0.9 2.3 +0.76 0.05 + 0.02

*Qur current models for England, Australia, U.S.

@ Based on geometric mean of Global DustSafe Pb data >80 mg/kg from this study, all North American samples (even those without survey responses), and Nigeria

(Isley et al., 2022)—n = 1378.

b Uses conservative baseline of 0.7 pg/dL based on U.S. median BLLs of children 1-5 years in 2015-2016 (U.S. EPA, 2019), which is likely much higher in low- and
middle-income countries (e.g., Ericson et al., 2021a), then the relationship between soil Pb concentrations and increases of BLLs over background for 200 mg/kg Pb

from Lanphear et al. (1998).

¢ Based conservatively on the 17% average BLL reduction through household Pb intervention in Rhoads et al. (1999). We used 15% to add another conservative layer
to our average estimate, with the £10% taking into account some of the variability of intervention reduction.
d (United Nations — Population Division, 2019), based on assumption of 52.9% of global population <5 years old exposed to household dust Pb > 80 mg/kg (Fig. 2)—

from 2020 data (global data rounded down from 359 million to be conservative).

¢ Based on IQ points lost per pg/dL of BLL for the range of 2-10 pg/dL from Boyle et al. (2021): [p = 0.54] * BLL = IQ points lost.

f Based on estimates of lifetime earnings for males ($1,413,313) and females ($1,156,157), and lifetime productivity decrease between 1.76% and 2.37% for each IQ
point lost, used in Boyle et al. (2021) and Attina and Trasande (2013). Here, we used the minimum productivity decrease of 1.76% per IQ point lost to be conservative,
which is $24,874 for males, and $20,348 for females per IQ point. Because global population is roughly 1 male:1 female (~1.02 male:female), we took the arithmetic

mean between both monetary values for $22,611 per IQ point lost.

four-year cohort following household intervention (Table 3).

Household interventions are a temporary solution to environmental
Pb exposures, as cleaning, removal of outdoor footwear at entrances,
and door mats do not necessarily remove the ultimate sources of Pb in
the environment (internal and external), and Pb can persist in the home
at elevated concentrations even following intervention (Fig. S1).
Although this short-term solution may reduce the individual household
Pb burden, effective remediation at the primary source of Pb (i.e., paint,
outdoor soils, mining sites, etc.) is what will ultimately prevent child-
hood Pb exposure and poisoning. Nevertheless, simple household efforts
can reduce overall household Pb dust concentrations. Our case study
example in England (~270-year-old home) demonstrates this (Fig. S1),
as the geometric mean monthly indoor dust Pb concentration was 437.5
mg/kg (n = 4) prior to the use of washable door mats. Using washable
door mats and greater emphasis on removing outdoor footwear resulted
in household vacuum dust Pb concentrations dropping by an average of
55.1% to a geometric mean of 196.5 mg/kg (n = 12), albeit there was
about a two-month lag before the reduced Pb concentrations stabilized
(Fig. S1; Table S3). This illustrates, albeit on only one home, how simple,
low-cost interventions can be effective in reducing the backtracking of
Pb-laden dust into the home and how regular washing can also reduce an
exposure hazard from the mat itself.

4. Conclusions

Lead pollution persists globally, and adversely affects children. In
analogous high-income countries such as the U.S., England, and
Australia, similarities in Pb pollution legacy and sources enable
simplistic predictive modeling to accurately assess which homes likely
contain elevated dust Pb based on housing age. However, this does not
necessarily work well in other countries, particularly LMICs because of
differing Pb sources such as mining and industry. Thus, although
household intervention based on usage of our predictive model could
potentially save trillions of USD throughout the world, more refined
data is needed in countries outside the U.S., England, and Australia to
develop more effective predictive models of country specific household

indoor dust Pb. Additionally, paired household indoor dust, outdoor
soil, and house paint data in future community science projects along
with important metadata such as housing age will further help elucidate
ultimate sources of Pb in household environments throughout the world.
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