
Faster No-Regret Learning Dynamics for Extensive-Form

Correlated and Coarse Correlated Equilibria

IOANNIS ANAGNOSTIDES∗, Carnegie Mellon University, USA

GABRIELE FARINA∗, Carnegie Mellon University, USA

CHRISTIAN KROER, Columbia University, USA

ANDREA CELLI, Bocconi University, Italy
TUOMAS SANDHOLM, Carnegie Mellon University & Strategy Robot, Inc. & Optimized Markets, Inc. &

Strategic Machine, Inc., USA

A recent emerging trend in the literature on learning in games has been concerned with providing faster

learning dynamics for correlated and coarse correlated equilibria in normal-form games. Much less is known

about the significantly more challenging setting of extensive-form games, which can capture both sequential

and simultaneous moves, as well as imperfect information. In this paper we establish faster no-regret learning

dynamics for extensive-form correlated equilibria (EFCE) in multiplayer general-sum imperfect-information

extensive-form games. When all players follow our accelerated dynamics, the correlated distribution of play is

an𝑂 (𝑇−3/4)-approximate EFCE, where the𝑂 (·) notation suppresses parameters polynomial in the description

of the game. This significantly improves over the best prior rate of 𝑂 (𝑇−1/2). To achieve this, we develop

a framework for performing accelerated Phi-regret minimization via predictions. One of our key technical

contributions—that enables us to employ our generic template—is to characterize the stability of fixed points

associated with trigger deviation functions through a refined perturbation analysis of a structured Markov

chain. Furthermore, for the simpler solution concept of extensive-form coarse correlated equilibrium (EFCCE)

we give a new succinct closed-form characterization of the associated fixed points, bypassing the expensive

computation of stationary distributions required for EFCE. Our results place EFCCE closer to normal-form

coarse correlated equilibria in terms of the per-iteration complexity, although the former prescribes a much

more compelling notion of correlation. Finally, experiments conducted on standard benchmarks corroborate

our theoretical findings.
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1 INTRODUCTION

Game-theoretic solution concepts describe how rational agents should act in games. Over the

last two decades there has been tremendous progress in imperfect-information game solving and

algorithms based on game-theoretic solution concepts have become the state of the art. Prominent

milestones include an optimal strategy for Rhode Island hold’em poker [Gilpin and Sandholm, 2007],

a near-optimal strategy for limit Texas hold’em [Bowling et al., 2015], and a superhuman strategy

for no-limit Texas hold’em [Brown and Sandholm, 2017, Moravčík et al., 2017]. In particular, these

advances rely on algorithms that approximateNash equilibria (NE) of two-player zero-sum extensive-

form games (EFGs). EFGs are a broad class of games that capture sequential and simultaneous

interaction, and imperfect information. For two-player zero-sum EFGs, it is by now well-understood

how to compute a Nash equilibrium at scale: in theory this can be achieved using accelerated

uncoupled no-regret learning dynamics, for example by having each player use an optimistic regret

minimizer and leveraging suitable distance-generating functions [Farina et al., 2021b, Hoda et al.,

2010, Kroer et al., 2020] for the EFG decision space. Such a setup converges to an equilibrium

at a rate of 𝑂 (𝑇 −1). In practice, modern variants of the counterfactual regret minimization (CFR)

framework [Zinkevich et al., 2007] typically lead to better practical performance, although the

worst-case convergence rate known in theory remains inferior. CFR is also an uncoupled no-regret

learning dynamic.

However, many real-world applications are not two-player zero-sum games, but instead have

general-sum utilities and often more than two players. In such settings, Nash equilibrium suffers

from several drawbacks when used as a prescriptive tool. First, there can be multiple equilibria, and

an equilibrium strategy may perform very poorly when played against the “wrong” equilibrium

strategies of the other player(s). Thus, the players effectively would need to communicate in order

to find an equilibrium, or hope to converge to it via some sort of decentralized learning dynamics.

Second, finding a Nash equilibrium is computationally hard both in theory [Daskalakis et al.,

2006, Etessami and Yannakakis, 2007] and in practice [Berg and Sandholm, 2017]. This effectively

squashes any hope of developing efficient learning dynamics that converge to Nash equilibria in

general games.

A competing notion of rationality proposed by Aumann [1974] is that of correlated equilibrium

(CE). Unlike NE, it is known that the former can be computed in polynomial time and, perhaps

even more importantly, it can be attained through uncoupled learning dynamics where players

only need to reason about their own observed utilities. This overcomes the often unreasonable

presumption that players have knowledge about the other players’ utilities. At the same time,

uncoupled learning algorithms have proven to be a remarkably scalable approach for computing

equilibria in large-scale games, as described above. In normal-form games (NFGs), a correlated

strategy is defined as a probability distribution over joint action profiles, customarily modeled via a

trusted external mediator that draws an action profile from this distribution and then privately

recommends to each player their component. A correlated strategy is a CE if, for each player, the

mediator’s recommendation is the best action in expectation, assuming that all the other players

follow their recommended actions [Aumann, 1974]. In NFGs it has long been known that uncoupled

no-regret learning dynamics can converge to CE and coarse correlated equilibria (CCE) at a rate of

𝑂 (𝑇 −1/2) [Foster and Vohra, 1997, Hart and Mas-Colell, 2000]. More recently, it has been established

that accelerated dynamics can converge at a rate of 𝑂 (𝑇 −1) [Anagnostides et al., 2021, Daskalakis
et al., 2021] in NFGs, where the notation 𝑂 (·) suppresses polylog(𝑇 ) factors.
However, in the context of EFGs the idea of correlation is much more intricate, and there are

several notions of correlated equilibria based on when the mediator gives recommendations and

how the mediator reacts to players who disregard the advice. Three natural extensions of CE to
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extensive-form games are the extensive-form correlated equilibrium (EFCE) by von Stengel and

Forges [2008], the extensive-form coarse correlated equilibrium (EFCCE) by Farina et al. [2020], and

the normal-form coarse correlated equilibrium (NFCCE) by Celli et al. [2019a]. The set of those

equilibria are such that, for any extensive-form game, EFCE ⊆ EFCCE ⊆ NFCCE. In an EFCE,

the stronger of those notions of correlation, the mediator forms recommendations for each of

the possible decision points an agent may encounter in the game, and recommended actions are

gradually revealed to players as they reach new information sets; thus, the mediator must take into

account the evolution of the players’ beliefs throughout the game. Because of the sequential nature,

the presence of private information in the game, and the gradual revelation of recommendations,

the constraints associated with EFCE are significantly more complex than for normal-form games.

For these reasons, the question of whether uncoupled learning dynamics can converge to an EFCE

was only recently resolved by Celli et al. [2020]. Moreover, in a follow-up work the authors also

established an explicit rate of convergence of𝑂 (𝑇 −1/2) [Farina et al., 2021a]. Our paper is primarily

concerned with the following fundamental question:

Can we develop faster uncoupled no-regret learning dynamics for EFCE?

We affirmatively answer this question by developing dynamics converging at a rate of𝑂 (𝑇 −3/4) to
an EFCE. Furthermore, we also study learning dynamics for the simpler solution concept of EFCCE.

More precisely, although accelerated learning dynamics for EFCE can be automatically employed

for EFCCE (since the set of EFCEs forms a subset of the set of EFCCEs), all the known learning

dynamics for EFCE have large per-iteration complexity. Indeed, they require as an intermediate

step the expensive computation of the stationary distributions of multiple Markov chains. Thus, the

following natural question arises: Are there learning dynamics for EFCCE that avoid the expensive

computation of stationary distributions? We answer this question in the positive. Our results reveal

that EFCCE is more akin to NFCCE than to EFCE from a learning perspective, although EFCE

prescribes a much more compelling notion of correlation than NFCCE.

1.1 Contributions

Our first primary contribution is to develop faster no-regret learning dynamics for EFCE:

Theorem 1.1. On any general-sum multiplayer extensive-form game, there exist uncoupled no-regret

learning dynamics which lead to a correlated distribution of play that is an 𝑂 (𝑇 −3/4)-approximate

EFCE. Here the 𝑂 (·) notation suppresses game-specific parameters polynomial in the size of the game.

This substantially improves over the prior best known rate of 𝑂 (𝑇 −1/2) recently established

by Farina et al. [2021a]. To achieve this result we employ the framework of predictive (also known

as optimistic) regret minimization [Chiang et al., 2012, Rakhlin and Sridharan, 2013b]. One of

our conceptual contributions is to connect this line of work with the framework of Phi-regret

minimization [Gordon et al., 2008, Greenwald and Jafari, 2003] by providing a general template

for stable-predictive Phi-regret minimization (Theorem 3.2). The importance of Phi-regret is that

it leads to substantially more compelling notions of hindsight rationality, well-beyond the usual

external regret [Gordon et al., 2008], including the powerful notion of swap regret [Blum and

Mansour, 2007]. Moreover, one of the primary insights behind the result of Farina et al. [2021a] is to

cast convergence to an EFCE as a Phi-regret minimization problem. Given these prior connections,

we believe that our stable-predictive template is of independent interest, and could lead to further

applications in the future.

From a technical standpoint, in order to apply our generic template for accelerated Phi-regret

minimization (Theorem 3.2), we establish two separate ingredients. First, we develop a predictive
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external regret minimizer for the set of transformations associated with EFCE. This deviates from

the construction of Farina et al. [2021a] in that we have to additionally guarantee and preserve the

predictive bounds throughout the construction. Further, our algorithm combines optimistic regret

minimization—under suitable DGFs—for the sequence-form polytope, with regret decomposition in

the style of CFR. While these have been the two main paradigms employed in EFGs, they were

used separately in the past. We refer to Figure 2 for a detailed description of our algorithm.

The second central component consists of sharply characterizing the stability of fixed points

of trigger deviation functions. This turns out to be particularly challenging, and direct extensions

of prior techniques only give a bound that is exponential in the size of the game. In this context,

one of our key technical contributions is to provide a refined perturbation analysis for a Markov

chain consisting of a rank-one stochastic matrix (Lemma 4.11). To do this, we deviate from prior

techniques (e.g., [Candogan et al., 2013, Chen and Peng, 2020]) that used the Markov chain tree

theorem, and instead use an alternative linear-algebraic characterization for the eigenvectors of

the underlying Laplacian system. This leads to a rate of convergence that depends polynomially on

the description of the game, which is crucial for the practical applicability of the dynamics.

Next, we shift our attention to learning dynamics for EFCCE. We first introduce the notion of

coarse trigger deviation functions, and we show that if each player employs a no-coarse-trigger-regret

algorithm, the correlated distribution of play converges to an EFCCE (Theorem 2.11). This allows

for a unifying treatment of EFCE and EFCCE. Moreover, we show that, unlike all existing methods

for computing fixed points of trigger deviation functions, the fixed points of coarse trigger deviation

functions admit a succinct closed-form characterization (Theorem 5.1); in turn, this enables us

to obtain a much more efficient algorithm for computing them (Algorithm 1). From a practical

standpoint, this is crucial as it substantially reduces the per-iteration complexity of the dynamics,

placing EFCCE closer to NFCCE in terms of the underlying complexity, even though EFCCE

prescribes a stronger notion of correlation. Another implication of our closed-form characterization

is an improved stability analysis for the fixed points, which is much less technical than the one we

give for EFCE (Proposition 5.2). Finally, we support our theoretical findings with experiments on

several general-sum benchmarks.

1.2 Further Related Work

The line of work on accelerated no-regret learning was pioneered by Daskalakis et al. [2015],

showing that one can bypass the adversarial Ω(𝑇 −1/2) barrier for the incurred average regret

if both players in a zero-sum game employ an uncoupled variant of Nesterov’s excessive gap

technique [Nesterov, 2005], leading to a near-optimal rate of 𝑂 (log𝑇 /𝑇 ). Subsequently, Rakhlin
and Sridharan [2013a] showed that the optimal rate of 𝑂 (𝑇 −1) can be obtained with a remarkably

simple variant of mirror descent which incorporates a prediction term in the update step. While

these results only hold for zero-sum games, Syrgkanis et al. [2015] showed that an 𝑂 (𝑇 −3/4) rate
can be obtained for multiplayer general-sum normal-form games. In a recent result, Chen and Peng

[2020] strengthened the regret bounds in [Syrgkanis et al., 2015] from external to swap regret using

the celebrated construction of Blum and Mansour [2007], thereby establishing a rate of convergence

of 𝑂 (𝑇 −3/4) to CE. Even more recent work [Anagnostides et al., 2021, Daskalakis et al., 2021] has

established a near-optimal rate of convergence of 𝑂 (𝑇 −1) to correlated equilibria in normal-form

games when all players leverage optimistic multiplicative weights update (OMWU), where𝑂 (·) hides
polylog(𝑇 ) factors. Extending these results to EFCE presents a considerable challenge since their

techniques crucially rely on the softmax-type strucure of OMWU on the simplex, as well as the

particular structure of the associated fixed points.
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Correlated equilibria in extensive-form games are much less understood than Nash equilibria. It

is known that a feasible EFCE can also be computed efficiently through a variant of the Ellipsoid

algorithm [Jiang and Leyton-Brown, 2015, Papadimitriou and Roughgarden, 2008], while an alterna-

tive sampling-based approach was given by Dudík and Gordon [2009]. However, those approaches

perform poorly in large-scale problems, and do not allow the players to arrive at EFCE via dis-

tributed learning. Celli et al. [2019b] devised variants of the CFR algorithm that provably converge

to an NFCCE, a solution concept much less appealing than EFCE in extensive-form games [Gordon

et al., 2008]. Finally, Morrill et al. [2021a,b] characterize different hindsight rationality notions in

EFGs, associating each solution concept with suitable 𝑂 (𝑇 −1/2) no-regret learning dynamics.

2 PRELIMINARIES

In this section we introduce the necessary background related to extensive-form games (EFGs),

correlated equilibria in EFGs, and regret minimization. A comprehensive treatment on EFGs can be

found in [Shoham and Leyton-Brown, 2009], while for an introduction to the theory of learning in

games the reader is referred to the excellent book of Cesa-Bianchi and Lugosi [2006].

Conventions. In the sequel we use the𝑂 (·) notation to suppress (universal) constants.We typically

use subscripts to indicate the player or some element in the game tree uniquely associated with a

given player, such as a decision point; to lighten our notation, the associated player is not made

explicit in the latter case. Superscripts are reserved almost exclusively for time indexes. Finally, the

𝑘-th coordinate of a vector 𝒙 ∈ R𝑑 will be denoted by 𝒙 [𝑘].

2.1 Extensive-Form Games

An extensive-form game is abstracted on a directed and rooted game tree T . The set of nodes of T
is denoted withH . Non-terminal nodes are referred to as decision nodes and are associated with a

player who acts by selecting an action from a set of possible actions Aℎ , where ℎ ∈ H represents

the decision node. By convention, the set of players [𝑛] ∪ {𝑐} includes a fictitious agent 𝑐 who
“selects” actions according to some fixed probability distributions dictated by the nature of the

game (e.g., the roll of a dice); this intends to model external stochastic phenomena occurring during

the game. For a player 𝑖 ∈ [𝑛] ∪ {𝑐}, we let H𝑖 ⊆ H be the subset of decision nodes wherein a

player 𝑖 makes a decision. The set of leaves Z ⊆ H , or equivalently the terminal nodes, correspond

to different outcomes of the game. Once the game transitions to a terminal node 𝑧 ∈ Z payoffs are

assigned to each player based on a set of (normalized) utility functions {𝑢𝑖 : Z → [−1, 1]}𝑖∈[𝑛] .
It will also be convenient to represent with 𝑝𝑐 (𝑧) the product of probabilities of “chance” moves

encountered in the path from the root until the terminal node 𝑧 ∈ Z. In this context, the set of

nodes in the game tree can be expressed as the (disjoint) unionH B ⋃
𝑖∈[𝑛]∪{𝑐 }H𝑖 ∪Z.

Imperfect Information. To model imperfect information, the set of decision nodesH𝑖 of player

𝑖 are partitioned into a collection of sets J𝑖 , which are called information sets. Each information

set 𝑗 ∈ J𝑖 groups nodes which cannot be distinguished by player 𝑖 . Thus, for any nodes ℎ,ℎ′ ∈ 𝑗
we have Aℎ = Aℎ′ . As usual, we assume that the game satisfies perfect recall: players never forget

information once acquired. This implies, in particular, that for any nodes ℎ,ℎ′ ∈ 𝑗 the sequence
of 𝑖’s actions from the root until ℎ must coincide with the sequence from the root to node ℎ′;
otherwise, 𝑖 would be able to distinguish between nodes ℎ and ℎ′ by virtue of perfect recall. We

will also define a partial order ≺ on J𝑖 so that 𝑗 ≺ 𝑗 ′, for 𝑗, 𝑗 ′ ∈ J𝑖 , if there exist nodes ℎ ∈ 𝑗 and
ℎ′ ∈ 𝑗 ′ such that the path from the root to ℎ′ passes through ℎ. If 𝑗 ≺ 𝑗 ′, we will say that 𝑗 is an

ancestor of 𝑗 ′, or equivalently, 𝑗 ′ is a descendant of 𝑗 .
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Description
J𝑖 Information sets of player 𝑖

A 𝑗 Set of actions at information set 𝑗

Σ𝑖 Set of sequences of player 𝑖

Σ∗𝑖 Set of sequences of player 𝑖 excluding ∅
Σ 𝑗 Set of sequences at 𝑗 ∈ J𝑖 and all of its descendants

𝔇𝑖 Maximum depth of any 𝑗 ∈ J𝑖
Z Number of leaves

∥Q𝑖 ∥1 Upper bound on the ℓ1-norm of any 𝒙 ∈ Q𝑖
Π𝑖 Deterministic sequence-form strategies of player 𝑖

Π 𝑗 Deterministic sequence-form strategies rooted at 𝑗 ∈ J𝑖
Q𝑖 Sequence-form strategies of player 𝑖

Q 𝑗 Sequence-form strategies rooted at 𝑗 ∈ J (𝑖)
Π Set of joint deterministic sequence-form strategies

Table 1. Summary of EFG notation.

1

5

2

56 6

3

7

4

78 8

a b

c d

Fig. 1. Example of a two-player EFG.

Sequence-form Strategies. For a player 𝑖 ∈ [𝑛], an information set 𝑗 ∈ J𝑖 , and an action 𝑎 ∈ A 𝑗 ,

we will denote with 𝜎 = ( 𝑗, 𝑎) the sequence of 𝑖’s actions encountered on the path from the root of

the game until (and included) action 𝑎. For notational convenience, we will use the special symbol

∅ to denote the empty sequence. Then, 𝑖’s set of sequences is defined as Σ𝑖 B {( 𝑗, 𝑎) : 𝑗 ∈ J𝑖 , 𝑎 ∈
A 𝑗 } ∪ {∅}; we will also use the notation Σ∗𝑖 B Σ𝑖 \ {∅}. For a given information set 𝑗 ∈ J𝑖 we
will use 𝜎 𝑗 ∈ Σ𝑖 to represent the parent sequence; i.e. the last sequence encountered by player 𝑖

before reaching any node in the information set 𝑗 , assuming that it exists. Otherwise, we let 𝜎 𝑗 = ∅,
and we say that 𝑗 is a root information set of player 𝑖 . A strategy for a player specifies a probability

distribution for every possible information set encountered in the game tree. For perfect-recall

EFGs, strategies can be equivalently represented in sequence-form:

Definition 2.1 (Sequence-form Polytope). The sequence-form strategy polytope for player 𝑖 ∈ [𝑛]
is defined as the following (convex) polytope:

Q𝑖 B
{
𝒒𝑖 ∈ R |Σ𝑖 |≥0 : 𝒒𝑖 [∅] = 1, 𝒒𝑖 [𝜎 𝑗 ] =

∑︁
𝑎∈A 𝑗

𝒒𝑖 [( 𝑗, 𝑎)], ∀𝑗 ∈ J𝑖
}
.

This definition ensures the probability mass conservation for the sequence-form strategies along

every possible decision point. The probability of playing action 𝑎 at information set 𝑗 ∈ J𝑖 can be

obtained by dividing 𝒒[( 𝑗, 𝑎)] by 𝒒[𝜎 𝑗 ]. Analogously, one can define the sequence-form strategy

polytope for the subtree of the partially ordered set (J𝑖 , ≺) rooted at 𝑗 ∈ J𝑖 , which will be denoted

by Q 𝑗 . Moreover, the set of deterministic sequence-form strategies for player 𝑖 ∈ [𝑛] is the set
Π𝑖 = Q𝑖 ∩ {0, 1} |Σ𝑖 | , and similarly for Π 𝑗 . A well-known implication of Kuhn’s theorem [Kuhn,

1953] is that Q𝑖 = coΠ𝑖 , and Q 𝑗 = coΠ 𝑗 , for any 𝑖 ∈ [𝑛] and 𝑗 ∈ J𝑖 . The joint set of deterministic

sequence-form strategies of the players will be represented with Π B
>

𝑖∈[𝑛] Π𝑖 . As such, an

element 𝝅 ∈ Π is an 𝑛-tuple (𝝅1, . . . , 𝝅𝑛) specifying a deterministic sequence-form strategy for

every player 𝑖 ∈ [𝑛]. Finally, we overload notation by representing the utility of player 𝑖 ∈ [𝑛]
under a profile 𝝅 ∈ Π as

𝑢𝑖 (𝝅) B
∑︁
𝑧∈Z

𝑝𝑐 (𝑧)𝑢𝑖 (𝑧)1{𝝅𝑘 [𝜎𝑘,𝑧] = 1,∀𝑘 ∈ [𝑛]},

where 𝜎𝑖,𝑧 denotes the last sequence of player 𝑖 before reaching the terminal node 𝑧 ∈ Z. For the

convenience of the reader, in Table 1 we have summarized the main notation related to EFGs used

throughout this paper.
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An Illustrative Example. To further clarify some of the concepts we have introduced so far, we

illustrate a simple two-player EFG in Figure 1. Black nodes belong to player 1, white round nodes

to player 2, square nodes are terminal nodes (aka leaves), and the crossed node is a chance node.

Player 2 has two information sets, J2 B {C,D}, each containing two nodes. This captures the

lack of knowledge regarding the action played by player 1. In contrast, the outcome of the chance

move is observed by both players. At the information set C, player 2 has two possible actions,

AC B {5, 6}. Thus, one possible sequence for player 2 is the pair 𝜎 = (C, 5) ∈ Σ2.

2.2 Online Learning and Optimistic Regret Minimization

Consider a convex and compact set X ⊆ R𝑑 representing the set of strategies of some agent. In the

online decision making framework, a regret minimizer R can be thought of as a black-box device

which interacts with the external environment via the following two basic subroutines:

• R .NextStrategy(): The regret minimizer returns a strategy 𝒙 (𝑡 ) ∈ X at time 𝑡 ;

• R .ObserveUtility(ℓ (𝑡 ) ): The regret minimizer receives as feedback a linear utility function

ℓ (𝑡 ) : X ∋ 𝒙 ↦→ ⟨ℓ (𝑡 ) , 𝒙⟩, and may alter its internal state accordingly.

The utility function ℓ (𝑡 ) could depend adversarially on the previous outputs 𝒙 (1) , . . . , 𝒙 (𝑡−1) , but not
on 𝒙 (𝑡 ) . The decision making is online in the sense that the regret minimizer can adapt to previously

received information, but no information about future utilities is available. The performance of a

regret minimizer is typically measured in terms of its cumulative external regret (or simply regret),

defined, for a time horizon 𝑇 ∈ N, as follows.

Reg
𝑇 B max

𝒙∗∈X

𝑇∑︁
𝑡=1

⟨𝒙∗, ℓ (𝑡 )⟩ −
𝑇∑︁
𝑡=1

⟨𝒙 (𝑡 ) , ℓ (𝑡 )⟩. (1)

That is, the performance of the online algorithm is compared to the best fixed strategy in hindsight.

A regret minimizer is called Hannan consistent if, under any sequence of (bounded) utility functions,

its regret grows sublinearly with 𝑇 ; that is, Reg𝑇 = 𝑜 (𝑇 ). It is well-known that broad families

of learning algorithms incur 𝑂 (
√
𝑇 ) regret under any sequence of utility functions, which also

matches the lower bound in the adversarial regime (see [Cesa-Bianchi and Lugosi, 2006]).

Phi-Regret. A conceptual generalization of external regret is the so-called Phi-regret. In this

framework the performance of the learning algorithm is measured based on a set of transformations

Φ ∋ 𝜙 : X → X, leading to the notion of (cumulative) Φ-regret:

Reg
𝑇 B max

𝜙∗∈Φ

𝑇∑︁
𝑡=1

⟨𝜙∗ (𝒙 (𝑡 ) ), ℓ (𝑡 )⟩ −
𝑇∑︁
𝑡=1

⟨𝒙 (𝑡 ) , ℓ (𝑡 )⟩.

When the set of transformations Φ coincides with the set of constant functions we recover the

notion of external regret given in (1). However, Phi-regret is substantially stronger and it yields

more appealing notions of hindsight rationality [Gordon et al., 2008], incorporating the notion of

swap regret [Blum and Mansour, 2007].

Optimistic Regret Minimization. An emerging subfield of online learning ([Chiang et al., 2012,

Rakhlin and Sridharan, 2013a]) studies the improved performance guarantees one can obtain when

the utilities observed by the regret minimization algorithm possess additional structure, typically in

the form of small variation. Such considerations diverge from the adversarial regime we previously

described, and are motivated—among others—by the fact that in many settings the utility functions

are themselves selected by regularized learning algorithms. For our purposes we shall employ the

following definition, which is a modification of the RVU property [Syrgkanis et al., 2015].
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Definition 2.2 (Stable-Predictive). Let R be a regert minimizer and ∥ · ∥ be any norm. R is said to

be 𝜅-stable with respect to ∥ · ∥ if for all 𝑡 ≥ 2 the strategies output by R are such that

∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥ ≤ 𝜅.
Moreover, R is said to be (𝛼, 𝛽)-predictive with respect to ∥ · ∥ if its regret Reg𝑇 can be bounded as

Reg
𝑇 ≤ 𝛼 + 𝛽

𝑇∑︁
𝑡=1

∥ℓ (𝑡 ) −𝒎 (𝑡 ) ∥2∗, (2)

for any sequence of utilities ℓ (1) , . . . , ℓ (𝑇 ) , where ∥ · ∥∗ is the dual norm of ∥ · ∥.

In the above definition𝒎 (𝑡 ) serves as the prediction of the regret minimizer R at time 𝑡 ≥ 1. While

traditional online algorithms are not known to satisfy (2), we will next present natural variants

which are indeed stable-predictive in the sense of Definition 2.2.

Optimistic Follow the Regularized Leader. Let 𝑑 be a 1-strongly convex distance generating function

(DGF) with respect to a norm ∥ · ∥, and 𝜂 > 0 be the learning rate. The update rule of optimistic

follow the regularized leader (OFTRL) takes the following form for 𝑡 ≥ 2:

𝒙 (𝑡 ) B argmax

𝒙∈X

{〈
𝒙,𝒎 (𝑡 ) +

𝑡−1∑︁
𝜏=1

ℓ (𝜏)
〉
− 𝑑 (𝒙)

𝜂

}
, (OFTRL)

where 𝒎 (𝑡 ) is the prediction at time 𝑡 , and 𝒙 (1) B argmin𝒙∈X 𝑑 (𝒙). Unless specified otherwise,

it will be tacitly assumed that 𝒎 (𝑡 ) B ℓ (𝑡−1) , for 𝑡 ≥ 1, where we conventionally let ℓ (0) B 0.
Syrgkanis et al. [2015] established the following property:

Lemma 2.3. (OFTRL) is (Ω𝑑/𝜂, 𝜂)-predictive1 with respect to any norm ∥ · ∥ for which 𝑑 is 1-strongly

convex, where Ω𝑑 is the range of 𝑑 on X, that is, Ω𝑑 B max𝒙,𝒙′∈X{𝑑 (𝒙) − 𝑑 (𝒙 ′)}.

The entropic regularizer on the simplex is defined as 𝑑 (𝒙) B ∑𝑑
𝑘=1

𝒙 [𝑘] log 𝒙 [𝑘], and it is well-

known to be 1-strongly convex with respect to the ℓ1-norm. This OFTRL setup will be referred to

as optimistic multiplicative weights updates (OMWU).
2

We will also require a suitable DGF for the sequence-form polytope. To this end, we will employ

the dilatable global entropy DGF, recently introduced by Farina et al. [2021b].

Definition 2.4 ([Farina et al., 2021b]). The dilatable global entropy distance generating function

𝑑 : Q → R≥0 is defined as

𝑑 (𝒙) B
∑︁
𝜎 ∈Σ

𝒘 [𝜎]𝒙 [𝜎] log(𝒙 [𝜎]).

The vector𝒘 ∈ R |Σ | is defined recursively as

𝒘 [∅] = 1;

𝒘 [( 𝑗, 𝑎)] = 𝜸 [ 𝑗] −
∑︁

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎)
𝜸 [ 𝑗 ′], ∀( 𝑗, 𝑎) ∈ Σ,

where

𝜸 [ 𝑗] = 1 + max

𝑎∈A 𝑗


∑︁

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎)
𝜸 [ 𝑗 ′]

 , ∀𝑗 ∈ J . (3)

1
Syrgkanis et al. [2015] only stated this for the simplex, but their proof readily extends to arbitrary convex and compact sets.

2
When 𝒎 (𝑡 ) B 0, for all 𝑡 ≥ 1, we recover multiplicative weights updates (MWU).
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This DGF is “nice” (in the parlance of Hoda et al. [2010]) since its gradient, as well as the gradient

of its convex conjugate, can be computed exactly in linear time in |Σ|—the dimension of the domain.

Our analysis will require the following characterization.

Lemma 2.5 ([Farina et al., 2021b]). The dilatable global entropy 𝑑 of Definition 2.4 is a DGF for the

sequence-form polytope Q. Moreover, it is 1/∥Q∥1-strongly convex on relintQ with respect to the ∥ · ∥1
norm, where ∥Q∥1 = max𝒒∈Q ∥𝒒∥1. Finally, the 𝑑-diameter Ω𝑑 of Q is at most ∥Q∥2

1
max𝑗 ∈J log |A 𝑗 |.

In the sequel we will instantiate (OFTRL) with dilatable global entropy as DGF to construct a

stable-predictive regret minimizer for the sequence-form strategy polytope.

2.3 Extensive-Form Correlated and Coarse Correlated Equilibrium

In this subsection we introduce the notion of an extensive-form correlated and coarse correlated

equilibrium (henceforth EFCE and EFCCE respectively). First, for EFCE we will work with the

definition used in [Farina et al., 2019d], which is equivalent to the original one due to von Stengel

and Forges [2008]. To this end, let us introduce the concept of a trigger deviation function.

Definition 2.6. Consider some player 𝑖 ∈ [𝑛]. A trigger deviation function with respect to a trigger

sequence 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 and a continuation strategy 𝝅̂𝑖 ∈ Π 𝑗 is any linear function 𝑓 : R |Σ𝑖 | → R |Σ𝑖 |
with the following properties.

• Any strategy 𝝅𝑖 ∈ Π𝑖 which does not prescribe the sequence 𝜎̂ remains invariant. That is,

𝑓 (𝝅𝑖 ) = 𝝅𝑖 for any 𝝅𝑖 ∈ Π𝑖 such that 𝝅𝑖 [𝜎̂] = 0;

• Otherwise, the prescribed sequence 𝜎̂ = ( 𝑗, 𝑎) is modified so that the behavior at 𝑗 and all of

its descendants is replaced by the behavior specified by the continuation strategy:

𝑓 (𝝅𝑖 ) [𝜎] =
{
𝝅𝑖 [𝜎] if 𝜎 ⪰̸ 𝑗 ;

𝝅̂𝑖 [𝜎] if 𝜎 ⪰ 𝑗,

for all 𝜎 ∈ Σ𝑖 .

We will let Ψ𝑖 B {𝜙𝜎̂→𝝅̂𝑖
: 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 , 𝝅̂𝑖 ∈ Π 𝑗 } be the set of all possible (linear) mappings

defining trigger deviation functions for player 𝑖 . We are ready to introduce the concept of EFCE.

Definition 2.7 (EFCE). A probability distribution 𝝁 ∈ Δ(Π) is an 𝜖-EFCE, for 𝜖 ≥ 0, if for every

player 𝑖 ∈ [𝑛] and every trigger deviation function 𝜙𝜎̂→𝝅̂𝑖
∈ Ψ𝑖 ,

E𝝅∼𝝁
[
𝑢𝑖

(
𝜙𝜎̂→𝝅̂𝑖

(𝝅𝑖 ), 𝝅−𝑖
)
− 𝑢𝑖 (𝝅)

]
≤ 𝜖,

where 𝝅 = (𝝅1, . . . , 𝝅𝑛) ∈ Π. We say that 𝝁 ∈ Δ(Π) is an EFCE if it is a 0-EFCE.

Theorem 2.8 ([Farina et al., 2021a]). Suppose that for every player 𝑖 ∈ [𝑛] the sequence of determin-

istic sequence-form strategies 𝝅 (1)
𝑖
, . . . , 𝝅 (𝑇 )

𝑖
∈ Π𝑖 incurs Ψ𝑖 -regret at most Reg

𝑇
𝑖 under the sequence of

linear utility functions

ℓ
(𝑡 )
𝑖

: Π𝑖 ∋ 𝝅𝑖 ↦→ 𝑢𝑖

(
𝝅𝑖 , 𝝅

(𝑡 )
−𝑖

)
.

Then, the correlated distribution of play 𝝁 ∈ Δ(Π) is an 𝜖-EFCE, where 𝜖 B 1

𝑇
max𝑖∈[𝑛] Reg

𝑇
𝑖 .

Similarly, we introduce the closely related notion of a coarse trigger deviation function.

Definition 2.9 (Coarse Trigger Deviation Functions). Consider some player 𝑖 ∈ [𝑛]. A coarse

trigger deviation function with respect to an information set 𝑗 ∈ J𝑖 and a continuation strategy

𝝅̂𝑖 ∈ Π 𝑗 is any linear function 𝑓 : R |Σ𝑖 | → R |Σ𝑖 | with the following properties:

• For any 𝝅𝑖 ∈ Π𝑖 such that 𝝅𝑖 [𝜎 𝑗 ] = 0 it holds that 𝑓 (𝝅𝑖 ) = 𝝅𝑖 ;
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• Otherwise,

𝑓 (𝝅𝑖 ) [𝜎] =
{
𝝅𝑖 [𝜎] if 𝜎 ⪰̸ 𝑗 ;

𝝅̂𝑖 [𝜎] if 𝜎 ⪰ 𝑗,

for all 𝜎 ∈ Σ𝑖 .

We will also let Ψ̃𝑖 B {𝜙 𝑗→𝝅̂𝑖
: 𝑗 ∈ J𝑖 , 𝝅̂𝑖 ∈ Π 𝑗 } be the set of all (linear) mappings inducing

coarse trigger deviations functions for player 𝑖 .

Definition 2.10 (EFCCE). A probability distribution 𝝁 ∈ Δ(Π) is an 𝜖-EFCCE, for 𝜖 ≥ 0, if for

every player 𝑖 ∈ [𝑛] and every coarse trigger deviation function 𝜙 𝑗→𝝅̂𝑖
∈ Ψ̃𝑖 ,

E𝝅∼𝝁
[
𝑢𝑖

(
𝜙 𝑗→𝝅̂𝑖

(𝝅𝑖 ), 𝝅−𝑖
)
− 𝑢𝑖 (𝝅)

]
≤ 𝜖,

where 𝝅 = (𝝅1, . . . , 𝝅𝑛) ∈ Π. We say that 𝝁 ∈ Δ(Π) is an EFCCE if it is a 0-EFCCE.

Analogously to Theorem 2.8, we show (in Appendix A.2) that if all players employ a Ψ̃𝑖-regret
minimizer, the correlated distribution of play converges to an EFCCE.

Theorem 2.11. Suppose that for every player 𝑖 ∈ [𝑛] the sequence of deterministic sequence-form

strategies 𝝅 (1)
𝑖
, . . . , 𝝅 (𝑇 )

𝑖
∈ Π𝑖 incurs Ψ̃𝑖-regret at most Reg

𝑇
𝑖 under the sequence of linear utility

functions

ℓ
(𝑡 )
𝑖

: Π𝑖 ∋ 𝝅𝑖 ↦→ 𝑢𝑖

(
𝝅𝑖 , 𝝅

(𝑡 )
−𝑖

)
.

Then, the correlated distribution of play 𝝁 ∈ Δ(Π) is an 𝜖-EFCCE, where 𝜖 B 1

𝑇
max𝑖∈[𝑛] Reg

𝑇
𝑖 .

3 ACCELERATING PHI-REGRET MINIMIZATION WITH OPTIMISM

In this section we present a general construction for obtaining improved Phi-regret guarantees. Our

template is then instantiated in Sections 4 and 5 to obtain faster dynamics for EFCE and EFCCE.

Our approach combines the framework of Gordon et al. [2008] with stable-predictive (aka.

optimistic) regret minimization. As in [Gordon et al., 2008], we combine 1) a regret minimizer

that outputs a linear transformation 𝜙 (𝑡 ) ∈ Φ at every time 𝑡 , and 2) a fixed-point oracle for each

𝜙 (𝑡 ) ∈ Φ. However, our construction further requires that 2) is stable (in the sense of Definition 2.2).

To achieve this, we will focus on regret minimizers having the following property.

Definition 3.1. Consider a set of functions Φ such that 𝜙 (X) ⊆ X for all 𝜙 ∈ Φ, and a no-regret

algorithm RΦ for the set of transformations Φ which returns a sequence (𝜙 (𝑡 ) ). We say that RΦ is

fixed point 𝜅-stable with respect to a norm ∥ · ∥ if the following conditions hold.
• Every 𝜙 (𝑡 ) admits a fixed point. That is, there exists 𝒙 (𝑡 ) ∈ X such that 𝜙 (𝑡 ) (𝒙 (𝑡 ) ) = 𝒙 (𝑡 ) .
• For 𝒙 (𝑡 ) with 𝒙 (𝑡 ) = 𝜙 (𝑡 ) (𝒙 (𝑡 ) ), there is 𝒙 (𝑡+1) = 𝜙 (𝑡+1) (𝒙 (𝑡+1) ) such that ∥𝒙 (𝑡+1) − 𝒙 (𝑡 ) ∥ ≤ 𝜅.

In this context, we will show how to construct a stable-predictive Φ-regret minimizer starting

from the following two components.

(1) RΦ: An (𝐴, 𝐵)-predictive fixed point 𝜅-stable regret minimizer for the set Φ;
(2) StableFPOracle(𝜙 ; 𝒙̃, 𝜅, 𝜖): A stable fixed point oracle which returns a point 𝒙 ∈ X such that

(i) ∥𝜙 (𝒙) − 𝒙 ∥ ≤ 𝜖 , and (ii) ∥𝒙 − 𝒙̃ ∥ ≤ 𝜅 (the existence of such a fixed point is guaranteed by

the fixed point 𝜅-stability assumption on the regret minimizer).

Theorem 3.2 (Stable-Predictive Phi-Regret Minimization). Consider an (𝐴, 𝐵)-predictive regret
minimizer RΦ with respect to ∥ · ∥1 for a set of linear transformations Φ on X. Moreover, suppose that

ArXiv preprint



Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse Correlated Equilibria 11

RΦ is fixed point 𝜅-stable. Then, if we have access to a StableFPOracle, we can construct a 𝜅-stable

algorithm with Φ-regret Reg𝑇 bounded as

Reg
𝑇 ≤ 𝐴 + 2𝐵

𝑇∑︁
𝑡=1

∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞ + 2𝐵∥ℓ∥2∞
𝑇∑︁
𝑡=1

∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞ + ∥ℓ∥∞
𝑇∑︁
𝑡=1

𝜖 (𝑡 ) ,

where 𝜖 (𝑡 ) is the error of StableFPOracle at time 𝑡 , and ∥ℓ (𝑡 ) ∥∞ ≤ ∥ℓ∥∞ for any 𝑡 ≥ 1. It is also

assumed that ∥𝒙 ∥∞ ≤ 1 for all 𝒙 ∈ X.
The ℓ1 norm is used only for convenience; the theorem readily extends under any equivalent

norm. The proof of Theorem 3.2 builds on the construction of Gordon et al. [2008], and it is included

in Appendix A.3.

4 FASTER CONVERGENCE TO EFCE

Our framework (Theorem 3.2) reduces accelerating Φ-regret minimization to (i) developing a

predictive regret minimizer for the set Φ, and (ii) establishing the stability of the fixed points

(StableFPOracle). In this section we establish these components for the set of all possible trigger

deviations functions (Definition 2.6), leading to faster convergence to EFCE. In particular, Section 4.1

is concerned with the former task while Section 4.2 is concerned with the latter.

4.1 Constructing a Predictive Regret Minimizer for Ψ𝑖

Here we develop a regret minimizer for the set coΨ𝑖 , the convex hull of all trigger deviation

functions (Definition 2.6) of player 𝑖 ∈ [𝑛]. Given that coΨ𝑖 ⊇ Ψ𝑖 , this will immediately imply a

Ψ𝑖-regret minimizer—after applying Theorem 3.2. To this end, the set coΨ𝑖 can be evaluated in

two stages. First, for a fixed sequence 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 we define the set Ψ𝜎̂ B co

{
𝜙𝜎̂→𝝅̂𝑖

: 𝝅̂𝑖 ∈ Π 𝑗

}
.

Then, we take the convex hull of all Ψ𝜎̂ ; that is, coΨ𝑖 = co{Ψ𝜎̂ : 𝜎̂ ∈ Σ∗𝑖 }. In light of this, we

first develop a predictive regret minimizer for the set Ψ𝜎̂ , for any 𝜎̂ ∈ Σ∗𝑖 . These individual regret
minimizers are then combined using a regret circuit to conclude the construction in Theorem 4.5.

The overall algorithm is illustrated in Figure 2. All of the omitted poofs and pseudocode for this

section are included in Appendix A.4.

4.1.1 Predictive Regret Minimizer for the set Ψ𝜎̂ . Consider a sequence 𝜎̂ ∈ Σ∗𝑖 . We claim that the

set of transformations Ψ𝜎̂ B co

{
𝜙𝜎̂→𝝅̂𝑖

: 𝝅̂𝑖 ∈ Π 𝑗

}
is the image of Q 𝑗 under the affine mapping

ℎ𝜎̂ : 𝒒 ↦→ 𝜙𝜎̂→𝒒 . Hence, it is not hard to see that a regret minimizer for Ψ𝜎̂ can be constructed

starting from a regret minimizer for Q 𝑗 . We now show that the predictive bound is preserved

through this construction.

Proposition 4.1. Consider a player 𝑖 ∈ [𝑛] and any trigger sequence 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 . There exists an
algorithm which constructs a regret minimizer R𝜎̂ with access to an (𝐴, 𝐵)-predictive regret minimizer

RQ 𝑗
for the set Q 𝑗 such that R𝜎̂ is (𝐴, 𝐵)-predictive.

This proposition requires a predictive regret minimizer for the set Q 𝑗 , for each 𝑗 ∈ J𝑖 . To this
end, we instantiate (OFTRL) with dilatable global entropy as DGF (Definition 2.4). Then, combining

Lemma 2.3 with Lemma 2.5 leads to the following predictive bound.

Lemma 4.2. Suppose that the regret minimizer RQ 𝑗
is instantiated with dilatable global entropy.

Then, RQ 𝑗
is (𝐴, 𝐵)-predictive with respect to ∥ · ∥1, where 𝐴 =

∥Q𝑖 ∥2
1
max𝑗∈J𝑖 log |A 𝑗 |

𝜂
and 𝐵 = 𝜂∥Q𝑖 ∥1.

The discrepancy between this bound and the one in Lemma 2.3 derives from the fact that the

modulus of convexity with respect to ∥ · ∥1 for the dilatable global entropy is 1/∥Q𝑖 ∥1 instead of 1.

Alternatively, we also establish a predictive variant of CFR which can be used in place of OFTRL

for performing regret minimization over the set Q 𝑗 .
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OFTRL

OFTRL

RΔ (OMWU)

R1 (Proposition 4.1)

Rm (Proposition 4.1)

ℓ (𝑡 )
𝑖

𝐿
(𝑡 )
𝑖

𝜙
(𝑡 )
𝑖

𝒙 (𝑡 )
𝑖

RΨ𝑖 (Theorem 4.5)

Ψ𝑖 -Regret Minimizer for Q𝑖

𝒙 (𝑡 )
𝑖

𝜙
1→𝒒 (𝑡 )1

𝜙
m→𝒒 (𝑡 )m

Fixed

point

Fig. 2. An overview of the overall construction. For notational convenience we have let Σ∗
𝑖
B {1, 2, . . . , m}.

The symbol ⊗ in the figure denotes a multilinear transformation. We have used blue color for the iterates and
red for the utilities. The algorithm first constructs a regret minimizer RΨ𝑖 for the set Ψ𝑖 (Theorem 4.5). This
internally uses a regret minimizer RΔ which “mixes” the strategies of R1, . . . ,Rm. In turn, the latter regret
minimizers internally employ (OFTRL) with dilatable global entropy as DGF (Proposition 4.1). The last step
can also be implemented using stable-predictive CFR (Theorem B.4), as we leverage for our experiments.
Finally, RΨ𝑖 is used to construct a stable-predictive Ψ𝑖 -regret minimizer using the construction of Theorem 3.2.

Proposition 4.3 (Predictive CFR; Full Version in Theorem B.4). There exists a variant of CFR using

OMWU which is (𝐴, 𝐵)-predictive, where 𝐴 = 𝑂 (max𝑗∈J log |A 𝑗 |
𝜂

∥Q∥1) and 𝐵 = 𝑂 (𝜂∥Q∥3
1
).

This construction follows the approach of Farina et al. [2019c], but here wemake the dependencies

on the size of the game explicit. The predictive bound we obtain for CFR is inferior to the one in

Lemma 4.2, so the rest of our theoretical analysis will follow the “global” approach.

4.1.2 Predictive Regret Minimizer for coΨ𝑖 . The next step consists of appropriately combining the

regret minimizers Ψ𝜎̂ , for all 𝜎̂ ∈ Σ∗𝑖 , to a composite regret minimizer for the set coΨ𝑖 . To this end,

we will use a regret circuit for the convex hull, formally introduced below.

Proposition 4.4 ([Farina et al., 2019b]). Consider a collection of sets X1, . . . ,X𝑚 , and let R𝑖 be a
regret minimizer for the set X𝑖 , for each 𝑖 ∈ [𝑚]. Moreover, let RΔ be a regret minimizer for the

𝑚-simplex Δ𝑚
. A regret minimizer Rco for the set co{X1, . . . ,X𝑚} can be constructed as follows.

• Rco .NextStrategy obtains the next strategy 𝒙 (𝑡 )
𝑖

of each regret minimizer R𝑖 , as well as the
next strategy 𝝀 (𝑡 ) = (𝝀 (𝑡 ) [1], . . . ,𝝀 (𝑡 ) [𝑚]) ∈ Δ𝑚

of RΔ, and returns the corresponding convex

combination: 𝝀 (𝑡 ) [1]𝒙 (𝑡 )
1
+ · · · + 𝝀 (𝑡 ) [𝑚]𝒙 (𝑡 )𝑚 .

• Rco .ObserveUtility(𝐿 (𝑡 ) ) forwards 𝐿 (𝑡 ) to each of the regret minimizers R1, . . . ,R𝑚 , while it
forwards the utility function (𝝀 [1], . . . ,𝝀 [𝑚]) ↦→ 𝝀 [1]𝐿 (𝑡 ) (𝒙 (𝑡 )

1
) + · · · + 𝝀 [𝑚]𝐿 (𝑡 ) (𝒙 (𝑡 )𝑚 ) to RΔ.

Then, if Reg
𝑇
1
, . . . , Reg𝑇𝑚 are the regrets accumulated by the regret minimizers R1, . . . ,R𝑚 , and Reg𝑇Δ

is the regret of RΔ, the regret Reg
𝑇
co
of the composite regret minmizers Rco can be bounded as

Reg
𝑇
co
≤ Reg

𝑇
Δ +max{Reg𝑇

1
, . . . , Reg𝑇𝑚}.

Next, we leverage this construction to obtain the main result of this subsection: a predictive

regret minimizer for the set of transformations coΨ𝑖 .
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Theorem 4.5. There exists a regret minimization algorithm RΨ𝑖 for the set coΨ𝑖 (Figure 2) such that

under any sequence of utility vectors 𝑳 (1)
𝑖
, . . . , 𝑳 (𝑇 )

𝑖
its regret Reg

𝑇
Ψ𝑖

can be bounded as

Reg
𝑇
Ψ𝑖
≤

log |Σ𝑖 | + ∥Q𝑖 ∥21 max𝑗 ∈J𝑖 log |A 𝑗 |
𝜂

+ 𝜂 (∥Q𝑖 ∥1 + 4|Σ𝑖 |2)
𝑇∑︁
𝑡=1

∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞.

As illustrated in Figure 2, the “mixer”RΔ is instantiated with OMWU, while each regret minimizer

R𝜎̂ , for 𝜎̂ ∈ 𝜎̂ ∈ Σ∗𝑖 , internally employs the dilatable global entropy as DGF to construct a regert

minimizer over Q 𝑗 . A notable ingredient of our predictive regret circuit (Proposition A.1) is that

we employ an advanced prediction mechanism in place of the usual “one-recency bias” wherein

the prediction is simply the previously observed utility. This leads to an improved regret bound as

we further explain in Remark A.2.

4.2 Stability of the Fixed Points

As suggested by Theorem 3.2, employing a predictive regret minimizer is of little gain if we cannot

guarantee that the observed utilities will be stable. For this reason, in this subsection we focus on

characterizing the stability of the fixed points, eventually leading to our stable-predictive coΨ𝑖-
regret minimizer. In the context of Theorem 3.2, this establishes the stable fixed point oracle. All of

the omitted proofs of this section are included in Appendix A.5.

Multiplicative Stability. Our analysis will reveal a particularly strong notion of stability we refer

to as multiplicative stability. More precisely, we say that a sequence (𝒛 (𝑡 ) ), with 𝒛 (𝑡 ) ∈ R𝑑>0, is
𝜅-multiplicative-stable, with 𝜅 ∈ (0, 1), if (1 + 𝜅)−1𝒛 (𝑡−1) [𝑘] ≤ 𝒛 (𝑡 ) [𝑘] ≤ (1 + 𝜅)𝒛 (𝑡−1) [𝑘], for any
𝑘 ∈ [𝑑] and for all 𝑡 ≥ 2. When 𝒛 (𝑡 ) [𝑘] and 𝒛 (𝑡−1) [𝑘] are such that (1 + 𝜅)−1𝒛 (𝑡−1) [𝑘] ≤ 𝒛 (𝑡 ) [𝑘] ≤
(1 + 𝜅)𝒛 (𝑡−1) [𝑘], we say that they are 𝜅-multiplicative-close. We begin by showing that OMWU on

the simplex and OFTRL with dilatable global entropy as DGF guarantee multiplicative stability.

Lemma 4.6. Consider the OMWU algorithm on the simplex Δ𝑚
with 𝜂 > 0. If all the observed utilities

and the predictions are such that ∥ℓ (𝑡 ) ∥∞, ∥𝒎 (𝑡 ) ∥∞ ≤ ∥ℓ∥∞, and 𝜂 < 1/(12∥ℓ∥∞), then the sequence

(𝒙 (𝑡 ) ) produced by OMWU is (12𝜂∥ℓ∥∞)-multiplicative-stable.

Lemma 4.7. Consider the (OFTRL) algorithm on the sequence-form strategy polytopeQ with dilatable

global entropy as DGF and 𝜂 > 0. If all the utility functions are such that ∥ℓ (𝑡 ) ∥∞ ≤ 1, and 𝜂 = 𝑂 (1/𝔇)
is sufficiently small, then the sequence (𝒙 (𝑡 ) ) produced is 𝑂 (𝜂𝔇)-multiplicative-stable.

To establish multiplicative stability of (OFTRL) under the dilatable global entropy DGF we first

derive a closed-form solution which reveals the multiplicative structure of the update rule for the

behavioral strategies at every “local” decision point. Then, the conversion to the sequence-form

representation leads to a slight degradation of an𝑂 (𝔇) (depth) factor in the multiplicative stability.

Next, we use Lemmas 4.6 and 4.7 to arrive at the following conclusion.

Corollary 4.8. Consider the regret minimization algorithm of Figure 2, and suppose that RΔ is

instantiated using OMWU with 𝜂 > 0, while each R𝜎̂ is instantiated using (OFTRL) with dilatable

global entropy as DGF and 𝜂 > 0, for all 𝜎̂ ∈ Σ∗𝑖 . Then, for a sufficiently small 𝜂 = 𝑂 (1/∥Q𝑖 ∥1),
(i) The output sequence of each R𝜎̂ is 𝑂 (𝜂𝔇𝑖 )-multiplicative-stable;

(ii) The output sequence of RΔ is 𝑂 (𝜂∥Q𝑖 ∥1)-multiplicative-stable.

Armed with this characterization, we will next establish the multiplicative stability of the fixed

points associated with trigger deviation functions. To this end, building on the approach of Farina

et al. [2021a], let us introduce the following definitions.
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Definition 4.9. Consider a player 𝑖 ∈ [𝑛] and let 𝐽 ⊆ J𝑖 be a subset of 𝑖’s information sets. We

say than 𝐽 is a trunk of J𝑖 if, for every 𝑗 ∈ 𝐽 , all predecessors of 𝑗 are also in 𝐽 .

Definition 4.10. Consider a player 𝑖 ∈ [𝑛], a trunk 𝐽 ⊆ J𝑖 , and 𝜙𝑖 ∈ coΨ𝑖 . A vector 𝒙𝑖 ∈ R |Σ𝑖 |≥0 is a

𝐽 -partial fixed point of 𝜙𝑖 if the following conditions hold:

• 𝒙𝑖 [∅] = 1 and 𝒙𝑖 [𝜎 𝑗 ] =
∑

𝑎∈A 𝑗
𝒙𝑖 [( 𝑗, 𝑎)], for all 𝑗 ∈ 𝐽 ;

• 𝜙𝑖 (𝒙𝑖 ) [∅] = 𝒙𝑖 [∅] = 1, and 𝜙𝑖 (𝒙𝑖 ) [( 𝑗, 𝑎)] = 𝒙𝑖 [( 𝑗, 𝑎)], for all 𝑗 ∈ 𝐽 and 𝑎 ∈ A 𝑗 .

An important property is that a 𝐽 -partial fixed point can be efficiently “promoted” to a 𝐽 ∪
{ 𝑗∗}-partial fixed point by computing the stationary distribution of a certain Markov chain (see

Algorithm 4). However, it is a priori unclear how this fixed point operation would affect the stability

of the produced strategies. In fact, even for a 2-state Markov chain, the stationary distribution

could behave very unsmoothly under slight perturbations in the transition probabilities; e.g.,

see [Chen and Peng, 2020, Haviv and Heyden, 1984, Meyer, 1980]. This is where the stronger

notion of multiplicative stability comes into play. Indeed, it turns out that as long as the transition

probabilities are multiplicative-stable, the stationary distribution will also be stable [Candogan

et al., 2013]. This observation was also leveraged by Chen and Peng [2020] to obtain an 𝑂 (𝑇 −3/4)
rate of convergence to correlated equilibria in normal-form games.

However, our setting is substantially more complex, and direct extensions of those prior tech-

niques appears to only give a bound exponential in the size of the game. In light of this, one of our

key observations is that the associated Markov chains has a particular structure which enables us

to establish a polynomial degradation in terms of stability. At a high level, we observe that the

underlying Markov chain can be expressed as the convex combination of a stable chain with a

much less stable rank-one component. The main concern is that the unstable rank-one chain could

cause a substantial degradation in terms of the stability of the fixed points. We address this by

proving the following key lemma.

Lemma 4.11. Let M be the transition matrix of an𝑚-state Markov chain such thatM := 𝒗1⊤ + C,
where C is a matrix with strictly positive entries and columns summing to 1 − 𝜆, and 𝒗 is a vector

with strictly positive entries summing to 𝜆. Then, if 𝝅 is the stationary distribution of M, there

exists, for each 𝑖 ∈ [𝑚], a (non-empty) finite set 𝐹𝑖 and 𝐹 =
⋃

𝑖 𝐹𝑖 , and corresponding parameters

𝑏 𝑗 ∈ {0, 1}, 0 ≤ 𝑝 𝑗 ≤ 𝑚 − 2, |𝑆 𝑗 | =𝑚 − 𝑝 𝑗 − 𝑏 𝑗 − 1, for each 𝑗 ∈ 𝐹𝑖 , such that

𝝅 [𝑖] =
∑

𝑗 ∈𝐹𝑖 𝜆
𝑝 𝑗+1(𝒗 [𝑞 𝑗 ])𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]∑
𝑗 ∈𝐹 𝐶 𝑗𝜆

𝑝 𝑗+𝑏 𝑗
∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]
,

where 𝐶 𝑗 = 𝐶 𝑗 (𝑚) is a positive parameter.

The main takeaway of this lemma is that the stationary distribution has only an affine dependence

on the vector 𝒗. This will be crucial as 𝒗 will be much less stable than the entries of C, as we
make precise in the sequel. Naturally, Lemma 4.11 is not at all apparent from the Markov chain

tree theorem, and derives from the particular structure of the Markov chain. Indeed, to establish

Lemma 4.11 we deviate from the existing techniques which are relying on the Markov chain tree

theorem, and we instead leverage linear-algebraic techniques to characterize the corresponding

eigenvector of the underlying Laplacian system. As a result, using a slight variant of Lemma 4.11

(see Corollary A.8) leads to the following stability bound.

Corollary 4.12. LetM,M′ be the transition matrices of𝑚-state Markov chains such thatM = 𝒗1⊤+C
andM′ = 𝒗 ′1⊤ + C′, where C and C′ are matrices with strictly positive entries, and 𝒗, 𝒗 ′ are vectors
with strictly positive entries such that 𝒗 = 𝒓/𝑙 and 𝒗 ′ = 𝒓 ′/𝑙 ′, for some 𝑙 > 0 and 𝑙 ′ > 0. If 𝝅 and 𝝅 ′

are the stationary distributions ofM andM′, let𝒘 B 𝑙𝝅 and𝒘 ′ B 𝑙 ′𝝅 ′. Finally, let 𝜆 and 𝜆′ be the
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sum of the entries of 𝒗 and 𝒗 ′ respectively. Then, if (i) the matrices C and C′ are 𝜅-multiplicative-close;

(ii) the scalars 𝜆 and 𝜆′ are 𝜅-multiplicative-close; (iii) the vectors 𝒓 and 𝒓 ′ are 𝛾-multiplicative-close;

and (iv) the scalars 𝑙 and 𝑙 ′ are also 𝛾-multiplicative-close, then the vectors𝒘 and𝒘 ′ are (𝛾 +𝑂 (𝜅𝑚))-
multiplicative-close, for a sufficiently small 𝜅 = 𝑂 (1/𝑚).

Under the assertion that 𝛾 ≫ 𝜅, the key takeaway is that the “closeness” of𝒘 and𝒘 ′ does not
scale with 𝑂 ((𝛾 + 𝜅)𝑚), but only as 𝛾 +𝑂 (𝜅𝑚). Using this bound we are ready to characterize the

degradation in stability after a “promotion” (Algorithm 4) of a partial fixed point (in the formal

sense of Definition 4.10).

Proposition 4.13. Consider a player 𝑖 ∈ [𝑛], and let 𝜙 (𝑡 )
𝑖

=
∑

𝜎̂ ∈Σ∗
𝑖
𝝀 (𝑡 )
𝑖
[𝜎̂]𝜙

𝜎̂→𝒒 (𝑡 )
𝜎̂

be a transforma-

tion in coΨ𝑖 such that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝜎̂
) are 𝜅-multiplicative-stable, for all 𝜎̂ ∈ Σ∗𝑖 . If

(𝒙 (𝑡 )
𝑖
) is a 𝛾-multiplicative-stable 𝐽 -partial fixed point sequence, the sequence of (𝐽 ∪ { 𝑗∗})-partial

fixed points of 𝜙𝑖 is (𝛾 +𝑂 (𝜅 |A 𝑗∗ |))-multiplicative-stable, for any sufficiently small 𝜅 = 𝑂 (1/|A 𝑗∗ |).

Moreover, we employ this proposition as the inductive step to derive sharp multiplicative-stability

bounds for the sequence of fixed points. The underlying algorithm gradually invokes the “promotion”

subroutine (Algorithm 4) in a top-down traversal of the tree, and it is given in Algorithm 5.

Theorem 4.14. Consider a player 𝑖 ∈ [𝑛], and let 𝜙 (𝑡 )
𝑖

=
∑

𝜎̂ ∈Σ∗
𝑖
𝝀 (𝑡 )
𝑖
[𝜎̂]𝜙

𝜎̂→𝒒 (𝑡 )
𝜎̂

be a transformation

in coΨ𝑖 such that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝜎̂
) are 𝜅-multiplicative-stable, for all 𝜎̂ ∈ Σ∗𝑖 . Then, the

sequence of fixed points 𝒒 (𝑡 )
𝑖
∈ Q𝑖 of 𝜙 (𝑡 )𝑖

is 𝑂 (𝜅 |A𝑖 |𝔇𝑖 )-multiplicative-stable, for a sufficiently small

𝜅 = 𝑂 (1/(|A𝑖 |𝔇𝑖 )), where |A𝑖 | B max𝑗 ∈J𝑖 |A 𝑗 |.

A more refined bound is discussed in Remark A.9. The important insight of Theorem 4.14 is

that the stability degrades according to the sum of the actions at the decision points encountered

along each path, and not as the product of the actions. This is crucial as the latter bound—which

would follow from prior techniques—need not be polynomial in the description of the game. At

the heart of this improvement lies our refined characterization obtained in Lemma 4.11. Using the

stability bounds derived in Corollary 4.8, we are ready to establish the multiplicative-stability of

the sequence of fixed points.

Corollary 4.15 (Stability of Fixed Points). For any sufficiently small 𝜂 = 𝑂 (1/(𝔇𝑖 |A𝑖 | ∥Q𝑖 ∥1)), the
sequence of fixed points (𝒒 (𝑡 )

𝑖
) of player 𝑖 ∈ [𝑛] is 𝑂 (𝜂𝔇𝑖 |A𝑖 | ∥Q𝑖 ∥1)-multiplicative-stable.

4.3 Completing the Proof

Finally, we combine all of the previous pieces to complete the construction. First, we apply Theo-

rem 3.2 using the predictive bound obtained in Theorem 4.5 to conclude that the Ψ𝑖 -regret of each
player 𝑖 ∈ [𝑛] can be bounded as

Reg
𝑇
𝑖 ≤

log |Σ𝑖 | + ∥Q𝑖 ∥21 log |A𝑖 |
𝜂

+10𝜂 |Σ𝑖 |2
𝑇∑︁
𝑡=1

∥ℓ (𝑡 )
𝑖
−ℓ (𝑡−1)

𝑖
∥2∞+10𝜂 |Σ𝑖 |2

𝑇∑︁
𝑡=1

∥𝒒 (𝑡 )
𝑖
−𝒒 (𝑡−1)

𝑖
∥2∞, (4)

where we assumed—for simplicity—exact computation of each fixed point, i.e., 𝜖 (𝑡 ) = 0 for any 𝑡 ≥ 1,

while we also used the fact that ∥ℓ (𝑡 )
𝑖
∥∞ ≤ 1 which follows from the normalization assumption. So

far we have focused on bounding the regret of each player without making any assumptions about

the stability of the observed utility functions. A crucial observation is that if all players employ a

regularized (or smooth) learning algorithm, then the observed utility functions will also change

slowly over time. This is formalized in the following auxiliary claim.
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Claim 4.16. For any player 𝑖 ∈ [𝑛] the observed utilities satisfy

∥ℓ (𝑡 )
𝑖
− ℓ (𝑡−1)

𝑖
∥2∞ ≤ (𝑛 − 1) |Z|2

∑︁
𝑘≠𝑖

∥𝒒 (𝑡 )
𝑘
− 𝒒 (𝑡−1)

𝑘
∥2
1
.

Thus, plugging this bound to (4) yields that the Ψ𝑖 -regret Reg
𝑇
𝑖 of each player 𝑖 can be bounded

as

log |Σ𝑖 | + ∥Q𝑖 ∥21 log |A𝑖 |
𝜂

+10𝜂 (𝑛−1) |Σ𝑖 |2 |Z|2
𝑇∑︁
𝑡=1

∑︁
𝑘≠𝑖

∥𝒒 (𝑡 )
𝑘
−𝒒 (𝑡−1)

𝑘
∥2
1
+10𝜂 |Σ𝑖 |2

𝑇∑︁
𝑡=1

∥𝒒 (𝑡 )
𝑖
−𝒒 (𝑡−1)

𝑖
∥2∞ .

As a result, using Corollary 4.15 we arrive at the following conclusion.

Corollary 4.17. Suppose that each player follows the dynamics of Figure 2 with a sufficiently small

learning rate 𝜂 = 𝑂 (1/(𝑇 1/4𝔇𝑖 |A𝑖 | ∥Q𝑖 ∥1)). Then, the Ψ𝑖-regret of each player will be bounded as

Reg
𝑇
𝑖 ≤ P𝑇 1/4

, where P is independent on 𝑇 and polynomial on the description of the game.

Finally, Theorem 1.1 follows from Theorem 2.8 after performing sampling in order to transition

to deterministic strategies, as we explain in Appendix A.6. We also point out that the complexity of

every iteration in the proposed dynamics is analogous to that in [Farina et al., 2021a], although the

dynamics developed in the latter paper only attain a rate of convergence of 𝑂 (𝑇 −1/2). Finally, we
remark that it is easy to make the overall regret minimizer robust against adversarial losses using

an adaptive choice of learning rate.

5 FASTER CONVERGENCE TO EFCCE

In this section we turn our attention to learning dynamics for extensive-form coarse correlated

equilibrium (EFCCE). While the dynamics we previously developed for EFCE would also trivially

converge to EFCCE, as the former is a subset of the latter [Farina et al., 2020], our main contribution

is to show that each iteration of EFCCE dynamics can be substantially more efficient compared

to EFCE. Indeed, unlike all known methods for EFCE, we obtain in Section 5.1 a succinct closed-

form solution for the fixed points associated with EFCCE which does not require the expensive

computation of the stationary distribution of a Markov chain. This places EFCCE closer to normal-

form coarse correlated equilibria (NFCCE) in terms of the per-iteration complexity, even thought

EFCCE prescribes a much more compelling notion of correlation. Furthermore, we use this closed-

form characterization in Section 5.2 to obtain improved stability bounds for the fixed points

associated with EFCCE, and with a much simpler analysis compared to the one for EFCE.

5.1 Closed-Form Fixed Point Computation

As suggested by our general template introduced in Theorem 3.2, we first have to construct a

predictive regret minimizer for the set of coarse trigger deviation functions Ψ̃𝑖 (Definition 2.9).

This construction is very similar to the one for Ψ𝑖 we previously described in detail in Section 4.1.

For this reason, here we focus on the computation and the stability properties of the fixed points

associated with any 𝜙𝑖 ∈ co Ψ̃𝑖 . Specifically, we will first show that it it possible to compute a

sequence-form strategy 𝒒𝑖 such that 𝜙𝑖 (𝒒𝑖 ) = 𝒒𝑖 in linear time on 𝑂 ( |Σ𝑖 |𝔇𝑖 ).
Indeed, let 𝜙𝑖 =

∑
𝑗 ∈J𝑖 𝝀𝑖 [ 𝑗]𝜙 𝑗→𝒒 𝑗

be any coarse trigger deviation function, where 𝝀𝑖 ∈ Δ(J𝑖 ),
and 𝒒 𝑗 ∈ Q 𝑗 for each 𝑗 ∈ J𝑖 . Algorithm 1 describes an efficient procedure to compute a fixed point

of a given transformation 𝜙𝑖 ∈ co Ψ̃𝑖 . In particular, the algorithm iterates over the sequences of

player 𝑖 according to their partial ordering ≺. That is, it is never the case that a sequence 𝜎 = ( 𝑗, 𝑎)
is considered before 𝜎 𝑗 . For every sequence 𝜎 = ( 𝑗, 𝑎) ∈ Σ∗𝑖 the algorithm computes 𝑑𝜎 ∈ R≥0 as the
sum of the weights corresponding to information sets preceding 𝑗 (Line 3). If 𝑑𝜎 = 0, the choice we

make at 𝜎 is indifferent as long as the resulting vector 𝒒𝑖 is a well-formed sequence-form strategy.
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For this reason, we simply set 𝒒𝑖 [𝜎] so that the probability-mass flow is evenly divided among

sequences originating in 𝑗 (Line 5). Otherwise, when 𝑑𝜎 ≠ 0, Line 7 assigns to 𝒒𝑖 [𝜎] a value equal
to the weighted sum of 𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 ′] for sequences 𝜎 ′ = ( 𝑗 ′, 𝑎′) preceding information set 𝑗 ∈ J𝑖 .
In the next theorem we show that Algorithm 1 is indeed correct, and runs in time 𝑂 ( |Σ𝑖 |𝔇𝑖 ).

Theorem 5.1. For any player 𝑖 ∈ [𝑛] and any transformation 𝜙𝑖 =
∑

𝑗 ∈J𝑖 𝝀𝑖 [ 𝑗]𝜙 𝑗→𝒒 𝑗
∈ co Ψ̃𝑖 , the

output 𝒒𝑖 ∈ R |Σ𝑖 | of Algorithm 1 is such that 𝒒𝑖 ∈ Q𝑖 and 𝜙𝑖 (𝒒𝑖 ) = 𝒒𝑖 . Furthermore, Algorithm 1 runs

in 𝑂 ( |Σ𝑖 |𝔇𝑖 ).

ALGORITHM 1: FixedPoint(𝜙𝑖 ) for 𝜙𝑖 ∈ co Ψ̃𝑖
Input: 𝜙𝑖 =

∑
𝑗 ∈J𝑖 𝝀𝑖 [ 𝑗]𝜙 𝑗→𝒒 𝑗

∈ co Ψ̃𝑖
Output: 𝒒𝑖 ∈ Q𝑖 such that 𝜙𝑖 (𝒒𝑖 ) = 𝒒𝑖

1 𝒒𝑖 ← 0 ∈ R |Σ𝑖 | , 𝒒𝑖 [∅] ← 1

2 for 𝜎 = ( 𝑗, 𝑎) ∈ Σ∗
𝑖
in top-down (≺) order do

3 𝑑𝜎 ←
∑

𝑗 ′⪯ 𝑗 𝝀𝑖 [ 𝑗 ′]
4 if 𝑑𝜎 = 0 then
5 𝒒𝑖 [𝜎] ←

𝒒𝑖 [𝜎 𝑗 ]
|A 𝑗 |

6 else
7 𝒒𝑖 [𝜎] ← 1

𝑑𝜎

∑
𝑗 ′⪯ 𝑗 𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′]

8 return 𝒒𝑖

5.2 Stability of the Fixed Points

Another important application of our closed-form solution in Algorithm 1 is that it allows us to

obtain through a simple analysis sharp bounds on the stability of the fixed points. Indeed, we show

that the fixed point operation only leads to (multiplicative) degradation linear in the depth of each

player’s subtree.

Proposition 5.2. Suppose that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝑗
), for all 𝑗 ∈ J𝑖 , are 𝜅-multiplicative-

stable. Then, Algorithm 1 yields a sequence of (12𝜅𝔇𝑖 )-multiplicative-stable strategies, assuming that

𝜅 < 1/(12𝔇𝑖 ).

Observe that the derived bound on stability is slightly better compared to that for EFCE (The-

orem 4.14). Consequently, having established the stability of the fixed points, we can apply The-

orem 3.2 to derive a stable-predictive Ψ̃𝑖-regret minimizer for each player 𝑖 ∈ [𝑛]. This leads to
a result analogous to Corollary 4.17 we showed for EFCE, but our dynamics for EFCCE have a

substantially improved per-iteration complexity.

6 EXPERIMENTS

In this section we support our theoretical findings through experiments conducted on benchmark

general-sum games. Namely, we experiment with the following popular games: (i) a three-player

variant of Kuhn poker [Kuhn, 1950]; (ii) a two-player bargaining game known as Sheriff [Farina

et al., 2019d]; (iii) a three-player version of Liar’s dice [Lisý et al., 2015]; and (iv) three-player

Goofspiel [Ross, 1971]. A detailed description of each of these games and the precise parameters

we use is given in Appendix C. The rest of this section is organized as follows. Section 6.1 shows

the convergence of our accelerated dynamics for EFCE (as presented in Section 4) compared to the

prior state of the art. Next, Section 6.2 illustrates the convergence of our dynamics for EFCCE.
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6.1 Convergence to EFCE

Here we investigate the performance of our accelerated dynamics for EFCE (Figure 2) compared

to the existing algorithm by Farina et al. [2021a]. Both of these dynamics will be based on a CFR-

style decomposition into “local” regret-minimization problems. In particular, our stable-predictive

dynamics will use OMWU at every local decision point (as in Proposition 4.3), while the algorithm

of Farina et al. [2021a] will be instantiated with (i) regret matching
+
(RM

+
) [Tammelin, 2014] for

each simplex (in place of regret matching), and (ii) using the vanilla MWU algorithm for each

simplex. In accordance to our theoretical predictions (Corollary 4.17), the stepsize for OMWU is set

as 𝜂 (𝑡 ) = 𝜏 · 𝑡−1/4, while for MWU it is set as 𝜂 (𝑡 ) = 𝜏 · 𝑡−1/2. Here 𝜏 is treated as a hyperparameter,

chosen by picking the best-performing value among {0.01, 0.1, 1, 10, 100}.

0 2500 5000 7500 10000

Iteration

10−3

E
F
C
E

ga
p

Kuhn poker (EFCE dyn’s)

OMWU (τ = 10)

MWU (τ = 10)

RM+

0 2500 5000 7500 10000

Iteration

10−1

100
Sheriff (EFCE dyn’s)

OMWU (τ = 1)

MWU (τ = 1)

RM+

0 250 500 750 1000

Iteration

10−2

10−1

Liar’s dice (EFCE dyn’s)

OMWU (τ = 100)

MWU (τ = 100)

RM+

0 250 500 750 1000

Iteration

10−2

10−1

100
Goofspiel (EFCE dyn’s)

OMWU (τ = 100)

MWU (τ = 100)

RM+

Fig. 3. The performance of EFCE dynamics based on MWU, OMWU, and RM+ on four general-sum EFGs.

Figure 3 shows the rate of convergence for each of the three learning dynamics we described.

On the 𝑥-axis we indicate the number of iterations performed by each algorithm and on the 𝑦-axis

we plot the EFCE gap, defined as the maximum advantage that any player can gain by defecting

optimally from the mediator’s recommendations. It should be noted that one iteration costs the

same for every algorithm, up to constant factors. We see that on every game, OMWU performs

better than or on par with RM
+
and MWU. On Sheriff, a benchmark introduced specifically for

the study of correlated equilibria, OMWU outperforms both RM
+
and MWU by about an order of

magnitude.

In the context of two-player zero-sum games, CFR with RM
+
is a formidable algorithm, typically

outperforming theoretically superior dynamics. With that in mind, it is quite interesting that for

EFCE computation we are able to achieve better performance using OMWU with only a modest

amount of stepsize tuning. We hypothesize that this is due to the inherent differences between

solving a zero-sum game via Nash equilibrium versus the problem of computing correlated equilibria.

One caveat to these results is that we did not use two tricks that help CFR in two-player zero-

sum EFG solving: alternation and linear averaging. These tricks are known to retain convergence

guarantees in that context [Burch et al., 2019, Farina et al., 2019a, Tammelin et al., 2015], but it is

unclear if they still guarantee convergence in the EFCE setting.

6.2 EFCCE

Next, we investigate the convergence of our learning dynamics for EFCCE, obtained within the

same framework we developed for EFCE. We first measure the rate of convergence in an analogous

to the previous subsection setup. The results are illustrated in Figure 4.

Interestingly, we observe a noticeable qualitative difference for convergence to EFCCE. Indeed,

unlike EFCE (Figure 3), RM
+
outperforms OMWU in both Liar’s dice and Goofspiel. It is also

surprising that MWU converges faster than its optimistic counterpart in Kuhn poker. These results
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Fig. 4. The performance of EFCCE dynamics based on MWU, OMWU, and RM+ on four general-sum EFGs.

suggest a substantial difference in the convergence properties between EFCE and EFCCE. Further-

more, we illustrate in Figure 5 the running time complexity of EFCE versus EFCCE dynamics (both

instantiated with RM
+
), measured in terms of the EFCCE gap.
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Fig. 5. The convergence of EFCE and EFCCE dynamics to EFCCE, measured through the EFCCE gap.

In each game, the fixed point computation for the EFCE dynamics was performed through an

optimized implementation of the power iteration method, interrupted when the Euclidean norm

of the residual was below the value of 10
−6
. On the other hand, the fixed points for EFCCE were

computed using our closed-form solution (Algorithm 1). In all four games, we see that our EFCCE

dynamics outperform the EFCE dynamics in terms of the running time complexity, often by a

significant margin. This is consistent with our intuition since EFCE dynamics are solving a strictly

harder problem—minimizing the EFCE gap, instead of the EFCCE gap.

7 CONCLUSIONS

In this paper we developed uncoupled no-regret learning dynamics so that if all agents play 𝑇

repetitions of the game according to our dynamics, the correlated distribution of play is an𝑂 (𝑇 −3/4)-
approximate extensive-form correlated equilibrium. This substantially improves over the prior best

rate of 𝑂 (𝑇 −1/2). One of our main technical contributions was to characterize the stability of the

fixed points associated with trigger deviation functions through a refined perturbation analysis of

a structured Markov chain, which may be of independent interest. On the other hand, for fixed

points associated with extensive-form coarse correlated equilibria we established a closed-form

solution, circumventing the computation of the stationary distribution of any Markov chain. Finally,

experiments conducted on standard benchmarks corroborated our theoretical findings.

Following recent progress in normal-form games [Anagnostides et al., 2021, Daskalakis et al.,

2021], an important question for the future is to obtain a further acceleration of the order 𝑂 (𝑇 −1).
As we pointed out in Section 1.2, this would inevitably require new techniques since the known

methods do not apply for the substantially more complex problem of extensive-form correlated

equilibria. We believe that our characterization of the fixed points associated with trigger deviation

functions could be an important step towards achieving this goal.
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A OMITTED PROOFS

This section includes all of the proofs we omitted from the main body. Let us first introduce some

additional useful notation.

A.1 Further Notation

It will be convenient to instantiate a trigger deviation function (recall Definition 2.6) in the form of

a linear mapping 𝜙𝜎̂→𝝅̂𝑖
: R |Σ𝑖 | ∋ 𝒙 ↦→ M𝜎̂→𝝅̂𝑖

𝒙 , whereM𝜎̂→𝝅̂𝑖
is such that for any 𝜎𝑟 , 𝜎𝑐 ∈ Σ𝑖 ,

M𝜎̂→𝝅̂𝑖
[𝜎𝑟 , 𝜎𝑐 ] =


1 if 𝜎𝑐 ⪰̸ 𝜎̂ & 𝜎𝑟 = 𝜎𝑐 ;

𝝅̂𝑖 [𝜎𝑟 ] if 𝜎𝑐 = 𝜎̂ & 𝜎𝑟 ⪰ 𝑗 ;
0 otherwise,

(5)

where 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 . It is not hard to show that the linear mapping described in (5) is indeed

a trigger deviation function in the sense of Definition 2.6. Similarly, we express a coarse trigger

deviation function in the form of a linear mapping 𝜙 𝑗→𝝅̂𝑖
: R |Σ𝑖 | ∋ 𝒙 ↦→ M𝑗→𝝅̂𝑖

𝒙 , whereM𝑗→𝝅̂𝑖
is

such that for any 𝜎𝑟 , 𝜎𝑐 ∈ Σ𝑖 ,

M𝑗→𝝅̂𝑖
[𝜎𝑟 , 𝜎𝑐 ] =


1 if 𝜎𝑐 ⪰̸ 𝑗 & 𝜎𝑟 = 𝜎𝑐 ;

𝝅̂𝑖 [𝜎𝑟 ] if 𝜎𝑐 = 𝜎 𝑗 & 𝜎𝑟 ⪰ 𝑗 ;
0 otherwise.

Furthermore, we will use the notation 𝒙 ⊗ 𝒚 = 𝒙𝒚⊤ to denote the outer product of (compatible)

vectors 𝒙 and 𝒚, while we will also write (M)♭ to represent the standard vectorization of matrix M.

A.2 Proofs from Section 2

Theorem 2.11. Suppose that for every player 𝑖 ∈ [𝑛] the sequence of deterministic sequence-form

strategies 𝝅 (1)
𝑖
, . . . , 𝝅 (𝑇 )

𝑖
∈ Π𝑖 incurs Ψ̃𝑖-regret at most Reg

𝑇
𝑖 under the sequence of linear utility

functions

ℓ
(𝑡 )
𝑖

: Π𝑖 ∋ 𝝅𝑖 ↦→ 𝑢𝑖

(
𝝅𝑖 , 𝝅

(𝑡 )
−𝑖

)
.

Then, the correlated distribution of play 𝝁 ∈ Δ(Π) is an 𝜖-EFCCE, where 𝜖 B 1

𝑇
max𝑖∈[𝑛] Reg

𝑇
𝑖 .

Proof. By assumption, we know that for any 𝑖 ∈ [𝑛] it holds that Reg𝑇𝑖 ≤ 𝜖𝑇 . Thus, by definition
of Reg

𝑇
𝑖 , it follows that for any 𝑖 ∈ [𝑛] and any coarse trigger deviation function 𝜙𝑖 ∈ Ψ̃𝑖 ,

𝑇𝜖 ≥
𝑇∑︁
𝑡=1

(
ℓ
(𝑡 )
𝑖

(
𝜙𝑖 (𝝅 (𝑡 )𝑖

)
)
− ℓ (𝑡 )

𝑖

(
𝝅 (𝑡 )
𝑖

))
=

𝑇∑︁
𝑡=1

(
𝑢𝑖

(
𝜙𝑖 (𝝅 (𝑡 )𝑖

), 𝝅 (𝑡 )−𝑖
)
− 𝑢𝑖

(
𝝅 (𝑡 )

))
=

𝑇∑︁
𝑡=1

∑︁
𝝅 ∈Π

1

{
𝝅 = 𝝅 (𝑡 )

}
(𝑢𝑖 (𝜙𝑖 (𝝅𝑖 ), 𝝅−𝑖 ) − 𝑢𝑖 (𝝅))

=
∑︁
𝝅 ∈Π

𝑇∑︁
𝑡=1

(
1

{
𝝅 = 𝝅 (𝑡 )

})
(𝑢𝑖 (𝜙𝑖 (𝝅𝑖 ), 𝝅−𝑖 ) − 𝑢𝑖 (𝝅))

= 𝑇
∑︁
𝝅 ∈Π

𝝁 [𝝅] (𝑢𝑖 (𝜙𝑖 (𝝅𝑖 ), 𝝅−𝑖 ) − 𝑢𝑖 (𝝅)).

This is precisely the definition of an 𝜖-EFCCE (Definition 2.10), as we wanted to show. □
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A.3 Proofs from Section 3

Here we prove Theorem 3.2. For the convenience of the reader the theorem is restated below.

Theorem 3.2 (Stable-Predictive Phi-Regret Minimization). Consider an (𝐴, 𝐵)-predictive regret
minimizer RΦ with respect to ∥ · ∥1 for a set of linear transformations Φ on X. Moreover, suppose that

RΦ is fixed point 𝜅-stable. Then, if we have access to a StableFPOracle, we can construct a 𝜅-stable

algorithm with Φ-regret Reg𝑇 bounded as

Reg
𝑇 ≤ 𝐴 + 2𝐵

𝑇∑︁
𝑡=1

∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞ + 2𝐵∥ℓ∥2∞
𝑇∑︁
𝑡=1

∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞ + ∥ℓ∥∞
𝑇∑︁
𝑡=1

𝜖 (𝑡 ) ,

where 𝜖 (𝑡 ) is the error of StableFPOracle at time 𝑡 , and ∥ℓ (𝑡 ) ∥∞ ≤ ∥ℓ∥∞ for any 𝑡 ≥ 1. It is also

assumed that ∥𝒙 ∥∞ ≤ 1 for all 𝒙 ∈ X.

Proof. Fix any iteration 𝑡 ≥ 2. The first step is to obtain the next strategy of RΦ: 𝜙
(𝑡 ) =

RΦ.NextStrategy(). Then, our regret minimizer R will simply output the strategy 𝒙 (𝑡 ) such
that 𝒙 (𝑡 ) = StableFPOracle(𝜙 (𝑡 ) ; 𝒙 (𝑡−1) , 𝜅, 𝜖 (𝑡 ) ).3 By assumption (recall Definition 3.1), we know

that this is indeed well-defined and 𝒙 (𝑡 ) will be such that (i) ∥𝜙 (𝑡 ) (𝒙 (𝑡 ) ) − 𝒙 (𝑡 ) ∥1 ≤ 𝜖 (𝑡 ) , and (ii)

∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥1 ≤ 𝜅. This immediately implies that R will be 𝜅-stable.

Afterwards, we receive feedback from the environment in the form of a utility vector ℓ (𝑡 ) , which
in turn is used to construct the utility function 𝐿 (𝑡 ) : 𝜙 ↦→ ⟨ℓ (𝑡 ) , 𝜙 (𝒙 (𝑡 ) )⟩. Since Φ is a set of linear

transformations, we can represent the corresponding utility vector as 𝑳 (𝑡 ) = (ℓ (𝑡 ) ⊗𝒙 (𝑡 ) )♭. This func-
tion is then given as feedback to RΦ; that is, we invoke the subroutine RΦ.ObserveUtility(𝐿 (𝑡 ) ).
As a result, the (external) regret of RΦ can be expressed as

Reg
𝑇
Φ = max

𝜙∗∈Φ

𝑇∑︁
𝑡=1

⟨ℓ (𝑡 ) , 𝜙∗ (𝒙 (𝑡 ) )⟩ −
𝑇∑︁
𝑡=1

⟨ℓ (𝑡 ) , 𝜙𝑡 (𝒙 (𝑡 ) )⟩.

Furthermore, if Reg
𝑇
is the Φ-regret of R, we have that

Reg
𝑇 −Reg𝑇Φ =

𝑇∑︁
𝑡=1

⟨ℓ (𝑡 ) , 𝜙 (𝑡 ) (𝒙 (𝑡 ) )⟩ −
𝑇∑︁
𝑡=1

⟨ℓ (𝑡 ) , 𝒙 (𝑡 )⟩ =
𝑇∑︁
𝑡=1

⟨ℓ (𝑡 ) , 𝜙 (𝑡 ) (𝒙 (𝑡 ) ) − 𝒙 (𝑡 )⟩

≤
𝑇∑︁
𝑡=1

∥ℓ (𝑡 ) ∥∗∥𝜙 (𝑡 ) (𝒙 (𝑡 ) ) − 𝒙 (𝑡 ) ∥ ≤ ∥ℓ∥∞
𝑇∑︁
𝑡=1

𝜖 (𝑡 ) , (6)

where we used the Cauchy-Schwarz inequality, as well as the assumption that ∥𝜙 (𝑡 ) (𝒙 (𝑡 ) ) −𝒙 (𝑡 ) ∥ ≤
𝜖 (𝑡 ) . Next, we will bound the term ∥𝑳 (𝑡 ) − 𝑳 (𝑡−1) ∥∞ in terms of ∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥∞. To this end, it

follows that

∥𝑳 (𝑡 ) − 𝑳 (𝑡−1) ∥2∞ = ∥(ℓ (𝑡 ) ⊗ 𝒙 (𝑡 ) )♭ − (ℓ (𝑡−1) ⊗ 𝒙 (𝑡−1) )♭∥2∞
= ∥(ℓ (𝑡 ) ⊗ 𝒙 (𝑡 ) )♭ − (ℓ (𝑡−1) ⊗ 𝒙 (𝑡 ) )♭ + (ℓ (𝑡−1) ⊗ 𝒙 (𝑡 ) )♭ − (ℓ (𝑡−1) ⊗ 𝒙 (𝑡−1) )♭∥2∞
= ∥((ℓ (𝑡 ) − ℓ (𝑡−1) ) ⊗ 𝒙 (𝑡 ) )♭ + (ℓ (𝑡−1) ⊗ (𝒙 (𝑡 ) − 𝒙 (𝑡−1) ))♭∥2∞
≤ 2∥((ℓ (𝑡 ) − ℓ (𝑡−1) ) ⊗ 𝒙 (𝑡 ) )♭∥2∞ + 2∥(ℓ (𝑡−1) ⊗ (𝒙 (𝑡 ) − 𝒙 (𝑡−1) ))♭∥2∞ (7)

= 2∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞∥𝒙 (𝑡 ) ∥2∞ + 2∥ℓ (𝑡−1) ∥2∞∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞ (8)

≤ 2∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞ + 2∥ℓ∥2∞∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞, (9)

3
For 𝑡 = 1 it suffices to return any 𝒙 (1) such that 𝒙 (1) = 𝜙 (1) (𝒙 (1) ) .
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where we used the triangle inequality together with Young’s inequality in (7); the property that

∥(𝒘 ⊗ 𝒛)♭∥∞ = ∥𝒘 ∥∞∥𝒛∥∞ in (8); and the fact that ∥𝒙 (𝑡 ) ∥∞ ≤ 1 in (9). As a result, if we plug-in (9)

to (6) and we use the (𝐴, 𝐵)-predictive bound of RΦ we can conclude that

Reg
𝑇 ≤ 𝐴 + ∥ℓ∥∞

𝑇∑︁
𝑡=1

𝜖 (𝑡 ) + 𝐵
𝑇∑︁
𝑡=1

(
2∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞ + 2∥ℓ∥2∞∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞

)
= 𝐴 + 2𝐵

𝑇∑︁
𝑡=1

∥ℓ (𝑡 ) − ℓ (𝑡−1) ∥2∞ + 2𝐵∥ℓ∥2∞
𝑇∑︁
𝑡=1

∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥2∞ + ∥ℓ∥∞
𝑇∑︁
𝑡=1

𝜖 (𝑡 ) ,

concluding the proof. □

A.4 Proofs for Section 4.1

In this subsection we include the omitted proofs from Section 4.1. We commence with the proof of

Proposition 4.1. The corresponding construction follows that due to Farina et al. [2021a], and it is

highlighted in Algorithm 2.

Proposition 4.1. Consider a player 𝑖 ∈ [𝑛] and any trigger sequence 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 . There exists an
algorithm which constructs a regret minimizer R𝜎̂ with access to an (𝐴, 𝐵)-predictive regret minimizer

RQ 𝑗
for the set Q 𝑗 such that R𝜎̂ is (𝐴, 𝐵)-predictive.

Proof. Consider the (linear) function 𝑔
(𝑡 )
𝜎̂

: R |Σ 𝑗 | ∋ 𝒙 ↦→ 𝐿
(𝑡 )
𝑖
(ℎ𝜎̂ (𝒙)) − 𝐿 (𝑡 )𝑖

(ℎ𝜎̂ (0)), and let

𝒈 (𝑡 )
𝜎̂

= (𝑳 (𝑡 )
𝑖
[𝜎𝑟 , 𝜎̂])𝜎𝑟 ⪰ 𝑗 be the associated utility vector. As suggested in Algorithm 2, the observed

utility function 𝐿
(𝑡 )
𝑖

at time 𝑡 is first used to construct 𝑔
(𝑡 )
𝜎̂

. Then, the latter function is given as

input to RQ 𝑗
. Thus, we may conclude that

max

𝜙∗∈Ψ𝜎̂

𝑇∑︁
𝑡=1

𝐿
(𝑡 )
𝑖
(𝜙∗) −

𝑇∑︁
𝑡=1

𝐿
(𝑡 )
𝑖

(
𝜙
𝜎̂→𝒒 (𝑡 )

𝜎̂

)
= max

𝒒∗
𝜎̂
∈Q 𝑗

𝑇∑︁
𝑡=1

𝑔
(𝑡 )
𝜎̂
(𝒒∗𝜎̂ ) −

𝑇∑︁
𝑡=1

𝑔
(𝑡 )
𝜎̂
(𝒒 (𝑡 )

𝜎̂
).

In words, the cumulative regret incurred by R𝜎̂ under the sequence of utility functions 𝐿
(1)
𝑖
, . . . , 𝐿

(𝑇 )
𝑖

is equal to the regret incurred by RQ 𝑗
under the sequence of utility functions 𝑔

(𝑡 )
𝜎̂

. As a result,

if we use the (𝐴, 𝐵)-predictive bound assumed for the regret minimizer RQ 𝑗
, it follows that the

cumulative regret Reg
𝑇
of R𝜎̂ can be bounded as

Reg
𝑇 ≤ 𝐴 + 𝐵

𝑇∑︁
𝑡=1

∥𝒈 (𝑡 )
𝜎̂
− 𝒈 (𝑡−1)

𝜎̂
∥2∞ ≤ 𝐴 + 𝐵

𝑇∑︁
𝑡=1

∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞,

where we used the fact that 𝒈 (𝑡 )
𝜎̂

= (𝑳 (𝑡 )
𝑖
[𝜎𝑟 , 𝜎̂])𝜎𝑟 ⪰ 𝑗 . Finally, the claim regarding the complexity of

Algorithm 2 is direct since we can store the vector 𝒈 (𝑡 )
𝜎̂

in 𝑂 ( |Σ 𝑗 |) time.

□

Next, we conclude the construction by combining the individual regret minimizers for all possible

trigger sequences. In particular, we leverage the regret circuit of Proposition 4.4 to obtain the

following result.

Proposition A.1. Consider an (𝛼, 𝛽)-predictive regret minimizer RΔ for the the simplex Δ(Σ∗𝑖 ), and
(𝐴, 𝐵)-predictive regret minimizers R𝜎̂ for each 𝜎̂ ∈ Σ∗𝑖 , all with respect to the pair of dual norms

(∥ · ∥1, ∥ · ∥∞). Then, there exists an algorithm which constructs a regret minimizer RΨ𝑖 for the set
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ALGORITHM 2: Predictive Regret Minimizer R𝜎̂ for the set Ψ𝜎̂
Input:
• Player 𝑖 ∈ [𝑛]
• A trigger sequence 𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗

𝑖
• An (𝐴, 𝐵)-predictive regret minimizer RQ 𝑗

for the set Q 𝑗

1 function NextStrategy():
2 𝒒 (𝑡 )

𝜎̂
← RQ 𝑗

.NextStrategy()
3 return 𝜙

𝜎̂←𝒒 (𝑡 )
𝜎̂

4 function ObserveUtility(𝐿 (𝑡 )
𝑖
):

5 Construct the linear function 𝑔
(𝑡 )
𝜎̂

: R |Σ 𝑗 | ∋ 𝒙 ↦→ 𝐿
(𝑡 )
𝑖
(ℎ𝜎̂ (𝒙)) − 𝐿

(𝑡 )
𝑖
(ℎ𝜎̂ (0))

6 RQ 𝑗
.ObserveUtility(𝑔 (𝑡 )

𝜎̂
)

coΨ𝑖 such that under any sequence of utility vectors 𝑳 (1)
𝑖
, . . . , 𝑳 (𝑇 )

𝑖
its regret Reg

𝑇
Ψ𝑖

can be bounded as

Reg
𝑇
Ψ𝑖
≤ 𝛼 +𝐴 + (𝐵 + 4𝛽 |Σ𝑖 |2)

𝑇∑︁
𝑡=1

∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞.

Moreover, if the routines NextStrategy and ObserveUtility of RΔ and R𝜎̂ , for each 𝜎̂ ∈ Σ∗𝑖 , run in

linear time on |Σ𝑖 |, then the complexity of RΨ is 𝑂 ( |Σ𝑖 |2).

The overall algorithm associated with this construction has been summarized in Algorithm 3.

Remark A.2. To obtain better predictive bounds, the regret minimizer RΔ acting over the simplex

in Proposition A.1 will leverage the “future” iterates of all the individual regret minimizers. In

particular, instead of using the typical one-recency bias mechanism 𝒎 (𝑡 )
𝜆
[𝑘] B ⟨𝑳 (𝑡−1)

𝑖
, 𝒙 (𝑡−1)

𝑘
⟩,

we will let 𝒎 (𝑡 )
𝜆
[𝑘] B ⟨𝑳 (𝑡−1)

𝑖
, 𝒙 (𝑡 )

𝑘
⟩. To this end, RΔ has to obtain the next iterate from each

regret minimizer R𝜎̂ . This does not create complications given that the output of each R𝜎̂ in the

construction only depends on the observed utilities up to that time. On the other hand, it seems

that there is no straightforward extension of this trick for Theorem 3.2, at the cost of a mismatch

term of the form

∑𝑇
𝑡=1 ∥𝒙 (𝑡 ) − 𝒙 (𝑡−1) ∥∞.

Proof of Proposition A.1. First of all, Proposition 4.4 implies that the accumulated regret can

be bounded as

Reg
𝑇
Ψ𝑖
≤ 𝛼 +𝐴 + 𝐵

𝑇∑︁
𝑡=1

∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞ + 𝛽

𝑇∑︁
𝑡=1

∥ℓ (𝑡 )
𝜆
−𝒎 (𝑡 )

𝜆
∥2∞, (10)

where we used the fact that each regret minimizer R𝜎̂ obtains as input the same utility function as

RΨ𝑖 . We also used the notation ℓ𝑡𝝀 ∈ R
|Σ∗𝑖 | to represent the utility function given to RΔ as predicted

by Proposition 4.4. Next, let us focus on bounding the norm ∥ℓ (𝑡 )
𝜆
−𝒎 (𝑡 )

𝜆
∥2∞. In particular, it follows

that for some index 𝑠 ∈ {1, . . . , |Σ∗𝑖 |},

∥ℓ (𝑡 )
𝜆
−𝒎 (𝑡 )

𝜆
∥2∞ =

(
⟨𝑳 (𝑡 )

𝑖
, 𝒙 (𝑡 )𝑠 ⟩ − ⟨𝑳 (𝑡−1)𝑖

, 𝒙 (𝑡 )𝑠 ⟩
)
2

≤ ∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞∥𝒙

(𝑡 )
𝑠 ∥21

≤ 4|Σ𝑖 |2∥𝑳 (𝑡 )𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞,

ArXiv preprint



Faster No-Regret Learning Dynamics for Extensive-Form Correlated and Coarse Correlated Equilibria 27

where we used the fact that ∥𝒙𝑠 ∥1 ≤ 2|Σ𝑖 |. Thus, plugging this bound to (10) gives the desired

predictive bound. Finally, the complexity analysis for the NextStrategy function follows directly

since the NextStrategy operation of each individual regret minimizer runs in 𝑂 ( |Σ𝑖 |), while the
analysis of the ObserveUtility routine follows similarly to [Farina et al., 2021a, Theorem 4.6],

and it is therefore omitted. □

ALGORITHM 3: Predictive Regret Minimizer RΨ𝑖 for the set coΨ𝑖
Input:
• Player 𝑖 ∈ [𝑛]
• An (𝐴, 𝐵)-predictive regret minimizer R𝜎̂ for Ψ𝜎̂ , for each 𝜎̂ ∈ Σ∗𝑖
• An (𝛼, 𝛽)-predictive regret minimizer RΔ for Δ(Σ∗

𝑖
)

1 Function NextStrategy():
2 𝝀 (𝑡 )

𝑖
← RΔ .NextStrategy()

3 for 𝜎̂ ∈ Σ∗
𝑖
do

4 𝜙
𝜎̂→𝒒 (𝑡 )

𝜎̂

← R𝜎̂ .NextStrategy()

5 return
∑
𝜎̂ ∈Σ∗

𝑖
𝝀 (𝑡 )
𝑖
[𝜎̂]𝜙

𝜎̂→𝒒 (𝑡 )
𝜎̂

represented implicitly as {𝝀 (𝑡 )
𝑖
[𝜎̂], 𝒒 (𝑡 )

𝜎̂
}𝜎̂ ∈Σ∗

𝑖

6 Function ObserveUtility(𝐿 (𝑡 )
𝑖
):

7 for 𝜎̂ ∈ Σ∗
𝑖
do

8 R𝜎̂ .ObserveUtility(𝐿
(𝑡 )
𝑖
)

9 Construct the linear function ℓ
(𝑡 )
𝝀

: 𝝀 ↦→ ∑
𝜎̂ ∈Σ∗

𝑖
𝝀 [𝜎̂]𝐿 (𝑡 )

𝑖

(
𝜙
𝜎̂→𝒒 (𝑡 )

𝜎̂

)
10 RΔ .ObserveUtility(ℓ (𝑡 )𝜆

)

Finally, we combine the previous pieces to prove Theorem 4.5, which is recalled below.

Theorem 4.5. There exists a regret minimization algorithm RΨ𝑖 for the set coΨ𝑖 (Figure 2) such that

under any sequence of utility vectors 𝑳 (1)
𝑖
, . . . , 𝑳 (𝑇 )

𝑖
its regret Reg

𝑇
Ψ𝑖

can be bounded as

Reg
𝑇
Ψ𝑖
≤

log |Σ𝑖 | + ∥Q𝑖 ∥21 max𝑗 ∈J𝑖 log |A 𝑗 |
𝜂

+ 𝜂 (∥Q𝑖 ∥1 + 4|Σ𝑖 |2)
𝑇∑︁
𝑡=1

∥𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖
∥2∞.

Proof. The claim follows directly from Lemma 2.3 using the fact that the range of the nega-

tive entropy DGF on the simplex Δ(Σ∗𝑖 ) is at most log |Σ𝑖 |; the predictive bound of Lemma 4.2;

Proposition 4.1 with the regret minimizer RQ 𝑗
instantiated using the dilatable global entropy

DGF (Lemma 4.2); and the predictive bound of the regret circuit for the convex hull derived in

Proposition A.1. □

A.5 Proofs for Section 4.2

We start this subsection with the proof that OMWU guarantees multiplicative stability.

Lemma 4.6. Consider the OMWU algorithm on the simplex Δ𝑚
with 𝜂 > 0. If all the observed utilities

and the predictions are such that ∥ℓ (𝑡 ) ∥∞, ∥𝒎 (𝑡 ) ∥∞ ≤ ∥ℓ∥∞, and 𝜂 < 1/(12∥ℓ∥∞), then the sequence

(𝒙 (𝑡 ) ) produced by OMWU is (12𝜂∥ℓ∥∞)-multiplicative-stable.

Proof. It is well-known that the update rule of OMWU on the simplex can be expressed in the

following form:

𝒙 (𝑡 ) [𝑘] = 𝑒𝜂ℓ
(𝑡−1) [𝑘 ]+𝜂𝒎 (𝑡 ) [𝑘 ]−𝜂𝒎 (𝑡−1) [𝑘 ]∑𝑚

𝑘′=1 𝑒
𝜂ℓ (𝑡−1) [𝑘′ ]+𝜂𝒎 (𝑡 ) [𝑘′ ]−𝜂𝒎 (𝑡−1) [𝑘′ ]𝒙 (𝑡−1) [𝑘 ′]

𝒙 (𝑡−1) [𝑘],
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for all 𝑘 ∈ [𝑚] and 𝑡 ≥ 2. As a result, we have that

𝒙 (𝑡 ) [𝑘] ≤ 𝑒3𝜂 ∥ℓ ∥∞∑𝑚
𝑘′=1 𝑒

−3𝜂 ∥ℓ ∥∞𝒙 (𝑡−1) [𝑘 ′]
𝒙 (𝑡−1) [𝑘] = 𝑒6𝜂 ∥ℓ ∥∞𝒙 (𝑡−1) [𝑘] ≤ (1 + 12𝜂∥ℓ∥∞)𝒙 (𝑡−1) [𝑘],

where we used that ℓ (𝑡−1) [𝑘 ′],𝒎 (𝑡 ) [𝑘 ′],𝒎 (𝑡−1) [𝑘 ′] ∈ [−∥ℓ∥∞, ∥ℓ∥∞], for all 𝑘 ′ ∈ [𝑚], the fact that∑
𝑘′ 𝒙

(𝑡−1) [𝑘 ′] = 1 since 𝒙 (𝑡−1) ∈ Δ𝑚
, and that 𝑒𝑥 ≤ 1 + 2𝑥 , for all 𝑥 ∈ [0, 1/2]. Similarly, we have

that

𝒙 (𝑡 ) [𝑘] ≥ 𝑒−3𝜂 ∥ℓ ∥∞∑𝑚
𝑘′=1 𝑒

3𝜂 ∥ℓ ∥∞𝒙 (𝑡−1) [𝑘 ′]
𝒙 (𝑡−1) [𝑘] = 𝑒−6𝜂 ∥ℓ ∥∞𝒙 (𝑡−1) [𝑘] ≥ (1 − 6𝜂∥ℓ∥∞)𝒙 (𝑡−1) [𝑘]

≥ (1 + 12𝜂∥ℓ∥∞)−1𝒙 (𝑡−1) [𝑘],

for 𝜂 ≤ 1/(12∥ℓ∥∞). □

Lemma 4.7. Consider the (OFTRL) algorithm on the sequence-form strategy polytopeQ with dilatable

global entropy as DGF and 𝜂 > 0. If all the utility functions are such that ∥ℓ (𝑡 ) ∥∞ ≤ 1, and 𝜂 = 𝑂 (1/𝔇)
is sufficiently small, then the sequence (𝒙 (𝑡 ) ) produced is 𝑂 (𝜂𝔇)-multiplicative-stable.

Proof. Let 𝑺 (𝑡−1) B
∑𝑡−1

𝜏=1 ℓ
(𝜏)
. We claim that the next iterate of (OFTRL) with dilatable global

entropy as DGF can be computed as follows. First, we compute recursively the quantities

𝒓 (𝑡 ) [ 𝑗] B 𝜸 [ 𝑗] log ©­«
∑︁
𝑎∈A 𝑗

exp

{
𝜂𝑺 (𝑡−1) [( 𝑗, 𝑎)] + 𝜂𝒎 (𝑡 ) [( 𝑗, 𝑎)] −∑

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎) 𝒓
(𝑡 ) [ 𝑗 ′]

𝜸 [ 𝑗]

}ª®¬ (11)

through a bottom-up tree traversal. Then, we determine the (local) behavioral strategies 𝒃 𝑗 ∈ Δ(A 𝑗 )
at every decision point 𝑗 ∈ J based on the following update rule:

𝒃 𝑗 [𝑎] ∝ exp

{
𝜂𝑺 (𝑡−1) [( 𝑗, 𝑎)] + 𝜂𝒎 (𝑡 ) [( 𝑗, 𝑎)] −∑

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎) 𝒓
(𝑡 ) [ 𝑗 ′]

𝜸 [ 𝑗]

}
. (12)

Finally, the computed behavioral strategies are converted to the sequence-form representation. To

argue about the multiplicative stability of the induced sequence, let us use the notation

𝒔 (𝑡 ) [( 𝑗, 𝑎)] B 1

𝜸 [ 𝑗]
©­«2𝜂ℓ (𝑡−1) [( 𝑗, 𝑎)] − 𝜂ℓ (𝑡−2) [( 𝑗, 𝑎)] −

∑︁
𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎)

(
𝒓 (𝑡 ) [ 𝑗 ′] − 𝒓 (𝑡−1) [ 𝑗 ′]

)ª®¬ . (13)

Assuming that 𝒎 (𝑡 ) B ℓ (𝑡−1) , it follows from (11) that

𝒓 (𝑡 ) [ 𝑗] = 𝜸 [ 𝑗] log ©­«
∑︁
𝑎∈A 𝑗

exp

{
𝜂𝑺 (𝑡−2) [( 𝑗, 𝑎)] + 𝜂ℓ (𝑡−2) [( 𝑗, 𝑎)] −∑

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎) 𝒓
(𝑡−1) [ 𝑗 ′]

𝜸 [ 𝑗]

}
𝑒𝒔
(𝑡 ) [ ( 𝑗,𝑎) ]ª®¬

≤ 𝒓 (𝑡−1) [ 𝑗] +𝜸 [ 𝑗] max

𝑎∈A 𝑗

𝒔 (𝑡 ) [( 𝑗, 𝑎)] .

Similarly, we have that

𝒓 (𝑡 ) [ 𝑗] ≥ 𝒓 (𝑡−1) [ 𝑗] +𝜸 [ 𝑗] min

𝑎∈A 𝑗

𝒔 (𝑡 ) [( 𝑗, 𝑎)] = 𝒓 (𝑡−1) [ 𝑗] −𝜸 [ 𝑗] max

𝑎∈A 𝑗

(−𝒔 (𝑡 ) [( 𝑗, 𝑎)]).

Thus, we have shown that���𝒓 (𝑡 ) [ 𝑗] − 𝒓 (𝑡−1) [ 𝑗]��� ≤ 𝜸 [ 𝑗] max

𝑎∈A 𝑗

|𝒔 (𝑡 ) [( 𝑗, 𝑎)] |.
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Recalling the definition of 𝒔 (𝑡 ) [( 𝑗, 𝑎)] given in (13) we find that���𝒓 (𝑡 ) [ 𝑗] − 𝒓 (𝑡−1) [ 𝑗]��� ≤ max

𝑎∈A 𝑗

������2𝜂ℓ (𝑡−1) [( 𝑗, 𝑎)] − 𝜂ℓ (𝑡−2) [( 𝑗, 𝑎)] − ∑︁
𝜎 𝑗′=( 𝑗,𝑎)

(
𝒓 (𝑡 ) [ 𝑗 ′] − 𝒓 (𝑡−1) [ 𝑗 ′]

)������
≤ 3𝜂 + max

𝑎∈A 𝑗

∑︁
𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎)

���𝒓 (𝑡 ) [ 𝑗 ′] − 𝒓 (𝑡−1) [ 𝑗 ′]��� , (14)

where we used the assumption that ∥ℓ (𝑡−1) ∥∞, ∥ℓ (𝑡−2) ∥∞ ≤ 1. Now (12) can be equivalently ex-

pressed as

𝒃 (𝑡 )
𝑗
[𝑎] ∝ 𝒃 (𝑡−1)

𝑗
[𝑎] exp

{
2𝜂ℓ (𝑡−1) [( 𝑗, 𝑎)] − 𝜂ℓ (𝑡−2) [( 𝑗, 𝑎)] −∑

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎) (𝒓
(𝑡 ) [ 𝑗 ′] − 𝒓 (𝑡−1) [ 𝑗 ′])

𝜸 [ 𝑗]

}
.

Using (14) and the assumption that ∥ℓ (𝑡−1) ∥∞, ∥ℓ (𝑡−2) ∥∞ ≤ 1, it follows that�����2𝜂ℓ (𝑡−1) [( 𝑗, 𝑎)] − 𝜂ℓ (𝑡−2) [( 𝑗, 𝑎)] −
∑

𝑗 ′:𝜎 𝑗′=( 𝑗,𝑎) (𝒓
(𝑡 ) [ 𝑗 ′] − 𝒓 (𝑡−1) [ 𝑗 ′])

𝜸 [ 𝑗]

����� = 𝑂 (𝜂),
where we used the definition of 𝜸 given in (3). As a result, similarly to the argument in the proof of

Lemma 4.6 we conclude that the sequence (𝒃 (𝑡 )
𝑗
) is𝑂 (𝜂)-multiplicative-stable. Finally, the sequence-

form strategy 𝒙 (𝑡 ) [( 𝑗, 𝑎)] is computed by taking the product of all 𝒃 (𝑡 )
𝑗 ′ [𝑎′] for all sequences ( 𝑗 ′, 𝑎′)

on the path from the root to ( 𝑗, 𝑎). Given that there are at most𝔇 sequences on every path, we

may conclude that for any 𝜎 ∈ Σ,

𝒙 (𝑡 ) [𝜎] ≤ (1 +𝑂 (𝜂))𝔇𝒙 (𝑡−1) [𝜎] ≤ (1 +𝑂 (𝜂𝔇))𝒙 (𝑡−1) [𝜎],
for a sufficiently small 𝜂 = 𝑂 (1/𝔇). Similar reasoning yields that 𝒙 (𝑡 ) [𝜎] ≥ (1+𝑂 (𝜂𝔇))−1𝒙 (𝑡−1) [𝜎],
concluding the proof. □

Next, we combine Lemmas 4.6 and 4.7 to show Corollary 4.8.

Proof of Corollary 4.8. Let us first focus on the regret minimizer R𝜎̂ , for some arbitrary

𝜎̂ = ( 𝑗, 𝑎) ∈ Σ∗𝑖 . First, as predicted by Theorem 3.2, the utility function 𝑳 (𝑡 )
𝑖

is constructed as

𝑳 (𝑡 )
𝑖
B (ℓ (𝑡 )

𝑖
⊗ 𝒙 (𝑡 )

𝑖
)♭. Proposition 4.4 implies that this is the same utility observed by R𝜎̂ . Moreover,

from the construction of Algorithm 2 we can conclude that the utility 𝒈 (𝑡 )
𝜎̂

observed by RQ 𝑗
will be

such that ∥𝒈 (𝑡 )
𝜎̂
∥ ≤ 1 given that ∥𝒙 (𝑡 )

𝑖
∥∞ ≤ 1 (since 𝒙 (𝑡 )

𝑖
∈ Q𝑖 ) and ∥ℓ (𝑡 )𝑖

∥∞ ≤ 1 by the normalization

assumption. Thus, we conclude from Lemma 4.7 that the output sequence of RQ 𝑗
will be 𝑂 (𝜂𝔇𝑖 )-

multiplicative-stable. Furthermore, the construction of Algorithm 2 immediately implies that the

output sequence of R𝜎̂ will also be 𝑂 (𝜂𝔇𝑖 ).
Next, we establish the claim regarding the stability of RΔ. Indeed, it is easy to see that the utility

ℓ (𝑡 )
𝜆

observed by RΔ is such that ∥ℓ𝜆 ∥∞ = 𝑂 (∥Q𝑖 ∥1), and the same holds for the prediction 𝒎 (𝑡 )
𝜆
.

Thus, Lemma 4.6 completes the proof. □

Next, we focus on the proof of Theorem 4.14. To this end, we leverage the approach of Kruckman

et al. [2010], who provided an alternative proof of the classic Markov chain tree theorem using linear-

algebraic techniques. We commence by stating some elementary properties of the determinant.

Fact A.3. The following properties hold:
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• The determinant is a multilinear function with respect to the rows and columns of the matrix:

det(𝒖1, . . . , 𝛼𝒖𝑘 + 𝛽𝒖 ′𝑘 , . . . , 𝒖𝑚) = 𝛼 det(𝒖1, . . . , 𝒖𝑘 , . . . , 𝒖𝑚) + 𝛽 det(𝒖1, . . . , 𝒖
′
𝑘
, . . . , 𝒖𝑚),

for any 𝒖1, . . . , 𝒖𝑚 ∈ R𝑚 , 𝒖 ′𝑘 ∈ R
𝑚
, and 𝛼, 𝛽 ∈ R;

• If any two rows or columns of A are equal, then det(A) = 0;

• The determinant remains invariant under permutations.

Given a matrix A, the minor mn(𝑖, 𝑗) (A) is the matrix formed from A after deleting its 𝑖-th row

and its 𝑗-th column. Then, the cofactor is defined as co
(𝑖, 𝑗) (A) = (−1)𝑖+𝑗 det

(
mn(𝑖, 𝑗) (A)

)
, while the

adjugate (or adjoint) matrix adj(A)⊤ is the matrix with entries the corresponding cofactors of A;
that is, adj(A) [(𝑖, 𝑗)] B co

( 𝑗,𝑖) (A). With this notation at hand, we are ready to state the following

characterization due to [Kruckman et al., 2010, Theorem 3.4]:

Theorem A.4 ([Kruckman et al., 2010]). Consider an ergodic𝑚-state Markov chain with transition

matrix M. If 𝒙 ∈ R𝑚 is such that 𝒙 [𝑖] B adj(L)[(𝑖, 𝑖)], where L B M − I𝑚 is the Laplacian of the

system, 𝒙 is an eigenvector ofM with a corresponding eigenvalue of 1. That is,M𝒙 = 𝒙 .

A key step of our proof for Theorem 4.14 uses this theorem in order to characterize the stationary

distribution of a certain (ergodic) Markov chain. Incidentally, an alternative characterization can be

provided using the classic Markov chain tree theorem. In particular, a central component of the

latter theorem is the notion of a directed tree:

Definition A.5 (Directed Tree). A graph 𝐺 = (𝑉 , 𝐸) is said to be a directed tree rooted at 𝑢 ∈ 𝑉
if (i) it does not contain any cycles, and (ii) 𝑢 has no outgoing edges, while every other node has

exactly one outgoing edge.

We will represent with D𝑖 the set of all graphs which have property (ii) with respect to a node

𝑖 ∈ [𝑚]. Moreover, we will use T𝑖 to represent the subset of D𝑖 which also has property (i) of

Definition A.5. For a matrixD ∈ D𝑖 , we define a matrix mp(D) so that mp(D) ( 𝑗,𝑘) = 1 if (𝑘, 𝑗) ∈ 𝐸 (D),
and 0 otherwise. The following lemma will be of particular use for our purposes.

Lemma A.6 ([Kruckman et al., 2010]). Consider some 𝑚 ×𝑚 matrix D ∈ D𝑖 , and let 𝑅𝑖 be the

determinant of the Laplacian matrix L B mp(D) − I after replacing the 𝑖-th column with the 𝑖-th

standard unit vector 𝒆 [𝑖]. Then, 𝑅𝑖 = (−1)𝑚−1 if D ∈ T𝑖 , i.e. D contains no (directed) cycles. Otherwise,

𝑅𝑖 = 0.

Before we proceed with the technical proof of Lemma 4.11, we also state a useful elementary

fact.

Fact A.7. The adjugate matrix at (𝑖, 𝑖) is equal to the determinant of A after we replace the 𝑖-th

column with the vector 𝒆 [𝑖].

Lemma 4.11. Let M be the transition matrix of an𝑚-state Markov chain such thatM := 𝒗1⊤ + C,
where C is a matrix with strictly positive entries and columns summing to 1 − 𝜆, and 𝒗 is a vector

with strictly positive entries summing to 𝜆. Then, if 𝝅 is the stationary distribution of M, there

exists, for each 𝑖 ∈ [𝑚], a (non-empty) finite set 𝐹𝑖 and 𝐹 =
⋃

𝑖 𝐹𝑖 , and corresponding parameters

𝑏 𝑗 ∈ {0, 1}, 0 ≤ 𝑝 𝑗 ≤ 𝑚 − 2, |𝑆 𝑗 | =𝑚 − 𝑝 𝑗 − 𝑏 𝑗 − 1, for each 𝑗 ∈ 𝐹𝑖 , such that

𝝅 [𝑖] =
∑

𝑗 ∈𝐹𝑖 𝜆
𝑝 𝑗+1(𝒗 [𝑞 𝑗 ])𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]∑
𝑗 ∈𝐹 𝐶 𝑗𝜆

𝑝 𝑗+𝑏 𝑗
∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]
,

where 𝐶 𝑗 = 𝐶 𝑗 (𝑚) is a positive parameter.
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Proof. Let us consider the Laplacian matrix L = M − I𝑚 , and the quantities Σ𝑖 := adj(L)[(𝑖, 𝑖)].
We shall first characterize the structure of Σ𝑖 ’s. By symmetry, we can focus without loss of generality

on the term Σ1. We know from Fact A.7 that Σ1 can be expressed as

Σ1 = det(𝒆 [1], 𝒗 + 𝒄2 − 𝒆 [2], . . . , 𝒗 + 𝒄𝑚 − 𝒆 [𝑚]), (15)

where 𝒄 𝑗 represents the 𝑗-th column of C. Now if 𝒆 𝑗,𝑘 B 𝒆 [ 𝑗] − 𝒆 [𝑘], given that M is column-

stochastic we have that

𝒆 [ 𝑗] − 𝒗 − 𝒄 𝑗 =
𝑚∑︁
𝑘=1

(𝒆 [ 𝑗] − 𝒆 [𝑘])𝒗 [𝑘] +
𝑚∑︁
𝑘=1

(𝒆 [ 𝑗] − 𝒆 [𝑘])𝒄 𝑗 [𝑘] =
𝑚∑︁
𝑘=1

𝒆 𝑗,𝑘𝒗 [𝑘] +
𝑚∑︁
𝑘=1

𝒆 𝑗,𝑘𝒄 𝑗 [𝑘] .

Next, if we plug-in this expansion to (15) it follows that

Σ1 = det

(
𝒆 [1],

𝑚∑︁
𝑘=1

𝒆𝑘,2𝒗 [𝑘] +
𝑚∑︁
𝑘=1

𝒆𝑘,2𝒄2 [𝑘], . . . ,
𝑚∑︁
𝑘=1

𝒆𝑘,𝑚𝒗 [𝑘] +
𝑚∑︁
𝑘=1

𝒆𝑘,𝑚𝒄𝑚 [𝑘]
)
. (16)

By multilinearity of the determinant (Fact A.3), Σ1 can be expressed as the sum of terms, with a

single term of the form

det

(
𝒆 [1],

𝑚∑︁
𝑘=1

𝒆𝑘,2𝒄2 [𝑘], . . . ,
𝑚∑︁
𝑘=1

𝒆𝑘,𝑚𝒄𝑚 [𝑘]
)
, (17)

independent on 𝒗, while any other term can be expressed in the form

det

(
𝒆 [1], 𝒛2, . . . ,

𝑚∑︁
𝑘=1

𝒆𝑘,𝑗𝒗 [𝑘], . . . , 𝒛𝑚

)
, (18)

for some index 𝑗 , where 𝒛ℓ is either
∑𝑚

𝑘=1
𝒆𝑘,ℓ𝒗 [𝑘] or

∑𝑚
𝑘=1

𝒆𝑘,ℓ𝒄ℓ [𝑘]. Now let us first analyze each

term of (18). We will show that it can be equivalently expressed so that the vector 𝒗 appears only

in a single column. Indeed, consider any other column in the matrix involved in the determinant of

(18), expressed in the form

∑𝑚
𝑘=1

𝒆𝑘,ℓ𝒗 [𝑘], for some index ℓ ≠ 𝑗 , if such column exists. Then, if we

subtract the 𝑗-th column from that column it would take the form

𝑚∑︁
𝑘=1

𝒆𝑘,ℓ𝒗 [𝑘] −
𝑚∑︁
𝑘=1

𝒆𝑘,𝑗𝒗 [𝑘] =
𝑚∑︁
𝑘=1

(𝒆 [ 𝑗] − 𝒆 [ℓ])𝒗 [𝑘] = 𝜆𝒆 𝑗,ℓ ,

where recall that 𝜆 is the sum of the entries of vector 𝒗, while this subtraction operation does not

modify the value of the determinant. Thus, by multinearity, the determinant (18) is equal to

𝜆𝑝 det

(
𝒆 [1], 𝒛 ′

2
, . . . ,

𝑚∑︁
𝑘=1

𝒆𝑘,𝑗𝒗 [𝑘], . . . , 𝒛 ′𝑚

)
, (19)

where 𝒛 ′ℓ is either
∑𝑚

𝑘=1
𝒆𝑘,ℓ𝒄ℓ [𝑘] or 𝒆 𝑗,ℓ , and 0 ≤ 𝑝 ≤ 𝑚 − 2. Next, if we use again the multilinearity

property, the term in (19) can be expressed as a sum of terms each of which has the form

©­«𝜆𝑝𝒗 [𝑞]
∏
(𝑠,𝑤) ∈𝑆

C[(𝑠,𝑤)]ª®¬ det(𝒆 [1], 𝒆 ·,2, . . . , 𝒆 ·,𝑚),
where |𝑆 | = 𝑚 − 𝑝 − 2. (For notational simplicity we used the notation 𝒆 ·,2, . . . , 𝒆 ·,𝑚 to suppress

the first index.) Thus, the induced determinant det(𝒆 [1], 𝒆 ·,2, . . . , 𝒆 ·,𝑚) matches after a suitable

permutation the form of Lemma A.6 associated with some matrix D ∈ D𝑖 . As a result, it can either
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be 0 or (−1)𝑚−1, depending on whether the corresponding graph has a (directed) cycle. Similar

reasoning applies for the determinant in (17), which can be expressed as a sum of terms

(−1)𝑚−1
∏
(𝑠,𝑤) ∈𝑆

C[(𝑠,𝑤)],

where |𝑆 | =𝑚 − 1. Overall, we have shown that each Σ𝑖 (due to symmetry) can be expressed in the

form

(−1)𝑚−1
∑︁
𝑗 ∈𝐹𝑖

𝜆𝑝 𝑗 (𝒗 [𝑞 𝑗 ])𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)], (20)

where for all 𝑗 it holds that𝑏 𝑗 ∈ {0, 1}, and |𝑆 𝑗 | =𝑚−𝑝 𝑗−𝑏 𝑗−1. Next, we will focus on characterizing
the term Σ B

∑𝑚
𝑖=1 Σ𝑖 . In particular, the stationary distribution 𝝅 of M is such that(

C + 𝒗1⊤
)
𝝅 = 𝝅 ⇐⇒ C𝝅 + 𝒗 = 𝝅 ⇐⇒ (I𝑚 − C)𝝅 = 𝒗, (21)

where we used that 1⊤𝝅 = 1 since 𝝅 ∈ Δ𝑚
. Moreover, we claim that the matrix I𝑚 − C is invertible.

Indeed, the sum of the columns of C is 1 − 𝜆, and subsequently it follows that the maximum

eigenvalue of C is (1 − 𝜆). In turn, this implies that all the eigenvalues of I𝑚 − C are at least 𝜆 > 0.

As a result, we can use Cramer’s rule to obtain an explicit formula for the solution of the linear

system with respect to the first coordinate of 𝝅 :

𝝅 [1] = det(𝒗, 𝒆 [2] − 𝒄2, . . . , 𝒆 [𝑚] − 𝒄𝑚)
det(𝒆 [1] − 𝒄1, 𝒆 [2] − 𝒄2, . . . , 𝒆 [𝑚] − 𝒄𝑚)

. (22)

Moreover, it follows that

det(𝒗, 𝒆 [2] − 𝒄2, . . . , 𝒆 [𝑚] − 𝒄𝑚) = det(𝒗, 𝒆 [2] − 𝒄2 − 𝒗, . . . , 𝒆 [𝑚] − 𝒄𝑚 − 𝒗)
= det(𝒗 + (𝜆𝒆 [1] − 𝒗), 𝒆 [2] − 𝒄2 − 𝒗, . . . , 𝒆 [𝑚] − 𝒄𝑚 − 𝒗) (23)

= 𝜆 det(𝒆 [1], 𝒆 [2] − 𝒄2 − 𝒗, . . . , 𝒆 [𝑚] − 𝒄𝑚 − 𝒗),
where in (23) we used the fact that det(𝜆𝒆 [1] − 𝒗, . . . , 𝒆 [𝑚] − 𝒄𝑚 − 𝒗) = 0. Thus, if we use the

definition of Σ1, Fact A.7, and (22), we arrive at the following conclusion:

𝝅 [1] = 𝜆 Σ1

det (I𝑚 − C)
.

But we can also infer from Theorem A.4 that 𝝅1 = Σ1/Σ, implying the following identity:

det(I𝑚 − C) = 𝜆
𝑚∑︁
𝑖=1

Σ𝑖 . (24)

In fact, we have shown this formula for any vector 𝜆𝒑, where 𝒑 is a probability distribution and

𝜆 > 0. Thus, it must also hold for v B 𝜆
𝑚
1. That is,

det(I𝑚 − C) = 𝜆(−1)𝑚−1
∑︁
𝑗 ∈𝐹

𝐶 𝑗𝜆
𝑝 𝑗+𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)], (25)

where |𝑆 𝑗 | ≤ 𝑚 − 1 − 𝑝 𝑗 , 𝐶 𝑗 = 𝐶 𝑗 (𝑚) is a positive parameter independent on the entries of 𝒗 and C,
and 𝐹 =

⋃
𝑖 𝐹𝑖 . Finally, given that the vector 𝝅 ∈ Δ𝑚

with 𝝅 [𝑖] = Σ𝑖/Σ is the (unique) stationary

distribution ofM, the claim follows directly from (20), (24), and (25). □

Corollary A.8. Let M be the transition matrix of an𝑚-state Markov chain such that M B 𝒗1⊤ + C,
where C is a matrix with strictly positive entries and columns summing to 1 − 𝜆, and 𝒗 is a vector

with strictly positive entries summing to 𝜆. Moreover, let 𝒗 = 𝒓/𝑙 , for some 𝑙 > 0. Then, if 𝝅 is the

stationary distribution ofM, there exists, for each 𝑖 ∈ [𝑚], a (non-empty) finite set 𝐹𝑖 and 𝐹 =
⋃

𝑖 𝐹𝑖 ,
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and corresponding parameters 𝑏 𝑗 ∈ {0, 1}, 0 ≤ 𝑝 𝑗 ≤ 𝑚 − 2, |𝑆 𝑗 | = 𝑚 − 𝑝 𝑗 − 𝑏 𝑗 − 1, for each 𝑗 ∈ 𝐹𝑖 ,
such that the 𝑖-th coordinate of the vector𝒘 B 𝑙𝝅 can be expressed as

𝒘 [𝑖] =
∑

𝑗 ∈𝐹𝑖 𝜆
𝑝 𝑗+1 (𝒓 [𝑞 𝑗 ])𝑏 𝑗 𝑙1−𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]∑
𝑗 ∈𝐹 𝐶 𝑗𝜆

𝑝 𝑗+𝑏 𝑗
∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)]
, (26)

where 𝐶 𝑗 = 𝐶 𝑗 (𝑚) is a positive constant.
Proof. The proof follows directly from the formula derived in Lemma 4.11. □

This expression for the stationary distribution was derived specifically to characterize the

multiplicative stability of the fixed points associated with EFCE. In particular, this will be shown

directly from Corollary 4.12, which is recalled next.

Corollary 4.12. LetM,M′ be the transition matrices of𝑚-state Markov chains such thatM = 𝒗1⊤+C
andM′ = 𝒗 ′1⊤ + C′, where C and C′ are matrices with strictly positive entries, and 𝒗, 𝒗 ′ are vectors
with strictly positive entries such that 𝒗 = 𝒓/𝑙 and 𝒗 ′ = 𝒓 ′/𝑙 ′, for some 𝑙 > 0 and 𝑙 ′ > 0. If 𝝅 and 𝝅 ′

are the stationary distributions ofM andM′, let𝒘 B 𝑙𝝅 and𝒘 ′ B 𝑙 ′𝝅 ′. Finally, let 𝜆 and 𝜆′ be the
sum of the entries of 𝒗 and 𝒗 ′ respectively. Then, if (i) the matrices C and C′ are 𝜅-multiplicative-close;

(ii) the scalars 𝜆 and 𝜆′ are 𝜅-multiplicative-close; (iii) the vectors 𝒓 and 𝒓 ′ are 𝛾-multiplicative-close;

and (iv) the scalars 𝑙 and 𝑙 ′ are also 𝛾-multiplicative-close, then the vectors𝒘 and𝒘 ′ are (𝛾 +𝑂 (𝜅𝑚))-
multiplicative-close, for a sufficiently small 𝜅 = 𝑂 (1/𝑚).
Proof. Consider some coordinate 𝑖 ∈ [𝑚], and let

𝑉𝑗 B 𝜆𝑝 𝑗+1 (𝒓 [𝑞 𝑗 ])𝑏 𝑗 𝑙1−𝑏 𝑗

∏
(𝑠,𝑤) ∈𝑆 𝑗

C[(𝑠,𝑤)],

for some 𝑗 ∈ 𝐹𝑖 . Also let𝑉 ′𝑗 be the corresponding quantity with respect toM′. Then, by assumption

we have that

𝑉 ′𝑗 ≤ (1 + 𝜅)𝑝 𝑗+1 (1 + 𝛾) (1 + 𝜅) |𝑆 𝑗 |𝑉𝑗 ≤ (1 + 𝛾) (1 + 𝜅)𝑚𝑉𝑗 ,

where we used the fact that |𝑆 𝑗 | + 𝑝 𝑗 + 1 ≤ 𝑚 by Corollary A.8. Moreover, for a sufficiently small

𝜅 = 𝑂 (1/𝑚), we can infer that 𝑉 ′𝑗 ≤ (1 + 𝛾) (1 + 𝑂 (𝜅𝑚))𝑉 ′𝑗 = (1 + (𝛾 + 𝑂 (𝜅𝑚)))𝑉𝑗 . In turn, this

implies that

∑
𝑗 ∈𝐹𝑖 𝑉

′
𝑗 ≤ (1+ (𝛾 +𝑂 (𝜅𝑚)))

∑
𝑗 ∈𝐹𝑖 𝑉

′
𝑗 . Moreover, we can show that the denominator of

(26) induces an extra additive factor of 𝑂 (𝜅𝑚) in the multiplicative stability, implying that𝒘 ′[𝑖] ≤
(1+(𝛾 +𝑂 (𝜅𝑚)))𝒘 [𝑖], for any 𝑖 ∈ [𝑚]. Similarly, it follows that𝒘 ′[𝑖] ≥ (1+(𝛾 +𝑂 (𝜅𝑚)))−1𝒘 [𝑖]. □

Next, we will use this statement to prove Proposition 4.13, which is recalled below.

Proposition 4.13. Consider a player 𝑖 ∈ [𝑛], and let 𝜙 (𝑡 )
𝑖

=
∑

𝜎̂ ∈Σ∗
𝑖
𝝀 (𝑡 )
𝑖
[𝜎̂]𝜙

𝜎̂→𝒒 (𝑡 )
𝜎̂

be a transforma-

tion in coΨ𝑖 such that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝜎̂
) are 𝜅-multiplicative-stable, for all 𝜎̂ ∈ Σ∗𝑖 . If

(𝒙 (𝑡 )
𝑖
) is a 𝛾-multiplicative-stable 𝐽 -partial fixed point sequence, the sequence of (𝐽 ∪ { 𝑗∗})-partial

fixed points of 𝜙𝑖 is (𝛾 +𝑂 (𝜅 |A 𝑗∗ |))-multiplicative-stable, for any sufficiently small 𝜅 = 𝑂 (1/|A 𝑗∗ |).

Wenote that it is tacitly assumed that the vectors𝝀 (𝑡 )
𝑖
, 𝒒 (𝑡 )

𝜎̂
and 𝒙 ( 𝑗 ∈𝐽 ) , involved in Proposition 4.13,

have strictly positive coordinates; this is indeed the case under our dynamics (Figure 2).

Proof of Proposition 4.13. Let us focus on the stability analysis of Algorithm 4 as the rest of

the claim follows from [Farina et al., 2021a, Proposition 4.14]. In particular, for consistency with

the terminology of Corollary 4.12, let us define

C[(𝑎𝑟 , 𝑎𝑐 )] B 𝝀𝑖 [( 𝑗∗, 𝑎𝑐 )]𝒒 ( 𝑗∗,𝑎𝑐 ) [( 𝑗∗, 𝑎𝑟 )] +
©­«1 −

∑︁
𝜎̂⪯( 𝑗∗,𝑎𝑐 )

𝝀𝑖 [𝜎̂]
ª®¬1{𝑎𝑟 = 𝑎𝑐 },
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and 𝑙 B 𝒙𝑖 [𝜎𝑝 ]. We will show that the conditions of Corollary 4.12 are satisfied:

(i) The entries of matrix C are 𝑂 (𝜅)-multiplicative-stable. In particular, this follows from the

fact that 1 −∑
𝜎̂⪯( 𝑗∗,𝑎𝑐 ) 𝝀𝑖 [𝜎̂] =

∑
𝜎̃ ∈Σ̃𝑖 𝝀𝑖 [𝜎̃], for some Σ̃𝑖 ⊆ Σ∗𝑖 , since 𝝀𝑖 ∈ Δ(Σ∗𝑖 ). The latter

term is clearly 𝜅-multiplicative-stable;

(ii) The sum of the entries of 𝒗𝑡 B 𝒓𝑡/𝑙𝑡 is 𝜅-multiplicative-stable. To see this, note that the sum of

each column of C can be expressed as

∑
𝜎̃ ∈Σ̃𝑖 𝝀𝑖 [𝜎̃], and as a result, since the matrix C + 1

𝑙
𝒓1⊤

is stochastic, we can infer that the sum of the entries of 𝒗 can also be expressed as

∑
𝜎̃ ∈Σ̃𝑖 𝝀𝑖 [𝜎̃]

since 𝝀 is a vector on the simplex. But the latter term is clearly 𝜅-multiplicative-stable, as

desired;

(iii) The sequence (𝒓 (𝑡 ) ) is 𝛾 +𝑂 (𝜅)-multiplicative-stable. This assertion can be directly verified

from the definition of 𝒓 in Algorithm 4;

(iv) The sequence of scalars (𝑙 (𝑡 ) ) is 𝛾-multiplicative-stable. Indeed, this follows directly from the

assumption that the sequence (𝒙 (𝑡 )
𝑖
) is 𝛾-multiplicative-stable.

As a result, we can apply Corollary 4.12 to conclude the proof. □

Theorem 4.14. Consider a player 𝑖 ∈ [𝑛], and let 𝜙 (𝑡 )
𝑖

=
∑

𝜎̂ ∈Σ∗
𝑖
𝝀 (𝑡 )
𝑖
[𝜎̂]𝜙

𝜎̂→𝒒 (𝑡 )
𝜎̂

be a transformation

in coΨ𝑖 such that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝜎̂
) are 𝜅-multiplicative-stable, for all 𝜎̂ ∈ Σ∗𝑖 . Then, the

sequence of fixed points 𝒒 (𝑡 )
𝑖
∈ Q𝑖 of 𝜙 (𝑡 )𝑖

is 𝑂 (𝜅 |A𝑖 |𝔇𝑖 )-multiplicative-stable, for a sufficiently small

𝜅 = 𝑂 (1/(|A𝑖 |𝔇𝑖 )), where |A𝑖 | B max𝑗 ∈J𝑖 |A 𝑗 |.

Proof. Our argument proceeds inductively. For a root information set 𝑗 ∈ J𝑖 , Proposition 4.13

implies 𝑂 (𝜅 |A|)-multiplicative-stability for any induced partial fixed point; this follows given that

the ∅-partial fixed point is trivially 0-multiplicative-stable. Next, the theorem follows inductively

given that by Proposition 4.13 each sequence can only incur an additive factor of 𝑂 (𝜅 |A|) in the

multiplicative stability bound with respect to the preceding sequences. □

Remark A.9. More precisely, if 𝐹𝑖 B max𝑗1≺ 𝑗2≺···≺ 𝑗𝑑
∑𝑑

𝑖=1 |A 𝑗𝑖 |, with 𝑗1, . . . , 𝑗𝑑 ∈ J𝑖 , we can show

that the sequence of fixed points is 𝑂 (𝜅𝐹𝑖 )-multiplicative-stable. Observe that 𝐹𝑖 can be trivially

upper bounded by |A𝑖 |𝔇𝑖 , as well as the number of sequences |Σ𝑖 |.

A.6 Proofs from Section 4.3

We begin this subsection with the proof of Claim 4.16, which is recalled below.

Claim 4.16. For any player 𝑖 ∈ [𝑛] the observed utilities satisfy

∥ℓ (𝑡 )
𝑖
− ℓ (𝑡−1)

𝑖
∥2∞ ≤ (𝑛 − 1) |Z|2

∑︁
𝑘≠𝑖

∥𝒒 (𝑡 )
𝑘
− 𝒒 (𝑡−1)

𝑘
∥2
1
.

Proof. For a profile of mixed sequence-form strategies (𝒒1, . . . , 𝒒𝑛), the utility of player 𝑖 can

be expressed as

𝑢𝑖 (𝒒1, . . . , 𝒒𝑛) =
∑︁
𝑧∈Z

𝑝𝑐 (𝑧)𝑢𝑖 (𝑧)
𝑛∏

𝑘=1

𝒒𝑘 (𝜎𝑘,𝑧).

As a result, given that (by assumption) |𝑢𝑖 (𝑧) | ≤ 1 for all 𝑧 ∈ Z, it follows that

∥ℓ (𝑡 )
𝑖
− ℓ (𝑡−1)

𝑖
∥∞ ≤

∑︁
𝑧∈Z

����� 𝑛∏
𝑘≠𝑖

𝒒 (𝑡 )
𝑘
(𝜎𝑘,𝑧) −

𝑛∏
𝑘≠𝑖

𝒒 (𝑡−1)
𝑘
(𝜎𝑘,𝑧)

�����
≤

∑︁
𝑧∈Z

𝑛∑︁
𝑘≠𝑖

���𝒒 (𝑡 )
𝑘
(𝜎𝑘,𝑧) − 𝒒 (𝑡−1)𝑘

(𝜎𝑘,𝑧)
��� , (27)
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ALGORITHM 4: Extend(𝜙𝑖 , 𝐽 , 𝑗∗, 𝒙); [Farina et al., 2021a]
Input:
• 𝜙𝑖 =

∑
𝜎̂ ∈Σ∗

𝑖
𝝀𝑖 [𝜎̂]𝜙𝜎̂→𝒒𝜎̂

∈ coΨ𝑖
• 𝐽 ⊆ J𝑖 trunk for player 𝑖

• 𝑗∗ ∈ J𝑖 information set not in 𝐽 with an immediate predecessor in 𝐽

• 𝒙𝑖 ∈ R |Σ𝑖 |≥0 𝐽 -partial fixed point of 𝜙

Output: 𝒙 ′
𝑖
∈ R |Σ𝑖 |≥0 (𝐽 ∪ { 𝑗

∗})-partial fixed point of 𝜙

1 Let 𝒓 ∈ R |A 𝑗∗ |
≥0 be defined as 𝒓 [𝑎] B ∑

𝑗 ′⪯𝜎 𝑗∗
∑
𝑎′∈A 𝑗′ 𝝀𝑖 [( 𝑗

′, 𝑎′)]𝒒 ( 𝑗 ′,𝑎′) [( 𝑗∗, 𝑎)]𝒙𝑖 [( 𝑗 ′, 𝑎′)]
2 Let W ∈ 𝒙𝑖 [𝜎 𝑗∗ ]S |A 𝑗∗ |

be the matrix with entries W[𝑎𝑟 , 𝑎𝑐 ] defined, for 𝑎𝑟 , 𝑎𝑐 ∈ A 𝑗∗ , as

𝒓 [𝑎𝑟 ] +
(
𝝀𝑖 [( 𝑗∗, 𝑎𝑐 )]𝒒 ( 𝑗∗,𝑎𝑐 ) [( 𝑗∗, 𝑎𝑟 )] +

(
1 −∑

𝜎̂⪯( 𝑗∗,𝑎𝑐 ) 𝝀𝑖 [𝜎̂]
)
1{𝑎𝑟 = 𝑎𝑐 }

)
𝒙𝑖 [𝜎 𝑗∗ ]

3 if 𝒙𝑖 [𝜎 𝑗∗ ] = 0 then

4 𝒘 ← 0 ∈ R |A 𝑗∗ |
≥0

5 else
6 𝒃 ∈ Δ(A 𝑗∗ ) ← stationary distribution of

1

𝒙𝑖 [𝜎 𝑗∗ ]W

7 𝒘 → 𝒙𝑖 [𝜎 𝑗∗ ]𝒃
8 𝒙 ′

𝑖
← 𝒙𝑖

9 for 𝑎 ∈ A 𝑗∗ do
10 𝒙 ′

𝑖
[( 𝑗∗, 𝑎)] ← 𝒘 [( 𝑗∗, 𝑎)]

ALGORITHM 5: FixedPoint(𝜙𝑖 ); [Farina et al., 2021a]
Input: 𝜙𝑖 =

∑
𝜎̂ ∈Σ∗

𝑖
𝝀𝑖 [𝜎̂]𝜙𝜎̂→𝒒𝜎̂

∈ coΨ𝑖
Output: 𝒒𝑖 ∈ Q𝑖 such that 𝒒𝑖 = 𝜙𝑖 (𝒒𝑖 )

1 𝒒𝑖 ← 0 ∈ R |Σ𝑖 |, 𝒒𝑖 [∅] ← ∅
2 𝐽 ← ∅
3 for 𝑗 ∈ J𝑖 in top-down order do
4 𝒒𝑖 ← Extend(𝜙𝑖 , 𝐽 , 𝑗, 𝒒∗𝑖 )
5 𝐽 = 𝐽 ∪ { 𝑗}
6 return 𝒒∗

𝑖

where in the last bound we used the well-known inequality

| (𝑎1𝑎2 . . . 𝑎𝑚) − (𝑏1𝑏2 . . . 𝑏𝑚) | ≤
𝑚∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 | (𝑎1 . . . 𝑎𝑖−1) (𝑏𝑖+1 . . . 𝑏𝑚) ≤
𝑚∑︁
𝑖=1

|𝑎𝑖 − 𝑏𝑖 |,

for any 𝑎1, . . . , 𝑎𝑚, 𝑏1, . . . , 𝑏𝑚 ∈ [0, 1]. Finally, from (27) we can conclude that

∥ℓ (𝑡 )
𝑖
− ℓ (𝑡−1)

𝑖
∥∞ ≤

𝑛∑︁
𝑘≠𝑖

∑︁
𝑧∈Z

���𝒒 (𝑡 )
𝑘
(𝜎𝑘,𝑧) − 𝒒 (𝑡−1)𝑘

(𝜎𝑘,𝑧)
��� ≤ |Z| 𝑛∑︁

𝑘≠𝑖

∥𝒒 (𝑡 )
𝑘
− 𝒒 (𝑡−1)

𝑘
∥1.

Finally, the claim follows from a standard application of Young’s inequality. □

Next, we include the proof of Theorem 1.1.

Proof of Theorem 1.1. For a player 𝑖 ∈ [𝑛] we let 𝝁 (𝑡 )
𝑖

be any probability distribution on the

set Π𝑖 such that E
𝝅𝑖∼𝜇 (𝑡 )𝑖

[𝝅𝑖 ] = 𝒒 (𝑡 )
𝑖
, where 𝒒 (𝑡 )

𝑖
is the output of the regret minimizer operating

over the mixed sequence-form strategy polytope Q𝑖 , realized with the dynamics associated with

Corollary 4.17. Moreover, let 𝝁 (𝑡 ) B 𝝁 (𝑡 )
1
⊗ · · · ⊗ 𝝁 (𝑡 )𝑛 be the associated joint probability distribution,
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and 𝝁 (𝑡 ) B 1

𝑇

∑𝑇
𝑡=1 𝝁

(𝑡 )
be their average over time. Then, since the expression in Definition 2.7 is

linear (recall that the set of transformations Ψ𝑖 is linear), it follows from the linearity of expectation

that 𝝁 (𝑡 ) is an 𝜖-EFCE, where, if Reg𝑇𝑖 is the cumulative Ψ𝑖 -regret of player 𝑖 with respect to Q𝑖 , it
holds that 𝜖 B 1

𝑇
max𝑖 Reg

𝑇
𝑖 . Finally, the proof follows given that Reg

𝑇
𝑖 = P𝑇 1/4

, for every player

𝑖 ∈ [𝑛], where P is a parameter polynomial in the game (Corollary 4.17). □

A.7 Proofs from Section 5

Before we proceed with the proof of Theorem 5.1, we first show the following useful claim.

Lemma A.10. For any 𝜙𝑖 =
∑

𝑗 ′∈J𝑖 𝝀𝑖 [ 𝑗 ′]𝜙 𝑗 ′→𝒒 𝑗′ ∈ coΨ𝑖 , 𝒒𝑖 ∈ Q𝑖 , and 𝜎 = ( 𝑗, 𝑎) ∈ Σ𝑖 ,

𝜙𝑖 (𝒒𝑖 ) [𝜎] − 𝒒𝑖 [𝜎] =
(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′]
)
− 𝑑𝜎𝒒𝑖 [𝜎] .

Proof. By definition of the linear mapping 𝜙 𝑗 ′→𝒒 𝑗′ , we have that

𝜙𝑖 (𝒒𝑖 ) [𝜎] =
∑︁
𝑗 ′∈J𝑖

𝝀𝑖 [ 𝑗 ′]𝜙 𝑗 ′→𝒒 𝑗′ (𝒒𝑖 ) [𝜎]

=
∑︁
𝑗 ′∈J𝑖

𝝀𝑖 [ 𝑗 ′]
{
𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′] if 𝜎 ⪰ 𝑗 ′

𝒒𝑖 [𝜎] otherwise

=

(
1 −

∑︁
𝑗 ′⪯𝜎

𝝀𝑖 [ 𝑗 ′]
)
𝒒𝑖 [𝜎] +

∑︁
𝑗 ′⪯𝜎

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′] .

A rearrangement of the last equation completes the proof. □

Theorem 5.1. For any player 𝑖 ∈ [𝑛] and any transformation 𝜙𝑖 =
∑

𝑗 ∈J𝑖 𝝀𝑖 [ 𝑗]𝜙 𝑗→𝒒 𝑗
∈ co Ψ̃𝑖 , the

output 𝒒𝑖 ∈ R |Σ𝑖 | of Algorithm 1 is such that 𝒒𝑖 ∈ Q𝑖 and 𝜙𝑖 (𝒒𝑖 ) = 𝒒𝑖 . Furthermore, Algorithm 1 runs

in 𝑂 ( |Σ𝑖 |𝔇𝑖 ).

Proof. Consider some arbitrary 𝜙𝑖 ∈ coΨ𝑖 . The proof is divided into three claims: (i) the vector

𝒒𝑖 ∈ R |Σ𝑖 | obtained through Algorithm 1 is such that 𝒒𝑖 ∈ Q𝑖 (i.e., it is a proper sequence-form
strategy); (ii) the sequence-form strategy 𝒒𝑖 obtained through Algorithm 1 is such that 𝜙𝑖 (𝒒𝑖 ) = 𝒒𝑖 ;
and (iii) Algorithm 1 runs in time 𝑂 ( |Σ𝑖 |𝔇𝑖 ).

Part 1: 𝒒𝑖 is a sequence-form strategy. First, by construction Line 1) we have that 𝒒𝑖 [∅] = 1. Thus,

we need to show that, for each 𝑗 ∈ J𝑖 , it holds that
∑

𝑎∈A 𝑗
𝒒𝑖 [( 𝑗, 𝑎)] = 𝒒𝑖 [𝜎 𝑗 ] (recall Definition 2.1).

Indeed, for any 𝑗 ∈ J𝑖 such that 𝑑𝜎 = 0, it is immediate to see that the above constraint holds by

construction (Line 5). On the other hand, for each 𝑗 ∈ J𝑖 such that 𝑑𝜎 ≠ 0, we have that∑︁
𝑎∈A 𝑗

𝒒𝑖 [( 𝑗, 𝑎)] =
1

𝑑𝜎

©­«
∑︁
𝑎∈A 𝑗

∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [( 𝑗, 𝑎)]𝒒𝑖 [𝜎 𝑗 ′]
ª®¬

=
1

𝑑𝜎

©­«
∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′]
©­«
∑︁
𝑎∈A 𝑗

𝒒 𝑗 ′ [( 𝑗, 𝑎)]
ª®¬ª®¬

=
1

𝑑𝜎

(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′] ·
{
𝒒 𝑗 ′ [𝜎 𝑗 ] if 𝑗 ′ ≺ 𝑗
1 otherwise

)
,

where the first equality holds by Line 7, and the last equality holds since 𝒒 𝑗 ′ ∈ Q 𝑗 ′ . Next, we

distinguish between two cases: if 𝑑𝜎 𝑗
= 0, then 𝝀𝑖 [ 𝑗 ′] = 0 for each 𝑗 ′ ≺ 𝑗 . Therefore, since we are
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assuming 𝑑𝜎 ≠ 0, it must be the case that 𝑑𝜎 = 𝝀𝑖 [ 𝑗] ≠ 0. This yields that∑︁
𝑎∈A 𝑗

𝒒𝑖 [( 𝑗, 𝑎)] =
1

𝑑𝜎

(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′] ·
{
𝒒 𝑗 ′ [𝜎 𝑗 ] if 𝐼 ′ ≺ 𝐼
1 otherwise

)
=

1

𝝀𝑖 [ 𝑗]
(
𝝀𝑖 [ 𝑗]𝒒𝑖 [𝜎 𝑗 ]

)
= 𝒒𝑖 [𝜎 𝑗 ] .

On the other hand, if 𝑑𝜎 𝑗
≠ 0, then 𝒒𝑖 [𝜎 𝑗 ] was set according to Line 7, and thus,

𝒒𝑖 [𝜎 𝑗 ] =
1

𝑑𝜎 𝑗

(∑︁
𝑗 ′≺ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′]𝒒 𝑗 ′ [𝜎 𝑗 ]
)
. (28)

By definition of 𝑑𝜎 (Line 3), it holds that 𝑑𝜎 = 𝑑𝜎 𝑗
+ 𝝀𝑖 [ 𝑗]. Thus,∑︁

𝑎∈A 𝑗

𝒒𝑖 [( 𝑗, 𝑎)] =
1

𝑑𝜎

(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′] ·
{
𝒒 𝑗 ′ [𝜎 𝑗 ] if 𝑗 ′ ≺ 𝑗
1 otherwise

)
=

1

𝑑𝜎 𝑗
+ 𝝀𝑖 [ 𝑗]

(
𝝀𝑖 [ 𝑗]𝒒𝑖 [𝜎 𝑗 ] +

∑︁
𝑗 ′≺ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒𝑖 [𝜎 𝑗 ′]𝒒 𝑗 ′ [𝜎 𝑗 ]
)

=
1

𝑑𝜎 𝑗
+ 𝝀𝑖 [ 𝑗]

(
𝝀𝑖 [ 𝑗]𝒒𝑖 [𝜎 𝑗 ] + 𝑑𝜎 𝑗

𝒒𝑖 [𝜎 𝑗 ]
)
= 𝒒𝑖 [𝜎 𝑗 ],

where the second to last equality is obtained from (28). This concludes the first part of the proof.

Part 2: 𝒒𝑖 is a fixed point of 𝜙𝑖 . Fix a sequence 𝜎 = ( 𝑗, 𝑎) ∈ Σ𝑖 . We want to show that 𝜙 (𝒒𝑖 ) [𝜎] −
𝒒𝑖 [𝜎] = 0. If

∑
𝑗 ′⪯ 𝑗 𝝀𝑖 [ 𝑗 ′] = 0, then it immediately follows that 𝜙𝑖 (𝒒𝑖 ) [𝜎] = 𝒒𝑖 [𝜎]. Otherwise,

applying Lemma A.10 and substituting 𝒒𝑖 [𝜎] according to Line 7 yields that

𝜙𝑖 (𝒒𝑖 ) [𝜎] − 𝒒𝑖 [𝜎] =
(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′]
)
− 𝑑𝜎𝒒𝑖 [𝜎]

=

(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′]
)
− 𝑑𝜎
𝑑𝜎

(∑︁
𝑗 ′⪯ 𝑗

𝝀𝑖 [ 𝑗 ′]𝒒 𝑗 ′ [𝜎]𝒒𝑖 [𝜎 𝑗 ′]
)
= 0.

This concludes the second part of the proof.

Part 3: time complexity. For each sequence in Σ∗𝑖 Algorithm 1 has to visit at most𝔇𝑖 information

sets as part of Lines 3 and 7. This completes the proof. □

Proposition 5.2. Suppose that the sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝑗
), for all 𝑗 ∈ J𝑖 , are 𝜅-multiplicative-

stable. Then, Algorithm 1 yields a sequence of (12𝜅𝔇𝑖 )-multiplicative-stable strategies, assuming that

𝜅 < 1/(12𝔇𝑖 ).

Proof. By assumption, we know that 𝝀𝑖 [ 𝑗] > 0 for all 𝑗 ∈ J𝑖 . Thus, it will always be the case
that 𝑑𝜎 > 0, for any 𝜎 ∈ Σ𝑖 . Hence, Algorithm 1 will never visit the first “if” branch.

Now fix any 𝑡 ≥ 2. We will show by induction that 𝒒 (𝑡 )
𝑖
[𝜎] is such that 𝒒 (𝑡 )

𝑖
[𝜎] ≤ (1 +

𝜅)3𝔇𝑖 [𝜎 ]−2𝒒 (𝑡−1)
𝑖
[𝜎] and 𝒒 (𝑡−1)

𝑖
[𝜎] ≤ (1 + 𝜅)3𝔇𝑖 [𝜎 ]−2𝒒 (𝑡 )

𝑖
[𝜎], where 𝔇𝑖 [𝜎] ≥ 1 is the depth of

sequence 𝜎 ∈ Σ∗𝑖 with respect to 𝑖’s subtree. For the base case, let 𝜎 = ( 𝑗, 𝑎) be a sequence such that

𝑗 ∈ J𝑖 corresponds to a root information set of player 𝑖 . Then, it follows from Algorithm 1 that

𝑑𝜎 = 𝝀𝑖 [ 𝑗], in turn implying that 𝒒 (𝑡 )
𝑖
[𝜎] = 𝒒 (𝑡 )

𝑗
[𝜎]. Thus, 𝒒 (𝑡 )

𝑖
[𝜎] is indeed 𝜅-multiplicative-stable.
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Next, consider some sequence 𝜎 = ( 𝑗, 𝑎) at depth𝔇𝑖 [𝜎] ≥ 2 such that all ancestor sequences—i.e.

all 𝜎 𝑗 ′ for 𝑗
′ ⪯ 𝑗—satisfy the inductive hypothesis. Then, we have that

𝒒 (𝑡 )
𝑖
[𝜎] =

∑
𝑗 ′⪯ 𝑗 𝝀

(𝑡 )
𝑖
[ 𝑗 ′]𝒒 (𝑡 )

𝑗 ′ [𝜎]𝒒
(𝑡 )
𝑖
[𝜎 𝑗 ′]∑

𝑗 ′⪯ 𝑗 𝝀
(𝑡 )
𝑖
[ 𝑗 ′]

(29)

≤ (1 + 𝜅)3
∑

𝑗 ′⪯ 𝑗 𝝀
(𝑡−1)
𝑖
[ 𝑗 ′]𝒒 (𝑡−1)

𝑗 ′ [𝜎]𝒒 (𝑡 )
𝑖
[𝜎 𝑗 ′]∑

𝑗 ′⪯ 𝑗 𝝀
(𝑡−1)
𝑖
[ 𝑗 ′]

(30)

≤ (1 + 𝜅)3 (1 + 𝜅)3𝔇𝑖 [𝜎 ]−5𝒒 (𝑡−1)
𝑖
[𝜎] (31)

= (1 + 𝜅)3𝔇𝑖 [𝜎 ]−2𝒒 (𝑡−1)
𝑖
[𝜎],

where (29) derives from the formula of Algorithm 1; (30) uses the 𝜅-multiplicative-stability of the

sequences (𝝀 (𝑡 )
𝑖
) and (𝒒 (𝑡 )

𝑗
), for any 𝑗 ∈ J𝑖 ; and (31) leverages the inductive hypothesis. Similar

reasoning yields:

𝒒 (𝑡 )
𝑖
[𝜎] =

∑
𝑗 ′⪯ 𝑗 𝝀

(𝑡 )
𝑖
[ 𝑗 ′]𝒒 (𝑡 )

𝑗 ′ [𝜎]𝒒
(𝑡 )
𝑖
[𝜎 𝑗 ′]∑

𝑗 ′⪯ 𝑗 𝝀
(𝑡 )
𝑖
[ 𝑗 ′]

≥ 1

(1 + 𝜅)3

∑
𝑗 ′⪯ 𝑗 𝝀

(𝑡−1)
𝑖
[ 𝑗 ′]𝒒 (𝑡−1)

𝑗 ′ [𝜎]𝒒 (𝑡 )
𝑖
[𝜎 𝑗 ′]∑

𝑗 ′⪯ 𝑗 𝝀
(𝑡−1)
𝑖
[ 𝑗 ′]

≥ 1

(1 + 𝜅)3
1

(1 + 𝜅)3𝔇𝑖 [𝜎 ]−5
𝒒 (𝑡−1)
𝑖
[𝜎]

≥ 1

(1 + 𝜅)3𝔇𝑖 [𝜎 ]−2
𝒒 (𝑡−1)
𝑖
[𝜎] .

Thus, if𝔇𝑖 is the depth ofJ𝑖 , we conclude that 𝒒 (𝑡 )𝑖
[𝜎] ≤ (1+𝜅)3𝔇𝑖−2𝒒 (𝑡−1)

𝑖
[𝜎] ≤ 𝑒3𝔇𝑖𝜅−2𝜅𝒒 (𝑡−1)

𝑖
[𝜎] ≤

(1 + 6𝔇𝑖𝜅)𝒒 (𝑡−1)𝑖
[𝜎], where we used the inequalities 1 + 𝑥 ≤ 𝑒𝑥 for all 𝑥 ∈ R, and 𝑒𝑥 ≤ 1 + 2𝑥 for

𝑥 ∈ [0, 1/2], applicable as long as𝜅 ≤ 1/(12𝔇𝑖 ). Similarly, we obtain that 𝒒 (𝑡 )
𝑖
≥ (1+12𝔇𝑖𝜅)−1𝒒 (𝑡−1)𝑖

,

concluding the proof. □

B SEQUENTIAL DECISION MAKING AND STABLE-PREDICTIVE CFR

The main purpose of this section is to provide a stable-predictive variant of CFR following the

construction in [Farina et al., 2019c]. The main result is given in Theorem B.4. We begin by

introducing the basic setting of sequential decision making.

A sequential decision process can be represented using a tree consisting of two types of nodes:

decision nodes and observation nodes. The set of all decision nodes will be denoted by J , while the

set of observation nodes by K . At every decision node 𝑗 ∈ J the agent has to select a strategy 𝒙 𝑗

in the form of a probability distribution over all possible actions A 𝑗 . On the other hand, at every

observation point 𝑘 ∈ K the agent may receive a feedback in the form of a signal in the set S𝑘 . At
every decision point 𝑗 ∈ J of the sequential decision process, the strategy 𝒙 𝑗 ∈ Δ(A 𝑗 ) secures a
utility of the form ⟨ℓ𝑗 , 𝒙 𝑗 ⟩, for some utility vector ℓ𝑗 . The expected utility throughout the entire

decision process can be expressed as

∑
𝑗 ∈J 𝜋 𝑗 ⟨ℓ𝑗 , 𝒙 𝑗 ⟩, where 𝜋 𝑗 is the probability that the agent

reaches decision point 𝑗 . It is important to point out that in all extensive-form games of perfect

recall the agents face a sequential decision process. A central ingredient for our construction of

stable-predictive CFR is a decomposition of the strategy space, described in detail below.
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Decomposition of the Sequence-Form Strategy Space. Our construction will rely on a recursive

decomposition of the sequence-form strategy space X△:
• Consider an observation node 𝑘 ∈ K , and let C𝑘 be the children decision points of 𝑘 . Then,

X△
𝑘
can be decomposed as the following Cartesian product:

X△
𝑘
B

?
𝑗 ∈C𝑘

X△𝑗 ; (32)

• Consider a decision point 𝑗 ∈ J , and let C𝑗 = {𝑘1, . . . , 𝑘𝑚 𝑗
} be the children observation points

of 𝑗 , with𝑚 𝑗 = |A 𝑗 |. Then, X△𝑗 can be decomposed as follows:

X△𝑗 B



©­­­­­­­­­«

𝝀 [1]
...

𝝀 [𝑚 𝑗 ]
𝝀 [1]𝒙1

...

𝝀 [𝑚 𝑗 ]𝒙𝑚 𝑗

ª®®®®®®®®®¬
: (𝝀 [1], . . . ,𝝀 [𝑚 𝑗 ]) ∈ Δ𝑚 𝑗 , 𝒙1 ∈ X△𝑘1 , . . . , 𝒙𝑚 𝑗

∈ X△
𝑘𝑚𝑗


. (33)

In view of this decomposition, the basic ingredients for the overall construction are given in

Proposition B.1 and Proposition B.2. We should note that in the sequel the stability and the

predictive bounds will be tacitly assumed with respect to the pair of norms (∥ · ∥1, ∥ · ∥∞).

Proposition B.1. Consider an observation node 𝑘 ∈ K , and assume access to a 𝜅 𝑗 -multiplicative-

stable (𝛼 𝑗 , 𝛽 𝑗 )-predictive regret minimizer R△𝑗 over the sequence-form strategy space X△𝑗 , for each
𝑗 ∈ C𝑘 . Then, we can construct a max𝑗 {𝜅 𝑗 }-multiplicative-stable (𝐴, 𝐵)-predictive regret minimizer

R△
𝑘
for the sequence-form strategy space X△

𝑘
, where 𝐴 =

∑
𝑗 ∈C𝑘 𝛼 𝑗 and 𝐵 =

∑
𝑗 ∈C𝑘 𝛽 𝑗 .

Proof. Given the decomposition of (32), the composite regret minimizer can be constructed

using a regret circuit for the Cartesian product [Farina et al., 2019b]. In particular, it is direct

to verify that Reg
△,𝑇
𝑘

=
∑

𝑗 ∈C𝑘 Reg
△,𝑇
𝑗

, where Reg
△,𝑇
𝑘

is the regret accumulated by the composite

regret minimizer, and Reg
△,𝑇
𝑗

the regret of each individual regret minimizer R△𝑗 . In particular, by

assumption we know that

Reg
△,𝑇
𝑗
≤ 𝛼 𝑗 + 𝛽 𝑗

𝑇∑︁
𝑡=1

∥ℓ△,(𝑡 )
𝑗
− ℓ△,(𝑡−1)

𝑗
∥2∞.

As a result, we can conclude that

Reg
△,𝑇
𝑘
≤ ©­«

∑︁
𝑗 ∈C𝑘

𝛼 𝑗
ª®¬ + ©­«

∑︁
𝑗 ∈C𝑘

𝛽 𝑗
ª®¬

𝑇∑︁
𝑡=1

∥ℓ△,(𝑡 )
𝑘
− ℓ△,(𝑡−1)

𝑘
∥2∞,

where we used that ∥ℓ△,(𝑡 )
𝑗
− ℓ△,(𝑡−1)

𝑗
∥∞ ≤ ∥ℓ△,(𝑡 )𝑘

− ℓ△,(𝑡−1)
𝑘

∥∞. Finally, themax𝑗 {𝜅 𝑗 }-multiplicative-

stability of R△
𝑘
follows directly from the 𝜅 𝑗 -multiplicative-stability of each R△𝑗 . □

In the following construction the regret circuit for the convex hull uses an advanced prediction

mechanism, analogously to that we explained in Remark A.2.

Proposition B.2. Consider a decision node 𝑗 ∈ J , and assume access to a 𝐾-multiplicative-stable

(𝛼𝑘 , 𝛽𝑘 )-predictive regret minimizer R△
𝑘
over the sequence-form strategy space X△

𝑘
, for each 𝑘 ∈ C𝑗 .

Moreover, assume access to a 𝜅-multiplicative-stable (𝛼, 𝛽)-predictive regret minimizer RΔ over the
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simplex Δ(A 𝑗 ). Then, we can construct a (𝜅 + 𝜅𝐾 + 𝐾)-multiplicative-stable (𝐴, 𝐵)-predictive regret
minimizer R△𝑗 for the sequence-form strategy space X△𝑗 , where

𝐴 = 𝛼 +max

𝑘∈C𝑗
{𝛼𝑘 };

𝐵 = max

𝑘∈C𝑗
{𝛽𝑘 } + 𝛽 ∥Q∥21,

where ∥Q∥1 an upper bound on the ℓ1 norm of all 𝒙 ∈ X△.

Proof. For this construction we will use the regret circuit for the convex hull, stated in Proposi-

tion 4.4. First, we have that, by assumption, the regret Reg
△,𝑇
𝑘

accumulated by each regret minimizer

R△
𝑘
can be bounded as

Reg
△,𝑇
𝑘
≤ 𝛼𝑘 + 𝛽𝑘

𝑇∑︁
𝑡=1

∥ℓ△,(𝑡 )
𝑘
− ℓ△,(𝑡−1)

𝑘
∥2∞.

Moreover, by construction, each regret minimizer R△
𝑘
receives the same utility as R△𝑗 ; this, along

with the guarantee of Proposition 4.4, imply that

Reg
△,𝑇
𝑗
≤ 𝛼 +max

𝑘∈C𝑗
{𝛼𝑘 } +max

𝑘∈C𝑗
{𝛽𝑘 }

𝑇∑︁
𝑡=1

∥ℓ△,(𝑡 )
𝑗
− ℓ△,(𝑡−1)

𝑗
∥2∞ + 𝛽

𝑇∑︁
𝑡=1

∥ℓ (𝑡 )
𝜆
− ℓ (𝑡−1)

𝜆
∥2∞, (34)

where ℓ (𝑡 )
𝜆

represents the utility function received as input by RΔ. Next, similarly to the analysis of

Proposition A.1, we can infer that for some 𝑘 ∈ C𝑗 ,

∥ℓ (𝑡 )
𝜆
− ℓ (𝑡−1)

𝜆
∥∞ = |⟨ℓ△,(𝑡 )

𝑗
− ℓ△,(𝑡−1)

𝑗
, 𝒙 (𝑡 )

𝑘
⟩| ≤ ∥ℓ△,(𝑡 )

𝑗
− ℓ△,(𝑡−1)

𝑗
∥∞∥𝒙 (𝑡 )𝑘

∥1 ≤ ∥ℓ△,(𝑡 )𝑗
− ℓ△,(𝑡−1)

𝑗
∥∞∥Q∥1

where we used that ∥𝒙 (𝑡 )
𝑘
∥1 ≤ ∥Q∥1. As a result, if we plug-in this bound to (34) we can conclude

that

Reg
△,𝑇
𝑗
≤

(
𝛼 +max

𝑘∈C𝑗
{𝛼𝑘 }

)
+

(
max

𝑘∈C𝑗
{𝛽𝑘 } + 𝛽 ∥Q∥21

) 𝑇∑︁
𝑡=1

∥ℓ△,(𝑡 )
𝑗
− ℓ△,(𝑡−1)

𝑗
∥2∞.

Finally, the (𝜅+𝜅𝐾+𝐾)-multiplicative-stability ofR△𝑗 can be directly verified from the decomposition

given in (33). □

Remark B.3. Given the decomposition provided in Equation (33), the regret circuit for the convex

hull should operate on the appropriate “lifted” space, but this does not essentially alter the analysis

of the regret since the augmented entries in the lifted space remain invariant; this is illustrated and

further explained in [Farina et al., 2019b, Figure 7].

Finally, we inductively combine Proposition B.1 and Proposition B.2 in order to establish the

main result of this section: a stable-predictive variant of CFR.

Theorem B.4 (Optimistic CFR). If every local regret minimizer R△𝑗 is updated using OMWU with

a sufficiently small learning rate 𝜂, for each 𝑗 ∈ J , we can construct an (𝐴, 𝐵)-predictive regret
minimizer R△ for the space of sequence-form strategies X△, such that

𝐴 = 𝑂

(
log |A|
𝜂
∥Q∥1

)
;

𝐵 = 𝑂 (𝜂∥Q∥3
1
),

(35)

where |A| B max𝑗 ∈J |A 𝑗 |; ∥ℓ∥∞ is an upper bound on the ℓ∞ norm of the utilities observed by R△;
∥Q∥1 is an upper bound on the ℓ1 norm of any 𝒙 ∈ X△; and 𝔇 is the depth of the decision process.

Moreover, the sequence of strategies produced by R△ is 𝑂 (𝜂𝔇∥Q∥1∥ℓ∥∞)-multiplicative-stable.
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Proof. First of all, it is easy to see that all losses observed by the “local” regret minimizers—i.e.,

the counterfactual losses [Farina et al., 2019c, Section 4]—have ℓ∞ bounded by 𝑂 (∥Q∥1∥ℓ∥∞). As a
result, we can conclude from Lemma 4.6 that the output of each local regret minimizer R△𝑗 under

OMWUwith a sufficiently small learning rate 𝜂 is𝑂 (𝜂∥Q∥1∥ℓ∥∞)-multiplicative-stable. Along with

Proposition B.2, we can inductively infer that the output of R△ is 𝑂 (𝜂𝔇∥Q∥1∥ℓ∥∞)-multiplicative-

stable, for a sufficiently small 𝜂 = 𝑂 (1/(𝔇∥Q∥1∥ℓ∥∞)). This established the claimed bound for the

multiplicative stability.

For the predictive bound, first recall that the range of the entropic regularizer on the 𝑚-

dimensional simplex is log𝑚. Thus, by Lemma 2.3 we know that each local regret minimizer

at information set 𝑗 ∈ J instantiated with OMWU with learning rate 𝜂 will be (log( |A 𝑗 |/𝜂, 𝜂)-
predictive. As a result, the predictive bound in (35) follows inductively from Proposition B.2. □

Naturally, the same bounds apply for constructing a regret minimizer for the subspace X△𝑗 , for
any decision point 𝑗 ∈ J , as required in Proposition 4.1.

C DESCRIPTION OF GAME INSTANCES USED IN THE EXPERIMENTS

In this section we give a description of the game instances used in our experiments. The parameters

associated with each game are summarized in Table 2.

Kuhn poker. First, we experimented on a three-player variant of the popular benchmark game

known as Kuhn poker [Kuhn, 1950]. In our version, a deck of three cards—a Jack, a Queen, and a

King—is employed. Players initially commit a single chip to the pot, and privately receive a single

card. The first player can either check or bet (i.e. place an extra chip). Then, the second player can in

turn check or bet if the first player checked, or folded/called in response to the first player’s bet. If

no betting occurred in the previous rounds, the third player can either check or bet. In the contrary

case, the player can either fold or call. Following a bet of the second player (or respectively the third

player), the first player (or respectively the first and the second players) has to decide whether to

fold or to call. At the showdown, the player with the highest card—who has not folded in a previous

round—gets to win all the chips committed in the pot.

Sheriff. Our second benchmark is a bargaining game inspired by the board game Sheriff of

Nottingham, introduced by [Farina et al., 2019d]. In particular, we used the baseline version of

the game. This game consists of two players: the Smuggler and the Sheriff. The smuggler must

originally come up with a number 𝑛 ∈ {0, 1, 2, 3} which corresponds to the number of illegal items

to be loaded in the cargo. It is assumed that each illegal item has a fixed value of 1. Subsequently, 2

rounds of bargaining between the two players follow. At each round, the Smuggler decides on a

bribe ranging from 0 to 3, and the Sheriff must decide whether or not the cargo will be inspected

given the bribe amount. The Sheriff’s decision is binding only in the last round of bargaining. In

particular, if during the last round the Sheriff accepts the bribe, the game stops with the Smuggler

obtaining a utility of 𝑛 minus the bribe amount 𝑏 that was proposed in the last bargaining round,

while the Sheriff receives a utility equal to 𝑏. On the other hand, if the Sheriff does not accept the

bribe in last bargaining round and decides to inspect the cargo, there are two possible alternatives.

If the cargo has no illegal items (i.e. 𝑛 = 0), the Smuggler receives the fixed amount of 3, while the

utility of the Sheriff is set to be −3. In the contrary case, the utility of the smuggler is assumed to

be −2𝑛, while the utility of the Sheriff is 2𝑛.

Liar’s dice. The final benchmark we experimented on is the game of Liar’s dice, introduced by Lisý

et al. [2015]. In the three-player variant, the beginning of the game sees each of the three players

privately roll an unbiased 3-face die. Then, the players have to sequentially make claims about
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their private information. In particular, the first player may announce any face value up to 3, as

well as the minimum number of dice that the player claims are showing that value among the dice

of all players. Then, each player can either make a higher bid, or challenge the previous claim by

declaring the previous agent a “liar”. More precisely, it is assumed that a bid is higher than the

previous one if either the face value is higher, or if the claimed number of dices is greater. If the

current claim is challenged, all the dices must be revealed. If the claim was valid, the last bidder

wins and receives a reward of +1, while the challenger suffers a negative payoff of −1. Otherwise,
the utilities obtained are reversed. Any other player will receive 0 utility.

Goofspiel. This game was introduced—in its current form—by Ross [1971]. In Goofspiel every

player has a hand of cards numbered from 1 to 𝑟 , where 𝑟 is the rank of the game. An additional

stack of 𝑟 cards is shuffled and singled out as winning the current prize. In each turn a prize card

is revealed, and each player privately chooses one of its cards to bid. The player with the highest

card wins the current prize; in case of a tie, the prize card is discarded. After 𝑟 turns have been

completed, all the prizes have been dealt out and players obtain the sum of the values of the prize

cards they have won. It is worth noting that, due to the tie-breaking mechanism, even two-player

instances are general-sum. We also consider instances with limited information—the actions of the

other players are observed only at the end of the game. This makes the game strategically more

involved as players have less information regarding previous opponents’ actions.

Game Players Decision points Sequences Leaves

Kuhn poker 3 36 75 78

Sheriff 2 73 222 256

Goofspiel 3 837 934 1296

Liar’s dice 3 1536 3069 13797

Table 2. The parameters of each game.
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