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That plants recruit beneficial microbes while simultaneously
restricting pathogens is critical to their survival. Plants must
exclude pathogens; however, most land plants are able to form
mutualistic symbioses with arbuscular mycorrhizal fungi.
Plants also associate with the complex microbial communities
that form the microbiome. The outcome of each symbiotic
interaction—whether a specific microbe is pathogenic, com-
mensal, or mutualistic—relies on the specific interplay of host
and microbial genetics and the environment. Here, we discuss
how plants use metabolites as a gate to select which microbes
can be symbiotic. Once present, we discuss how plants in-
tegrate multiple inputs to initiate programs of immunity or
mutualistic symbiosis and how this paradigm may be expanded
to the microbiome. Finally, we discuss how environmental
signals are integrated with immunity to fine-tune a thermostat
that determines whether a plant engages in mutualism, re-
sistance to pathogens, and shapes associations with the micro-
biome. Collectively, we propose that the plant immune
thermostat is set to select for and tolerate a largely nonharmful
microbiome while receptor-mediated decision making allows
plants to detect and dynamically respond to the presence of
potential pathogens or mutualists.

Keywords: elicitors, environmental signals, MAMPs, mutualistic
symbiosis, PAMPs, plant responses to pathogens, secondary
metabolism

Plants can fix carbon and thus provide microbes with a
habitat enriched in sugars relative to the environment. As a
result, living in association with a plant presents an opportunity
for microbes to access nutrients that are otherwise limited. To
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survive, plants must exclude microbes, including fungi, bacte-
ria, and viruses, that, given the opportunity, would parasitize
plants for carbon and other nutrients. However, most land plants
are able to form mutualistic symbioses with arbuscular my-
corrhizal (AM) fungi, while others associate with beneficial
nitrogen-fixing rhizobia or ectomycorrhizal fungi and manage
to avoid being parasitized by these microbes. Plants also form
stable associations with thousands of microbial taxa that make
up the microbiome (Miiller et al. 2016), which can protect
plants from pathogens (Berendsen et al. 2012) and help plants
access nitrogen, phosphorous, iron, and micronutrients (Hacquard
et al. 2015). How plants recruit beneficial microbes while simul-
taneously restricting pathogens is a fundamental question in the
molecular-plant microbe interactions field and was nominated as
one of the top 10 unanswered questions at the 18th IS-MPMI
Congress in 2019 (Harris et al. 2020).

All symbiotic microbes, be they mutualistic, pathogenic, or
commensal, must be able to utilize host nutrients and evade or
suppress host immunity. Once microbes are present, plants
must decide to tolerate their presence, engage in mutualistic
symbiosis, or mount an immune response. The mechanisms that
govern a subset of symbiotic interactions, such as the mutual-
istic association of nitrogen-fixing rhizobial bacteria with le-
gumes and immunity of the reference plant Arabidopsis to
bacterial pathogens like Pseudomonas syringae, have been
relatively well-studied. Both immunity to pathogens and mu-
tualism require recognition of microbial molecules resulting in
symbiosis or defense. In rhizobia-legume interactions, plants
recognize specific microbial chemical signals, which leads to
mutualistic symbiosis. Plant recognition of pathogens can lead
to a robust immune response and restriction of microbial
growth. Studying the mechanisms that determine the outcomes
of a few model symbioses have provided a framework for
molecular-plant microbe interactions that have informed our
understanding across plant hosts and symbionts.

Beyond intimately coevolved mutualistic or pathogenic as-
sociations, plants provide a habitat for thousands of microbiota.
Unlike rhizobia-legume symbioses or plant-AM symbiosis, in
which extensive coevolution has shaped symbiotic outcomes
(Denison and Kiers 2011), the life history of plant-microbiome
associations is more poorly understood. While there is evidence
for a host-driven genetic component to microbiome community
structure (Bulgarelli et al. 2012; Haney et al. 2015; Schlaeppi
et al. 2014), it is not entirely clear whether plant-microbiome
interactions have the same level of specificity and could be


https://doi.org/10.1094/MPMI-11-20-0318-FI
mailto:cara.haney@msl.ubc.ca
http://creativecommons.org/licenses/by-nc-nd/4.0/

governed by similar principles as well-studied mutualistic
symbioses and pathogens, or whether there are distinct princi-
ples that shape plant-microbiome association.

In this review, we discuss three stages in symbiotic engage-
ment, each with the potential to select for or restrict potential
mutualists or pathogens (Fig. 1). These include i) metabolic
gating whereby microbial access to plants is restricted through
plant production of selective metabolites, ii) dual receptor
recognition in which congruent signals received by multiple
receptors initiate a robust and specific program of symbiosis or
immunity, and iii) integration of environmental signals with
immune homeostasis to fine-tune decision making in symbio-
sis. We primarily focus on how these principles shape inter-
actions in the rhizosphere, in which the most is known about
mutualists and commensals, although the majority of immunity
work has focused on leaves. Collectively, these concepts pro-
vide a paradigm for understanding how plants may engage with
beneficial microbes while restricting pathogens.

METABOLIC GATING: THE CHEMISTRY
OF SELECTING FOR SYMBIONTS

Plants offer a chemically and nutritionally distinct envi-
ronment relative to the soil and air that surround them. The
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rhizosphere may be enriched in central metabolites, including
derivatives of plant photosynthate, along with diverse plant-
derived specialized metabolites (Hacquard et al. 2015; Hartmann
et al. 2008). Plants thus have the potential to screen and select
for specific symbiotic associations through central and spe-
cialized metabolites by secreting i) nutrients that only some
microbes can use, ii) antimicrobial compounds that are toxic to some
but not all microbes, and iii) signals that attract specific microbes
(Fig. 1A). Given the richness of plant metabolites and diversity
across plant species (Owen et al. 2017), plant chemical profiles
have the potential to provide a high degree of symbiotic specificity.

The rhizosphere is a nutritionally complex environment, and
we are only just beginning to reveal the nutrients present and
the consequences for symbiotic associations. Chemicals in root
exudates, such as citric acid, malic acid, and fumaric acid, have
been shown to play roles in recruiting beneficial bacteria
(Rudrappa et al. 2008). Genomic and forward genetic screening
in beneficial Pseudomonas spp. has shown that auxotrophy for
specific amino acids reduces fitness in the rhizosphere, in-
dicating that ability to use host nutrients may be a determining
factor in symbiotic associations (Cheng et al. 2017; Cole et al.
2017; Liu et al. 2018). These observations indicate that the
presence of specific host nutrient sources may be a major de-
terminant of which microbes can initiate symbiosis.
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Fig. 1. Mechanisms of symbiotic engagement. This review discusses three principles by which plants may select for or restrict potential mutualists or
pathogens. A, Plants use selective metabolites (purple) to recruit or select for beneficial microbes (blue) and select against pathogens (gray). B, Dual receptor
recognition allows for precisely distinguishing potential pathogens or mutualists prior to energy investment in an immune or symbiotic response. microbe-
associated molecular patterns (MAMPs) are common between pathogens and mutualists and so are not sufficient for a plant to determine whether a microbe is
friend or foe; however, MAMPs can provide information about the identity of a microbe. Coupling perception of MAMPs with lipochitooligosaccharides
(LCOs), effectors, or damage-associated molecular patterns (DAMPs) has the potential to trigger a strong and specific immunity or symbiotic program. C,
Integration of intrinsic and extrinsic signals with immune homeostasis allows plants to fine-tune decision making in symbiosis and dynamically shape
symbiotic interactions over a plant’s life. This may allow for fine-tuning of microbiome community structure as well as changing a threshold for strong

immunity and symbiosis responses.
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Specialized metabolites may also play a role in selecting for
symbiotic associations and may explain host specificity. Tri-
terpenes, a large and diverse group of plant specialized me-
tabolites, mediate the establishment of the microbiome both by
promoting and restricting growth of specific microbial taxa
(Huang et al. 2019). Salicylic acid is a plant hormone that
affects plant immunity and microbiome structure, potentially,
in part, by acting as a metabolite for specific microbes (Lebeis
et al. 2015). Complex or species-specific nutrients may play a
role in selecting for highly adapted microbes and may con-
tribute to host specificity in symbiotic associations.

Similarly, there are potentially thousands of antimicrobial
compounds produced by plants, and we have only seen the tip
of the iceberg in understanding how these molecules exclude
some microbes while allowing the proliferation of others.
Plant-derived coumarins have antimicrobial activity against
some, but not microbiota, and, as a result, can directly shape the
plant microbiome (Voges et al. 2019). Similarly, canavanine is a
toxic structural mimic of arginine and is produced by certain
legumes; rhizobia have evolved resistance to canavanine,
allowing for their proliferation in the rhizosphere (Cai et al.
2009). These examples suggest that plants may be able to use
metabolites to select for specific adapted microbes while ex-
cluding others.

Metabolites secreted by plants can also signal the presence of
a symbiont-friendly host. Nitrogen-fixing rhizobia can sense
plant flavonoids through binding of the bacterial regulator of
Nod factor biosynthesis NodD (Fisher and Long 1992). The
plant hormone strigolactone can trigger AM fungal spore ger-
mination and thus signals the presence of a potential plant host
(Akiyama and Hayashi 2006; Besserer et al. 2006). Commen-
sals may also use the presence of plant metabolites including
polyamines (Liu et al. 2018), amino acids, organic acids, or
sugars (Sasse et al. 2018) to signal the presence of a plant host.
Secretion of positive signals may provide plants with a way to
call to only beneficial microbes among diverse soil microbiota.

Estimates are that plants may produce hundreds of thousands
of compounds, a small fraction of which have been character-
ized (Jacobowitz and Weng 2020). As a result, the metabolic
potential of plants could be a major determinant of host
specificity and actively or passively shape host-symbiotic
interactions. Characterizing the diversity of plant metabolites
will undoubtedly reveal the role that these compounds play in
how plants select for beneficial microbes while restricting
pathogens.

FINE-TUNING RECOGNITION: INTEGRATION
OF DUAL SIGNALS TO DISTINGUISH FRIEND
FROM FOE

Once a microbe has located a host in which it can compete
for nutrients and survive the onslaught of host-derived anti-
microbials, the microbe has the potential to become symbiotic.
Once a microbe is symbiotic, the exchange of molecular sig-
nals, combined with host and microbial genetic potential, helps
plants determine whether a microbe is a friend or foe (Zipfel
and Oldroyd 2017). However, many of the potential molecular
signals do not necessarily distinguish pathogen from com-
mensals. As a result, perception and integration of multiple
cues is required to initiate a successful immunity or symbiosis
program (Figs. 1B and 2).

Plant genomes encode a staggering suite of receptors, in-
cluding hundreds of predicted membrane-associated pattern
recognition receptors (PRRs) (Zipfel 2014) and cytoplasmic
Nod-like receptors (NLRs) (Monteiro and Nishimura 2018).
This receptor diversification has been proposed to function in
expanding innate immunity, although the ligands for only a

very small portion have been identified (Zipfel 2014). Specific
PRRs are required for symbiosis or function in pattern triggered
immunity (PTI) and recognize conserved microbe-associated
molecular patterns (MAMPs) like chitin, flagellin, and pepti-
doglycan (Zipfel and Oldroyd 2017). Collectively, these ob-
servations suggest that plants have the receptor diversity to
distinguish a vast number of potential symbionts.

Recognizing pathogens.

Because many MAMPs are conserved in both pathogenic and
nonpathogenic microbes, recognition by a combination of re-
ceptors may be necessary to initiate a robust immune response
(Jones and Dangl 2006). In plant immunity, the long-standing
zig-zag paradigm proposes that recognition of a MAMP may
lead to a weak PTI response, while recognition of a MAMP and
an effector protein might lead to robust effector-triggered im-
munity (ETI) (Jones and Dangl 2006). More recent evidence
supports that PTI and ETI are not distinct pathways but rather
converge to trigger a robust antibacterial immune response
(Ngou et al. 2020; Yuan et al. 2020). While effector recognition
increases expression of several key PTI-associated genes, ef-
fector recognition alone does not seem to provide resistance
against bacterial pathogens unless paired with MAMP per-
ception (Yuan et al. 2020). Effectors and, perhaps, damage-
associated molecular patterns (DAMPs) may generate a more
robust immune response by increasing gene expression of
components involved in PTI (Yuan et al. 2020; Zhou et al.
2020). For example, effector perception enhances RBOHD
expression, while flg22 induces a posttranslational increase in
RBOHD activity that synergistically increases ROS accumu-
lation (Kadota et al. 2014; Li et al. 2014; Yuan et al. 2020). Just
as signaling through cell surface PRRs depends upon the in-
tracellular receptors of ETI for resistance against effector-
containing bacterial pathogens, we discuss how integration of
multiple signals may allow for initiation of symbiosis with
mutualists or an immune response against members of the
microbiota. It is worth noting that, as plant immunity has pri-
marily been studied in leaves, it is possible that distinct para-
digms contribute to immunity in the rhizosphere (Chuberre
et al. 2018; Millet et al. 2010).

Recognizing mutualists.

Recognition by multiple receptors and integration of multiple
symbiotic and immunity signals is required for establishment of
mutualistic symbiosis. Rhizobia-legume symbiosis is initiated
when rhizobia secrete lipochitooligosaccharides (LCOs), re-
ferred to as Nod factors, that consist of a short-chain chitin
backbone with different substitutions (D’Haeze and Holsters
2002; Gough and Cullimore 2011). Interestingly, many le-
gumes have multiple LysM receptors that are required to rec-
ognize the correct Nod factor and, in some cases, regulate
parallel signaling pathways (Limpens et al. 2003). For instance,
Medicago truncatula NFP and LYK3 recognize the non-
reducing and reducing ends of Nod factor, respectively (Smit
et al. 2007), and initiate signaling pathways that regulate cal-
cium spiking and nodule formation (NFP) and infection thread
initiation (LYK3) (Jones et al. 2007). By requiring successful
recognition by multiple receptors, plants can use multiple
check points to ensure the presence of the correct symbiont and
exclude potential cheaters.

Nod factor is not the only microbial signal required to initiate
rhizobia-legume symbiosis; other conserved MAMPs play roles
in establishing beneficial associations, potentially by prevent-
ing overgrowth or symbiotic mimicry. Rhizobial exopoly-
saccharides (EPSs) are polysaccharide polymers secreted into
the surrounding environment and are required for the formation
of infection threads during nodulation (Denny 1995; Milling



et al. 2011; Robertsen et al. 1981; Saile et al. 1997). A LysM
receptor-like kinase identified in Lotus japonicus is required for
symbiosis and has been implicated in perception of rhizobial
EPSs (Kawaharada et al. 2015). Lipopolysaccharides (LPSs)
are major components of the bacterial outer membranes that
comprise lipid A, a core oligosaccharide, and an O-antigen
polysaccharide (Becker et al. 2005; Erridge et al. 2002). Nod-
ulation does not occur when plants are inoculated with mutants
defective in LPS synthesis or altered LSP structure, indicating
that LPSs might also act as signaling molecules for the estab-
lishment of symbiotic relationships (Bourassa et al. 2017) or
that the wrong LPS might trigger immunity leading to non-
functional nodules. Collectively, this supports that multiple
positive signals or positive signals without negative signals are
required to initiate symbiosis.

In addition to rhizobial Nod factor, LCOs are produced by
AM and ectomycorrhizal fungi during the establishment of
symbiosis (Cope et al. 2019; Maillet et al. 2011). However, it
was recently reported that LCOs are also produced by non-
symbiotic and even pathogenic fungi (Rush et al. 2020), sug-
gesting that LCOs might have other roles beyond symbiotic
signals. Indeed, LCOs suppress immunity signaling, potentially
independently of symbiotic signaling (Feng et al. 2019; Liang
et al. 2013). Taken together, these findings suggest that either
plants have evolved distinct receptors and signaling pathways
for symbiosis and immunity or that there may be overlap in
perception of mutualists and pathogens.

Emergent evidence supports that initiation of mutualistic
symbiosis may involve inputs from overlapping immunity and

symbiosis pathways. LysM receptors recognize diverse N-
acetyl glucosamine polymers, including chitin and peptido-
glycan, the major cell-wall components of fungi and bacteria,
respectively (Zipfel and Oldroyd 2017). Chitin and peptido-
glycan are recognized as MAMPs by plants, leading to the
induction of innate immunity. Studies on AM and chitin rec-
ognition in rice led to an interaction model in which a LysM
receptor-like kinase, OsCERKI, plays dual roles in immunity
and symbiosis (He et al. 2019; Miyata et al. 2014). OsCERK1
does not have high affinity for binding chitin oligosaccharides;
instead, other members of the LysM receptor-like protein ki-
nase family distinguish the ligands according to the length of
chitin oligosaccharides and, then, transduce signals via the
formation of complexes with OsCERK1 (Hayafune et al. 2014;
He et al. 2019). Allele variation in OsCERK1 contributes to
the efficiency of AM colonization (Huang et al. 2020). In
contrast, OsCERKI1 orthologs in legumes underwent several
rounds of gene duplication, and one copy maintains a similar
dual function in AM and immunity, but a paralogous copy
might have evolved leading to neofunctionalization for Nod
factor perception (Bozsoki et al. 2017; Gibelin-Viala et al. 2019;
Leppyanen et al. 2017). Interestingly, these OsCERK1 ortho-
logs in legumes might have higher affinity binding to allow for
discriminating between chitin oligosaccharides and Nod factor
(Bozsoki et al. 2020). Given that fungal and bacterial symbionts
produce both symbiosis- and immunity-inducing signals, it is
very likely that hosts must possess complex logic gates to de-
termine whether they should initiate symbiosis or immunity and
many pathways are integrated to control the final outcome.
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Fig. 2. Multiple receptor inputs contribute to specific and robust immunity and symbiosis responses. To decide whether to engage in immunity or symbiosis, a
plant must identify the type of microbe it is interacting with and determine whether that microbe is mutualistic or pathogenic. Robust activation of a specific
pathway depends on the combined input of microbe-associated molecular patterns (MAMPs) and one or more lifestyle associated factor (e.g., damage-
associated molecular patterns (DAMPs), effectors, lipochitooligosaccharides [LCOs]). In this example, chitin informs the plant that the symbiont is a fungus,
and LCOs or effectors inform the plant whether it is a mutualist (blue components and arrows) or pathogenic (red components and arrows). The central boxes
represent basal immunity pathways and common symbiotic pathways, which include the respective signaling cascades, posttranslational modifications, and
gene induction required for initiation of an immune or mutualistic response. At the bottom are the microbe-specific responses for resistance against or
mutualism with a specific type of microbe. Activated pathways are indicated by white boxes and inactive pathways are shown in gray. Dotted lines indicate
weak signaling and activation, while solid lines reflect stronger interactions. Wide arrows represent either a synergistic or additive response. PRR = pattern
recognition receptor, NLR = Nod-like receptor.
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Recognizing microbiota.vs.

The plant immune system clearly plays a role in shaping the
microbiome, and members of the microbiota must evade or
suppress immunity in order to survive (Teixeira et al. 2019).
Yet, how plants might initiate symbiotic or immunity programs
against the thousands of members of the microbiome is less
clear. In many cases, plants cannot distinguish MAMPs from
beneficial vs. pathogenic microbes. While certain mutualists
like rhizobium may have distinct or cloaked MAMPs that are
not recognized by plants (Jones et al. 2007), other commensals,
like P. fluorescens, have MAMPs that are similarly antigenic as
those in their pathogenic relatives (Yu et al. 2019). Most rhi-
zosphere microbiome members do not have known effectors
that trigger ETI, nor do they encode positive signals, like Nod
factor, that might trigger a symbiotic program. As a result, it is
possible that plants may simply tolerate the diverse microbes
that are able to survive in close association without causing any
major harm or offering clear benefits.

In the event members of the microbiota do cause harm to the
host, an intriguing emergent possibility is that plants may use
cellular damage through plant-derived DAMPs (Hander et al.
2019; Poncini et al. 2017; Zhou et al. 2020) to exclude certain
members of the microbiome. DAMPs are intracellular plant
molecules that can induce an immune response only when
bound to their corresponding extracellular receptors (Choi and
Klessig 2016). To date, a wide array of immunomodulatory
DAMPs (e.g., plant elicitor peptides [Peps], PAMP-induced
secreted peptides, extracellular ATP, and oligogalacturonides)
and their respective receptors (e.g., PEPRs, RLK7, P2K1 and
P2K2, and WAK1) have been identified in Arabidopsis (Brutus
et al. 2010; Hou et al. 2014; Jewell et al. 2019; Pham et al.
2020; Yamaguchi et al. 2010), indicating that plants have the
potential to identify the diverse types of damage that microbes
might elicit.

When combined with MAMP perception, cell damage has
the potential to elicit a robust and highly specific local immune
response (Zhou et al. 2020). In contrast, cellular damage or the
flagellin peptide flg22 alone elicits a more limited immune
response in roots (Zhou et al. 2020). In the presence of flg22,
laser ablation of a single root cell induces a flg22-receptor
(FLS2)-dependent immune response in adjacent cells but not in
distal root cells, indicating that plants elicit a localized response
upon sensing the co-occurrence of MAMPs and damage (Zhou
et al. 2020). This raises an interesting question of whether
plants could use a targeted immune response to actively inhibit
bacteria that damage plant cells while leaving bacteria associ-
ated with adjacent nondamaged cells intact. Whether plants can
use damage to distinguish and select for beneficial over harmful
bacteria is currently unknown.

The type of damage induced by a microbe may depend on the
lifestyle of the assailant and, when combined with MAMP
signals, may provide clues as to the identity of the invading
organism. For example, the cell wall-degrading enzymes
common in fungi and bacteria may generate vastly more cell
wall-degradation compounds (e.g., cellobiose, oligogalactur-
onides) than nematodes (Berlemont and Martiny 2013;
Saravanakumar et al. 2018, 2016). In contrast, the piercing
mouthparts of nematodes could release vastly more in-
tracellular DAMPs (such as Peps) than bacteria or fungi (Lee
et al. 2018; Klauser et al. 2015; Zhang and Gleason 2020). This
suggests that simultaneous perception of a DAMP and MAMP
generated by the same microbe could signal a more tenacious
invader that requires a more specific and robust immune re-
sponse. In support of this, cellobiose cotreated with chitin leads
to relatively higher induction of WRKY30 than cellobiose
cotreated with flg22 (Souza et al. 2017). Pepl can induce a
plant immune response that impairs plant parasitic nematode

reproduction (Zhang and Gleason 2020); yet, Pepl-triggered
immunity seems to have little overlap with signaling pathways
commonly attributed to bacterial defense (Zhang and Gleason
2020; Zhou et al. 2020). These data support an intriguing
possibility whereby combined DAMP and MAMP perception
could provide dual inputs to allow for plants to fine-tune a
localized immune response against the specific invader while
leaving the majority of the members of the microbiome
unharmed.

SETTING THE THERMOSTAT: PLANT
IMMUNE HOMEOSTASIS

In animals, the immune system only develops properly in the
presence of commensals. Germ-free mice have highly altered
gut architecture and lack normal immune function (Gallo and
Hooper 2012). In contrast, most studies on the plant immune
system have been performed with the reference plant Arabi-
dopsis under highly controlled conditions comparing the plant
immune response to a microbe, MAMP, or DAMP, to an often-
axenic baseline. As a result, we have a much better sense of the
immune status of germ-free plants than for plants growing in
natural settings. Perhaps not surprisingly, an enormous number
of single microbial isolates affect plant growth and immune
signaling (Yu et al. 2019). Similarly, the presence of a complex
community may suppress the effects of a single potentially
deleterious microbe (Finkel et al. 2020). This suggests that the
normal physiology and immune function in plants may be
established by associations with their microbiota. The effects of
individual microbes may be revealed simply by the fact that
plants are often studied under highly controlled conditions, and
a single microbe is added to observe how the immune ther-
mostat shifts.

Environmental conditions may also constitute key factors in
determining plant-microbe interactions. The plant immune
status and microbiome community change under a variety of
abiotic stresses. For instance, the sorghum and rice rhizosphere
microbiomes shift during drought stress (Edwards et al. 2018;
Xu et al. 2018) and temperature affects plant immunity
(Alcazar and Parker 2011). Even plant age and development
shape the microbiome (Edwards et al. 2018) and affect plant
susceptibility to pathogens (Kus et al. 2002). Collectively these
observations suggest that the plant symbiosis thermostat is not
fixed but, rather, can be fine-tuned over the course of a plant’s
life by extrinsic and intrinsic signals (Fig. 1C).

Similarly, plant nutrient status has been shown to affect the
microbiome composition, mutualistic symbioses, and pathogen
susceptibility. Perhaps this is unsurprising, as nutrient exchange
or competition drives many symbiotic associations. The
Arabidopsis microbiome changes during phosphate stress
(Castrillo et al. 2017). Under low nitrogen conditions, legumes
secrete larger amounts of flavonoids that, in turn, enhance
legume-rhizobia symbioses (Cooper 2004) while they restrict
nodulation in the presence of high levels of nitrate (Gibson and
Harper 1985). Similarly, mycorrhizal symbiotic relationships
are governed by low levels of phosphate (Karandashov and
Bucher 2005). Moreover, it has been found that certain patho-
genic microbes can undergo a transition to nonpathogenic or
even beneficial microbes, depending upon nutritional condi-
tions. For example, in response to low phosphate, the fungus
Colletotrichum tofieldiae enters into an endophytic association
with Arabidopsis that contributes to enhancing host plant
growth (Hiruma et al. 2016). Collectively, these data indicate
that plants must integrate nutritional status with immunity to
maintain symbiotic homeostasis.

Taken together, these observations suggest that the symbiotic
setpoint is not fixed but, rather, could be dialed up or down over



the life of a plant. Plants might integrate environmental and
developmental cues to produce more or fewer antimicrobials in
leaves or secrete more nutrients into the rhizosphere (Fig. 1C).
We suggest that this symbiotic thermostat could establish a general
symbiotic baseline, tuning the associations with broad groups of
microbial taxa in leaves or roots. Additionally, the symbiotic
thermostat could determine whether receptor-mediated perception
of individual microbes warrants the investment of resources
necessary to engage with mutualists or ward of pathogens.

ON THE HORIZON: BRIDGING MICROBIAL
ECOLOGY AND MOLECULAR BIOLOGY

As our view of plant-microbe interactions has expanded to
encompass plant interactions with thousands of microbiota, so
must our view of molecular plant-microbe interactions. Much
of our understanding of molecular plant-microbe interactions
has been shaped by a small number of model systems. From
these genetically tractable systems, we have learned that plants
can produce signals to recruit specific microbes while secreting
molecules that are toxic to others. We know that plants can
perceive microbes or the effects of those microbes on cellular
function. Recent research has largely focused on revisiting
paradigms of innate immunity or symbiosis in the context of the
microbiome. And while well-studied factors like receptors and
plant immune hormones do seem to affect microbiome struc-
ture (Chen et al. 2020; Lebeis et al. 2015; Rey et al. 2015), in
some cases, the effects are relatively less pronounced than in
plant-pathogen and rhizobia-legume interactions, suggesting
that distinct mechanisms may shape the microbiome. As re-
verse genetic approaches are limited by our imagination and
predictive power, there may be yet undiscovered principles that
shape plant-microbiome interactions.

In nature, an individual plant must make thousands of deci-
sions, over its lifetime, whether to engage or attack, and these
choices are affected by its age and nutritional status. However,
the master program of how plants integrate recognition of mi-
crobes with extrinsic and intrinsic cues to create a hospitable
environment or restrict microbial growth is largely unknown.
Testing multiple immune outputs, such as resistance to herbi-
vores and pathogens and colonization by beneficial microbes
(Haney et al. 2018; Vishwanathan et al. 2020), can provide a
more wholistic picture of plant immunity. Similarly, direct
comparison of germ-free, gnotobiotic, and soil-grown plants
can help reveal the baseline immune thermostat setting and how
it changes in response to developmental, biotic, and abiotic
signals. Coupling work in model systems to reveal mechanisms
with multitrophic and ecological studies has the potential to
explain how plants navigate interactions with beneficial and
pathogenic microbes to establish symbiotic homeostasis.
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