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ABSTRACT CCS CONCEPTS

Recently, Daskalakis, Fishelson, and Golowich (DFG) (NeurIPS ‘21)
showed that if all agents in a multi-player general-sum normal-form
game employ Optimistic Multiplicative Weights Update (OMWU),
the external regret of every player is O(polylog(T)) after T repeti-
tions of the game. In this paper we extend their result from external
regret to internal and swap regret, thereby establishing uncoupled
learning dynamics that converge to an approximate correlated equi-
librium at the rate of O (T_l). This substantially improves over the
prior best rate of convergence of O(T~3/*) due to Chen and Peng
(NeurIPS ‘20), and it is optimal up to polylogarithmic factors.

To obtain these results, we develop new techniques for establish-
ing higher-order smoothness for learning dynamics involving fixed
point operations. Specifically, we first establish that the no-internal-
regret learning dynamics of Stoltz and Lugosi (Mach Learn ‘05)
are equivalently simulated by no-external-regret dynamics on a
combinatorial space. This allows us to trade the computation of the
stationary distribution on a polynomial-sized Markov chain for a
(much more well-behaved) linear transformation on an exponential-
sized set, enabling us to leverage similar techniques as DGF to
near-optimally bound the internal regret.

Moreover, we establish an O(polylog(T)) no-swap-regret bound
for the classic algorithm of Blum and Mansour (BM) (JMLR ‘07).
We do so by introducing a technique based on the Cauchy Integral
Formula that circumvents the more limited combinatorial argu-
ments of DFG. In addition to shedding clarity on the near-optimal
regret guarantees of BM, our arguments provide insights into the
various ways in which the techniques by DFG can be extended and
leveraged in the analysis of more involved learning algorithms.
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1 INTRODUCTION

Online learning and game theory share an intricately connected
history tracing back to Robinson’s analysis of fictitious play [34],
as well as Blackwell’s seminal approachability theorem [5], which
served as the advent of the modern no-regret framework [1, 23].
These connections have since led to the discovery of broad learn-
ing paradigms such as Online Mirror Descent, encompassing algo-
rithms such as the celebrated Multiplicative Weights Update (MWU)
[27]. Importantly, uncoupled learning dynamics overcome the of-
ten unreasonable assumption that players have perfect knowledge
of the game, while they have also emerged as a central compo-
nent in several recent landmark results in computational game
solving [7, 28]. Moreover, another compelling feature of the no-
regret framework is that it guarantees robustness even against
adversarial opponents. Indeed, there are broad families of learning
paradigms [37] that accumulate O(VT) regret after T iterations,
a barrier which is known to be insuperable in fully adversarial
environments [9]. However, this begs the question: What if players
do not face adversarial losses, but instead face predictable losses?
This question was first addressed by Daskalakis, Deckelbaum
and Kim [12]. They devised a decentralized variant of Nesterov’s
excessive gap technique [30], enjoying a near-optimal rate of con-
vergence of O(logT/T) to Nash equilibrium when employed by
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both players in a two-player zero-sum normal-form game. (For
brevity we will henceforth omit the specification “normal-form”
when referring to games.) At the same time, their algorithm also
guarantees optimal (external) regret under worst-case losses. Sub-
sequently, Rakhlin and Sridharan [32, 33] introduced an optimistic
variant of Online Mirror Descent—considerably simpler than the
algorithm proposed in [12]—achieving optimal convergence rate
to Nash equilibrium, again in zero-sum games. Then Syrgkanis,
Agarwal, Luo and Schapire [40] identified a broad class of predictive
learning algorithms that induce no-regret learning dynamics in
multi-player general-sum games that guarantee O(T'%) regret if
followed by each player. This line of work culminated in a recent
advancement by Daskalakis, Fishelson and Golowich [13], where
it was shown that, when all players employ an optimistic variant
of MWU, each player incurs only O(polylog(T)) regret. In turn,
this implies that the average product distribution of play induced
by optimistic MWU is an o (T_l)—approximate1 coarse correlated
equilibrium (CCE) after T repetitions of the game.

Yet, it is well-understood that a CCE prescribes a rather weak
notion of equilibrium [21]. An arguably more compelling solution
concept? in multi-player general-sum games is that of correlated
equilibria (CE) [3]. Like CCE, it is known that CE can be computed
through uncoupled learning dynamics. Thus, our paper is concerned
with the following central question:

Are there learning dynamics that, if followed by all
players in a multi-player general game, guarantee con-
vergence with rate O (T™1) to a correlated equilibrium?

The main contribution of our paper is to answer this question in the
affirmative. Unlike in the case of CCE, typical no-external-regret
dynamics such as MWU are known not to guarantee convergence
to CE. Instead, specialized no-internal-regret or no-swap-regret al-
gorithms have to be employed to converge to CE [9]. Compared
to no-external-regret dynamics, these learning dynamics are con-
siderably more complex in that all known algorithms require the
computation of the stationary distribution of a certain Markov
chain at every iteration. Our main primary technical contribution
is to develop techniques to overcome these additional challenges.

1.1 Contributions

Our work presents a refined analysis of the no-internal-regret algo-
rithm of Stoltz and Lugosi [38], as well as the no-swap-regret algo-
rithm of Blum and Mansour [6], both instantiated with Optimistic
Multiplicative Weights Update (OMWU). Going forward, we will
refer to those learning dynamics as SL-OMWU and BM-OMWU,
respectively. Our primary contribution is to show that both of
these algorithms exhibit a near-optimal convergence rate of O(T 1),
settling our main question in the affirmative. More precisely, for
SL-OMWU our main theorem is summarized as follows.

THEOREM 1.1. Consider a general-sum multi-player game with
m players, with each player i € [[m]| having n; actions. There

! As usual, we use the notation O(-) to suppress polylogarithmic factors of T. Also
note that for simplicity, and with a slight abuse of notation, in our introductory section
we sometimes use the big-O notation to hide game-specific parameters.

In general-sum multi-player games it is typical to search for solution concepts more
permissive than Nash equilibria [29] as the latter is known to be computationally
intractable under reasonable assumptions [4, 10, 14, 18, 25, 36].

1. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm

exists a universal constant C > 0 such that, when all players se-
lect strategies according to algorithm SL-OMWU with step sizen =
1/(C - mlog4 T), the internal regret of every player i € [[m]] is

bounded by O(m log n;log? T). As a result, the average product dis-

tribution of play is an O ((m log nlog* T)/T) -approximate correlated
equilibrium.

This matches, up to constant factors, the rate of convergence for
coarse correlated equilibria as follows by the result in [13], and it
is optimal, within the no-regret framework, up to polylogarithmic
factors [12]. This also substantially improves upon the O(T~3/%
rate of convergence for correlated equilibria recently shown by
Chen and Peng [11], both in terms of the dependence on n; and T.
Moreover, since swap regret on an n-simplex is trivially at most n
times larger than internal regret (e.g., see Blum and Mansour [6, pp.
1311]), Theorem 1.1 directly gives a bound in terms of swap regret
as well, stated as follows.

CoROLLARY 1.2. Ifall players select strategies according to algo-
rithm SL-OMWU, the swap regret of every playeri € [[m]] is bounded

by O(m n;logn;log? T).

For the popular and more involved algorithm BM-OMWU, our
main theorem is summarized as follows.

THEOREM 1.3. Consider a general-sum multi-player game with
m players, with each playeri € [[m]] having n; actions. There ex-
ists a universal constant C > 0 such that, when all players select
strategies according to algorithm BM-OMWU with step size =
1/(C - mn? log*(T)), the swap regret of every player i € [[m]] is
bounded by O(m n‘i1 log n; log*(T)). As a result, the average prod-
uct distribution of play is an O((m n*lognlog! T)/T) -approximate
correlated equilibrium.

Finally, we remark that SL-OMWU and BM-OMWU instantiated
with the learning rates described in Theorems 1.1 and 1.3 guarantee
near-optimal swap regret (in T) when all players use the same
dynamics, but might not against general, adversarial losses. To
guarantee near-optimal swap regret in both the adversarial and the
non-adversarial regime, an adaptive choice of learning rate similar
to that in [13] can be used (see Corollary 3.5).

1.2 Overview of Techniques

The recent work of Daskalakis, Fishelson and Golowich [13] identi-
fied higher-order smoothness of no-external-regret learning dynam-
ics as a key property for obtaining near-optimal external regret
bounds. In particular, they showed that for the no-external-regret
dynamics OMWU, the higher-order differences (Definition 3.3) of
the sequence of loss vectors decay exponentially at orders up to
roughly log T. However, establishing such higher-order smoothness
for no-internal- and no-swap-regret learning dynamics is a consid-
erable challenge since the known algorithms involve computing the
stationary distribution of a certain Markov chain at every iteration.
3Finding a correlated equilibrium can be phrased as a linear programming problem, and
thus e-approximate correlated equilibria can be found in time poly(m, n,log(1/€)),
where n = max;e|(m]) {n; }, for succinct multi-player games [31]. However, the proce-

dure for doing so, ellipsoid against hope, cannot be phrased as uncoupled dynamics
and is unlikely to be run by players competing in a repeated game.
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Our main technical contribution is to develop new techniques to
effectively address this challenge.

Proof of Theorem 1.1: Analyzing SL-OMWU. First, we show that
internal regret minimization on an n-simplex can be simulated
by no-external-regret dynamics on the combinatorial space of all
n-node directed trees (Theorem 3.1). Our equivalence result en-
ables us to trade the computation of a stationary distribution of a
polynomial-sized Markov chain for a (much more well-behaved) lin-
ear transformation on an exponential-sized set. To our knowledge,
this is the first no-internal-to-no-external-regret reduction that
sidesteps the computation of stationary distributions of Markov
chains, and might have applications beyond the characterization of
higher-order smoothness of the dynamics. Based on our equivalence
result, we then adapt and leverage the known higher-order smooth-
ness techniques for no-external-regret dynamics [13]. We stress
that our analysis is eventually brought back to a “low-dimensional”
regret minimizer, instead of solely operating over the space of di-
rected trees; this step is crucial for obtaining the logarithmic depen-
dence on the number of actions of each player for no-internal-regret
dynamics (Theorem 1.1).

The equivalence result mentioned in the previous paragraph
arises as a consequence of the classic Markov chain tree theorem,
which provides a closed-form combinatorial formula for the sta-
tionary distribution of an ergodic Markov chain, and crucially re-
lies on the multiplicative structure of the update rule of (O)MWU.
Specifically, we prove that the stationary distributions of certain
Markov chains whose transition probabilities are updated through
(O)MWU are themselves linear transformations of iterates pro-
duced by (O)MWU. Our equivalence gives a direct way to argue
about the higher-order smoothness of stationary distributions of
Markov chains, substantially extending the first-order smoothness
observation of Chen and Peng [11]. Furthermore, we expect the
equivalence to continue to hold beyond stationary distributions of
Markov chains, to the more general problem of computing fixed
points of linear transformations required in the framework of Phi-
regret [19, 22, 39].

Proof of Theorem 1.3: Analyzing BM-OMWU. The techniques we
described so far enable us to establish the near-optimal internal and
swap regret bounds for SL-OMWU (Theorem 1.1 and Corollary 1.2),
as well as the corresponding convergence to correlated equilibrium.
However, different techniques are necessary to establish the regret
bound of BM-OMWU (Theorem 1.3). At a high level, BM-OMWU
runs n; independent external regret minimizers for each player i,
aggregates the outputs into a transition matrix of a Markov chain,
and then computes its stationary distribution. Because of the in-
dependence between the n; regret minimizers, it is unclear if an
analogue of the simulation result (Theorem 3.1) holds.

Thus, rather than arguing indirectly in terms of a supplementary
external-regret minimizer, we directly analyze the higher-order
smoothness of a sequence of stationary distributions of Markov
chains, at the cost of ultimately obtaining a worse dependence on
the number of actions n; in our swap regret bounds. Using the
machinery of [13] (in particular, the boundedness chain rule of
Lemma A.1), doing so boils down to obtaining a bound on the
Taylor series coefficients of the function that maps the entries of
an ergodic matrix Q to Q’s stationary distribution. Taken literally,
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such a bound is not quite possible, since the stationary distribution
may have singularities around the non-ergodic matrices. However,
we show that by using the Markov chain tree theorem together
with the multi-dimensional version of Cauchy’s integral formula,
it is possible to bound the Taylor series of the function mapping
the logarithms of the entries of Q to its stationary distribution
(see Lemma C.3). Leveraging the exponential-type structure of the
OMWU updates, we then use this bound to obtain the desired guar-
antee on the higher-order differences of the stationary distributions
(Lemma 4.1).

1.3 Further Related Work

No-internal-regret algorithms that require black-box access to a sin-
gle no-external-regret minimizer are known in the literature [9, 38].
This is in contrast with the construction of Blum and Mansour
[6] for the stronger notion of swap regret, which requires n inde-
pendent no-external-regret minimizers—one per each action of the
player. Nevertheless, both classes of algorithms involve computing
the stationary distribution of a certain Markov chain at every iter-
ation. The intrinsic complexity associated with the computation
of a stationary distribution was arguably the main factor limiting
our ability to give accelerated convergence guarantees for either
class of algorithms. Indeed, while learning dynamics guaranteeing
external regret bounded by O(Tl/ 4) have been known for several
years [40], a matching bound for swap regret was only recently
shown by Chen and Peng [11].

The setting studied in our paper (learning dynamics for corre-
lated equilibrium) is substantially more challenging than the prob-
lem of giving accelerated learning dynamics for Nash equilibria in
two-player zero-sum games, as well learning dynamics for smooth
games [35]. Indeed, while in our setting the convergence to the
equilibrium is driven by the maximum internal (or swap) regret
cumulated by the players, in the latter two settings the quality
metric is driven by the sum of the external regrets. As shown by
Syrgkanis, Agarwal, Luo and Schapire [40], it is possible to guar-
antee a constant sum of external regrets under a broad class of
predictive no-regret algorithms which includes optimistic OMD and
optimistic FTRL under very general distance-generating functions.
This is in contrast with the case of no-regret dynamics for CCE
and CE, where it remains an open question to give broad classes of
algorithms that can achieve near-optimal convergence.

Finally, we point out that optimistic variants of FTRL such as
OMWU have been shown to also converge in the last-iterate sense,
and the convergence is known to be linear* [15-17, 41], but this
holds only for restricted classes of games, such as two-player zero-
sum games.

2 PRELIMINARIES

Consider a finite normal-form game T consisting of a set of m
players [[m]] := {1,2,..., m} such that every player i has an action
space A; = [[n;]], for some n; € N. The joint action space will
be represented with A = Ay X --- X Ap,. For a given action
profile @ = (a1,...,am) € A, the loss function A; : A — [0,1]
specifies the loss of player i under the action profile a; note that the

“However, the convergence rate of the last-iterate may not depend polynomially in
the size of the game [41].
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Figure 1: Set T‘l1 of all directed trees rooted at node 1 in a graph with 4 nodes.

normalization of the losses comes without any loss of generality.
A mixed strategy x; € A(A;) for a player i € [[m]] is a probability
distribution over i’s action space Aj;, so that the coordinate x; [ j]
indicates the probability that player i will select action j € [[n;]].
A deterministic strategy refers to a mixed strategy supported on
a single coordinate. Given a joint vector of mixed strategies x =
(x1,...,xm), the expected loss ¢; of player i is such that ¢[j] =
Eq_;~x_;[Ai(j,a—;)], for all j € [[n;]], where we used the notation
a_; to denote the vector a excluding the coordinate corresponding
to i’s action; i.e. a—; = (ay, . L adm).

s Bin1, it - -

Hindsight Rationality and Regret Minimization. A standard qual-
ity metric in the theory of learning in games is hindsight rationality.
Hindsight rationality encodes the idea that a player has “learnt” to
play the game when, looking back at the history of play, there is no
transformation of their strategies that—applied to the whole history
of play—would have led to strictly better utility for that player. This
notion is operationalized through Phi-regret. Formally, the ®;-regret
incurred by the sequence of strategies xl.(l), .. .,xi(T) € A" selected
by player i € [[m]] is defined as

T T
Regh = Y (x". ey = min 3" ("), 6). @
gy, t=1<x, ) fin t=1<¢> (x;7).¢,) (1)

Notable special cases are identified based on the particular choice
of transformations ®;, as follows.

(i) External regret (or simply regret) corresponds to the case
where ®; is the set of all constant functions <I>l?°n5t = {¢ :
A" — AT P(x) = p(x") Vx,x" € A}

(i) Internal regret corresponds to the set of linear transformation
o; = CDii“t that transport probability mass from an action
Jj to some other action k. Formally, @i.nt is the convex hull

<]i>£.“t = co{¢jk}jkea, j=k of the functions ¢;_,; defined as

¢j—>k tx - x+(ep—ej) x[j] = (I+(ek—ej)e}—)x = E; i x. (2)

(iii) Swap regret corresponds to the set @?Wap

mations A™ 3 x — QT x where Q is a row-stochastic matrix,
that is, a non-negative matrix whose rows all sum to 1.

of all linear transfor-

Connections with Solution Concepts. There exist connections be-
tween the different notions of hindsight rationality described above
and game-theoretic solution concepts, including correlated equi-
libria (the focus of this paper), whose definition is recalled next
[20, 23].
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Definition 2.1 (Correlated Equilibrium). A probability distribution
poover ITy X - - - XTI, is said to be an e-correlated equilibrium, where
€ > 0, if for every player i € [[m]] and every ¢ € CIDIint,

E sy, ) ~p | (€ 7Y = (€, p ()| < €. (3

A folklore result states that the average product distribution
of play of no-internal-regret players converges to an approximate
correlated equilibrium (CE). More precisely, the following holds.

THEOREM 2.2. Consider T repetitions of play in a game where

every playeri € [[m]] employs an algorithm that produces strategies
(1) (1)

XX

product distribution of play i =
O(max; IntReg! /T)-CE.

€ A™ with internal regret IntRegiT. Then, the average

%Ztllxit) Q- ® xﬁ,f) is an

Optimistic Multiplicative Weights Update. The optimistic variant
of MWU, called Optimistic Multiplicative Weights Update (OMWU)
is a particular instantiation of the more general optimistic FTRL
algorithm. At time t = 1, OMWU outputs the uniform distribution
x( = %l € A". Then, at each time ¢ > 1, it computes the next

iterate x(¢*1) according to the update rule

V] e exp(=n(2e® [j] - VLD O],

where n > 0 is a learning rate parameter and ¢(1) is the feedback
loss vector observed at time t (we conventionally let £(°) = 0).

(OMWU)

The Markov Chain Tree Theorem. Given an n-state ergodic (i.e.,
aperiodic and irreducible) Markov chain with (row-stochastic) tran-
sition matrix Q, the classic Markov chain tree theorem provides
a closed-form solution for its stationary distribution, that is, the
unique distribution = € A" such that z7Q = x'. The result
requires the notion of a directed rooted tree (a.k.a. arborescence),
recalled next.

Definition 2.3. Let T = (V,E), with V = [[n]], be an n-node
directed graph. 7" is a directed tree rooted at j € V if (i) it contains
no cycle (including self-loops); (ii) every node V'\ { j} has exactly one
outgoing edge; and (iii) node j has no outgoing edges. We denote
the set of all n-node directed trees rooted at j € [[n]] with the
symbol T;?. Furthermore, we let T" = T’ll U---UTh

It is well-known that |T7| =n""2forall j € [[n]], and consequently

|T"| = n™*! [8]. An example for n = 4 is given in Figure 1. In

5The OMWU algorithm is sometimes referred to as Optimistic Hedge in the literature.
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this context, the Markov chain tree theorem asserts that the vector
(Z4,...,Z,) of quantities

Zji

T€T; (ab)eE(T)

Qla b] Gelnl) &
is proportional to the stationary distribution. Specifically, we have
the following.

THEOREM 2.4 (MARKOV CHAIN TREE THEOREM). The stationary
distribution st of an n-state ergodic Markov chain satisfies 7| j]
3/ forall j € [[n]], whereX := 21 +--- + 2Zp.

For a proof of the Markov chain tree theorem, we refer the
interested reader to the works of Anantharam and Tsoucas [2],
Kruckman, Greenwald and Wicks [26].

3 NEAR-OPTIMAL NO-INTERNAL-REGRET
DYNAMICS FOR CORRELATED EQUILIBRIA

In this section we establish our main result regarding algorithm
SL-OMWU, namely Theorem 1.1. In particular, we start in Sec-
tion 3.1 by formalizing one of our key insights: SL-OMWU can be
equivalently thought of as a certain linear transformation of the
output of an external regret minimizer operating over the combi-
natorial space of directed trees; this equivalence is formalized in
Theorem 3.1. Next, in Section 3.2 we leverage this connection to
bound the internal regret of SL-OMWU using an extension of the
techniques developed in [13].

3.1 Equivalence Result

Before we proceed with the statement and proof of Theorem 3.1,
we first summarize SL-OMWU in Algorithm 1. In addition, in Al-
gorithm 2 we present an external regret minimizer over the space
of all directed trees (a.k.a. arborescences). Both Algorithms 1 and 2
use the symbol % to denote the output strategies; this choice is
justified by the following theorem (see also Figure 2).

THEOREM 3.1. For any learning rate n > 0, Algorithms 1 and 2
produce the same strategies x(l), .. ,x(T) € A", assuming that they
observe the same sequence of losses [(1), el 1) e re,

Proor. We will inductively show that the following property
holds.

LEMMA 3.2. At all timest > 1, the following conditions hold:
(1) there exists N(©) € R such that

l_[ pPla—b] = NOXD 7]
(a.b)€E(T)
where p*) and X9 are as defined in Algorithm 1 and Algo-

rithm 2, respectively; and
(2) the strategies produced by Algorithms 1 and 2 are the same.

VT eT", (5)

Condition 2 of Lemma 3.2 immediately implies the statement.
First, we establish the base case t = 1. The first iterate of OMWU
is always the uniform distribution; so, p!) = 1/n(n-1)1 € A?("~1)
Hence, the matrix M(V) (Line 3 of Algorithm 1) has entries M[j, k] =
1/n(n-1) for all j # k € [[n]]. Correspondingly, the (unique) station-
ary distribution of M is the uniform distribution x (! = % 1€A™
We now verify that the same iterate is produced by Algorithm 2.
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Since X is computed using OMWU, X (1 € A" s the uniform
distribution XV [77] = 1/nn1. So, using the fact that |T;.’| = ph2
for all j € [[n]], each coordinate of the output strategy of Algo-
rithm 2 is equal to n™2/n™"! = 1/n, establishing the base case for
Condition 2 of Lemma 3.2. Furthermore, since p(l) and X are
the uniform distributions over A"("=1) and A(""™) respectively,
Condition 1 follows directly from the fact that any directed tree
7 € T" has exactly n — 1 edges.

Next, we prove the inductive step. Assume that Lemma 3.2 holds
at times 7 = 1,...,t, for some t > 1. We will prove that it will
hold at time ¢ + 1 as well. Since p(t*1) € A"("=1) in Algorithm 1 is
updated using (OMWU), for all j # k € [[n]]

(t+1) 1 ;
P UK L =k - LU S kD) (6)
P(t) [ —k]
where the loss vector
LO[j—k] = xD[1eD K] - D []) (7)

is as defined on Line 8 of Algorithm 1. For convenience, we will
denote the normalization parameter in Equation (6) as S (1) Simi-
larly, since the strategies X(*) € A" of Algorithm 2 are updated
using (OMWU) with the same learning rate n > 0, we have that

XUV[T] e exp(-n (LY [T] - LT IXOT], @)
for all 7 € T, where £(9) is defined on Line 7 of Algorithm 2 as

xO1a] (¢ [b] - [a]) = LOa—b], (9)
(a,b) €E(T) (a.b)€E(T)

for all 7~ € T". (Note that in (7) and (9) we implicitly used the
inductive hypothesis that the strategies of the two algorithms co-
incide at iterate t, as well as the assumption that the sequence
of losses £(!) observed by Algorithms 1 and 2 is the same.) To
simplify the notation, we will use S (t+1) to represent the denom-
inator in (8). Next, we observe that for any 7 € T" the term

(ap)ce(r) Y [a—b] is equal to

(ﬁ)n—lexp{—ﬂ(uj(t)[r]-]_L(t—l)[,r])}

x pDla—b],
(a,b) €E(T)
where we used the fact that every directed tree 7 has exactly
n — 1 edges; the multiplicative properties of the exponential; and
the definition of £(?) given in (9). From the inductive hypothe-
sis, Condition 1 of Lemma 3.2 holds at time ¢; so, continuing (10),
[(ap)ee(m p*D [a— b] is equal to

(10)

n-1
(—S(tlﬂ) ) exp{—n(zL(” [7]-£¢Y [T])}N(”x(f) (7]

n-1
) S(t+l)N(t)X(t+l) [T], (11)

_ 1

- S(t+1)
where (11) follows from (8) and the definition of S(**1)_ As a result,
we have shown that Condition 1 of Lemma 3.2 holds at time ¢ + 1
for the parameter

N+ = (—l (12)

" (t+1) pp (8
t+1) Ar (2
S(t+l)) S N/,
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Algorithm 1
\ —— (OMWU ——

() .
An(n-1) P >® M(’)\ Stationary

. I distribution

1. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm

Algorithm 2
\ —— (OMWU —— ‘

A(nn—l)

Figure 2: A schematic illustration of the equivalence result of Theorem 3.1; ® in the figure represents a linear transformation.

Algorithm 1: Stoltz and Lugosi [38]

Algorithm 2: Arborescence-based dynamics

Data: Ry: OMWU algorithm for A"("~1) with y > 0
1 function NEXTSTRATEGY()
p() — Ry NEXTSTRATEGY()
MO — 3 pVL—KEL,
j#ke([n]]
return x(V) — STATIONDISTRIB(M(t)) 6

2

3

function OsservEUTILITY(£(!))
LW o e r(n-D)
for j # k € [[n]] do
| LOj =kl =D [l k] - D [j])
RA.OBSERVEUTILITY(L ()

Data: Rp: OMWU algorithm for A" with n>0

1 function NEXTSTRATEGY()

2 | X® — RpNEXTSTRATEGY()

3

return x(*) (ZTET;I x® [T])::l

function OsservEUTILITY(£(!))

s | £® ZgeRIT =AY

6 for 7 € T" do

7 LO[T] <O k] - D[]
(J.k)€E(T)

RA .OBSERVEUTILITY(L(t) )

We now show that Condition 2 of Lemma 3.2 holds at time ¢ + 1 as
well. To do so, we analyze the (unique) stationary distribution of
the matrix M(*+1) defined on Line 3 of Algorithm 1. First, we claim
that for any j # k € [[n]], MUD [} k] = p{*D[j — k]. Indeed,
for any j # k € [[n]] the unique non-zero non-diagonal entry of
the matrix E;_,; appears as E; ¢ [k, j] = 1 (recall (2)). Thus, our
claim follows directly by the definition of the matrix MU+ i
Line 3 of Algorithm 1. As a result, the j-th coordinate of the fixed
point x(+D) of M(+D can be expressed using the Markov chain
tree theorem (Theorem 2.4) as

P(t+1) [a—>b]
T€Tj (a,b)€E(T)
n

xDj] = (13)

p!"Va—b]
Jj=1 TGT;’ (a,b)€E(T)

Using (11) together with the fact that X (t+1) ¢ A(”’H), and there-
fore Y qcpn X+ [77] = 1, the denominator of (13) satisfies
n

22, 1l

j=1 Te’]I‘;.‘ (a,b)€E(T)

p(t+1)[a—>b]= Z N(t+l)X(t+1)[.7—]
TeTn

— N(t+1). (14)

Similarly, using Equation (11) together with (12), the numerator
of (13) can be expressed as

P a—b] = N KT X7 (15)
T €T} (a,b)€E(T) TET}
The matrix M(*) has strictly positive entries at all times ¢, since the iterates p(t)

produced by (OMWU) lie in the relative interior of the simplex. So, each M©® admits
a unique fixed point (stationary distribution).
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Finally, plugging (14) and (15) into Equation (13) we can conclude
that x(*D [j] = 3 gen XD [77], which is exactly the j-th coor-
dinate of the iterate pr(;duced by Algorithm 2 at time ¢ + 1 (Line 3).
Thus, the strategies of Algorithms 1 and 2 at time ¢ + 1 are the same,
completing the inductive proof. O

3.2 Bounding the Internal Regret

Here we explain how to leverage the techniques in [13] to bound
the external regret of Rp employed in Algorithm 1, which also
bounds the internal regret of SL-OMWU [38]. In particular, the
crux in the analysis lies in showing that the sequence of observed
losses of R exhibits higher-order smoothness. Let us first recall the
notion of finite differences.

Definition 3.3. Consider a sequence of vectors z = (z(l), e z(T)).
For an integer h > 0, the h-order finite difference for the sequence z,
denoted by Dy,z, is the sequence

Dpz = (Drz)V, ..., (Dpz)T~M)
defined recursively as (Doz)(t) = z(t), for1 <t <T,and
(D) ") = (Dp12) Y = (Dpy2) ",
forh>1,and1<t<T-h.

(16)

To establish higher-order smoothness, we use Theorem 3.1 to
“lift” the analysis to the regret minimizer over the arborescences
(Algorithm 2). Then, we leverage the particular structure of the
losses in SL-OMWU to adapt the argument in [13], leading to the
following guarantee.

LEMMA 3.4. Consider a parameter a < 1/(H + 3). If all players
employ SL-OMWU with learning raten < 5¢—, then for any player
i€[[m],0<h<Handte€ [[T- h] it holds that

I(DRL) P oo < B3P,
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Recall that le is the loss observed by algorithm R at time
t (see Algorithm 1). Armed with this crucial lemma, we are also
able to extend the other technical ingredients used in [13], as we
formally show in Appendix B.

Adversarial Bound. The learning algorithm can also be slightly
modified in order to guarantee robustness when faced against adver-
sarial losses. Indeed, the following corollary implies near-optimal
internal regret in both regimes.

COROLLARY 3.5. There exists a learning algorithm such that, if
employed by all players, it guarantees that the internal regret of each
playeri € [[m]] is bounded by O(mlog n; log* T). Moreover, under
adversarial losses the algorithm ensures internal regret bounded by

O(mlogn;log* T +flog n;T).

The idea is to use an adaptive choice of learning rate depending
on whether the bound predicted in (48) has been violated in some
repetition of the game, analogously to [13, Corollary D.1].

4 ANALYSIS OF BLUM-MANSOUR

In this section we give an overview of our analysis for the no-swap-
regret algorithm of Blum and Mansour [6] (BM). Unlike the no-
internal-regret algorithm of Stoltz and Lugosi [38], BM maintains n
independent no-external-regret algorithms Rp 1, ..., Ra n, operat-
ing over A". For this reason, our previous approach appears to be
no longer applicable. Instead, we develop more robust techniques
that delve into the inner-workings of the higher-order smoothness
argument in [13]. In particular, we substantially generalize their
approach by demonstrating how higher-order smoothness bounds
can be established even under the additional complexity of fixed
point operations.

First, to keep the exposition reasonably self-contained, let us
briefly recall the BM algorithm. At each time t > 1, every algorithm
Ra,g produces an iterate Q(t) lg.-] = (Q(t) [g.1],..., Q(t) [g.n]) €
A", for all g € [[n]]. Then, the algorithm computes a stationary
distribution A” 3 x(9) = (Q(1))Tx(!) of the transition matrix Q).
Moreover, upon receiving a loss vector ¢() € R" the BM algorithm
distributes the loss vector x(?) [g]t’(t) to each regret minimizer
Ra,g for g € [[n]]. In what follows, we will be concerned with the
particular case where each regret minimizer is set to OMWU.

Our primary technical contribution in the analysis of BM-OMWU
is to show that the losses observed by each individual regret mini-
mizer exhibit high-order smoothness. Namely, we show the follow-
ing lemma.

LEmMA 4.1. Fix a parameter a € (0, ﬁ) There exists a suf-

ficiently large universal constant C such that, if all players follow
BM-OMWU with learning rate n < ﬁ , then for any player
i € [[m]], integer h satisfying0 < h < H, time stept € [T —h]l, and
g € [[n;]], it holds that

1D (xilg] - ) lleo < a®H**1.

At a high level, the proof of this higher-order smoothness lemma
hinges on the cyclic relationship between the losses incurred by the
players t’i(t), the iterates produced by the copies of the OMWU algo-
rithm Qlw , and the final strategies xi([) output by BM-OMWU. In
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particular, the iterates ngt) [g, -] are determined based on the overall

history of loss vectors Y/ ., xl.(t/) Lg] t’l.(t,) weighted exponentially

in terms of the softmax function; the strategies xl.(t) are determined

by applying the Markov Chain Tree Theorem (Theorem 2.4) to the

stochastic matrix Ql(t) formed by the previous iterates; and, the

losses t’i(t) are determined as a function of the strategies of all the

other players xEtl.). Therefore, using the “Boundedness Chain Rule
for Finite Differences” (Lemma A.1), one of the main technical tools
shown in [13], we can demonstrate that bounds on the h-th order
finite differences of xi(t) and t’im imply a bound on the (h + 1)-th
order finite differences of Q(t> .7 This, in turn, implies a bound on
the (h + 1)-th order finite differences of xl.(t), which then gives a

bound on the (h+1)-th order finite differences oft'l.(t), as long as the
Taylor coefficients of the softmax function and the Markov Chain
Tree Theorem are sufficiently well-behaved. While this is not quite

the case, we make a slight modification to this cycle of implication,

bounding the finite differences of log Ql(t) instead. This cycle of
implication enables an inductive argument that proves Lemma 4.1
as long as the log of the softmax function and an exponential ver-
sion of the Markov Chain Tree Theorem exhibit bounded Taylor
coefficients. These bounds are proved in Lemma C.6 and Lemma
C.3 respectively. The proof of Lemma C.6 follows an explicit, com-
binatorial framework similar to that presented in [13]. On the other
hand, Lemma C.3 introduces a novel technique for proving Taylor
coefficient bounds, applying the Cauchy Integral Formula. This ap-
proach is far more general, and could help establish the necessary
preconditions of Boundedness Chain Rule Lemma in much broader
settings wherein combinatorial approaches are insufficient.

5 CONCLUSIONS AND OPEN PROBLEMS

In conclusion, we have extended the recent result of Daskalakis,
Fishelson and Golowich [13] from external to internal and swap re-
gret. As a corollary, we obtained the first near-optimal—within the
no-regret framework—rates of convergence for correlated equilib-
rium. To do so, we developed several new techniques that allowed us
to establish higher-order smoothness for no-internal and no-swap
learning dynamics.

Finally, we identify several possible avenues for future research
related to our results.

e Although our internal-regret bounds are near-optimal in terms
of the dependency on the number of actions n; of each player i,
for swap regret our bounds depend polynomially on n;. While
a polynomial dependence on n; is necessary in the adversarial
setting [6, 24], we are not aware of any lower bounds for the
setting of smooth, predictable sequences of losses within which
our paper operates.

e Can our results be extended beyond OMWU, for example to other
instances of the general optimistic FTRL algorithm [40]?

e Finally, our equivalence theorem (Theorem 3.1) was only estab-
lished with respect to the set dDiint of transformations correspond-
ing to internal regret. Is it possible to extend our results beyond

"This is due to the fact that Dp Q¥ [g,-] = Dpu Dpes xgtl) [g]li(t,)
thlm [g]li(t).
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such transformations (e.g., see [19]) via closed-form formulas
for the associated fixed points, analogous to the Markov chain
tree theorem? Exploring such connections further constitutes a
promising direction for the future.
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A USEFUL TECHNICAL TOOLS

Most of the following technical ingredients were shown in [13], but
we include them to keep the exposition reasonably self-contained.
First, it will be useful to express h-order finite differences, as intro-
duced in Definition 3.3, in the following form ([13, Remark 4.3]):

" (h
(Dpz)V) = Z (s)(—l)h_sz(t”).

s=0

(17)

Next, we state the “boundedness chain rule” for finite differences
[13]. Specifically, let ¢ : R™ — R be a real function analytic in a
neighborhood of the origin. For real numbers Q, R > 0, we will say
that ¢ is (Q, R)-bounded if the Taylor series of ¢ with respect to the

origin, denoted with P¢ (z1,...,2zn) = Z)’EZQO ayzy is such that
k
> eyl < QRN (18)
yEZ'Zlo:|y|=k

for any integer k > 0. The following result [13, Lemma 4.5] is one
of the central technical ingredients developed in [13].

LEmMA A.1 ([13]). Consider a (Q, R)-bounded analytic function
¢ € R™ — R so that the radius of convergence of its power series
with respect to the origin is greater than v, for some v > 0. Moreover,
consider a sequence of vectors (zW, ..., 2D such that |z || <
v for all t € [[T]]. Finally, suppose that for some parameter a €
(0,1), and for each 0 < b’ < handt € [[T — K], it holds that®
||(Dh/z)(t)||oo < f%l(xh'(h/)BOh/, where By > 2¢®R and By > 3. Then,
forallt € [[T — h]] it holds that

(Dp(¢ o z))(t) < o pBohtl

12RQe?
5

In the statement of this lemma the notation o represents the
composition of functions. Further, we remark that while technically
the statement of Lemma A.1 in [13] is only stated for the special
case v = 1, the lemma readily extends for general v.

We additionally make use of the following lemma from [13] that
enables us to bound the variance of the loss sequences arising from
OMWU as a result of the smoothness of the sequences. In the follow-

ing lemma, we let Varg(z) := Z;'l=1 q(j) (z(j) - erclzl q(k)z(k))z.

8Here it is assumed that 0° = 1.
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LEMMA A.2. Foranyintegersn > 2 andT > 4, wesetH := [log T,
a=1/(4H), and ap = \/133%~ Suppose that zW, ..., z(D ¢ [0, 1]"
and PO, .. P(T) ¢ A" satisfy the following

(1) For each0 < h < Hand1 <t < T — h, it holds that

oot | <t

(2) The sequence PO P

{ € [1/(2T), a*/8256].
Then,

(T s {-consecutively close for some

T
> Varpi (Z“) —z
t=1

T
<2a ) Varpi (z“—l)) +165120(1+ O)H® +2,
t=1

(t—l))

where we say that a sequence PO, P s {-consecutively close

if for all t,
max{ }Sl+§.

B ANALYSIS OF STOLTZ-LUGOSI

In this section we provide all of the technical ingredients required
for the analysis of SL-OMWU, and subsequently for the proof of
Theorem 1.1. First, let us cast the refined bound under adversarial
losses [13, Lemma 4.1] in our setting.

p®

P(t+1)
p(t+1)

P

5

(e8]

LemmA B.1 ([13]). Consider some player i € [[m]] employing
SL-OMWU with learning raten < 1/C, where C is a sufficiently large
universal constant. Then, under any sequence of losses L;l), ., Ll.(T),
the external regret of Ra can be bounded as

+Z( +Cn )Var (t)( L L(t 1))

Z—(l Cn)ny Var ) (L(t 1)). (19)

t=1

log
Regl <2——

Recall from Algorithm 1 that ngt) is the loss observed by the
regret minimizer Rp employing (OMWU). Next, we continue with
the proof of Lemma 3.4. For the convenience of the reader, the
statement of the lemma is included below.

LEmMA 3.4. Consider a parameter « < 1/(H + 3). If all players
employ SL-OMWU with learning rate n < z¢—, then for any player
i€[[m],0 <h<Handte€ [[T- h] it holds that

I(DRL) Do < "B,
Proor. First of all, we know that

(l_(f) [a] = Z Aay,....ai,...

ap €[lny ]1.i'#i

cam) [ ] Lar),

i#i

(20)

where recall that by assumption A(+) € [0, 1]. In particular, given
that L [j — k] = x{” [j1(¢" [k] -
that

L [j—k =

t’i(t) [/1), we may conclude

DN LT [ X1,

- Ty i €[[m]]

(21)
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for some function A’ : Ty X - - - X T, — [—1, 1], where we used that
xl.(,[)[ ]l =X, Tia, l(,t) [777] (by Theorem 3.1), as well as the
fact that the sets of directed trees with different roots are disjoint.
As a result, we have that ’(DhLi)(t) [j—k]

is equal to

h
Z( )( DPL™ -k (22)
s=0 s

hih
= > A'(‘r,...,fi;n)Z(s)( i [ xE 17| @)
Tir €Ty s=0 lE ml]|
h
h +s

Y Z(s)(-l)hs [T x* 7 (24)

i €Ty |s=0 ie[[m]]

(1)

= (Dh( 1 xil[m)) : (25)

7Ty i’ €[[m]]

where (22) uses the equivalent formulation of (17) for h-order fi-
nite differences; (23) follows from (21); (24) follows from the trian-
gle inequality and the fact that [A’(-)| € [0, 1]; and the final line
uses again the equivalent formulation of finite differences of (17),
with the convention that [T ¢|[n]) Xi [77] refers to the sequence
[T re[[m]] X( )[ Til,. nl re([m]] X( )[‘71-/] Next, it will be con-
venient to assume that X ;  is the uniform distribution over the
simplex AlTi I, as well as LEO) = Li(_l) = 0. By construction, for
every player i € [[m]] the vector Xi(t) is updated using (OMWU)
under the sequence of losses LW, ™, implying that for each
T €Ty, Xl.(t°+t+l) [77] is proportional to

exp{q( (fo 1) ZLUOH) L?tﬂﬂ) [T])}Xi(fo) [7].

(26)
_ L;tﬂ_l) _Zg;é L§t0+s) _
.E;toﬂ_l),foro <ty < Tandt > 0. Moreover, for a vector z € RITi!
we define the following function:

. . - (t
For notational convenience, we let LE tz

exp{z[ 71} _
Sqver X, [T ] exp{z[T7]}

br,7(2) = (27)
Equipped with this notation, we can equivalently write (26) as
Xl.<t°+t) [7] = Xl.(to) T ¢4, ( ( )) for t > 1. In particular, this
implies that for any i’ € [[m]]| and Ty € Ty,

[T x\17) =
ie([m]]

[T x5 170107 (n
i’e[[m]]

Lf'io) (28)

Before we proceed with the analysis, let us introduce the shift
operator. Specifically, for a sequence of vectors z = (z(l), el z(T)),
the s-shifted sequence, denoted with Esz, is such that (Esz)®) =
z(“'s), for 1 <t < T —s. With this notation, we observe that

(D1Ligy)" = £V 2L (0 = 0D (g, gy (D),
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which in particular implies that for any A" > 1,

(D Lis) ™ = (D1 L)W — 2(E1Dyy_1 L)WV (29)

Next we proceed with bounding 21(2 forany 0 < tp < T and
t > 0. In particular, for a fixed 7 € T;, we know that .E(t)[ T =
Siiweren < 11D k] - e j]). Thus, given thatz(”[ i e

[0,1], for any j € [[n;]] and ¢ > 0, as follows from (20), we can
conclude that there exists 7~ € T; such that

£ o =] >0 =110 k1 - 615
(j.k)€E(T)
< VA S R AL Vil ES REY)
(J.k)€E(T)

where we used that }t’i(t) [k] - t’i(t) [j]‘ < 1, as well as the fact that

7 is a directed tree, implying that every node has at most one
outgoing (directed) edge (recall Definition 2.3). Along with the
triangle inequality, this implies that

t—1
”oo — L;tﬂ_l) _ Z-£§t0+5) _£§t0+t—1)
s=0

1z

ity

< (t+2). (31)

(o]

Before we proceed with the next claim, it will be useful to introduce
the sequence 2“), defined as

OREA; t
e® = (ULE,,)O,UL;EO, . .,UL,(n)tO).

LEMMA B.2. Let @ € (0,1) be such that H(Dh'(nzi,to))(t)u <

o (W)BH foralli € [[m]],0 < h" < h,andt € [[h+1- 1],
where By = 12¢>m and By > 3. Then, forany0 <to € T—h—1 and
TJ1 €T, ...,Tm € Ty, it holds that

(to+1)
(Dh( [ Xi/[ﬁ])) < P T XU (7). (32)
v ellm]] vellm])

Proor. We will apply Lemma A.1 with n := ¥ ¢ | T [, time
horizon h + 1, the sequence (") and the function ¢ that maps
the concatenation of zy € RIT#|, forall i’ € [[m]], to the function
[1y ¢4, 77 (2), where ¢y 7, was defined in (27); that is,

bty (21, .., Zm) = n b1, 77 (2ir)-
e([m]]

Let us verify the conditions of Lemma A.1. First, [13, Lemma B.6]
implies that the function ¢, is (1, e3m)-bounded (in the sense of
Lemma A.1), and By = 12e°m > 2¢?(e3m). Moreover, [13, Lemma
B.7] implies that each function ¢, 7;, has radius of convergence—
with respect to the origin 0—greater than 1, and hence, the radius
of convergence of ¢y, is also greater than 1. We also know, by

assumption, that H(thﬂ)(t)H < Bilah'(h’)Boh/, forall0<h' <h
andt € [[h+1—h']]. As a result, Lemma A.1 implies that

(33)

12¢°m
|(Dn( 0 2)V] < T athh, (34
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(to+1)
of 1, w00
[77] ie[[m]]

Finally, we have that

1
ey X5

(1)
= (Dh( 1 (dho,fr,-, ° (”'Zi',to)) (35)
e[[m]|
= [(Dh(gr, © (1E1tp-- -1 Lnas)) 7| (36)
- )Dh(fﬁto ° 9)(1)‘
< 12¢°m P pBol+ = oy Bohtl (37)

By
where (35) follows from Equation (28); (36) simply uses the defi-
nition of ¢y, in (33); and (37) follows from (34) (which in turn is a
consequence of Lemma A.1), as well as the fact that B = 12¢°m. O

LEmMma B.3. Fix some 1 < h < H, a parameter & € (0,1), and as-
sume that the learning raten is such thatn < min{

Moreover, assume that forall0 < h’ < h,t <T-HK,andi € [[m]],
it holds that ||(Dy £1) Do < o (b + 1)BoW*)  Then, for all
€ ([T -h]] andi € [[m]],

“(DhLi)(t)Hm < altpBol+t (38)

PRrOOF. Let us set By := 12e°m, so that 5 < min{%, m}

We know from (31) that for t + 2 < h + 3 it follows that

”DO(’]-Z:i,to)(t)”oo = 17”13,(2” <n(t+2) < Bil’ (39)

where we used the fact that n < 1/(B1(H+3)). Next,for1 < h’ < h,
otz < oo,

2|y L@ o)

< 3nal’ =1 () BoH (41)
1 ’ ,

< —al (n)Bo, (42)

B;
where (40) follows from (29) and the triangle inequality; (41) is a con-
sequence of the assumption in the claim; and (42) uses the fact that

N < 5% Next,giventhat £ [7] = 50y er(r 2 Ll(¢" [k]-

t’l.(t) [j]), we can infer that
Ll@= Z Aay, ..., am) rl xi[ay]
ay€([ny]] re[[m]]
= > AL LT [ XelT), (43)
ToeTy iel[m]l

where A and A are functions such that A(-) € [-1,1] and A(-) €
[—1,1]. More precisely, (43) is obtained from Theorem 3.1. As a
result, similarly to (25) we may conclude that

(2)
D (Dh( [ Xi/[‘iz/])) L (49
i i’ 1l

7 €T i’e[[m

(DR L) 17| <

i’

_a 1
36e°m’ 12¢°(H+3)m |~
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The next step is to invoke Lemma B.2 in order to bound the
induced term. Specifically, by (39) and (42) we see that its conditions
are met, from which we can conclude that for ¢ € [[T — k]|

®
|one || < (Dh( [1 x,-'m])) (45)
ey |\ \relim]

i’e[[m
athoh+1 Z l_[ Xi(/tfl) [77]

7 €Ty i’ €[[m]]
_ athoh+l,

(46)

(47)

where (45) follows from (43); (46) is an immediate application of
Lemma B.2; and (47) follows from the fact that each Xy is a probabil-
ity distribution over the space of directed trees Ty, for all i’ € [[m]],
and as such the induced product distribution normalizes to 1. O

Finally, it follows from (30) that H(DOLi)(t) H <1=0a%1581 for

all i € [[m]]. Thus, we can inductively invoke Lemma B.3 for By = 3
to infer that for all 0 < h < H,i € [[m]], and t € [[T — h]| that

H(DhL )(t)” < a"W3h*1 aslongasn < 365y, anda < 1/(H+3).

Finally, following the argument given in the proof of Lemma B.3,
we obtain that for any 0 < h’ < h,
0w tnZaa) | = 5o 0y

Thus, we can invoke Lemma B.2 to conclude that for any 0 < ¢y <
T—-h—-1and71 €Tq,...,9m € Ty,

(t0+1)
(Dh( l_l X [7?])) < ahh3h+1
1l

i’e[[m
As a result, plugging-in this bound into (25) we obtain that for

e [[T - hll,
(t)
(Dh( Xir [Ti']))
i’e[[m]]

< ghp3ht Z 1—[ X(t V7

€Ty i’e[[m
—ahh3h+1.

X\ (7).

i'e([m]]

2,

Ty €Ty

oL@ _ <

O

The final technical ingredient is the following lemma, which
can be shown by applying Lemma A.2 using the smoothness of the
losses established by Lemma 3.4.

LEmMA B.4. There are universal constants C,C’ > 1 so that for
a time horizon T > 4 and H = [logT], if all players employ
SL-OMWU with learning rate ) such that 1/T < n < =~ H4’ then,

ZVar m( L - i) < %Varpgﬂ(LlfH))ﬁLc’Hi (48)

foranyi e [[m]].
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C ANALYSIS OF BLUM-MANSOUR

To prove Theorem 1.3, we start with a regret bound analogous
to that of [13] for the swap regret setting. The BM algorithm is
composed of n copies of a no-external-regret algorithm (such as
OMWU), and thus we can achieve the following regret bound using
similar techniques as [13]. For any swap function ¢ : [[n]] — [[n]],

Z(x(t) ey — sz(f)[g Ok [$(9)]

=1 o
T n
SZZ(%'FCUZ)VEII'Q([)[ ] ( (t)[ ] (t) _x(t 1)[ ] ( 1>)
t=1g=1
T n
(1-Cn)n (1) oy nlogn
_ ; 2, — - Varg (4.1 (x (g] - £ ) + noEn,

Thus, proving Theorem 1.3 boils down to the following lemma,
which will be proved in the sequel of the appendix.

LemMmA C.1. Suppose all players play according to BM-OMWU
. , o 1 -~
with step size n satifying 1/T < n < o o (1) for a suffi
ciently large constant C. Then for any player i € [[m]] and any
g € [[ni]l, the overall losses for player i: t’( ). N4 l( ) e R"™, the

probability player i places on action g: xV [g ], e x(T)[ ] € R, and
the strategy vectors output by playeri’s g™ instance of OMWU R j g

QM (g 1.....Q " [g. ] € A" sarisfy

o1 (xOg1 - £ — £ g) D)

( (t-1) lg] .((f—l)) +0 (logs(T)) .

By combining the previous inequality with Lemma C.1, for €

11 .
[T’ Comr® log"(T) ] we obtain that

1 2
SwapRegl-T < LOBT %o (logs(T)) .
n

Hence, by setting n = we recover the bound stated in

Theorem 1.3.

The rest of the appendix is devoted to the proof of Lemma C.1.
There, the main technical tool is Lemma 4.1, which establishes
higher-order smoothness for the iterates of BM-OMWU.

1
C-mn3log*(T)

C.1 Technical Lemmas for BM-OMWU

We first reiterate the Markov chain tree theorem under a slightly dif-
ferent formulation, catering to the proof techniques of this section.
We let R™" (respectively, C"*™") denote the space of real-valued
(respectively, complex-valued) n X n matrices. For each j € [[n]],
we introduce the following functions ®ycr,j : CP" — C:

ZTeT; exp (Z(a,h) €E(T) Zab)

Oyt j(2) = .
2oy Zyern exp (Z(a,b) €E(T) Zab)
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TueoreM C.2 (MARKOV CHAIN TREE THEOREM). Let Q € R™"
be the transition matrix of a Markov chain so that Q[i, j| > 0 for
all i,j € [[n]]. Then, the stationary distribution of Q is given by
the vector (Ppet,1(InQ), . .., Pymet,1(InQ)), whereln Q denotes the
matrix whose (i, j) entry is In Q[i, j].

Lemma C.3. Fix any Z(9 € R™"_Consider any function of the

_ ®umer (20+2)
form $(2) = Dyer,; (Z©)

ficients of order k > 0 of ¢ at 0 is bounded above by 30 - (2n®)%, and
has radius of convergence greater than 1/n.

. Then the sum of the Taylor series coef-

Proor. Fix any multi-index y € ZZ§"; we will bound 75 dZY 7 $(0).

Fix any Z € C"™" so that ||Z]|e < 7/(3n). Set { = Z(%) + Z. Note

that, for any 7~ € T;.‘,
= |exp Z
(a,b)€E(T)

exp| D, ab
(a,b)€E(T)
<exp(n/3) - exp(

Z89 + > -2 )

(a b)€E(T)
(0)
Z Zab )’

(a.b)€E(T)
where we used the fact that ‘Z(a,b) ee(7) (Cap — Z;g))| < m/3 and

that Z(%) is real-valued. Further, for any a € R and { € C with
|| € /3, we have

R(exp(a+{)) = exp(a) - R({)
> exp(a) - cos(n/3) - exp(—nr/3) > exp(a)/10.

(0)
Zab )

Thus, for any j’ € [[n]] and T € T;’,, it holds that

ol 2 l)es ol
(a,b)€E(T)

(a,b)€E(T)
Thus, since Z (0) js real-valued,
[®pmeT, i (D]
Dyier,(Z(0)

2o ZTeT;, exp (Z(a,h) €E(T) Zéob))

>

1¢(2)] =

(0)
ZTeT; exp (Z(a,b) €E(T) Za,h)

exp (Z(a,b) €E(T) Zab)|

2 Lrer, R (EXP (Z(a,b) €E(T) Zah))
=exp(r/3) - 10 < 30.

ZTe'Jr;l

By the multivariate version of Cauchy’s integral formula,

0 ’ .
‘dzy¢( )‘ ‘ (2mi)n* /\zn|=n/(3n> /|z,m\=n/<3n>
#(2)

I, jpelinn (Zjljz))/jlj2+1

<30-y!- (3n/m)¥].

o dgnn

din

(49)
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For any integer k > 0, the number of tuples y € Z"2 with |y| = k is
(k+;l ) < (2n®)k. Thus, if we write ¢ (2) =

> yezn ay - zV¥, it fol-

lows that ay, = % . dZy¢(0) and so for each k > 0, ¥ .|, |=k lay| <

30 - (2n2)% - (3n/m)* < 30 - (2n®).

To see the lower bound on the radius of convergence, note that
(49) gives that for each y € Z>0’ letting k := |y|, we have |ay|1/k <
30'/k . (3n/7), which tends to 3n/7 < n as k — 0. Thus, by the
multivariate version of the Cauchy-Hadamard theorem, the radius
of convergence of the power series of ¢ at 0 is greater than 1/n. O

In the statement of Lemma C.4 below, the quantity 0° is inter-
preted as 1 (in particular, (h')Bo? =1 for b’ = 0).

LEmMMA C.4. Fix any By > 4e?n3, By > 3. Consider a sequence
0 ... Q"™ e R™" of ergodic Markov chains, so that || log Q(®) —
log Qe < B% for 0 < t < h. Suppose that for some a €
(0,1), foreach 1 < b’ < hand0 < t < h -}, it holds that
I (Dp Q)W Jloo < g (W) BN Then, ifp®), ..., p*) € A
denotes the sequence ofstatlonary distributions for Q(O), . Q(h), it
holds that, for any j € [[n]],

|(DhP[j])(t)| 720n3e2
POLT - B
ProOF. By the Markov chain tree theorem we have that, for each
€ [[n]l, p(t) [j] = ®mcr,j(In Q<t)). We now apply Lemma A.1
withT =h+1,z) =InQ*) —1InQ® for1 <t <h+1,R =
1, Ry = 2n3, and the values of By, By given in the hypothesis of this

Puer, ((InQV)+2) _
Oyt (In Q)

.Lemma C.3 gives that the function ¢ is (30, 2n%)-

ah . hB()h+l .

lemma (Lemma C.4). Moreover, we set ¢(Z) =
Dyt ((INQ)+2)

O[]
bounded, and has radius of convergence greater than 1/n at the
point Z = 0. Then the hypotheses of Lemma C.4 imply those of
Lemma A.1, and Lemma A.1 gives that

(Oppin @] |(Pr e tme-1ne®)) |

PO PO
Oth A th h+1 )

720n3e?
S —_—
B
. (£)
(Here we have used that ¢(In Q(t) —In Q(O)) = % =
PO L) o

LEmMMA C.5. Forn e N, let ¢y, ..., +é& =1
For any j € [[n]], the function
exp(zj)

i((z1,. .., -

g S G exp(er)

satisfies, for any z € R"™ with ||z]|e < 1/4,
[log¢j(2)| < llzllco < 6ll2]lco-

ProoF. For 0 < x < 1, we have 1 + x < exp(x) < 1+ 2x. Then,
for ||z||eo < 1/2,

¢;

& 2 0sothat & +--

zp)) =

1+2z;

@ < s v

1+ 2]z|oo

< (1+2)|zll0)?
1 -zl

1. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm

and
b)) — T
/ o= Zk léfk (l+2zk)
= |1z]Jeo
= m 2 (1= [lzlle0) (1 = 2[|2]|c0)-

Thus, for ||z]|e < 1/4,
= 6llz]lc0 < log(1 = [Iz]|co) +log(1 = 2]|z|co)
< log $(2) < 2log(1 +2|zlleo) < 4]|2l|eo. 0

LEMMA C.6. Forn € N, letéy, ..., & > 0 suchthat&+- -
For each j € [[n]], define §j : R™ — R to be the function

&j exp(z))
2=y &k - exp(z)
ZyEZQO ajy -2V denote the Taylor series of log ¢ ;.

+ép =1

¢j((zl’ . ->Zn)) =

and let Piyg b (z) =
Then for any j € [[n]] and any integerk > 1,

Z |aj,y| < ek /k.

YE€ZZ,: lyl=k

Proor. We have that

ologgj 1 99 _|~¢ ift#j
8Zt B ¢] azt - 1-— ¢] 1ft :j
and so,
3 log ¢;(0)
Z |ajy| = kv Z 52 02y, - 92y,
€Z%,: lyl=k tel[n]lk . . §
1 Z Z ak—l ( )
= — —— (¢, — 1[t1 = j]) (0)].
' e
k! ti€[[n]] t_;e[[n]]*? aztz aZtk
Fork =1,

% D lgn@ -1 =<1+ Y & =2

" te[[n]] ti€[[n]]
For k > 2, 1[t; = j] will be removed by the derivative; hence,

k=14, (0)

aztz te aZtk

1

!

k! tiel[n]] t_ye[[n]]*1
1
< 3 ((k— NE §t1ek) (50)

" nelln]]
1

:F(k—nz.ek. >0 & =k,

nelnl]

where (50) comes from the following lemma due to [13].

Lemma C.7 ([13]). Forn € N, let &, ..., & > 0 such that & +
--+&, = 1. Foreach j € [[n]], define pj : R™ — R to be the function

&j exp(z))
$j((z1,..., e
Zk=1 é:k : eXP(Zk)
and let Py, (z) = ZyeZ;’O aj,y -z¥ denote the Taylor series of ¢;. Then
forany j € [[n]] and any integerk > 1,

Z lajy| < gie*+.

YeZ%y: lyl=k

zn)) =
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C.2 Proof of Higher-Order Smoothness
LEmMMA 4.1 (DETAILED). Fix a parameter a € ( , H+3) If all players

follow BM-OMWU updates with step sizen < m s

for any playeri € [[m]], integer h satisfying 0 < h < H, time step
€ [[T - hll, and g € [[n;]l, it holds that

I (D (xilg] - &) lleo < "

then

. h3h+l

Proor. We prove this inductively, showing that, for all i €
[[m]l,0 <h<H,te[T-h],g¢€ [[nl,and By >3

H(Dh ei)“)Hoo < ol pBot1, (1)
|nxilgr- )@ < at-nioher; (52)
H(Dh xi)(t)‘ ol g (53)

The base case of h = 0 is evident from the fact that losses and strat-
egy probabilities are in [0, 1], and therefore ||t’l.(t) [ o0 ||xi(t) [loo < 1.
So, proving the following inductive statement is sufficient to prove
the lemma. Assume (51), (52), (53) hold for all &’ satisfying 1 < h’ <
h. Then, they hold for h as well.

First, notice that for any agent i € [[m]], any OMWU instance
‘RAJ,g of agent i with g € [n;], any tp € {0,1,...,T},and any ¢t > 0,
by the definition (OMWU) of the OMWU updates, it holds that, for
each j € [n;],

Q"' g.J1 - exp (1 -L{{) l9./1)
Q" [g.k] - exp ('7 L (g, k])

where Q [g. j] denotes the weight placed on action j by algorithm
[g, ] is defined

Q(t0+t+1) [ 4 ]]

Ra,ig at time ¢, andL

(t) _ (1 —1) (to=1) [+
Liylg. ) =x"""lgle; " 1]
t—1
_ xi(t0+s) [g][i(tg‘i's) []] _ xi(t0+t—1) [g]ei(tgﬂ—l) []]
s=0

We can define edge values ¢, 0 s (-1) Q(O) to ensure that the above
equation holds even for #y e {0, 1} Now, for any g, j € [[n;]], any
integer ty satisfying 0 < to < T; and any integer t > 0, let us
define Also, for a vector z = (z[1],...,z[n;]) € R™ and indices
g, j € [[ni]], define

¢to’g’j(l) = — (te)XP (Z[]]) , (54)
sr 0 [g.k] - exp (2[k])
so that
Q9. 11=Q" (9.1 brogi(n L) g. )  (55)

fort > 1, where Lz(tt?) [g. -] denotes the vector (Ll(ttz [g.1],...,

Next, note that, for all g, j € [[n;]],
(D1 Lig[g.71) " = x

and so, forany 1 < b’ < h,

)(Dh/ (n-Lirlg,71))

i(t0+t—1) [g] t,i(t0+t—1) []] _zxi(to+t) [g] (i(t0+t) []]

(t)‘ < 3'] . ahl—l . (hl _ l)BOh/, (56)

L) [g.n]).
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where (56) follows from the inductive hypothesis. Additionally,
since |L,~gt0 Lg, j]| <t+2 for all #, i, g, j, we have |r] Lis 9. j ]\ <
n-(t+2) <1fornp < t+2 By Lemma C.6, the function z +—
log ¢4,.4,j(2) is (1,e)-bounded, and so for each 1 < b’ < h we

may apply Lemma A.1 with h = b/, z ) = =n- L(t) lg.-] and By =

% -min{ H+3} a . Thus, we can conclude, for all1<h’ <h,

t<h+1l,andge [[n ]]
(¥) , /
(Dw 1og (g sn - LG [g D)) < 366%Hn - - ()"
(57)

Taking the logarithm on both sides of (55), we have

log (@1 [g. /1) = log Q" g, /1 +10g (f105 (1 - L{}y [9: D)) -
(58)

Let Qm R™*Mi be the matrix with entries Qgt) [g,j] and Pi(jz be

the matrix with entries ¢y, g,; (17 L( ) [g, ]) for g, j € [[ni]l. Then,
forall g € [[n;]], all tp € [T — A]l, and t € [[h]], we have

2" [g] = dycrg (103 o} to+t))
= Dy (log Q) +10g (P{7))).
Next note that, by Lemma C.5 and t < H + 1,

Hlog Q§t°+t) —log Ql.(tO) -

Jlosugsn 15 10, )

< max
g.j€ln;

<6y - (t+2) < 36e>Hn. (59)

We now apply Lemma C.4 with QW = Pi(z, for0 <t < h, and

1/B; = 36e>Hr). The preconditions of the lemma hold from (57).
Then Lemma C.4 gives that for all g € [n;],

(Dp, x; [g])(t‘]"'l) <|x(t°)[ 1 - 720n§’e2 -36e3Hp - o (h)B°h+1.

verifying the first of three desired inductive conclusions (53) as
long as ) < 1/(25920¢°Hn?).
As aresult, for t € [[T]],

h
> (ﬁ)(—l)h‘sff”s) [ai]
=0

h

Ai(ar,. o am) Y (f)(—l)h-s SNE it
s=0 i'#i

h

20

=0
ay€lny], Vi'#i

<25920e°Hn’y - ot - (h)Bo+1

|0 6) [ai]| =

2

ayelng ), Vir#i

2

agelng ], Vir#i

<

( l)h s Hx(t+3)

i#i

I

> (1wl

ay€[ny ], Vi'#i \i'#i

<25920¢°Hn’n - o - (h)Poh*),

1_[ xi [ay

i'#i
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verifying the second of three desired inductive conclusions (51) as
long asn < l/(25920€5Hn?).

1 1 _ 1
12¢?H  25920¢°Hn? ~ 311040’ H?n?’
verified the inductive hypotheses:

we have now

Lastly, for n <

1 , ’
Il Dy )P Jloo < z_ez“h - (h')Bol';
1 ’ ,
Il (Dp x:) @ Jloo < 2—ezah (B,

for all A’ up to and including h. Thus, we can apply Lemma A.1
with n = 2, ¢(a, b) = ab (which is (1, 1)-bounded), B; = 12¢?, and

(xl.(t) [g] - li(t) [j1). Therefore, for the product
], we have, forall t € [[T - h+1]],

the sequence z() =
sequence x;[g] - & [j

(Dpxilgl - &) 1P| < a - (R)Borh+, (60)

verifying the final inductive conclusion (52). O

Finally, Lemma C.1 follows by applying Lemma A.2 using the
smoothness of the sequence x;[g] - #; implied by Lemma 4.1.
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