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ABSTRACT
Recently, Daskalakis, Fishelson, and Golowich (DFG) (NeurIPS ‘21)

showed that if all agents in a multi-player general-sum normal-form

game employ Optimistic Multiplicative Weights Update (OMWU),

the external regret of every player is 𝑂 (polylog(𝑇 )) after 𝑇 repeti-

tions of the game. In this paper we extend their result from external

regret to internal and swap regret, thereby establishing uncoupled

learning dynamics that converge to an approximate correlated equi-

librium at the rate of 𝑂
(
𝑇−1

)
. This substantially improves over the

prior best rate of convergence of 𝑂 (𝑇−3/4) due to Chen and Peng

(NeurIPS ‘20), and it is optimal up to polylogarithmic factors.

To obtain these results, we develop new techniques for establish-

ing higher-order smoothness for learning dynamics involving fixed

point operations. Specifically, we first establish that the no-internal-

regret learning dynamics of Stoltz and Lugosi (Mach Learn ‘05)

are equivalently simulated by no-external-regret dynamics on a

combinatorial space. This allows us to trade the computation of the

stationary distribution on a polynomial-sized Markov chain for a

(much more well-behaved) linear transformation on an exponential-

sized set, enabling us to leverage similar techniques as DGF to

near-optimally bound the internal regret.

Moreover, we establish an𝑂 (polylog(𝑇 )) no-swap-regret bound
for the classic algorithm of Blum and Mansour (BM) (JMLR ‘07).

We do so by introducing a technique based on the Cauchy Integral

Formula that circumvents the more limited combinatorial argu-

ments of DFG. In addition to shedding clarity on the near-optimal

regret guarantees of BM, our arguments provide insights into the

various ways in which the techniques by DFG can be extended and

leveraged in the analysis of more involved learning algorithms.
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1 INTRODUCTION
Online learning and game theory share an intricately connected

history tracing back to Robinson’s analysis of fictitious play [34],

as well as Blackwell’s seminal approachability theorem [5], which

served as the advent of the modern no-regret framework [1, 23].

These connections have since led to the discovery of broad learn-

ing paradigms such as Online Mirror Descent, encompassing algo-

rithms such as the celebratedMultiplicativeWeights Update (MWU)

[27]. Importantly, uncoupled learning dynamics overcome the of-

ten unreasonable assumption that players have perfect knowledge

of the game, while they have also emerged as a central compo-

nent in several recent landmark results in computational game

solving [7, 28]. Moreover, another compelling feature of the no-

regret framework is that it guarantees robustness even against

adversarial opponents. Indeed, there are broad families of learning

paradigms [37] that accumulate 𝑂 (
√
𝑇 ) regret after 𝑇 iterations,

a barrier which is known to be insuperable in fully adversarial

environments [9]. However, this begs the question: What if players

do not face adversarial losses, but instead face predictable losses?

This question was first addressed by Daskalakis, Deckelbaum

and Kim [12]. They devised a decentralized variant of Nesterov’s

excessive gap technique [30], enjoying a near-optimal rate of con-

vergence of 𝑂 (log𝑇 /𝑇 ) to Nash equilibrium when employed by
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both players in a two-player zero-sum normal-form game. (For

brevity we will henceforth omit the specification “normal-form”

when referring to games.) At the same time, their algorithm also

guarantees optimal (external) regret under worst-case losses. Sub-

sequently, Rakhlin and Sridharan [32, 33] introduced an optimistic

variant of Online Mirror Descent—considerably simpler than the

algorithm proposed in [12]—achieving optimal convergence rate

to Nash equilibrium, again in zero-sum games. Then Syrgkanis,

Agarwal, Luo and Schapire [40] identified a broad class of predictive

learning algorithms that induce no-regret learning dynamics in

multi-player general-sum games that guarantee 𝑂 (𝑇 1/4) regret if
followed by each player. This line of work culminated in a recent

advancement by Daskalakis, Fishelson and Golowich [13], where

it was shown that, when all players employ an optimistic variant

of MWU, each player incurs only 𝑂 (polylog(𝑇 )) regret. In turn,

this implies that the average product distribution of play induced

by optimistic MWU is an 𝑂
(
𝑇−1

)
-approximate

1
coarse correlated

equilibrium (CCE) after 𝑇 repetitions of the game.

Yet, it is well-understood that a CCE prescribes a rather weak

notion of equilibrium [21]. An arguably more compelling solution

concept
2
in multi-player general-sum games is that of correlated

equilibria (CE) [3]. Like CCE, it is known that CE can be computed

through uncoupled learning dynamics. Thus, our paper is concerned

with the following central question:

Are there learning dynamics that, if followed by all

players in a multi-player general game, guarantee con-

vergence with rate𝑂
(
𝑇−1

)
to a correlated equilibrium?

The main contribution of our paper is to answer this question in the

affirmative. Unlike in the case of CCE, typical no-external-regret

dynamics such as MWU are known not to guarantee convergence

to CE. Instead, specialized no-internal-regret or no-swap-regret al-

gorithms have to be employed to converge to CE [9]. Compared

to no-external-regret dynamics, these learning dynamics are con-

siderably more complex in that all known algorithms require the

computation of the stationary distribution of a certain Markov

chain at every iteration. Our main primary technical contribution

is to develop techniques to overcome these additional challenges.

1.1 Contributions
Our work presents a refined analysis of the no-internal-regret algo-

rithm of Stoltz and Lugosi [38], as well as the no-swap-regret algo-

rithm of Blum and Mansour [6], both instantiated with Optimistic

Multiplicative Weights Update (OMWU). Going forward, we will

refer to those learning dynamics as SL-OMWU and BM-OMWU,

respectively. Our primary contribution is to show that both of

these algorithms exhibit a near-optimal convergence rate of𝑂 (𝑇−1),
settling our main question in the affirmative. More precisely, for

SL-OMWU our main theorem is summarized as follows.

Theorem 1.1. Consider a general-sum multi-player game with

𝑚 players, with each player 𝑖 ∈ [[𝑚]] having 𝑛𝑖 actions. There

1
As usual, we use the notation𝑂 ( ·) to suppress polylogarithmic factors of𝑇 . Also

note that for simplicity, and with a slight abuse of notation, in our introductory section

we sometimes use the big-𝑂 notation to hide game-specific parameters.

2
In general-sum multi-player games it is typical to search for solution concepts more

permissive than Nash equilibria [29] as the latter is known to be computationally

intractable under reasonable assumptions [4, 10, 14, 18, 25, 36].

exists a universal constant 𝐶 > 0 such that, when all players se-

lect strategies according to algorithm SL-OMWU with step size 𝜂 =

1/(𝐶 · 𝑚 log
4𝑇 ), the internal regret of every player 𝑖 ∈ [[𝑚]] is

bounded by 𝑂

(
𝑚 log𝑛𝑖 log

4𝑇

)
. As a result, the average product dis-

tribution of play is an𝑂

(
(𝑚 log𝑛 log4𝑇 )/𝑇

)
-approximate correlated

equilibrium.

This matches, up to constant factors, the rate of convergence for

coarse correlated equilibria as follows by the result in [13], and it

is optimal, within the no-regret framework,
3
up to polylogarithmic

factors [12]. This also substantially improves upon the 𝑂 (𝑇−3/4)
rate of convergence for correlated equilibria recently shown by

Chen and Peng [11], both in terms of the dependence on 𝑛𝑖 and 𝑇 .

Moreover, since swap regret on an 𝑛-simplex is trivially at most 𝑛

times larger than internal regret (e.g., see Blum and Mansour [6, pp.

1311]), Theorem 1.1 directly gives a bound in terms of swap regret

as well, stated as follows.

Corollary 1.2. If all players select strategies according to algo-

rithm SL-OMWU, the swap regret of every player 𝑖 ∈ [[𝑚]] is bounded
by 𝑂

(
𝑚𝑛𝑖 log𝑛𝑖 log

4𝑇

)
.

For the popular and more involved algorithm BM-OMWU, our

main theorem is summarized as follows.

Theorem 1.3. Consider a general-sum multi-player game with

𝑚 players, with each player 𝑖 ∈ [[𝑚]] having 𝑛𝑖 actions. There ex-
ists a universal constant 𝐶 > 0 such that, when all players select

strategies according to algorithm BM-OMWU with step size 𝜂 =

1/(𝐶 · 𝑚𝑛3
𝑖
log

4 (𝑇 )), the swap regret of every player 𝑖 ∈ [[𝑚]] is
bounded by 𝑂 (𝑚𝑛4

𝑖
log𝑛𝑖 log

4 (𝑇 )). As a result, the average prod-

uct distribution of play is an 𝑂

(
(𝑚𝑛4 log𝑛 log4𝑇 )/𝑇

)
-approximate

correlated equilibrium.

Finally, we remark that SL-OMWU and BM-OMWU instantiated

with the learning rates described in Theorems 1.1 and 1.3 guarantee

near-optimal swap regret (in 𝑇 ) when all players use the same

dynamics, but might not against general, adversarial losses. To

guarantee near-optimal swap regret in both the adversarial and the

non-adversarial regime, an adaptive choice of learning rate similar

to that in [13] can be used (see Corollary 3.5).

1.2 Overview of Techniques
The recent work of Daskalakis, Fishelson and Golowich [13] identi-

fied higher-order smoothness of no-external-regret learning dynam-

ics as a key property for obtaining near-optimal external regret

bounds. In particular, they showed that for the no-external-regret

dynamics OMWU, the higher-order differences (Definition 3.3) of

the sequence of loss vectors decay exponentially at orders up to

roughly log𝑇 . However, establishing such higher-order smoothness

for no-internal- and no-swap-regret learning dynamics is a consid-

erable challenge since the known algorithms involve computing the

stationary distribution of a certain Markov chain at every iteration.

3
Finding a correlated equilibrium can be phrased as a linear programming problem, and

thus 𝜖-approximate correlated equilibria can be found in time poly(𝑚,𝑛, log(1/𝜖)) ,
where 𝑛 = max𝑖∈[[𝑚]] {𝑛𝑖 }, for succinct multi-player games [31]. However, the proce-

dure for doing so, ellipsoid against hope, cannot be phrased as uncoupled dynamics

and is unlikely to be run by players competing in a repeated game.
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Our main technical contribution is to develop new techniques to

effectively address this challenge.

Proof of Theorem 1.1: Analyzing SL-OMWU. First, we show that

internal regret minimization on an 𝑛-simplex can be simulated

by no-external-regret dynamics on the combinatorial space of all

𝑛-node directed trees (Theorem 3.1). Our equivalence result en-

ables us to trade the computation of a stationary distribution of a

polynomial-sized Markov chain for a (much more well-behaved) lin-

ear transformation on an exponential-sized set. To our knowledge,

this is the first no-internal-to-no-external-regret reduction that

sidesteps the computation of stationary distributions of Markov

chains, and might have applications beyond the characterization of

higher-order smoothness of the dynamics. Based on our equivalence

result, we then adapt and leverage the known higher-order smooth-

ness techniques for no-external-regret dynamics [13]. We stress

that our analysis is eventually brought back to a “low-dimensional”

regret minimizer, instead of solely operating over the space of di-

rected trees; this step is crucial for obtaining the logarithmic depen-

dence on the number of actions of each player for no-internal-regret

dynamics (Theorem 1.1).

The equivalence result mentioned in the previous paragraph

arises as a consequence of the classic Markov chain tree theorem,

which provides a closed-form combinatorial formula for the sta-

tionary distribution of an ergodic Markov chain, and crucially re-

lies on the multiplicative structure of the update rule of (O)MWU.

Specifically, we prove that the stationary distributions of certain

Markov chains whose transition probabilities are updated through

(O)MWU are themselves linear transformations of iterates pro-

duced by (O)MWU. Our equivalence gives a direct way to argue

about the higher-order smoothness of stationary distributions of

Markov chains, substantially extending the first-order smoothness

observation of Chen and Peng [11]. Furthermore, we expect the

equivalence to continue to hold beyond stationary distributions of

Markov chains, to the more general problem of computing fixed

points of linear transformations required in the framework of Phi-

regret [19, 22, 39].

Proof of Theorem 1.3: Analyzing BM-OMWU. The techniques we

described so far enable us to establish the near-optimal internal and

swap regret bounds for SL-OMWU (Theorem 1.1 and Corollary 1.2),

as well as the corresponding convergence to correlated equilibrium.

However, different techniques are necessary to establish the regret

bound of BM-OMWU (Theorem 1.3). At a high level, BM-OMWU

runs 𝑛𝑖 independent external regret minimizers for each player 𝑖 ,

aggregates the outputs into a transition matrix of a Markov chain,

and then computes its stationary distribution. Because of the in-

dependence between the 𝑛𝑖 regret minimizers, it is unclear if an

analogue of the simulation result (Theorem 3.1) holds.

Thus, rather than arguing indirectly in terms of a supplementary

external-regret minimizer, we directly analyze the higher-order

smoothness of a sequence of stationary distributions of Markov

chains, at the cost of ultimately obtaining a worse dependence on

the number of actions 𝑛𝑖 in our swap regret bounds. Using the

machinery of [13] (in particular, the boundedness chain rule of

Lemma A.1), doing so boils down to obtaining a bound on the

Taylor series coefficients of the function that maps the entries of

an ergodic matrix Q to Q’s stationary distribution. Taken literally,

such a bound is not quite possible, since the stationary distribution

may have singularities around the non-ergodic matrices. However,

we show that by using the Markov chain tree theorem together

with the multi-dimensional version of Cauchy’s integral formula,

it is possible to bound the Taylor series of the function mapping

the logarithms of the entries of Q to its stationary distribution

(see Lemma C.3). Leveraging the exponential-type structure of the

OMWU updates, we then use this bound to obtain the desired guar-

antee on the higher-order differences of the stationary distributions

(Lemma 4.1).

1.3 Further Related Work
No-internal-regret algorithms that require black-box access to a sin-

gle no-external-regret minimizer are known in the literature [9, 38].

This is in contrast with the construction of Blum and Mansour

[6] for the stronger notion of swap regret, which requires 𝑛 inde-

pendent no-external-regret minimizers—one per each action of the

player. Nevertheless, both classes of algorithms involve computing

the stationary distribution of a certain Markov chain at every iter-

ation. The intrinsic complexity associated with the computation

of a stationary distribution was arguably the main factor limiting

our ability to give accelerated convergence guarantees for either

class of algorithms. Indeed, while learning dynamics guaranteeing

external regret bounded by 𝑂 (𝑇 1/4) have been known for several

years [40], a matching bound for swap regret was only recently

shown by Chen and Peng [11].

The setting studied in our paper (learning dynamics for corre-

lated equilibrium) is substantially more challenging than the prob-

lem of giving accelerated learning dynamics for Nash equilibria in

two-player zero-sum games, as well learning dynamics for smooth

games [35]. Indeed, while in our setting the convergence to the

equilibrium is driven by the maximum internal (or swap) regret

cumulated by the players, in the latter two settings the quality

metric is driven by the sum of the external regrets. As shown by

Syrgkanis, Agarwal, Luo and Schapire [40], it is possible to guar-

antee a constant sum of external regrets under a broad class of

predictive no-regret algorithms which includes optimistic OMD and

optimistic FTRL under very general distance-generating functions.

This is in contrast with the case of no-regret dynamics for CCE

and CE, where it remains an open question to give broad classes of

algorithms that can achieve near-optimal convergence.

Finally, we point out that optimistic variants of FTRL such as

OMWU have been shown to also converge in the last-iterate sense,

and the convergence is known to be linear
4
[15–17, 41], but this

holds only for restricted classes of games, such as two-player zero-

sum games.

2 PRELIMINARIES
Consider a finite normal-form game Γ consisting of a set of 𝑚

players [[𝑚]] B {1, 2, . . . ,𝑚} such that every player 𝑖 has an action

space A𝑖 B [[𝑛𝑖 ]], for some 𝑛𝑖 ∈ N. The joint action space will

be represented with A B A1 × · · · × A𝑚 . For a given action

profile 𝒂 = (𝑎1, . . . , 𝑎𝑚) ∈ A, the loss function Λ𝑖 : A → [0, 1]
specifies the loss of player 𝑖 under the action profile 𝒂; note that the

4
However, the convergence rate of the last-iterate may not depend polynomially in

the size of the game [41].
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Figure 1: Set T4
1
of all directed trees rooted at node 1 in a graph with 4 nodes.

normalization of the losses comes without any loss of generality.

A mixed strategy 𝒙𝑖 ∈ Δ(A𝑖 ) for a player 𝑖 ∈ [[𝑚]] is a probability
distribution over 𝑖’s action space A𝑖 , so that the coordinate 𝒙𝑖 [ 𝑗]
indicates the probability that player 𝑖 will select action 𝑗 ∈ [[𝑛𝑖 ]].
A deterministic strategy refers to a mixed strategy supported on

a single coordinate. Given a joint vector of mixed strategies 𝒙 =

(𝒙1, . . . , 𝒙𝑚), the expected loss ℓ𝑖 of player 𝑖 is such that ℓ𝑖 [ 𝑗] B
E𝒂−𝑖∼𝒙−𝑖 [Λ𝑖 ( 𝑗, 𝒂−𝑖 )], for all 𝑗 ∈ [[𝑛𝑖 ]], where we used the notation

𝒂−𝑖 to denote the vector 𝒂 excluding the coordinate corresponding

to 𝑖’s action; i.e. 𝒂−𝑖 B (𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎𝑚).

Hindsight Rationality and Regret Minimization. A standard qual-

ity metric in the theory of learning in games is hindsight rationality.

Hindsight rationality encodes the idea that a player has “learnt” to

play the game when, looking back at the history of play, there is no

transformation of their strategies that—applied to the whole history

of play—would have led to strictly better utility for that player. This

notion is operationalized through Phi-regret. Formally, theΦ𝑖 -regret

incurred by the sequence of strategies 𝒙 (1)
𝑖

, . . . , 𝒙 (𝑇 )
𝑖
∈ Δ𝑛𝑖 selected

by player 𝑖 ∈ [[𝑚]] is defined as

Reg
𝑇
Φ𝑖
B

𝑇∑︁
𝑡=1

⟨𝒙 (𝑡 )
𝑖

, ℓ (𝑡 )
𝑖
⟩ − min

𝜙∗∈Φ𝑖

𝑇∑︁
𝑡=1

⟨𝜙∗ (𝒙 (𝑡 )
𝑖
), ℓ (𝑡 )

𝑖
⟩. (1)

Notable special cases are identified based on the particular choice

of transformations Φ𝑖 , as follows.

(i) External regret (or simply regret) corresponds to the case

where Φ𝑖 is the set of all constant functions Φconst

𝑖
B {𝜙 :

Δ𝑛𝑖 → Δ𝑛𝑖 , 𝜙 (𝒙) = 𝜙 (𝒙 ′) ∀𝒙, 𝒙 ′ ∈ Δ𝑛𝑖 }.
(ii) Internal regret corresponds to the set of linear transformation

Φ𝑖 = Φint

𝑖
that transport probability mass from an action

𝑗 to some other action 𝑘 . Formally, Φint

𝑖
is the convex hull

Φint

𝑖
B co{𝜙 𝑗→𝑘 } 𝑗,𝑘∈A𝑖 , 𝑗≠𝑘 of the functions 𝜙 𝑗→𝑘 defined as

𝜙 𝑗→𝑘 : 𝒙 ↦→ 𝒙+(𝒆𝑘−𝒆 𝑗 ) 𝒙 [ 𝑗] =
(
I+(𝒆𝑘−𝒆 𝑗 )𝒆⊤𝑗

)
𝒙 C E𝑗→𝑘 𝒙 . (2)

(iii) Swap regret corresponds to the set Φ
swap

𝑖
of all linear transfor-

mations Δ𝑛𝑖 ∋ 𝒙 ↦→ Q⊤𝒙 where Q is a row-stochastic matrix,

that is, a non-negative matrix whose rows all sum to 1.

Connections with Solution Concepts. There exist connections be-

tween the different notions of hindsight rationality described above

and game-theoretic solution concepts, including correlated equi-

libria (the focus of this paper), whose definition is recalled next

[20, 23].

Definition 2.1 (Correlated Equilibrium). A probability distribution

𝝁 over Π1×· · ·×Π𝑚 is said to be an 𝜖-correlated equilibrium, where

𝜖 > 0, if for every player 𝑖 ∈ [[𝑚]] and every 𝜙 ∈ Φint

𝑖
,

E(𝝅1,...,𝝅𝑚)∼𝝁
[
⟨ℓ𝑖 , 𝝅𝑖 ⟩ − ⟨ℓ𝑖 , 𝜙 (𝝅𝑖 )⟩

]
≤ 𝜖. (3)

A folklore result states that the average product distribution

of play of no-internal-regret players converges to an approximate

correlated equilibrium (CE). More precisely, the following holds.

Theorem 2.2. Consider 𝑇 repetitions of play in a game where

every player 𝑖 ∈ [[𝑚]] employs an algorithm that produces strategies

𝒙 (1)
𝑖

, . . . , 𝒙 (𝑇 )
𝑖
∈ Δ𝑛𝑖 with internal regret IntReg

𝑇
𝑖
. Then, the average

product distribution of play 𝝁 B 1

𝑇

∑𝑇
𝑡=1 𝒙

(𝑡 )
1
⊗ · · · ⊗ 𝒙 (𝑡 )𝑚 is an

𝑂 (max𝑖 IntReg
𝑇
𝑖
/𝑇 )-CE.

Optimistic Multiplicative Weights Update. The optimistic variant

of MWU, called Optimistic Multiplicative Weights Update (OMWU)
5

is a particular instantiation of the more general optimistic FTRL

algorithm. At time 𝑡 = 1, OMWU outputs the uniform distribution

𝒙 (1) = 1

𝑛 1 ∈ Δ𝑛 . Then, at each time 𝑡 ≥ 1, it computes the next

iterate 𝒙 (𝑡+1) according to the update rule

𝒙 (𝑡+1) [ 𝑗] ∝ exp{−𝜂 (2ℓ (𝑡 ) [ 𝑗] − ℓ (𝑡−1) [ 𝑗])} 𝒙 (𝑡 ) [ 𝑗], (OMWU)

where 𝜂 > 0 is a learning rate parameter and ℓ (𝑡 ) is the feedback
loss vector observed at time 𝑡 (we conventionally let ℓ (0) = 0).

The Markov Chain Tree Theorem. Given an 𝑛-state ergodic (i.e.,

aperiodic and irreducible) Markov chain with (row-stochastic) tran-

sition matrix Q, the classic Markov chain tree theorem provides

a closed-form solution for its stationary distribution, that is, the

unique distribution 𝝅 ∈ Δ𝑛 such that 𝝅⊤Q = 𝝅⊤. The result

requires the notion of a directed rooted tree (a.k.a. arborescence),

recalled next.

Definition 2.3. Let T = (𝑉 , 𝐸), with 𝑉 = [[𝑛]], be an 𝑛-node

directed graph. T is a directed tree rooted at 𝑗 ∈ 𝑉 if (i) it contains

no cycle (including self-loops); (ii) every node𝑉 \{ 𝑗} has exactly one
outgoing edge; and (iii) node 𝑗 has no outgoing edges. We denote

the set of all 𝑛-node directed trees rooted at 𝑗 ∈ [[𝑛]] with the

symbol T𝑛
𝑗
. Furthermore, we let T𝑛 B T𝑛

1
∪ · · · ∪ T𝑛𝑛 .

It is well-known that |T𝑛
𝑗
| = 𝑛𝑛−2 for all 𝑗 ∈ [[𝑛]], and consequently

|T𝑛 | = 𝑛𝑛−1 [8]. An example for 𝑛 = 4 is given in Figure 1. In

5
The OMWU algorithm is sometimes referred to as Optimistic Hedge in the literature.
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this context, the Markov chain tree theorem asserts that the vector

(Σ1, . . . , Σ𝑛) of quantities

Σ 𝑗 B
∑︁
T∈T𝑗

∏
(𝑎,𝑏) ∈𝐸 (T)

Q[𝑎, 𝑏] ( 𝑗 ∈ [[𝑛]]) (4)

is proportional to the stationary distribution. Specifically, we have

the following.

Theorem 2.4 (Markov chain tree theorem). The stationary

distribution 𝝅 of an 𝑛-state ergodic Markov chain satisfies 𝝅 [ 𝑗] =
Σ 𝑗/Σ for all 𝑗 ∈ [[𝑛]], where Σ B Σ1 + · · · + Σ𝑛 .

For a proof of the Markov chain tree theorem, we refer the

interested reader to the works of Anantharam and Tsoucas [2],

Kruckman, Greenwald and Wicks [26].

3 NEAR-OPTIMAL NO-INTERNAL-REGRET
DYNAMICS FOR CORRELATED EQUILIBRIA

In this section we establish our main result regarding algorithm

SL-OMWU, namely Theorem 1.1. In particular, we start in Sec-

tion 3.1 by formalizing one of our key insights: SL-OMWU can be

equivalently thought of as a certain linear transformation of the

output of an external regret minimizer operating over the combi-

natorial space of directed trees; this equivalence is formalized in

Theorem 3.1. Next, in Section 3.2 we leverage this connection to

bound the internal regret of SL-OMWU using an extension of the

techniques developed in [13].

3.1 Equivalence Result
Before we proceed with the statement and proof of Theorem 3.1,

we first summarize SL-OMWU in Algorithm 1. In addition, in Al-

gorithm 2 we present an external regret minimizer over the space

of all directed trees (a.k.a. arborescences). Both Algorithms 1 and 2

use the symbol 𝒙 (𝑡 ) to denote the output strategies; this choice is

justified by the following theorem (see also Figure 2).

Theorem 3.1. For any learning rate 𝜂 > 0, Algorithms 1 and 2

produce the same strategies 𝒙 (1) , . . . , 𝒙 (𝑇 ) ∈ Δ𝑛 , assuming that they

observe the same sequence of losses ℓ (1) , . . . , ℓ (𝑇 ) ∈ R𝑛 .

Proof. We will inductively show that the following property

holds.

Lemma 3.2. At all times 𝑡 ≥ 1, the following conditions hold:

(1) there exists 𝑁 (𝑡 ) ∈ R such that∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡 ) [𝑎→𝑏] = 𝑁 (𝑡 )𝑿 (𝑡 ) [T ] ∀T ∈ T𝑛, (5)

where 𝒑 (𝑡 ) and 𝑿 (𝑡 ) are as defined in Algorithm 1 and Algo-

rithm 2, respectively; and

(2) the strategies produced by Algorithms 1 and 2 are the same.

Condition 2 of Lemma 3.2 immediately implies the statement.

First, we establish the base case 𝑡 = 1. The first iterate of OMWU

is always the uniform distribution; so, 𝒑 (1) = 1/𝑛 (𝑛−1) 1 ∈ Δ𝑛 (𝑛−1) .
Hence, the matrixM(1) (Line 3 of Algorithm 1) has entriesM[ 𝑗, 𝑘] =
1/𝑛 (𝑛−1) for all 𝑗 ≠ 𝑘 ∈ [[𝑛]]. Correspondingly, the (unique) station-
ary distribution ofM(1) is the uniform distribution 𝒙 (1) = 1

𝑛 1 ∈ Δ𝑛 .
We now verify that the same iterate is produced by Algorithm 2.

Since 𝑿 (1) is computed using OMWU, 𝑿 (1) ∈ Δ𝑛𝑛−1 is the uniform
distribution 𝑿 (1) [T ] = 1/𝑛𝑛−1. So, using the fact that |T𝑛

𝑗
| = 𝑛𝑛−2

for all 𝑗 ∈ [[𝑛]], each coordinate of the output strategy of Algo-

rithm 2 is equal to 𝑛𝑛−2/𝑛𝑛−1 = 1/𝑛, establishing the base case for
Condition 2 of Lemma 3.2. Furthermore, since 𝒑 (1) and 𝑿 (1) are
the uniform distributions over Δ𝑛 (𝑛−1) and Δ(𝑛

𝑛−1)
respectively,

Condition 1 follows directly from the fact that any directed tree

T ∈ T𝑛 has exactly 𝑛 − 1 edges.
Next, we prove the inductive step. Assume that Lemma 3.2 holds

at times 𝜏 = 1, . . . , 𝑡 , for some 𝑡 ≥ 1. We will prove that it will

hold at time 𝑡 + 1 as well. Since 𝒑 (𝑡+1) ∈ Δ𝑛 (𝑛−1) in Algorithm 1 is

updated using (OMWU), for all 𝑗 ≠ 𝑘 ∈ [[𝑛]]
𝒑 (𝑡+1) [ 𝑗→𝑘]
𝒑 (𝑡 ) [ 𝑗→𝑘]

∝ exp{−𝜂 (2𝑳 (𝑡 ) [ 𝑗→𝑘] − 𝑳 (𝑡−1) [ 𝑗→𝑘])}, (6)

where the loss vector

𝑳 (𝑡 ) [ 𝑗→𝑘] B 𝒙 (𝑡 ) [ 𝑗] (ℓ (𝑡 ) [𝑘] − ℓ (𝑡 ) [ 𝑗]) (7)

is as defined on Line 8 of Algorithm 1. For convenience, we will

denote the normalization parameter in Equation (6) as 𝑆 (𝑡+1) . Simi-

larly, since the strategies𝑿 (𝑡 ) ∈ Δ(𝑛𝑛−1) of Algorithm 2 are updated

using (OMWU) with the same learning rate 𝜂 > 0, we have that

𝑿 (𝑡+1) [T ] ∝ exp{−𝜂 (2L (𝑡 ) [T ] −L (𝑡−1) [T ])}𝑿 (𝑡 ) [T ], (8)

for all T ∈ T𝑛 , where L (𝑡 ) is defined on Line 7 of Algorithm 2 as∑︁
(𝑎,𝑏) ∈𝐸 (T)

𝒙 (𝑡 ) [𝑎] (ℓ (𝑡 ) [𝑏]−ℓ (𝑡 ) [𝑎]) =
∑︁

(𝑎,𝑏) ∈𝐸 (T)
𝑳 (𝑡 ) [𝑎→𝑏], (9)

for all T ∈ T𝑛 . (Note that in (7) and (9) we implicitly used the

inductive hypothesis that the strategies of the two algorithms co-

incide at iterate 𝑡 , as well as the assumption that the sequence

of losses ℓ (𝑡 ) observed by Algorithms 1 and 2 is the same.) To

simplify the notation, we will use S (𝑡+1) to represent the denom-

inator in (8). Next, we observe that for any T ∈ T𝑛 the term∏
(𝑎,𝑏) ∈𝐸 (T) 𝒑

(𝑡+1) [𝑎→𝑏] is equal to(
1

𝑆 (𝑡+1)

)𝑛−1
exp

{
−𝜂

(
2L
(𝑡 ) [T ] −L (𝑡−1) [T ]

)}
×

∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡 ) [𝑎→𝑏], (10)

where we used the fact that every directed tree T has exactly

𝑛 − 1 edges; the multiplicative properties of the exponential; and

the definition of L (𝑡 ) given in (9). From the inductive hypothe-

sis, Condition 1 of Lemma 3.2 holds at time 𝑡 ; so, continuing (10),∏
(𝑎,𝑏) ∈𝐸 (T) 𝒑

(𝑡+1) [𝑎→𝑏] is equal to(
1

𝑆 (𝑡+1)

)𝑛−1
exp

{
−𝜂

(
2L
(𝑡 ) [T ] −L (𝑡−1) [T ]

)}
𝑁 (𝑡 )𝑿 (𝑡 ) [T ]

=

(
1

𝑆 (𝑡+1)

)𝑛−1
S (𝑡+1)𝑁 (𝑡 )𝑿 (𝑡+1) [T ], (11)

where (11) follows from (8) and the definition of S (𝑡+1) . As a result,
we have shown that Condition 1 of Lemma 3.2 holds at time 𝑡 + 1
for the parameter

𝑁 (𝑡+1) B
(

1

𝑆 (𝑡+1)

)𝑛−1
S (𝑡+1)𝑁 (𝑡 ) . (12)
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Δ𝑛 (𝑛−1)
Stationary

distribution

ℓ (𝑡 ) 𝒑 (𝑡 ) M(𝑡 ) 𝒙 (𝑡 )
(O)MWU

Algorithm 1

Δ(𝑛
𝑛−1)ℓ (𝑡 ) 𝑿 (𝑡 ) 𝒙 (𝑡 )

(O)MWU

Algorithm 2

Figure 2: A schematic illustration of the equivalence result of Theorem 3.1; ⊗ in the figure represents a linear transformation.

Algorithm 1: Stoltz and Lugosi [38]

Data: RΔ: OMWU algorithm for Δ𝑛 (𝑛−1) with 𝜂 > 0

1 function NextStrategy()
2 𝒑 (𝑡 ) ← RΔ .NextStrategy()
3 M(𝑡 ) ←

∑︁
𝑗≠𝑘∈[[𝑛]]

𝒑 (𝑡 ) [ 𝑗→𝑘] E⊤
𝑗→𝑘

4 return 𝒙 (𝑡 ) ← StationDistrib(M(𝑡 ) ) 6

5 function ObserveUtility(ℓ (𝑡 ) )
6 𝑳 (𝑡 ) ← 0 ∈ R𝑛 (𝑛−1)
7 for 𝑗 ≠ 𝑘 ∈ [[𝑛]] do
8 𝑳 (𝑡 ) [ 𝑗→𝑘] ← 𝒙 (𝑡 ) [ 𝑗] (ℓ (𝑡 ) [𝑘] − ℓ (𝑡 ) [ 𝑗])
9 RΔ .ObserveUtility(𝑳 (𝑡 ) )

Algorithm 2: Arborescence-based dynamics

Data: RΔ: OMWU algorithm for Δ(𝑛
𝑛−1)

with 𝜂 > 0

1 function NextStrategy()
2 𝑿 (𝑡 ) ← RΔ .NextStrategy()

3 return 𝒙 (𝑡 ) ←
(∑
T∈T𝑛

𝑗
𝑿 (𝑡 ) [T ]

)𝑛
𝑗=1

4 function ObserveUtility(ℓ (𝑡 ) )
5 L (𝑡 ) = 0 ∈ R |T𝑛 | = R(𝑛𝑛−1)
6 for T ∈ T𝑛 do
7 L (𝑡 ) [T ] ←

∑︁
( 𝑗,𝑘) ∈𝐸 (T)

𝒙 (𝑡 ) [ 𝑗] (ℓ (𝑡 ) [𝑘] − ℓ (𝑡 ) [ 𝑗])

8 RΔ .ObserveUtility(L (𝑡 ) )

We now show that Condition 2 of Lemma 3.2 holds at time 𝑡 + 1 as
well. To do so, we analyze the (unique) stationary distribution of

the matrixM(𝑡+1) defined on Line 3 of Algorithm 1. First, we claim

that for any 𝑗 ≠ 𝑘 ∈ [[𝑛]], M(𝑡+1) [ 𝑗, 𝑘] = 𝒑 (𝑡+1) [ 𝑗→ 𝑘] . Indeed,
for any 𝑗 ≠ 𝑘 ∈ [[𝑛]] the unique non-zero non-diagonal entry of

the matrix E𝑗→𝑘 appears as E𝑗→𝑘 [𝑘, 𝑗] = 1 (recall (2)). Thus, our

claim follows directly by the definition of the matrix M(𝑡+1) in
Line 3 of Algorithm 1. As a result, the 𝑗-th coordinate of the fixed

point 𝒙 (𝑡+1) of M(𝑡+1) can be expressed using the Markov chain

tree theorem (Theorem 2.4) as

𝒙 (𝑡+1) [ 𝑗] =

∑︁
T∈T𝑗

∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡+1) [𝑎→𝑏]

𝑛∑︁
𝑗=1

∑︁
T∈T𝑛

𝑗

∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡+1) [𝑎→𝑏]
. (13)

Using (11) together with the fact that 𝑿 (𝑡+1) ∈ Δ(𝑛𝑛−1) , and there-

fore

∑
T∈T𝑛 𝑿

(𝑡+1) [T ] = 1, the denominator of (13) satisfies

𝑛∑︁
𝑗=1

∑︁
T∈T𝑛

𝑗

∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡+1) [𝑎→𝑏] =
∑︁
T∈T𝑛

𝑁 (𝑡+1)𝑿 (𝑡+1) [T ]

= 𝑁 (𝑡+1) . (14)

Similarly, using Equation (11) together with (12), the numerator

of (13) can be expressed as∑︁
T∈T𝑛

𝑗

∏
(𝑎,𝑏) ∈𝐸 (T)

𝒑 (𝑡+1) [𝑎→𝑏] = 𝑁 (𝑡+1)
∑︁
T∈T𝑛

𝑗

𝑿 (𝑡+1) [T ] . (15)

6
The matrix M(𝑡 ) has strictly positive entries at all times 𝑡 , since the iterates 𝒑 (𝑡 )

produced by (OMWU) lie in the relative interior of the simplex. So, eachM(𝑡 ) admits

a unique fixed point (stationary distribution).

Finally, plugging (14) and (15) into Equation (13) we can conclude

that 𝒙 (𝑡+1) [ 𝑗] = ∑
T∈T𝑛

𝑗
𝑿 (𝑡+1) [T ], which is exactly the 𝑗-th coor-

dinate of the iterate produced by Algorithm 2 at time 𝑡 + 1 (Line 3).
Thus, the strategies of Algorithms 1 and 2 at time 𝑡 + 1 are the same,

completing the inductive proof. □

3.2 Bounding the Internal Regret
Here we explain how to leverage the techniques in [13] to bound

the external regret of RΔ employed in Algorithm 1, which also

bounds the internal regret of SL-OMWU [38]. In particular, the

crux in the analysis lies in showing that the sequence of observed

losses of RΔ exhibits higher-order smoothness. Let us first recall the

notion of finite differences.

Definition 3.3. Consider a sequence of vectors 𝒛 = (𝒛 (1) , . . . , 𝒛 (𝑇 ) ).
For an integer ℎ ≥ 0, the ℎ-order finite difference for the sequence 𝒛,
denoted by 𝐷ℎ𝒛, is the sequence

𝐷ℎ𝒛 B ((𝐷ℎ𝒛) (1) , . . . , (𝐷ℎ𝒛) (𝑇−ℎ) )
defined recursively as (𝐷0𝒛) (𝑡 ) B 𝒛 (𝑡 ) , for 1 ≤ 𝑡 ≤ 𝑇 , and

(𝐷ℎ𝒛) (𝑡 ) B (𝐷ℎ−1𝒛) (𝑡+1) − (𝐷ℎ−1𝒛) (𝑡 ) , (16)

for ℎ ≥ 1, and 1 ≤ 𝑡 ≤ 𝑇 − ℎ.
To establish higher-order smoothness, we use Theorem 3.1 to

“lift” the analysis to the regret minimizer over the arborescences

(Algorithm 2). Then, we leverage the particular structure of the

losses in SL-OMWU to adapt the argument in [13], leading to the

following guarantee.

Lemma 3.4. Consider a parameter 𝛼 ≤ 1/(𝐻 + 3). If all players
employ SL-OMWU with learning rate 𝜂 ≤ 𝛼

36𝑚 , then for any player

𝑖 ∈ [[𝑚]], 0 ≤ ℎ ≤ 𝐻 and 𝑡 ∈ [[𝑇 − ℎ]] it holds that
∥(𝐷ℎ𝑳𝑖 ) (𝑡 ) ∥∞ ≤ 𝛼ℎℎ3ℎ+1 .
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Recall that 𝑳 (𝑡 )
𝑖

is the loss observed by algorithm RΔ at time

𝑡 (see Algorithm 1). Armed with this crucial lemma, we are also

able to extend the other technical ingredients used in [13], as we

formally show in Appendix B.

Adversarial Bound. The learning algorithm can also be slightly

modified in order to guarantee robustness when faced against adver-

sarial losses. Indeed, the following corollary implies near-optimal

internal regret in both regimes.

Corollary 3.5. There exists a learning algorithm such that, if

employed by all players, it guarantees that the internal regret of each

player 𝑖 ∈ [[𝑚]] is bounded by 𝑂 (𝑚 log𝑛𝑖 log
4𝑇 ). Moreover, under

adversarial losses the algorithm ensures internal regret bounded by

𝑂 (𝑚 log𝑛𝑖 log
4𝑇 +

√︁
log𝑛𝑖𝑇 ).

The idea is to use an adaptive choice of learning rate depending

on whether the bound predicted in (48) has been violated in some

repetition of the game, analogously to [13, Corollary D.1].

4 ANALYSIS OF BLUM-MANSOUR
In this section we give an overview of our analysis for the no-swap-

regret algorithm of Blum and Mansour [6] (BM). Unlike the no-

internal-regret algorithm of Stoltz and Lugosi [38], BM maintains 𝑛

independent no-external-regret algorithms RΔ,1, . . . ,RΔ,𝑛 , operat-
ing over Δ𝑛 . For this reason, our previous approach appears to be

no longer applicable. Instead, we develop more robust techniques

that delve into the inner-workings of the higher-order smoothness

argument in [13]. In particular, we substantially generalize their

approach by demonstrating how higher-order smoothness bounds

can be established even under the additional complexity of fixed

point operations.

First, to keep the exposition reasonably self-contained, let us

briefly recall the BM algorithm. At each time 𝑡 ≥ 1, every algorithm

RΔ,𝑔 produces an iterate Q(𝑡 ) [𝑔, ·] = (Q(𝑡 ) [𝑔, 1], . . . ,Q(𝑡 ) [𝑔, 𝑛]) ∈
Δ𝑛 , for all 𝑔 ∈ [[𝑛]]. Then, the algorithm computes a stationary

distribution Δ𝑛 ∋ 𝒙 (𝑡 ) = (Q(𝑡 ) )⊤𝒙 (𝑡 ) of the transition matrix Q(𝑡 ) .
Moreover, upon receiving a loss vector ℓ (𝑡 ) ∈ R𝑛 , the BM algorithm

distributes the loss vector 𝒙 (𝑡 ) [𝑔]ℓ (𝑡 ) to each regret minimizer

RΔ,𝑔 for 𝑔 ∈ [[𝑛]]. In what follows, we will be concerned with the

particular case where each regret minimizer is set to OMWU.

Our primary technical contribution in the analysis ofBM-OMWU

is to show that the losses observed by each individual regret mini-

mizer exhibit high-order smoothness. Namely, we show the follow-

ing lemma.

Lemma 4.1. Fix a parameter 𝛼 ∈
(
0, 1

𝐻+3

)
. There exists a suf-

ficiently large universal constant 𝐶 such that, if all players follow

BM-OMWU with learning rate 𝜂 ≤ 1

𝐶𝐻 2𝑛3

𝑖

, then for any player

𝑖 ∈ [[𝑚]], integer ℎ satisfying 0 ≤ ℎ ≤ 𝐻 , time step 𝑡 ∈ [[𝑇 −ℎ]], and
𝑔 ∈ [[𝑛𝑖 ]], it holds that

∥ (Dℎ (𝒙𝑖 [𝑔] · ℓ𝑖 )) (𝑡 ) ∥∞ ≤ 𝛼ℎℎ3ℎ+1 .

At a high level, the proof of this higher-order smoothness lemma

hinges on the cyclic relationship between the losses incurred by the

players ℓ (𝑡 )
𝑖

, the iterates produced by the copies of the OMWU algo-

rithm Q(𝑡 )
𝑖

, and the final strategies 𝒙 (𝑡 )
𝑖

output by BM-OMWU. In

particular, the iteratesQ(𝑡 )
𝑖
[𝑔, ·] are determined based on the overall

history of loss vectors

∑
𝑡 ′<𝑡 𝒙

(𝑡 ′)
𝑖
[𝑔]ℓ (𝑡

′)
𝑖

weighted exponentially

in terms of the softmax function; the strategies 𝒙 (𝑡 )
𝑖

are determined

by applying the Markov Chain Tree Theorem (Theorem 2.4) to the

stochastic matrix Q(𝑡 )
𝑖

formed by the previous iterates; and, the

losses ℓ (𝑡 )
𝑖

are determined as a function of the strategies of all the

other players 𝒙 (𝑡 )−𝑖 . Therefore, using the “Boundedness Chain Rule

for Finite Differences” (Lemma A.1), one of the main technical tools

shown in [13], we can demonstrate that bounds on the ℎ-th order

finite differences of 𝒙 (𝑡 )
𝑖

and ℓ (𝑡 )
𝑖

imply a bound on the (ℎ + 1)-th
order finite differences of Q(𝑡 ) .7 This, in turn, implies a bound on

the (ℎ + 1)-th order finite differences of 𝒙 (𝑡 )
𝑖

, which then gives a

bound on the (ℎ+1)-th order finite differences of ℓ (𝑡 )
𝑖

, as long as the

Taylor coefficients of the softmax function and the Markov Chain

Tree Theorem are sufficiently well-behaved. While this is not quite

the case, we make a slight modification to this cycle of implication,

bounding the finite differences of logQ(𝑡 )
𝑖

instead. This cycle of

implication enables an inductive argument that proves Lemma 4.1

as long as the log of the softmax function and an exponential ver-

sion of the Markov Chain Tree Theorem exhibit bounded Taylor

coefficients. These bounds are proved in Lemma C.6 and Lemma

C.3 respectively. The proof of Lemma C.6 follows an explicit, com-

binatorial framework similar to that presented in [13]. On the other

hand, Lemma C.3 introduces a novel technique for proving Taylor

coefficient bounds, applying the Cauchy Integral Formula. This ap-

proach is far more general, and could help establish the necessary

preconditions of Boundedness Chain Rule Lemma in much broader

settings wherein combinatorial approaches are insufficient.

5 CONCLUSIONS AND OPEN PROBLEMS
In conclusion, we have extended the recent result of Daskalakis,

Fishelson and Golowich [13] from external to internal and swap re-

gret. As a corollary, we obtained the first near-optimal—within the

no-regret framework—rates of convergence for correlated equilib-

rium. To do so, we developed several new techniques that allowed us

to establish higher-order smoothness for no-internal and no-swap

learning dynamics.

Finally, we identify several possible avenues for future research

related to our results.

• Although our internal-regret bounds are near-optimal in terms

of the dependency on the number of actions 𝑛𝑖 of each player 𝑖 ,

for swap regret our bounds depend polynomially on 𝑛𝑖 . While

a polynomial dependence on 𝑛𝑖 is necessary in the adversarial

setting [6, 24], we are not aware of any lower bounds for the

setting of smooth, predictable sequences of losses within which

our paper operates.

• Can our results be extended beyond OMWU, for example to other

instances of the general optimistic FTRL algorithm [40]?

• Finally, our equivalence theorem (Theorem 3.1) was only estab-

lished with respect to the set Φint

𝑖
of transformations correspond-

ing to internal regret. Is it possible to extend our results beyond

7
This is due to the fact that 𝐷ℎ+1Q(𝑡 ) [𝑔, · ] = 𝐷ℎ+1

∑
𝑡′<𝑡 𝒙

(𝑡′)
𝑖
[𝑔]ℓ (𝑡

′)
𝑖

=

𝐷ℎ𝒙
(𝑡 )
𝑖
[𝑔]ℓ (𝑡 )

𝑖
.

742



STOC ’22, June 20–24, 2022, Rome, Italy I. Anagnostides, C. Daskalakis, G. Farina, M. Fishelson, N. Golowich, and T. Sandholm

such transformations (e.g., see [19]) via closed-form formulas

for the associated fixed points, analogous to the Markov chain

tree theorem? Exploring such connections further constitutes a

promising direction for the future.
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A USEFUL TECHNICAL TOOLS
Most of the following technical ingredients were shown in [13], but

we include them to keep the exposition reasonably self-contained.

First, it will be useful to express ℎ-order finite differences, as intro-

duced in Definition 3.3, in the following form ([13, Remark 4.3]):

(𝐷ℎ𝒛) (𝑡 ) =
ℎ∑︁
𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠𝒛 (𝑡+𝑠) . (17)

Next, we state the “boundedness chain rule” for finite differences

[13]. Specifically, let 𝜙 : R𝑛 → R be a real function analytic in a

neighborhood of the origin. For real numbers 𝑄, 𝑅 > 0, we will say

that 𝜙 is (𝑄, 𝑅)-bounded if the Taylor series of 𝜙 with respect to the

origin, denoted with 𝑃𝜙 (𝑧1, . . . , 𝑧𝑛) =
∑
𝛾 ∈Z𝑛≥0 𝛼𝛾 𝒛

𝛾
is such that∑︁

𝛾 ∈Z𝑛≥0: |𝛾 |=𝑘
|𝛼𝛾 | ≤ 𝑄𝑅𝑘 , (18)

for any integer 𝑘 ≥ 0. The following result [13, Lemma 4.5] is one

of the central technical ingredients developed in [13].

Lemma A.1 ([13]). Consider a (𝑄, 𝑅)-bounded analytic function
𝜙 ∈ R𝑛 → R so that the radius of convergence of its power series

with respect to the origin is greater than 𝜈 , for some 𝜈 > 0. Moreover,

consider a sequence of vectors (𝒛 (1) , . . . , 𝒛 (𝑇 ) ) such that ∥𝒛 (𝑡 ) ∥∞ ≤
𝜈 for all 𝑡 ∈ [[𝑇 ]]. Finally, suppose that for some parameter 𝛼 ∈
(0, 1), and for each 0 ≤ ℎ′ ≤ ℎ and 𝑡 ∈ [[𝑇 − ℎ′]], it holds that8
∥(𝐷ℎ′𝒛) (𝑡 ) ∥∞ ≤ 1

𝐵1

𝛼ℎ
′ (ℎ′)𝐵0ℎ

′
, where 𝐵1 ≥ 2𝑒2𝑅 and 𝐵0 ≥ 3. Then,

for all 𝑡 ∈ [[𝑇 − ℎ]] it holds that���(𝐷ℎ (𝜙 ◦ 𝒛)) (𝑡 )
��� ≤ 12𝑅𝑄𝑒2

𝐵1
𝛼ℎℎ𝐵0ℎ+1 .

In the statement of this lemma the notation ◦ represents the
composition of functions. Further, we remark that while technically

the statement of Lemma A.1 in [13] is only stated for the special

case 𝜈 = 1, the lemma readily extends for general 𝜈 .

We additionally make use of the following lemma from [13] that

enables us to bound the variance of the loss sequences arising from

OMWU as a result of the smoothness of the sequences. In the follow-

ing lemma, we let Var𝒒 (𝒛) B
∑𝑛

𝑗=1 𝒒( 𝑗)
(
𝒛 ( 𝑗) −∑𝑛

𝑘=1
𝒒(𝑘)𝒛 (𝑘)

)
2

.

8
Here it is assumed that 0

0 = 1.

LemmaA.2. For any integers𝑛 ≥ 2 and𝑇 ≥ 4, we set𝐻 := ⌈log𝑇 ⌉,
𝛼 = 1/(4𝐻 ), and 𝛼0 =

√
𝛼/8
𝐻 3

. Suppose that 𝒁 (1) , . . . ,𝒁 (𝑇 ) ∈ [0, 1]𝑛

and 𝑷 (1) , . . . , 𝑷 (𝑇 ) ∈ Δ𝑛 satisfy the following

(1) For each 0 ≤ ℎ ≤ 𝐻 and 1 ≤ 𝑡 ≤ 𝑇 − ℎ, it holds that


(Dℎ 𝒁 ) (𝑡 )




∞
≤ 𝐻 ·

(
𝛼0𝐻

3
)ℎ
;

(2) The sequence 𝑷 (1) , . . . , 𝑷 (𝑇 ) is 𝜁 -consecutively close for some

𝜁 ∈ [1/(2𝑇 ), 𝛼4/8256].
Then,

𝑇∑︁
𝑡=1

Var𝑷 (𝑡 )

(
𝒁 (𝑡 ) − 𝒁 (𝑡−1)

)
≤2𝛼

𝑇∑︁
𝑡=1

Var𝑷 (𝑡 )

(
𝒁 (𝑡−1)

)
+ 165120(1 + 𝜁 )𝐻5 + 2,

where we say that a sequence 𝑷 (1) , . . . , 𝑷 (𝑇 ) is 𝜁 -consecutively close

if for all 𝑡 ,

max

{




 𝑷 (𝑡 )

𝑷 (𝑡+1)







∞
,






𝑷 (𝑡+1)𝑷 (𝑡 )







∞

}
≤ 1 + 𝜁 .

B ANALYSIS OF STOLTZ-LUGOSI
In this section we provide all of the technical ingredients required

for the analysis of SL-OMWU, and subsequently for the proof of

Theorem 1.1. First, let us cast the refined bound under adversarial

losses [13, Lemma 4.1] in our setting.

Lemma B.1 ([13]). Consider some player 𝑖 ∈ [[𝑚]] employing

SL-OMWU with learning rate 𝜂 < 1/𝐶 , where𝐶 is a sufficiently large

universal constant. Then, under any sequence of losses 𝑳 (1)
𝑖

, . . . , 𝑳 (𝑇 )
𝑖

,

the external regret of RΔ can be bounded as

Reg
𝑇
𝑖 ≤ 2

log𝑛𝑖

𝜂
+

𝑇∑︁
𝑡=1

(𝜂
2

+𝐶𝜂2
)
Var

𝒑 (𝑡 )
𝑖

(
𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖

)
−

𝑇∑︁
𝑡=1

(1 −𝐶𝜂)𝜂
2

Var
𝒑 (𝑡 )
𝑖

(
𝑳 (𝑡−1)
𝑖

)
. (19)

Recall from Algorithm 1 that 𝑳 (𝑡 )
𝑖

is the loss observed by the

regret minimizer RΔ employing (OMWU). Next, we continue with

the proof of Lemma 3.4. For the convenience of the reader, the

statement of the lemma is included below.

Lemma 3.4. Consider a parameter 𝛼 ≤ 1/(𝐻 + 3). If all players
employ SL-OMWU with learning rate 𝜂 ≤ 𝛼

36𝑚 , then for any player

𝑖 ∈ [[𝑚]], 0 ≤ ℎ ≤ 𝐻 and 𝑡 ∈ [[𝑇 − ℎ]] it holds that
∥(𝐷ℎ𝑳𝑖 ) (𝑡 ) ∥∞ ≤ 𝛼ℎℎ3ℎ+1 .

Proof. First of all, we know that

ℓ (𝑡 )
𝑖
[𝑎𝑖 ] =

∑︁
𝑎𝑖′ ∈[[𝑛𝑖′ ]],𝑖′≠𝑖

Λ(𝑎1, . . . , 𝑎𝑖 , . . . , 𝑎𝑚)
∏
𝑖′≠𝑖

𝒙 (𝑡 )
𝑖′ [𝑎𝑖′], (20)

where recall that by assumption Λ(·) ∈ [0, 1]. In particular, given

that 𝑳 (𝑡 )
𝑖
[ 𝑗 → 𝑘] = 𝒙 (𝑡 )

𝑖
[ 𝑗] (ℓ (𝑡 )

𝑖
[𝑘] − ℓ (𝑡 )

𝑖
[ 𝑗]), we may conclude

that

𝑳 (𝑡 )
𝑖
[ 𝑗→𝑘] =

∑︁
T𝑖′ ∈T𝑖′

Λ′(T1, . . . ,T𝑚)
∏

𝑖′∈[[𝑚]]
𝑿 (𝑡 )
𝑖′ [T𝑖′], (21)
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for some function Λ′ : T1×· · ·×T𝑚 → [−1, 1], where we used that
𝒙 (𝑡 )
𝑖′ [𝑎𝑖′] =

∑
T𝑖′ ∈T𝑖′,𝑎𝑖′

𝑿 (𝑡 )
𝑖′ [T𝑖′] (by Theorem 3.1), as well as the

fact that the sets of directed trees with different roots are disjoint.

As a result, we have that

���(𝐷ℎ𝑳𝑖 ) (𝑡 ) [ 𝑗→𝑘]
��� is equal to����� ℎ∑︁

𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠𝑳 (𝑡+𝑠)

𝑖
[ 𝑗→𝑘]

����� (22)

=

������ ∑︁
T𝑖′ ∈T𝑖′

Λ′(T1, . . . ,T𝑚)
ℎ∑︁
𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠

∏
𝑖′∈[[𝑚]]

𝑿 (𝑡+𝑠)
𝑖′ [T𝑖′]

������ (23)

≤
∑︁
T𝑖′ ∈T𝑖′

������ ℎ∑︁
𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠

∏
𝑖′∈[[𝑚]]

𝑿 (𝑡+𝑠)
𝑖′ [T𝑖′]

������ (24)

=
∑︁
T𝑖′ ∈T𝑖′

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

𝑿𝑖′ [T𝑖′]
ª®¬ª®¬
(𝑡 )

������� , (25)

where (22) uses the equivalent formulation of (17) for ℎ-order fi-

nite differences; (23) follows from (21); (24) follows from the trian-

gle inequality and the fact that |Λ′(·) | ∈ [0, 1]; and the final line

uses again the equivalent formulation of finite differences of (17),

with the convention that

∏
𝑖′∈[[𝑚]] 𝑿𝑖′ [T𝑖′] refers to the sequence∏

𝑖′∈[[𝑚]] 𝑿
(1)
𝑖′ [T𝑖′], . . . ,

∏
𝑖′∈[[𝑚]] 𝑿

(𝑇 )
𝑖′ [T𝑖′]. Next, it will be con-

venient to assume that 𝑿 (0)
𝑖

is the uniform distribution over the

simplex Δ |T𝑖 | , as well as L (0)
𝑖

= L
(−1)
𝑖

= 0. By construction, for

every player 𝑖 ∈ [[𝑚]] the vector 𝑿 (𝑡 )
𝑖

is updated using (OMWU)

under the sequence of lossesL (1) , . . . ,L (𝑇 ) , implying that for each

T ∈ T𝑖 , 𝑿 (𝑡0+𝑡+1)𝑖
[T ] is proportional to

exp

{
𝜂

(
L
(𝑡0−1)
𝑖

[T ] −
𝑡∑︁

𝑠=0

L
(𝑡0+𝑠)
𝑖

[T ] −L (𝑡0+𝑡 )
𝑖

[T ]
)}

𝑿 (𝑡0)
𝑖
[T ] .

(26)

For notational convenience, we let
¯L
(𝑡 )
𝑖,𝑡0

= L
(𝑡0−1)
𝑖

−∑𝑡−1
𝑠=0 L

(𝑡0+𝑠)
𝑖

−
L
(𝑡0+𝑡−1)
𝑖

, for 0 ≤ 𝑡0 ≤ 𝑇 and 𝑡 ≥ 0. Moreover, for a vector 𝒛 ∈ R |T𝑖 |
we define the following function:

𝜙𝑡0,T (𝒛) =
exp{𝒛 [T ]}∑

T′∈T′
𝑖
𝑿 (𝑡0)
𝑖
[T ′] exp{𝒛 [T ′]}

. (27)

Equipped with this notation, we can equivalently write (26) as

𝑿 (𝑡0+𝑡 )
𝑖

[T ] = 𝑿 (𝑡0)
𝑖
[T ]𝜙𝑡0,T

(
𝜂 ¯L
(𝑡 )
𝑖,𝑡0

)
for 𝑡 ≥ 1. In particular, this

implies that for any 𝑖 ′ ∈ [[𝑚]] and T𝑖′ ∈ T𝑖′ ,∏
𝑖′∈[[𝑚]]

𝑿 (𝑡0+𝑡 )
𝑖′ [T𝑖′] =

∏
𝑖′∈[[𝑚]]

𝑿 (𝑡0)
𝑖′ [T𝑖′]𝜙𝑡0,T𝑖′

(
𝜂 ¯L
(𝑡 )
𝑖′,𝑡0

)
. (28)

Before we proceed with the analysis, let us introduce the shift

operator. Specifically, for a sequence of vectors 𝒛 = (𝒛 (1) , . . . , 𝒛 (𝑇 ) ),
the s-shifted sequence, denoted with 𝐸𝑠𝒛, is such that (𝐸𝑠𝒛) (𝑡 ) =
𝒛 (𝑡+𝑠) , for 1 ≤ 𝑡 ≤ 𝑇 − 𝑠 . With this notation, we observe that(
𝐷1

¯L𝑖,𝑡0

) (𝑡 )
= L

(𝑡0+𝑡−1)
𝑖

−2L (𝑡0+𝑡 )
𝑖

= L
(𝑡0+𝑡−1)
𝑖

−2(𝐸1L𝑖 ) (𝑡0+𝑡−1) ,

which in particular implies that for any ℎ′ ≥ 1,(
𝐷ℎ′

¯L𝑖,𝑡0

) (𝑡 )
= (𝐷ℎ′−1L𝑖 ) (𝑡0+𝑡−1) − 2(𝐸1𝐷ℎ′−1L𝑖 ) (𝑡0+𝑡−1) . (29)

Next we proceed with bounding
¯L
(𝑡 )
𝑖,𝑡0

, for any 0 ≤ 𝑡0 ≤ 𝑇 and

𝑡 ≥ 0. In particular, for a fixed T ∈ T𝑖 , we know that L
(𝑡 )
𝑖
[T ] =∑

( 𝑗,𝑘) ∈𝐸 (T) 𝒙
(𝑡 )
𝑖
[ 𝑗] (ℓ (𝑡 )

𝑖
[𝑘] − ℓ (𝑡 )

𝑖
[ 𝑗]). Thus, given that ℓ (𝑡 )

𝑖
[ 𝑗] ∈

[0, 1], for any 𝑗 ∈ [[𝑛𝑖 ]] and 𝑡 ≥ 0, as follows from (20), we can

conclude that there exists T ∈ T𝑖 such that

∥L (𝑡 )
𝑖
∥∞ =

������ ∑︁
( 𝑗,𝑘) ∈𝐸 (T)

𝒙 (𝑡 )
𝑖
[ 𝑗] (ℓ (𝑡 )

𝑖
[𝑘] − ℓ (𝑡 )

𝑖
[ 𝑗])

������
≤

∑︁
( 𝑗,𝑘) ∈𝐸 (T)

𝒙 (𝑡 )
𝑖
[ 𝑗]

���ℓ (𝑡 )𝑖
[𝑘] − ℓ (𝑡 )

𝑖
[ 𝑗]

��� ≤ 1, (30)

where we used that

���ℓ (𝑡 )𝑖
[𝑘] − ℓ (𝑡 )

𝑖
[ 𝑗]

��� ≤ 1, as well as the fact that

T is a directed tree, implying that every node has at most one

outgoing (directed) edge (recall Definition 2.3). Along with the

triangle inequality, this implies that

∥ ¯L (𝑡 )𝑖,𝑡0
∥∞ =






L (𝑡0−1)𝑖
−

𝑡−1∑︁
𝑠=0

L
(𝑡0+𝑠)
𝑖

−L (𝑡0+𝑡−1)
𝑖







∞
≤ (𝑡 + 2) . (31)

Before we proceed with the next claim, it will be useful to introduce

the sequence 𝔏 (𝑡 ) , defined as

𝔏 (𝑡 ) B
(
𝜂 ¯L
(𝑡 )
1,𝑡0

, 𝜂 ¯L
(𝑡 )
2,𝑡0

, . . . , 𝜂 ¯L
(𝑡 )
𝑚,𝑡0

)
.

Lemma B.2. Let 𝛼 ∈ (0, 1) be such that




(𝐷ℎ′
(
𝜂 ¯L𝑖,𝑡0

) ) (𝑡 )



∞
≤

1

𝐵1

𝛼ℎ
′ (ℎ′)𝐵0ℎ

′
, for all 𝑖 ∈ [[𝑚]], 0 ≤ ℎ′ ≤ ℎ, and 𝑡 ∈ [[ℎ + 1 − ℎ′]],

where 𝐵1 = 12𝑒5𝑚 and 𝐵0 ≥ 3. Then, for any 0 ≤ 𝑡0 ∈ 𝑇 − ℎ − 1 and
T1 ∈ T1, . . . ,T𝑚 ∈ T𝑚 , it holds that�������©­«𝐷ℎ

©­«
∏

𝑖′∈[[𝑚]]
𝑿𝑖′ [T𝑖′]

ª®¬ª®¬
(𝑡0+1)

������� ≤ 𝛼ℎℎ𝐵0ℎ+1
∏

𝑖′∈[[𝑚]]
𝑿 (𝑡0)
𝑖′ (T𝑖′) . (32)

Proof. We will apply Lemma A.1 with 𝑛 B
∑
𝑖′∈[[𝑚]] |T𝑖′ |, time

horizon ℎ + 1, the sequence 𝔏 (𝑡 ) , and the function 𝜙 that maps

the concatenation of 𝒛𝑖′ ∈ R |T𝑖′ | , for all 𝑖 ′ ∈ [[𝑚]], to the function∏
𝑖′ 𝜙𝑡0,T𝑖′ (𝒛𝑖′), where 𝜙𝑡0,T𝑖′ was defined in (27); that is,

𝜙𝑡0 (𝒛1, . . . , 𝒛𝑚) B
∏

𝑖′∈[[𝑚]]
𝜙𝑡0,T𝑖′ (𝒛𝑖′) . (33)

Let us verify the conditions of Lemma A.1. First, [13, Lemma B.6]

implies that the function 𝜙𝑡0 is (1, 𝑒3𝑚)-bounded (in the sense of

Lemma A.1), and 𝐵1 = 12𝑒5𝑚 ≥ 2𝑒2 (𝑒3𝑚). Moreover, [13, Lemma

B.7] implies that each function 𝜙𝑡0,T𝑖′ has radius of convergence—
with respect to the origin 0—greater than 1, and hence, the radius

of convergence of 𝜙𝑡0 is also greater than 1. We also know, by

assumption, that




(𝐷ℎ′𝔏) (𝑡 )




∞
≤ 1

𝐵1

𝛼ℎ
′ (ℎ′)𝐵0ℎ

′
, for all 0 ≤ ℎ′ ≤ ℎ

and 𝑡 ∈ [[ℎ + 1 − ℎ′]]. As a result, Lemma A.1 implies that���(𝐷ℎ (𝜙 ◦ 𝔏)) (1)
��� ≤ 12𝑒5𝑚

𝐵1
𝛼ℎℎ𝐵0ℎ+1 . (34)
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Finally, we have that

1∏
𝑖′∈[[𝑚]] 𝑿

(𝑡0)
𝑖′ [T𝑖′]

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

𝑿𝑖′ [T𝑖′]
ª®¬ª®¬
(𝑡0+1)

�������
=

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

(
𝜙𝑡0,T𝑖′ ◦

(
𝜂 ¯L𝑖′,𝑡0

) )ª®¬ª®¬
(1)

������� (35)

=

��� (𝐷ℎ

(
𝜙𝑡0 ◦

(
𝜂 ¯L1,𝑡0 , . . . , 𝜂

¯L𝑚,𝑡0

) ) ) (1) ��� (36)

=

���𝐷ℎ

(
𝜙𝑡0 ◦ 𝔏

) (1) ���
≤ 12𝑒5𝑚

𝐵1
𝛼ℎℎ𝐵0ℎ+1 = 𝛼ℎℎ𝐵0ℎ+1, (37)

where (35) follows from Equation (28); (36) simply uses the defi-

nition of 𝜙𝑡0 in (33); and (37) follows from (34) (which in turn is a

consequence of LemmaA.1), as well as the fact that 𝐵1 = 12𝑒5𝑚. □

Lemma B.3. Fix some 1 ≤ ℎ ≤ 𝐻 , a parameter 𝛼 ∈ (0, 1), and as-
sume that the learning rate𝜂 is such that𝜂 ≤ min

{
𝛼

36𝑒5𝑚
, 1

12𝑒5 (𝐻+3)𝑚

}
.

Moreover, assume that for all 0 ≤ ℎ′ < ℎ, 𝑡 ≤ 𝑇 − ℎ′, and 𝑖 ∈ [[𝑚]],
it holds that ∥(𝐷ℎ′L𝑖 ) (𝑡 ) ∥∞ ≤ 𝛼ℎ

′ (ℎ′ + 1)𝐵0 (ℎ′+1)
. Then, for all

𝑡 ∈ [[𝑇 − ℎ]] and 𝑖 ∈ [[𝑚]],


(𝐷ℎL𝑖 ) (𝑡 )




∞
≤ 𝛼ℎℎ𝐵0ℎ+1 . (38)

Proof. Let us set 𝐵1 B 12𝑒5𝑚, so that 𝜂 ≤ min

{
𝛼
3𝐵1

, 1

𝐵1 (𝐻+3)

}
.

We know from (31) that for 𝑡 + 2 ≤ ℎ + 3 it follows that


𝐷0

(
𝜂 ¯L𝑖,𝑡0

) (𝑡 )



∞

= 𝜂




 ¯L (𝑡 )𝑖,𝑡0




 ≤ 𝜂 (𝑡 + 2) ≤ 1

𝐵1
, (39)

where we used the fact that 𝜂 ≤ 1/(𝐵1 (𝐻 +3)). Next, for 1 ≤ ℎ′ ≤ ℎ,


(𝐷ℎ′
(
𝜂 ¯L𝑖,𝑡0

) ) (𝑡 )



∞
≤ 𝜂




(𝐷ℎ′−1L𝑖 ) (𝑡0+𝑡−1)




∞

+ 2𝜂



(𝐷ℎ′−1L𝑖 ) (𝑡0+𝑡 )





∞

(40)

≤ 3𝜂𝛼ℎ
′−1 (ℎ′)𝐵0ℎ

′
(41)

≤ 1

𝐵1
𝛼ℎ
′
(ℎ′)𝐵0ℎ

′
, (42)

where (40) follows from (29) and the triangle inequality; (41) is a con-

sequence of the assumption in the claim; and (42) uses the fact that

𝜂 ≤ 𝛼
3𝐵1

. Next, given thatL
(𝑡 )
𝑖
[T ] = ∑

( 𝑗,𝑘) ∈𝐸 (T) 𝒙
(𝑡 )
𝑖
[ 𝑗] (ℓ (𝑡 )

𝑖
[𝑘]−

ℓ (𝑡 )
𝑖
[ 𝑗]), we can infer that

L
(𝑡 )
𝑖

=
∑︁

𝑎𝑖′ ∈[[𝑛𝑖′ ]]
Λ̂(𝑎1, . . . , 𝑎𝑚)

∏
𝑖′∈[[𝑚]]

𝒙𝑖′ [𝑎𝑖′]

=
∑︁
T𝑖′ ∈T𝑖′

Λ̃(T1, . . . ,T𝑚)
∏

𝑖′∈[[𝑚]]
𝑿𝑖′ [T𝑖′], (43)

where Λ̂ and Λ̃ are functions such that Λ̂(·) ∈ [−1, 1] and Λ̃(·) ∈
[−1, 1]. More precisely, (43) is obtained from Theorem 3.1. As a

result, similarly to (25) we may conclude that���(𝐷ℎL𝑖 ) (𝑡 ) [T ]
��� ≤ ∑︁
T𝑖′ ∈T𝑖′

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

𝑿𝑖′ [T𝑖′]
ª®¬ª®¬
(𝑡 )

������� . (44)

The next step is to invoke Lemma B.2 in order to bound the

induced term. Specifically, by (39) and (42) we see that its conditions

are met, from which we can conclude that for 𝑡 ∈ [[𝑇 − ℎ]]




(𝐷ℎL𝑖 ) (𝑡 )




∞
≤

∑︁
T𝑖′ ∈T𝑖′

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

𝑿𝑖′ [T𝑖′]
ª®¬ª®¬
(𝑡 )

������� (45)

≤ 𝛼ℎℎ𝐵0ℎ+1
∑︁
T𝑖′ ∈T𝑖′

∏
𝑖′∈[[𝑚]]

𝑿 (𝑡−1)
𝑖′ [T𝑖′] (46)

= 𝛼ℎℎ𝐵0ℎ+1, (47)

where (45) follows from (43); (46) is an immediate application of

Lemma B.2; and (47) follows from the fact that each𝑿𝑖′ is a probabil-

ity distribution over the space of directed trees T𝑖′ , for all 𝑖
′ ∈ [[𝑚]],

and as such the induced product distribution normalizes to 1. □

Finally, it follows from (30) that




(𝐷0L𝑖 ) (𝑡 )




∞
≤ 1 = 𝛼01𝐵01

, for

all 𝑖 ∈ [[𝑚]]. Thus, we can inductively invoke Lemma B.3 for 𝐵0 = 3

to infer that for all 0 ≤ ℎ ≤ 𝐻 , 𝑖 ∈ [[𝑚]], and 𝑡 ∈ [[𝑇 − ℎ]] that


(𝐷ℎL𝑖 ) (𝑡 )




∞
≤ 𝛼ℎℎ3ℎ+1, as long as 𝜂 ≤ 𝛼

36𝑒5𝑚
and 𝛼 ≤ 1/(𝐻 + 3).

Finally, following the argument given in the proof of Lemma B.3,

we obtain that for any 0 ≤ ℎ′ ≤ ℎ,


(𝐷ℎ′
(
𝜂 ¯L𝑖,𝑡0

) ) (𝑡 )



∞
≤ 1

𝐵1
𝛼ℎ
′
(ℎ′)3ℎ

′
.

Thus, we can invoke Lemma B.2 to conclude that for any 0 ≤ 𝑡0 ≤
𝑇 − ℎ − 1 and T1 ∈ T1, . . . ,T𝑚 ∈ T𝑚 ,�������©­«𝐷ℎ

©­«
∏

𝑖′∈[[𝑚]]
𝑿𝑖′ [T𝑖′]

ª®¬ª®¬
(𝑡0+1)

������� ≤ 𝛼ℎℎ3ℎ+1
∏

𝑖′∈[[𝑚]]
𝑿 (𝑡0)
𝑖′ (T𝑖′) .

As a result, plugging-in this bound into (25) we obtain that for

𝑡 ∈ [[𝑇 − ℎ]],




(𝐷ℎ𝑳𝑖 ) (𝑡 )




∞
≤

∑︁
T𝑖′ ∈T𝑖′

�������©­«𝐷ℎ
©­«

∏
𝑖′∈[[𝑚]]

𝑿𝑖′ [T𝑖′]
ª®¬ª®¬
(𝑡 )

�������
≤ 𝛼ℎℎ3ℎ+1

∑︁
T𝑖′ ∈T𝑖′

∏
𝑖′∈[[𝑚]]

𝑿 (𝑡−1)
𝑖′ [T𝑖′],

= 𝛼ℎℎ3ℎ+1 .

□

The final technical ingredient is the following lemma, which

can be shown by applying Lemma A.2 using the smoothness of the

losses established by Lemma 3.4.

Lemma B.4. There are universal constants 𝐶,𝐶 ′ ≥ 1 so that for

a time horizon 𝑇 ≥ 4 and 𝐻 B ⌈log𝑇 ⌉, if all players employ

SL-OMWU with learning rate 𝜂 such that 1/𝑇 ≤ 𝜂 ≤ 1

𝐶𝑚𝐻 4
, then,

𝑇∑︁
𝑡=1

Var
𝒑 (𝑡 )
𝑖

(
𝑳 (𝑡 )
𝑖
− 𝑳 (𝑡−1)

𝑖

)
≤ 1

2

Var
𝒑 (𝑡 )
𝑖

(
𝑳 (𝑡−1)
𝑖

)
+𝐶 ′𝐻5, (48)

for any 𝑖 ∈ [[𝑚]].
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C ANALYSIS OF BLUM-MANSOUR
To prove Theorem 1.3, we start with a regret bound analogous

to that of [13] for the swap regret setting. The BM algorithm is

composed of 𝑛 copies of a no-external-regret algorithm (such as

OMWU), and thus we can achieve the following regret bound using

similar techniques as [13]. For any swap function 𝜙 : [[𝑛]] → [[𝑛]],
𝑇∑︁
𝑡=1

⟨𝒙 (𝑡 ) , ℓ (𝑡 ) ⟩ −
𝑇∑︁
𝑡=1

𝑛∑︁
𝑔=1

𝒙 (𝑡 ) [𝑔] · ℓ (𝑡 ) [𝜙 (𝑔)]

≤
𝑇∑︁
𝑡=1

𝑛∑︁
𝑔=1

(𝜂
2

+𝐶𝜂2
)
VarQ(𝑡 ) [𝑔,· ]

(
𝒙 (𝑡 ) [𝑔] · ℓ (𝑡 ) − 𝒙 (𝑡−1) [𝑔] · ℓ (𝑡−1)

)
−

𝑇∑︁
𝑡=1

𝑛∑︁
𝑔=1

(1 −𝐶𝜂)𝜂
2

· VarQ(𝑡 ) [𝑔,· ]
(
𝒙 (𝑡−1) [𝑔] · ℓ (𝑡−1)

)
+ 𝑛 log𝑛

𝜂
.

Thus, proving Theorem 1.3 boils down to the following lemma,

which will be proved in the sequel of the appendix.

Lemma C.1. Suppose all players play according to BM-OMWU

with step size 𝜂 satifying 1/𝑇 ≤ 𝜂 ≤ 1

𝐶 ·𝑚𝑛3
log

4 (𝑇 ) for a suffi-

ciently large constant 𝐶 . Then for any player 𝑖 ∈ [[𝑚]] and any

𝑔 ∈ [[𝑛𝑖 ]], the overall losses for player 𝑖 : ℓ (1)𝑖
, . . . , ℓ (𝑇 )

𝑖
∈ R𝑛 , the

probability player 𝑖 places on action 𝑔: 𝒙 (1) [𝑔], . . . , 𝒙 (𝑇 ) [𝑔] ∈ R, and
the strategy vectors output by player 𝑖’s 𝑔th instance of OMWU RΔ,𝑖,𝑔 :
Q(1)
𝑖
[𝑔, ·], . . . ,Q(𝑇 )

𝑖
[𝑔, ·] ∈ Δ𝑛 satisfy

𝑇∑︁
𝑡=1

VarQ(𝑡 ) [𝑔,· ]
(
𝒙 (𝑡 ) [𝑔] · ℓ (𝑡 ) − 𝒙 (𝑡−1) [𝑔] · ℓ (𝑡−1)

)
≤ 1

2

·
𝑇∑︁
𝑡=1

VarQ(𝑡 ) [𝑔,· ]
(
𝒙 (𝑡−1) [𝑔] · ℓ (𝑡−1)

)
+𝑂

(
log

5 (𝑇 )
)
.

By combining the previous inequality with Lemma C.1, for 𝜂 ∈[
1

𝑇
, 1

𝐶 ·𝑚𝑛3
log

4 (𝑇 )

]
, we obtain that

SwapReg
𝑇
𝑖 ≤

𝑛 log𝑛

𝜂
+ 2𝑛𝜂

3

𝑂

(
log

5 (𝑇 )
)
.

Hence, by setting 𝜂 = 1

𝐶 ·𝑚𝑛3
log

4 (𝑇 ) we recover the bound stated in

Theorem 1.3.

The rest of the appendix is devoted to the proof of Lemma C.1.

There, the main technical tool is Lemma 4.1, which establishes

higher-order smoothness for the iterates of BM-OMWU.

C.1 Technical Lemmas for BM-OMWU
We first reiterate theMarkov chain tree theorem under a slightly dif-

ferent formulation, catering to the proof techniques of this section.

We let R𝑛×𝑛 (respectively, C𝑛×𝑛) denote the space of real-valued
(respectively, complex-valued) 𝑛 × 𝑛 matrices. For each 𝑗 ∈ [[𝑛]],
we introduce the following functions ΦMCT, 𝑗 : C

𝑛×𝑛 → C:

ΦMCT, 𝑗 (𝑍 ) :=

∑
T∈T𝑛

𝑗
exp

(∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍𝑎𝑏

)
∑𝑛

𝑗=1

∑
T∈T𝑛

𝑗
exp

(∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍𝑎𝑏

) .

Theorem C.2 (Markov chain tree theorem). Let Q ∈ R𝑛×𝑛
be the transition matrix of a Markov chain so that Q[𝑖, 𝑗] > 0 for

all 𝑖, 𝑗 ∈ [[𝑛]]. Then, the stationary distribution of Q is given by

the vector (ΦMCT,1 (lnQ), . . . ,ΦMCT,1 (lnQ)), where lnQ denotes the

matrix whose (𝑖, 𝑗) entry is lnQ[𝑖, 𝑗].

Lemma C.3. Fix any 𝑍 (0) ∈ R𝑛×𝑛 . Consider any function of the

form 𝜙 (𝑍 ) := ΦMCT, 𝑗 (𝑍 (0)+𝑍 )
ΦMCT, 𝑗 (𝑍 (0) )

. Then the sum of the Taylor series coef-

ficients of order 𝑘 ≥ 0 of 𝜙 at 0 is bounded above by 30 · (2𝑛3)𝑘 , and
has radius of convergence greater than 1/𝑛.

Proof. Fix any multi-index 𝛾 ∈ Z𝑛×𝑛≥0 ; we will bound
𝑑𝛾

𝑑𝑍𝛾 𝜙 (0).
Fix any 𝑍 ∈ C𝑛×𝑛 so that ∥𝑍 ∥∞ ≤ 𝜋/(3𝑛). Set 𝜁 = 𝑍 (0) + 𝑍 . Note
that, for any T ∈ T𝑛

𝑗
,������exp ©­«

∑︁
(𝑎,𝑏) ∈𝐸 (T)

𝜁𝑎𝑏
ª®¬
������ =

������exp ©­«
∑︁

(𝑎,𝑏) ∈𝐸 (T)
𝑍
(0)
𝑎𝑏
+

∑︁
(𝑎,𝑏) ∈𝐸 (T)

(𝜁𝑎𝑏 − 𝑍
(0)
𝑎𝑏
)ª®¬

������
≤ exp(𝜋/3) · exp ©­«

∑︁
(𝑎,𝑏) ∈𝐸 (T)

𝑍
(0)
𝑎𝑏

ª®¬ ,
where we used the fact that

���∑(𝑎,𝑏) ∈𝐸 (T) (𝜁𝑎𝑏 − 𝑍 (0)𝑎𝑏
)
��� ≤ 𝜋/3 and

that 𝑍 (0) is real-valued. Further, for any 𝑎 ∈ R and 𝜁 ∈ C with

|𝜁 | ≤ 𝜋/3, we have

ℜ(exp(𝑎 + 𝜁 )) = exp(𝑎) · ℜ(𝜁 )
≥ exp(𝑎) · cos(𝜋/3) · exp(−𝜋/3) > exp(𝑎)/10.

Thus, for any 𝑗 ′ ∈ [[𝑛]] and T ∈ T𝑛
𝑗 ′ , it holds that

ℜ ©­«exp ©­«
∑︁

(𝑎,𝑏) ∈𝐸 (T)
𝜁𝑎𝑏

ª®¬ª®¬ ≥ 1

10

· exp ©­«
∑︁

(𝑎,𝑏) ∈𝐸 (T)
𝑍
(0)
𝑎𝑏

ª®¬
Thus, since 𝑍 (0) is real-valued,

|𝜙 (𝑍 ) | =
|ΦMCT, 𝑗 (𝜁 ) |
ΦMCT, 𝑗 (𝑍 (0) )

≤

∑𝑛
𝑗 ′=1

∑
𝑇 ∈T𝑛

𝑗′
exp

(∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍

(0)
𝑎,𝑏

)
∑
𝑇 ∈T𝑛

𝑗
exp

(∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍

(0)
𝑎,𝑏

)
·

∑
𝑇 ∈T𝑛

𝑗

���exp (∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍𝑎𝑏

)���∑𝑛
𝑗 ′=1

∑
𝑇 ∈T𝑛

𝑗′
ℜ

(
exp

(∑
(𝑎,𝑏) ∈𝐸 (T) 𝑍𝑎𝑏

))
= exp(𝜋/3) · 10 < 30.

By the multivariate version of Cauchy’s integral formula,���� 𝑑𝛾𝑑𝑍𝛾
𝜙 (0)

���� ���� 𝛾 !

(2𝜋𝑖)𝑛2

∫
|𝑍11 |=𝜋/(3𝑛)

· · ·
∫
|𝑍𝑛𝑛 |=𝜋/(3𝑛)

𝜙 (𝑍 )∏
𝑗1, 𝑗2∈[[𝑛]] (𝑍 𝑗1 𝑗2 )𝛾 𝑗1 𝑗2+1

𝑑𝜁11 · · ·𝑑𝜁𝑛𝑛

�����
≤30 · 𝛾 ! · (3𝑛/𝜋) |𝛾 | . (49)
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For any integer 𝑘 ≥ 0, the number of tuples 𝛾 ∈ Z𝑛2

≥0 with |𝛾 | = 𝑘 is(𝑘+𝑛2−1
𝑛2−1

)
≤ (2𝑛2)𝑘 . Thus, if we write 𝜙 (𝑍 ) = ∑

𝛾 ∈Z𝑛2≥0
𝑎𝛾 · 𝑧𝛾 , it fol-

lows that 𝑎𝛾 = 1

𝛾 !
· 𝑑𝛾

𝑑𝑍𝛾 𝜙 (0), and so for each 𝑘 ≥ 0,

∑
𝛾 : |𝛾 |=𝑘 |𝑎𝛾 | ≤

30 · (2𝑛2)𝑘 · (3𝑛/𝜋)𝑘 ≤ 30 · (2𝑛3)𝑘 .
To see the lower bound on the radius of convergence, note that

(49) gives that for each 𝛾 ∈ Z𝑛2

≥0, letting 𝑘 := |𝛾 |, we have |𝑎𝛾 |1/𝑘 ≤
30

1/𝑘 · (3𝑛/𝜋), which tends to 3𝑛/𝜋 < 𝑛 as 𝑘 → ∞. Thus, by the

multivariate version of the Cauchy-Hadamard theorem, the radius

of convergence of the power series of 𝜙 at 0 is greater than 1/𝑛. □

In the statement of Lemma C.4 below, the quantity 0
0
is inter-

preted as 1 (in particular, (ℎ′)𝐵0ℎ
′
= 1 for ℎ′ = 0).

Lemma C.4. Fix any 𝐵1 ≥ 4𝑒2𝑛3, 𝐵0 ≥ 3. Consider a sequence

Q(0) , . . . ,Q(ℎ) ∈ R𝑛×𝑛 of ergodic Markov chains, so that ∥ logQ(0) −
logQ(𝑡 ) ∥∞ ≤ 1

𝐵1

for 0 ≤ 𝑡 ≤ ℎ. Suppose that for some 𝛼 ∈
(0, 1), for each 1 ≤ ℎ′ ≤ ℎ and 0 ≤ 𝑡 ≤ ℎ − ℎ′, it holds that
∥ (Dℎ′ (lnQ)) (𝑡 ) ∥∞ ≤ 1

𝐵1

·𝛼ℎ′ ·(ℎ′)𝐵0ℎ
′
. Then, if 𝑝 (0) , . . . , 𝑝 (ℎ) ∈ Δ𝑛

denotes the sequence of stationary distributions for Q(0) , . . . ,Q(ℎ) , it
holds that, for any 𝑗 ∈ [[𝑛]],���(Dℎ 𝑝 [ 𝑗]) (𝑡 )

���
𝑝 (0) [ 𝑗]

≤ 720𝑛
3𝑒2

𝐵1
· 𝛼ℎ · ℎ𝐵0ℎ+1 .

Proof. By the Markov chain tree theoremwe have that, for each

𝑗 ∈ [[𝑛]], 𝑝 (𝑡 ) [ 𝑗] = ΦMCT, 𝑗 (lnQ(𝑡 ) ). We now apply Lemma A.1

with 𝑇 = ℎ + 1, z(𝑡 ) = lnQ(𝑡−1) − lnQ(0) for 1 ≤ 𝑡 ≤ ℎ + 1, 𝑅1 =

1, 𝑅2 = 2𝑛3, and the values of 𝐵0, 𝐵1 given in the hypothesis of this

lemma (Lemma C.4). Moreover, we set 𝜙 (𝑍 ) = ΦMCT, 𝑗 ( (lnQ(0) )+𝑍 )
ΦMCT, 𝑗 (lnQ(0) )

=

ΦMCT, 𝑗 ( (lnQ(0) )+𝑍 )
𝑝 (0) [ 𝑗 ] . Lemma C.3 gives that the function 𝜙 is (30, 2𝑛3)-

bounded, and has radius of convergence greater than 1/𝑛 at the

point 𝑍 = 0. Then the hypotheses of Lemma C.4 imply those of

Lemma A.1, and Lemma A.1 gives that���(Dℎ 𝑝 [ 𝑗]) (𝑡 )
���

𝑝 (0) [ 𝑗]
=

����(Dℎ (𝜙 ◦ (lnQ − lnQ(0) ))
) (0) ����

𝑝 (0) [ 𝑗]

≤ 720𝑛3𝑒2

𝐵1
· 𝛼ℎ · ℎ𝐵0ℎ+1 .

(Here we have used that 𝜙 (lnQ(𝑡 ) − lnQ(0) ) = ΦMCT, 𝑗 (lnQ(𝑡 ) )
𝑝 (0) [ 𝑗 ] =

𝑝 (𝑡 ) [ 𝑗]/𝑝 (0) [ 𝑗].) □

Lemma C.5. For 𝑛 ∈ N, let 𝜉1, . . . , 𝜉𝑛 ≥ 0 so that 𝜉1 + · · · + 𝜉𝑛 = 1.

For any 𝑗 ∈ [[𝑛]], the function

𝜙 𝑗 ((𝑧1, . . . , 𝑧𝑛)) =
exp(𝑧 𝑗 )∑𝑛

𝑘=1
𝜉𝑘 · exp(𝑧𝑘 )

satisfies, for any 𝑧 ∈ R𝑛 with ∥𝑧∥∞ ≤ 1/4,
| log𝜙 𝑗 (𝑧) | ≤ ∥𝑧∥∞ ≤ 6∥𝑧∥∞ .

Proof. For 0 ≤ 𝑥 ≤ 1, we have 1 + 𝑥 ≤ exp(𝑥) ≤ 1 + 2𝑥 . Then,
for ∥𝑧∥∞ ≤ 1/2,

𝜙 𝑗 (𝑧) ≤
1 + 2𝑧 𝑗∑𝑛

𝑘=1
𝜉𝑘 · (1 + 𝑧𝑘 )

≤ 1 + 2∥𝑧∥∞
1 − ∥𝑧∥∞

≤ (1 + 2∥𝑧∥∞)2

and

𝜙 𝑗 (𝑧) ≥
1 + 𝑧 𝑗∑𝑛

𝑘=1
𝜉𝑘 · (1 + 2𝑧𝑘 )

≥ 1 − ∥𝑧∥∞
1 + 2∥𝑧∥∞

≥ (1 − ∥𝑧∥∞) (1 − 2∥𝑧∥∞) .

Thus, for ∥𝑧∥∞ ≤ 1/4,
− 6∥𝑧∥∞ ≤ log(1 − ∥𝑧∥∞) + log(1 − 2∥𝑧∥∞)
≤ log𝜙 𝑗 (𝑧) ≤ 2 log(1 + 2∥𝑧∥∞) ≤ 4∥𝑧∥∞ . □

Lemma C.6. For𝑛 ∈ N, let 𝜉1, . . . , 𝜉𝑛 ≥ 0 such that 𝜉1+· · ·+𝜉𝑛 = 1.

For each 𝑗 ∈ [[𝑛]], define 𝜙 𝑗 : R
𝑛 → R to be the function

𝜙 𝑗 ((𝑧1, . . . , 𝑧𝑛)) =
𝜉 𝑗 exp(𝑧 𝑗 )∑𝑛

𝑘=1
𝜉𝑘 · exp(𝑧𝑘 )

and let 𝑃
log𝜙 𝑗

(𝑧) = ∑
𝛾 ∈Z𝑛≥0 𝑎 𝑗,𝛾 ·𝑧

𝛾
denote the Taylor series of log𝜙 𝑗 .

Then for any 𝑗 ∈ [[𝑛]] and any integer 𝑘 ≥ 1,∑︁
𝛾 ∈Z𝑛≥0: |𝛾 |=𝑘

��𝑎 𝑗,𝛾 �� ≤ 𝑒𝑘/𝑘.

Proof. We have that

𝜕 log𝜙 𝑗

𝜕𝑧𝑡
=

1

𝜙 𝑗
·
𝜕𝜙 𝑗

𝜕𝑧𝑡
=

{
−𝜙𝑡 if 𝑡 ≠ 𝑗

1 − 𝜙 𝑗 if 𝑡 = 𝑗

and so, ∑︁
𝛾 ∈Z𝑛≥0: |𝛾 |=𝑘

��𝑎 𝑗,𝛾 �� = 1

𝑘!

∑︁
𝑡 ∈[[𝑛]]𝑘

����� 𝜕𝑘 log𝜙 𝑗 (0)
𝜕𝑧𝑡1 𝜕𝑧𝑡2 · · · 𝜕𝑧𝑡𝑘

�����
=

1

𝑘!

∑︁
𝑡1∈[[𝑛]]

∑︁
𝑡−1∈[[𝑛]]𝑘−1

����� 𝜕𝑘−1

𝜕𝑧𝑡2 · · · 𝜕𝑧𝑡𝑘
(
𝜙𝑡1 − 1[𝑡1 = 𝑗]

)
(0)

����� .
For 𝑘 = 1,

1

𝑘!

∑︁
𝑡1∈[[𝑛]]

��𝜙𝑡1 (0) − 1[𝑡1 = 𝑗]
�� ≤ 1 +

∑︁
𝑡1∈[[𝑛]]

𝜉𝑡1 = 2.

For 𝑘 ≥ 2, 1[𝑡1 = 𝑗] will be removed by the derivative; hence,

1

𝑘!

∑︁
𝑡1∈[[𝑛]]

∑︁
𝑡−1∈[[𝑛]]𝑘−1

����� 𝜕𝑘−1𝜙𝑡1 (0)𝜕𝑧𝑡2 · · · 𝜕𝑧𝑡𝑘

�����
≤ 1

𝑘!

∑︁
𝑡1∈[[𝑛]]

(
(𝑘 − 1)! · 𝜉𝑡1𝑒𝑘

)
(50)

=
1

𝑘!
· (𝑘 − 1)! · 𝑒𝑘 ·

∑︁
𝑡1∈[[𝑛]]

𝜉𝑡1 = 𝑒𝑘/𝑘,

where (50) comes from the following lemma due to [13].

Lemma C.7 ([13]). For 𝑛 ∈ N, let 𝜉1, . . . , 𝜉𝑛 ≥ 0 such that 𝜉1 +
· · · +𝜉𝑛 = 1. For each 𝑗 ∈ [[𝑛]], define 𝜙 𝑗 : R

𝑛 → R to be the function

𝜙 𝑗 ((𝑧1, . . . , 𝑧𝑛)) =
𝜉 𝑗 exp(𝑧 𝑗 )∑𝑛

𝑘=1
𝜉𝑘 · exp(𝑧𝑘 )

and let 𝑃𝜙 𝑗
(𝑧) = ∑

𝛾 ∈Z𝑛≥0 𝑎 𝑗,𝛾 · 𝑧
𝛾
denote the Taylor series of 𝜙 𝑗 . Then

for any 𝑗 ∈ [[𝑛]] and any integer 𝑘 ≥ 1,∑︁
𝛾 ∈Z𝑛≥0: |𝛾 |=𝑘

��𝑎 𝑗,𝛾 �� ≤ 𝜉 𝑗𝑒
𝑘+1 .

□
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C.2 Proof of Higher-Order Smoothness
Lemma 4.1 (Detailed). Fix a parameter 𝛼 ∈

(
0, 1

𝐻+3

)
. If all players

follow BM-OMWU updates with step size 𝜂 ≤ 1

311040𝑒7𝐻 2𝑛3

𝑖

, then

for any player 𝑖 ∈ [[𝑚]], integer ℎ satisfying 0 ≤ ℎ ≤ 𝐻 , time step

𝑡 ∈ [[𝑇 − ℎ]], and 𝑔 ∈ [[𝑛𝑖 ]], it holds that

∥ (Dℎ (𝒙𝑖 [𝑔] · ℓ𝑖 )) (𝑡 ) ∥∞ ≤ 𝛼ℎ · ℎ3ℎ+1 .

Proof. We prove this inductively, showing that, for all 𝑖 ∈
[[𝑚]], 0 ≤ ℎ ≤ 𝐻, 𝑡 ∈ [[𝑇 − ℎ]], 𝑔 ∈ [[𝑛𝑖 ]], and 𝐵0 ≥ 3


(Dℎ ℓ𝑖 ) (𝑡 )





∞
≤ 𝛼ℎ · ℎ𝐵0ℎ+1

; (51)


(Dℎ 𝒙𝑖 [𝑔] · ℓ𝑖 ) (𝑡 )




∞
≤ 𝛼ℎ · ℎ𝐵0ℎ+1

; (52)


(Dℎ 𝒙𝑖 ) (𝑡 )




∞
≤ 𝛼ℎ · ℎ𝐵0ℎ+1 . (53)

The base case of ℎ = 0 is evident from the fact that losses and strat-

egy probabilities are in [0, 1], and therefore ∥ℓ (𝑡 )
𝑖
∥∞, ∥𝒙 (𝑡 )𝑖

∥∞ ≤ 1.

So, proving the following inductive statement is sufficient to prove

the lemma. Assume (51), (52), (53) hold for all ℎ′ satisfying 1 ≤ ℎ′ <
ℎ. Then, they hold for ℎ as well.

First, notice that for any agent 𝑖 ∈ [[𝑚]], any OMWU instance

RΔ,𝑖,𝑔 of agent 𝑖 with 𝑔 ∈ [𝑛𝑖 ], any 𝑡0 ∈ {0, 1, . . . ,𝑇 }, and any 𝑡 ≥ 0,

by the definition (OMWU) of the OMWU updates, it holds that, for

each 𝑗 ∈ [𝑛𝑖 ],

Q(𝑡0+𝑡+1)
𝑖

[𝑔, 𝑗] =
Q(𝑡0)
𝑖
[𝑔, 𝑗] · exp

(
𝜂 · L(𝑡 )

𝑖,𝑡0
[𝑔, 𝑗]

)
∑𝑛𝑖
𝑘=1

Q(𝑡0)
𝑖
[𝑔, 𝑘] · exp

(
𝜂 · L(𝑡 )

𝑖,𝑡0
[𝑔, 𝑘]

) ,
where Q𝑡

𝑖
[𝑔, 𝑗] denotes the weight placed on action 𝑗 by algorithm

RΔ,𝑖,𝑔 at time 𝑡 , and L(𝑡 )
𝑖,𝑡0
[𝑔, 𝑗] is defined

L(𝑡 )
𝑖,𝑡0
[𝑔, 𝑗] := 𝒙 (𝑡0−1)

𝑖
[𝑔]ℓ (𝑡0−1)

𝑖
[ 𝑗]

−
𝑡−1∑︁
𝑠=0

𝒙 (𝑡0+𝑠)
𝑖

[𝑔]ℓ (𝑡0+𝑠)
𝑖

[ 𝑗] − 𝒙 (𝑡0+𝑡−1)
𝑖

[𝑔]ℓ (𝑡0+𝑡−1)
𝑖

[ 𝑗] .

We can define edge values ℓ (0)
𝑖

, ℓ (−1)
𝑖

,Q(0)
𝑖

to ensure that the above

equation holds even for 𝑡0 ∈ {0, 1}. Now, for any 𝑔, 𝑗 ∈ [[𝑛𝑖 ]], any
integer 𝑡0 satisfying 0 ≤ 𝑡0 ≤ 𝑇 ; and any integer 𝑡 ≥ 0, let us

define Also, for a vector 𝑧 = (𝑧 [1], . . . , 𝑧 [𝑛𝑖 ]) ∈ R𝑛𝑖 and indices

𝑔, 𝑗 ∈ [[𝑛𝑖 ]], define

𝜙𝑡0,𝑔, 𝑗 (𝑧) :=
exp (𝑧 [ 𝑗])∑𝑛𝑖

𝑘=1
Q(𝑡0)
𝑖
[𝑔, 𝑘] · exp (𝑧 [𝑘])

, (54)

so that

Q(𝑡0+𝑡 )
𝑖

[𝑔, 𝑗] = Q(𝑡0)
𝑖
[𝑔, 𝑗] · 𝜙𝑡0,𝑔, 𝑗 (𝜂 · L

(𝑡 )
𝑖,𝑡0
[𝑔, ·]) (55)

for 𝑡 ≥ 1, where L(𝑡 )
𝑖,𝑡0
[𝑔, ·] denotes the vector (L(𝑡 )

𝑖,𝑡0
[𝑔, 1], . . . , L(𝑡 )

𝑖,𝑡0
[𝑔, 𝑛𝑖 ]).

Next, note that, for all 𝑔, 𝑗 ∈ [[𝑛𝑖 ]],(
D1 L𝑖,𝑡0 [𝑔, 𝑗]

) (𝑡 )
= 𝒙 (𝑡0+𝑡−1)

𝑖
[𝑔]ℓ (𝑡0+𝑡−1)

𝑖
[ 𝑗]−2𝒙 (𝑡0+𝑡 )

𝑖
[𝑔]ℓ (𝑡0+𝑡 )

𝑖
[ 𝑗]

and so, for any 1 ≤ ℎ′ ≤ ℎ,��� (Dℎ′
(
𝜂 · L𝑖,𝑡0 [𝑔, 𝑗]

) ) (𝑡 ) ��� ≤ 3𝜂 · 𝛼ℎ
′−1 · (ℎ′ − 1)𝐵0ℎ

′
, (56)

where (56) follows from the inductive hypothesis. Additionally,

since

��L𝑖,𝑡0 [𝑔, 𝑗]�� ≤ 𝑡 + 2 for all 𝑡0, 𝑖, 𝑔, 𝑗 , we have
��𝜂 · L𝑖,𝑡0 [𝑔, 𝑗]�� ≤

𝜂 · (𝑡 + 2) ≤ 1 for 𝜂 ≤ 1

𝑡+2 . By Lemma C.6, the function 𝑧 ↦→
log𝜙𝑡0,𝑔, 𝑗 (𝑧) is (1, 𝑒)-bounded, and so for each 1 ≤ ℎ′ ≤ ℎ we

may apply Lemma A.1 with ℎ = ℎ′, 𝒛 (𝑡 ) = 𝜂 · L(𝑡 )
𝑖,𝑡0
[𝑔, ·] and 𝐵1 =

1

𝜂 ·min

{
𝛼
3
, 1

𝐻+3
}
= 𝛼

3𝜂 . Thus, we can conclude, for all 1 ≤ ℎ′ ≤ ℎ,

𝑡 ≤ ℎ + 1, and 𝑔 ∈ [[𝑛𝑖 ]],(
Dℎ′ log

(
𝜙𝑡0,𝑔, 𝑗 (𝜂 · L

(𝑡 )
𝑖,𝑡0
[𝑔, ·])

)) (𝑡 )
≤ 36𝑒3𝐻𝜂 · 𝛼ℎ

′
· (ℎ′)𝐵0ℎ

′
.

(57)

Taking the logarithm on both sides of (55), we have

log

(
Q(𝑡0+𝑡 )
𝑖

[𝑔, 𝑗]
)
= logQ(𝑡0)

𝑖
[𝑔, 𝑗] + log

(
𝜙𝑡0,𝑔, 𝑗 (𝜂 · L

(𝑡 )
𝑖,𝑡0
[𝑔, ·])

)
.

(58)

Let Q(𝑡 )
𝑖
∈ R𝑛𝑖×𝑛𝑖 be the matrix with entries Q(𝑡 )

𝑖
[𝑔, 𝑗] and 𝑃 (𝑡 )

𝑖,𝑡0
be

the matrix with entries 𝜙𝑡0,𝑔, 𝑗

(
𝜂 · L(𝑡 )

𝑖,𝑡0
[𝑔, ·]

)
, for 𝑔, 𝑗 ∈ [[𝑛𝑖 ]]. Then,

for all 𝑔 ∈ [[𝑛𝑖 ]], all 𝑡0 ∈ [[𝑇 − ℎ]], and 𝑡 ∈ [[ℎ]], we have

𝒙 (𝑡0+𝑡 )
𝑖

[𝑔] = ΦMCT,𝑔

(
logQ(𝑡0+𝑡 )

𝑖

)
= ΦMCT,𝑔

(
logQ(𝑡0)

𝑖
+ log

(
𝑃
(𝑡 )
𝑖,𝑡0

))
.

Next note that, by Lemma C.5 and 𝑡 ≤ 𝐻 + 1,


logQ(𝑡0+𝑡 )𝑖
− logQ(𝑡0)

𝑖





∞
≤ max

𝑔,𝑗 ∈[𝑛𝑖 ]

���log𝜙𝑡0,𝑔, 𝑗 (𝜂 · L(𝑡 )𝑖,𝑡0
[𝑔, ·])

���
≤6𝜂 · (𝑡 + 2) ≤ 36𝑒3𝐻𝜂. (59)

We now apply Lemma C.4 with Q(𝑡 ) = 𝑃
(𝑡 )
𝑖,𝑡0

, for 0 ≤ 𝑡 ≤ ℎ, and

1/𝐵1 = 36𝑒3𝐻𝜂. The preconditions of the lemma hold from (57).

Then Lemma C.4 gives that for all 𝑔 ∈ [𝑛𝑖 ],���(Dℎ 𝒙𝑖 [𝑔]) (𝑡0+1)
��� ≤|𝒙 (𝑡0)𝑖

[𝑔] | · 720𝑛3𝑖 𝑒
2 · 36𝑒3𝐻𝜂 · 𝛼ℎ

′
· (ℎ)𝐵0ℎ+1 .

verifying the first of three desired inductive conclusions (53) as

long as 𝜂 ≤ 1/(25920𝑒5𝐻𝑛3
𝑖
).

As a result, for 𝑡 ∈ [[𝑇 ]],���(Dℎ ℓ𝑖 ) (𝑡 ) [𝑎𝑖 ]
��� = ����� ℎ∑︁

𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠 ℓ (𝑡+𝑠)

𝑖
[𝑎𝑖 ]

�����
=

������ ∑︁
𝑎𝑖′ ∈[𝑛𝑖′ ], ∀𝑖′≠𝑖

Λ𝑖 (𝑎1, . . . , 𝑎𝑚)
ℎ∑︁
𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠 ·

∏
𝑖′≠𝑖

𝒙 (𝑡+𝑠)
𝑖′ [𝑎𝑖′]

������
≤

∑︁
𝑎𝑖′ ∈[𝑛𝑖′ ], ∀𝑖′≠𝑖

����� ℎ∑︁
𝑠=0

(
ℎ

𝑠

)
(−1)ℎ−𝑠 ·

∏
𝑖′≠𝑖

𝒙 (𝑡+𝑠)
𝑖′ [𝑎𝑖′]

�����
=

∑︁
𝑎𝑖′ ∈[𝑛𝑖′ ], ∀𝑖′≠𝑖

������
(
Dℎ

(∏
𝑖′≠𝑖

𝒙𝑖′ [𝑎𝑖′]
)) (𝑡 ) ������

≤25920𝑒5𝐻𝑛3𝑖 𝜂 · 𝛼
ℎ · (ℎ)𝐵0ℎ+1

∑︁
𝑎𝑖′ ∈[𝑛𝑖′ ], ∀𝑖′≠𝑖

(∏
𝑖′≠𝑖

𝒙 (𝑡 )
𝑖
[𝑎′𝑖 ]

)
≤25920𝑒5𝐻𝑛3𝑖 𝜂 · 𝛼

ℎ · (ℎ)𝐵0ℎ+1,
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verifying the second of three desired inductive conclusions (51) as

long as 𝜂 ≤ 1/(25920𝑒5𝐻𝑛3
𝑖
).

Lastly, for 𝜂 ≤ 1

12𝑒2𝐻
· 1

25920𝑒5𝐻𝑛3

𝑖

= 1

311040𝑒7𝐻 2𝑛3

𝑖

, we have now

verified the inductive hypotheses:

∥ (Dℎ′ ℓ𝑖 ) (𝑡 ) ∥∞ ≤
1

2𝑒2
𝛼ℎ
′
· (ℎ′)𝐵0ℎ

′
;

∥ (Dℎ′ 𝒙𝑖 ) (𝑡 ) ∥∞ ≤
1

2𝑒2
𝛼ℎ
′
· (ℎ′)𝐵0ℎ

′
,

for all ℎ′ up to and including ℎ. Thus, we can apply Lemma A.1

with 𝑛 = 2, 𝜙 (𝑎, 𝑏) = 𝑎𝑏 (which is (1, 1)-bounded), 𝐵1 = 12𝑒2, and

the sequence 𝒛 (𝑡 ) = (𝒙 (𝑡 )
𝑖
[𝑔] · ℓ (𝑡 )

𝑖
[ 𝑗]). Therefore, for the product

sequence 𝒙𝑖 [𝑔] · ℓ𝑖 [ 𝑗], we have, for all 𝑡 ∈ [[𝑇 − ℎ + 1]],���(Dℎ 𝒙𝑖 [𝑔] · ℓ𝑖 [ 𝑗]) (𝑡 )
��� ≤ 𝛼ℎ · (ℎ)𝐵0 ·ℎ+1, (60)

verifying the final inductive conclusion (52). □

Finally, Lemma C.1 follows by applying Lemma A.2 using the

smoothness of the sequence 𝒙𝑖 [𝑔] · ℓ𝑖 implied by Lemma 4.1.
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