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Abstract 
Neuron morphology gives rise to distinct axons and dendrites and plays an 
essential role in neuronal functionality and circuit dynamics. In rat 

hippocampal neurons, morphological development occurs over roughly one 

week in vitro. This development has been qualitatively described as 

occurring in 5 stages. Still, there is a need to quantify cell growth to monitor 

cell culture health, understand cell responses to sensory cues, and compare 
experimental results and computational growth model predictions. To 

address this need, embryonic rat hippocampal neurons were observed in 

vitro over six days, and their processes were quantified using both standard 

morphometrics (degree, number of neurites, 

1 
total length, and tortuosity) and new metrics (distance between change 

points, relative turning angle, and the number of change points) based on the 

Change-Point Test to track changes in path trajectories. Of the standard 
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morphometrics, the total length of neurites per cell and the number of 

endpoints were significantly different between 0.5, 1.5, and 4 days in vitro, 
which are typically associated with Stages 2-4. Using the Change-Point Test, 

the number of change points and the average distance between change 

points per cell were also significantly different between those key time 

points. This work highlights key quantitative characteristics, both among 

common and novel morphometrics, that can describe neuron development 
in vitro and provides a foundation for analyzing directional changes in 

neurite growth for future studies. 

Keywords: Neuron, Morphogenesis, Morphometrics, Change-Point Test, Developmental 
Growth Stages 

1 Introduction 
Mature neurons exhibit extensive arborization of their axons and dendrites 

(collectively neurites) to form functional connections with neighboring cells and 

receive sensory signals. The distinct neuronal structure is believed to give rise 

to the neuron’s computational abilities (Cuntz, Borst, & Segev, 2007; Ferrante, 

Migliore, & Ascoli, 2013; Kanari et al., 2018; van Elburg & van Ooyen, 2010; 

Zomorrodi, Ferecsk´o, Kov´acs, Kr¨oger, & Timofeev, 2010). In addition, 

morphological differences between neuronal cell types are thought to result in 

their functional differences (Khalil, Farhat, & Dl otko, 2021; Krichmar, Nasuto, 

Scorcioni, Washington, & Ascoli, 2002; Mainen & Sejnowski, 1996; Schaefer, 

Larkum, Sakmann, & Roth, 2003; Vetter, Roth, & H¨ausser, 2001). During the 

development of this crucial structure in primary neurons in vitro, several 

morphological changes have been categorized into distinct stages which can be 

described qualitatively (Dotti, Sullivan, & Banker, 1988; Powell, Rivas, 

Rodriguez-Boulan, & Hatten, 1997; Tahirovic & Bradke, 2009). 

One common model for studying neuron morphological development in vitro 

is the embryonic rodent hippocampal neuron (Tahirovic & Bradke, 2009). In this 

model system, morphogenesis of hippocampal neurons can be qualitatively 

described in five developmental stages occurring over seven days in vitro (DIV) 

(Figure 1): initially, neurons appear as only round somas with no neurites, but 

(1) within the first hour of plating, small protrusions, or lamellipodia, form along 

the cell periphery; (2) after around 0.5 days in vitro (DIV), the lamellipodia 

transforms into a few distinct, minor processes that form the preliminary 

neurites; (3) at around 1-2 DIV, one of the neurites will begin to elongate at a 

faster rate than the other processes and differentiate into the axon; (4) after 4 

DIV, the remaining neurites will develop into dendrites and begin to elongate at 

a higher rate, but still slower than that of the axons; (5) after one week in culture, 

the neuronal processes will continue 
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Fig. 1 Rat hippocampal neuron morphogenesis occurs in five stages (Dotti et al., 1988). First, small 
protrusions, or lamellipodia, form at the soma boundary (Stage 1). Subsequently, a few lamellipodia 
will continue to elongate into the initial neurites (Stage 2). Next, one of the neurites will begin to 
grow faster than the others to differentiate into the axon (Stage 3). After a few days, the remaining 
neurites will also accelerate growth to mature into the dendrites (Stage 4). The final stage is the 
continued maturation of the entire cell, which is dependent on environmental factors and 
interactions with neighboring cells (Stage 5). 

to mature by forming networks with functional synaptic connections, and the 

dendrites will begin to exhibit dendritic spines (Dotti et al., 1988; Kaech & 

Banker, 2006; Tahirovic & Bradke, 2009). Previously, each stage has been 

qualitatively described with limited quantitative descriptions of the axonal and 

dendritic lengths and growth rates (Dotti et al., 1988). However, it can be 

challenging to identify the stage a culture is at using only those features, 

particularly when transitioning between stages if the same cells within a 

population were not tracked over time. Nevertheless, these stages are still used 

as expected growth events when assessing in vitro cultures (Kaech & Banker, 

2006). Neurite growth quantification is needed for consistent stage 

identification to monitor culture health, test intra- and extracellular sensory 

cues, and compare experiments and computational models (Liao, Webster-

Wood, & Zhang, 2021; Qian et al., 2022). 

Many different types of quantitative representations, such as density maps 

(Jefferis et al., 2007; Laturnus, Kobak, & Berens, 2020), graph theory (Gillette & 

Grefenstette, 2009; Heumann & Wittum, 2009), topology (Kanari et al., 2018), 

and morphometric statistics (Laturnus et al., 2020; Polavaram, Gillette, Parekh, 

& Ascoli, 2014; Uylings & van Pelt, 2002), have been applied to describe 

functionally different types of mature neurons. In addition, machine learning 

techniques also have been used for identifying neuron types (Laturnus et al., 

2020) and for identifying neuronal polarity (Su et al., 2021). Laturnus et al. 

(2020) noted the importance of the spatial extent and shape describing neuron 

connectivity in distinguishing cell types, instead of specific branching features. 

Although these quantitative representations can characterize neuronal cell 

types, most have not been applied to discriminate between neurite growth 

stages or time points. A few common morphometrics, such as neurite length and 

number of branches, have been used to study neuron development in vitro in rat 

hippocampal neurons (Dotti et al., 1988) and in stem cell differentiation to 
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neural progenitor cells (Kang et al., 2017). However, the current quantitative 

representations of neuron morphology do not capture details about changes in 

neurite growth direction, which can change in response to chemotropic 

molecules in the surrounding environment and from cell-to-cell signaling 

(Bicknell, Pujic, Dayan, & Goodhill, 2018; Deinhardt et al., 2011; Ferreira Castro 

et al., 2020; Tamariz & Varela-Echavarr´ıa, 2015). 

To characterize the stages of neuron growth in vitro and quantitatively 

capture changes in neurite growth direction, we created a semi-automated tool 

to systematically analyze the development of neurons. We applied this tool to 

assess the development of rat hippocampal neurons in vitro. Based on 

qualitative observations of neurons growing in vitro, we hypothesized that the 

number of substantial changes in growth direction and the distance between 

such changes varies between developmental stages. To test this hypothesis our 

semi-automated tool performs quantitative analysis using both common 

morphometrics used to describe mature neurons (Laturnus et al., 2020) and 

new morphometrics based on analysis using a Change-Point Test (CPT) (Byrne, 

Noser, Bates, & Jupp, 2009; Liao et al., 2021). The CPT implemented was 

originally developed to identify locations along an animal walking path in which 

the direction was changed towards a resource of interest (Byrne et al., 2009). As 

such, this method allows a trajectory to be analyzed to identify locations of 

significant directional change and the distance between these changes. Using the 

CPT, our tool calculates the number of change points along a traced neurite 

trajectory, the distance between change points, and the turning angle at each 

change point. In this work we present the generation of a model in vitro neuron 

growth dataset, an image processing workflow to prepare and trace images for 

analysis, and our method for automatic morphometric evaluation of neurite 

features. Finally, we assess the ability of each calculated morphometric to act as 

an indicator of neuron growth stage in vitro using our model data set. 

2 Methods 

2.1 Data Set Generation 

A data set, comprised of images of primary rat hippocampal neurons cultured 

over 6 DIV and the resulting neurite traces, was created to characterize neuron 

morphogenesis. To generate this data set, images of in vitro neurons were 

obtained using inverted bright-field microscopy and then processed using 

NeuronJ (Meijering et al., 2004) to obtain traces of each developing neurite on a 

cell (Figure 2) (Liao et al., 2021). 

2.1.1 Cell Culture 

Cryopreserved primary, embryonic-day 18 (E18) rat hippocampal neurons 

(A36513, Gibco, USA) were thawed and plated in 48-well plates (150687, Nunc, 

USA) that were coated in poly-D-lysine (P6407, Sigma-Aldrich, USA), as per 
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Fig. 2 There are four major steps for the methods workflow. (a-b) In the first step, cryopreserved 
embryonic day 18 (E18) primary rat hippocampal neurons were thawed, cultured, and monitored 
using inverted bright-field microscopy over six days in vitro (DIV) . The microscope and well plate 
diagram was created with BioRender.com. (c) In the second step, images of the neurites were traced 
using NeuronJ and then (d) quantified using the CPT. (e) Lastly, using the neurite traces and CPT 
results, selected morphometrics (Figure 3) were measured and statistically analyzed using the 
Anderson-Darling test, Kruskal-Wallis test, and the Dunn test with a Bonferroni correction. 

manufacturer’s protocol (Thermo Fisher Scientific, 2018). Briefly, the plate was 

treated with 50 µg/mL poly-D-lysine (P6407, Sigma-Aldrich, USA) and 

incubated at room temperature for 1 hour before being rinsed with sterile, 

deionized water. Once dry, the plates were wrapped with Parafilm (BM999, 

Bemis, USA) and stored overnight in a refrigerator (2-8°C). After the wells were 

treated, the neurons were seeded at a density of 10,000 cells/cm2 in Neurobasal 

Plus (A3582901, Gibco, USA) supplemented with 2% B-27 Plus (A3582801, 

Gibco, USA). The low densities allowed more neurites to be identified and traced 

before their arborization became too dense to distinguish individuals using 

bright-field microscopy. The cultures were incubated at 37°C and 5% CO2, 

except during media changes and imaging periods. Twenty-four hours after 

initial seeding, 50% of the media was replaced with fresh media. The cultures 

were imaged using a 12 megapixel color camera on an Echo Revolve microscope 

in the inverted configuration and using the bright field setting at 20X or 40X 

magnification, depending on whether entire cells with their full neurite trees 

could be captured in a single image, during the following time points (DIV): 0.5, 

1, 2, 3, 4, 6 (Figure 2). 

2.1.2 Image Processing Workflow using Semi-Automated Tracing 

Neurites identified in the images were semi-automatically traced using NeuronJ 

(Meijering et al., 2004), a plugin in ImageJ (Rueden et al., 2017; Schindelin et al., 

2012). All neurons included in the dataset had broad, flat somas with at least one 

distinct projection. These inclusion criteria ensured that the neurons had 

adhered to the surface of the plate and are an indication of good culture 
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Fig. 3 Seven metrics were used to characterize neurite morphogenesis. Among the common 
morphometrics, there were four features: (a) degree or the number of endpoints for a given cell 
represented by the black arrows with Arabic numerals, number of neurites for a given cell 
represented by the colored brackets with Roman numerals, (b) total length of the cell or the sum of 
the lengths of all of its neurites, and (c) tortuosity of a neurite, which is the total path length divided 
by the shortest distance from its endpoints. The average tortuosity of the cell was assessed in this 
work. (d) In addition, a novel application of the CPT led to three new features: distance between 
change points indicated by l1 and l2, number of change points represented by the numbered black 
circles, and relative turning angle defined by ϕ. 

conditions (Kaech & Banker, 2006). In addition, to be included in the data set, all 

of a cell’s projections had to be visible within a single image, ensuring that the 

whole cell was captured. Overlapping neurites were excluded if their paths were 

not clear to prevent assigning neurites to the wrong cell or not fully tracing a 

neurite path. After all of the neurites on a cell were traced (Figure 2c), the 

coordinates of each neurite trace were exported out of NeuronJ as text files to 

be automatically evaluated for their features. In addition, metadata detailing 

which cell each neurite trace belonged to were exported from NeuronJ as a 

comma-separated values (CSV) file. For the morphometric analyses, each 

neuron cell was characterized by all of its neurite projections (traces). 

2.2 Automatic Morphometric Evaluation of Neurite Features 

After the data set was generated, the features of the developing neurites were 

analyzed using the CPT and quantified using both select common neuron 

morphometrics and novel morphometrics derived from the CPT results (Figures 

2c, 2d, 3). The text files detailing each neurite trace were processed using R 

(https://www.r-project.org/, version 4.1.2) (R Core Team, 2021) within 

RStudio (RStudio Team, 2021). The subsequent statistical analyses were 

completed using R (https://www.r-project.org/, version 4.1.2) (R Core Team, 

2021). The violin plot distributions were generated using the seaborn package 

(Waskom, 2021) in Python 3.7.6 (Python Core Team, 2021) using Jupyter 

Notebook 6.0.3 (Kluyver, Ragan-Kelley, P´erez, & Granger, 2016). 

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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Fig. 4 The CPT was run on each neurite trace to identify novel morphometrics to describe the 
changes in neurite path directions. (a) First, the neurites are traced and the pixel coordinates 
describing the path were exported from NeuronJ. (b) For example, in the magenta trace, the small 
dots represent each pixel coordinate, and the large dots represent the change points identified using 
the CPT by Byrne et al. (2009). (c) Briefly, k number of vectors are formed between the coordinates 
(filled circles) of the last known change point or the initial end point of the trace (solid ring, ”Next 
Change Point”) and the coordinate point being assessed (dashed ring, ”Potential Change Point”). The 
user is allowed to select q number of vectors that occur before the Potential Change Point. To assess 
the collinearity, Rq + Rk is compared with Rk+q using a permutation test (Byrne et al., 2009; Conover, 
1971). 

2.2.1 Common Morphometrics 

Four common morphometrics were selected to characterize neurite 

development (Figure 3a-c): number of neurites, degree, total length per cell, and 

average tortuosity per cell (Kang et al., 2017; Laturnus et al., 2020; Polavaram 

et al., 2014; Uylings & van Pelt, 2002). An R script was generated to calculate 

these features automatically based on the trace information. For each cell, 

degree and number of neurites were counted. The lengths of all of the neurite 

traces per cell were summed to calculate the total length. For each neurite trace, 

the length was calculated by adding the distance between consecutive 

coordinate points. The fourth metric, tortuosity, was calculated by taking the 

length of a given trace and dividing it by the distance between its two endpoint 

coordinates. The tortuosity was averaged for each cell. 

2.2.2 Novel Morphometrics Based on a Change-Point Test 

The traces were also analyzed using a Change-Point Test to assess points of 

significant directional change. We selected the CPT presented by Byrne et al. 

(2009) because it determines changes in path direction by assessing the 

collinearity of segments along the entire trajectory. This CPT was used initially 
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for identifying locations of significant directional changes in animal walking 

trajectories. For a full mathematical description, readers are encouraged to refer 

to the original work of Byrne et al. (2009). Briefly, the original CPT took an input 

of GPS data of animal travel routes and, using a permutation test (Conover, 

1971), analyzed the collinearity of vectors created between subsequent 

coordinate points (Figure 4) (Byrne et al., 2009). The original R script presented 

by Byrne et al. (2009) was transformed into a callable function to process the 

neurite traces, represented by pixel coordinate points exported from NeuronJ. 

In addition to the coordinate data, the CPT requires the user to select a 

significance level and the number of consecutive vectors to assess for 

collinearity when searching for a change point (Figure 4). Using a significance 

level of 0.05, we applied the CPT to each neurite trace for q vectors prior to the 

potential change point. To determine q, the semi-automated tool performs the 

CPT over all integer q values from q = 1 to q = 10. Each time the CPT is conducted, 

the tool stores the number of change points determined for that q. Following the 

procedure described in Byrne et al. (2009), the tool selects and saves the results 

that produce the largest number of change points. If multiple q values result in 

the maximum number of change points, the CPT result requiring the smallest q 

is selected for further processing. 

Using the change points identified by the CPT, three additional neurite 

morphometrics were defined (Figure 3d): the number of change points, segment 

length, and relative turning angle. An R script was generated to automatically 

calculate these features based on the CPT results and the trace information. The 

number of change points was summed per cell as a single metric. Another 

metric, segment length, was defined to be the distance between two consecutive 

change points. Segment length was calculated by summing the distances 

between coordinate points between two consecutive change points. Lastly, the 

relative turning angle was defined as the angle measured between two 

consecutive segment lengths between 0°and 180°. 

2.3 Statistics 

Distributions of each morphometric were first tested for normality using the 

Anderson-Darling test (Gross & Ligges, 2015). All distributions were determined 

to be non-normal, and therefore, non-parametric analyses were used. The 

Kruskal-Wallis test (R Core Team, 2021) was first used to determine whether 

there are any significant changes between imaging time points for each feature. 

A post-hoc Dunn test with a Bonferroni correction (Dinno, 2017) was used to 

follow up with multiple pairwise comparisons. A significance level (α) of 0.05 

was used for the analysis. For the Kruskal-Wallis test, the null hypothesis was 

reject based on p ≤ α (R Core Team, 2021). For the Dunn test, the null hypothesis 

was rejected based on p ≤ α/2 (Dinno, 2017). 
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Fig. 5 Over 6 DIV, rat hippocampal neurons progress through roughly four developmental stages. 
The length and number of neurites and bifurcations have notable changes, which are statistically 
represented in Figure 8. 

3 Results 

3.1 Data Set 

The data set generated is comprised of three types of data (Figure 5): 

microscope images of neurons at seven time points, the associated traces for 

those neurons that met the tracing criteria (Section 2.1.2), and the resulting 

morphometrics (both common and new). The seven time points were selected 

to observe the neurons undergo three key growth stages (Figures 1 and 5): 0.5 

DIV (estimated Stage 2, n = 31 cells), 1 DIV (n = 36 cells), 1.5 DIV (n = 80 cells), 

2 DIV (n = 135 cells), 3 DIV (n = 234 cells), 4 DIV (n = 162 cells), and 6 DIV (n 

= 20 cells). This data is available at https://doi.org/10.5281/zenodo.6415473. 

3.2 Common Metrics Performance 

Several of the common metrics typically used for quantifying neuron 

morphology showed a significant ability to discriminate between growth time 

points. The Kruskal-Wallis test indicated that the medians were significantly 

different in at least one time point for all four common morphometrics assessed. 

In particular, using the Dunn test, the total length of all neurites, the degree, and 

the number of neurites were significantly different between several pairs of time 

points (Figure 8). For the time point typically associated with Stage 4 (4 DIV), 

total length, degree, and number of neurites were significantly different from the 

Stage 2 and 3 time points (0.5 and 1.5 DIV, respectively) (total length and degree 

highlighted in Figure 6). However, the features were not significantly different 

between 0.5 and 1.5 DIV (Figure 6). Average tortuosity was only significantly 

different between 1.5 and 3 DIV (Figure 8). 

https://doi.org/10.5281/zenodo.6415473
https://doi.org/10.5281/zenodo.6415473
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Fig. 6 Of the common morphometrics, the (a) total length per cell and the (b) degree were among 
the features that best distinguished between 0.5 DIV (≈ Stage 2), 1.5 DIV (≈ Stage 3), and 4 DIV (≈ 
Stage 4). Representative neurons are on the left panels, while the distributions are on the right. The 
median, upper and lower quartiles, and significance from each statistical test for each feature shown 
in the violin plots (a-b) are represented by the symbols in the legend (c). The Dunn test with a 
Bonferroni correction indicated that total length and degree were significantly different between 
0.5 DIV and 4 DIV and between 1.5 DIV and 4 DIV. 

 

Fig. 7 From the novel CPT-Based morphometrics, the (a) average segment length and the (b) number 
of change points were among the features that best distinguished between 0.5 
DIV (≈Stage 2), 1.5 DIV (≈Stage 3), and 4 DIV (≈Stage 4). On the left, representative neurons with 
traces are shown. The distributions of each feature are on the right panels. The symbols in the legend 
(c) represent the medians, upper and lower quartiles, and statistical significance for each feature 
shown in the violin plots(a-b). The Dunn Test with a Bonferroni correction indicated that the 
average segment length and the number of change points were significantly different between 0.5 
DIV and 4 DIV and between 1.5 DIV and 4 DIV. 
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3.3 Change-Point-Test-Based Novel Morphometrics 
Performance 

Two of the three CPT-based morphometrics introduced in this work varied 

significantly between time points. The number of change points and average 

segment length were significantly different for a majority of the time point pairs 

(Figure 8), including time points typically associated with Stages 2-4 (Figure 7). 

The relative turning angle was not significantly different between any of the 

time points (Figure 8). 

4 Discussion 
Our study provides a method for the quantitative description of embryonic 

rodent hippocampal neurons across the first week of culture through a 

combination of common and CPT-based morphometrics. By characterizing a 

sample population of cells, the morphometrics and our presented dataset can be 

used in the future to assess the effects of experimental conditions in 

combination with the qualitative expected growth stage milestones outlined by 

Kaech and Banker (2006) and Dotti et al. (1988). At a population level, the 

distributions of total length found in our study are in alignment with the single 

cell values reported in Dotti et al. (1988). 

When analyzing the data set at the time points associated with a specific 

growth stage (Figure 1), specifically 0.5 DIV (Stage 2), 1.5 DIV (Stage 3), 4 DIV 

(Stage 4), several features, both common and derived from the CPT, were 

significantly different (Figures 6-7). These differences indicate that total length, 

degree, segment length, and the number of change points could be used to 

characterize the morphological development of these neurons and possibly be 

used to distinguish between the associated stages. However, additional analysis 

would be needed to match the stages, as classified by an expert observer, with 

features characterized and time in vitro. 

To quantify local changes that occur during neuron morphological 

development, quantitative metrics of neurite growth direction are needed. Sholl 

analysis (Sholl, 1953), branching angles, and tortuosity can provide a snapshot 

representation of the neurite spatial organization and orientation. However, 

they do not indicate if the difference in space or orientation is due to specific 

intra- or extracellular signaling or due to stochastic processes. In contrast, the 

CPT method (Byrne et al., 2009) applied in the presented work identifies where 

along a path in which a statistically significant directional change has occurred. 

From that information, the magnitude of the change and the specific angle can 

be extracted. Our study demonstrated that the CPT leads to additional 

morphometrics that were significantly different between key time points 

(Figure 7), which may indicate important directional change events during the 

growth stages, even in media without a controlled gradient of extracellular cues. 
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The promising results of our semi-automatic tool for assessing neurite 

morphology highlights its potential for applications in future studies on neuron 

Neuron Development Quantification 

growth in vitro. For example, future experimental studies should apply the semi-

automated morphological analysis presented here to assess neuron cultured in 

the presence of specific growth factors known to affect neuron growth and 

maturation, such as nerve growth factor, brain-derived neurotrophic factor, or 

neurotrophin-3, to investigate whether this approach can distinguish between 

such experimental conditions. Furthermore, because the CPT was initially 

developed to objectively identify where the animals decide to switch from 

randomly meandering to directed walking (Byrne et al., 2009), we hypothesize 

that in future studies, the CPT could be applied to identify changes in neurite 

growth direction in the presence of external cues. To test this hypothesis in 

future work, chemotropic molecules, such as netrins and semaphorins, could be 

applied at specific time points and regions to control cell growth direction to 

assess the ability of these morphometrics to identify cells which are undergoing 

directed versus undirected growth. 

In addition, the automated portion of morphological analysis tool overall 

could be used to characterize more neuron types or neurites with a more 

extensive tree, as long as the neurite path can be described as a list of 

coordinates and a metadata file for individual trace identification (i.e. trace 

identification, the neuron cell it belongs to, and tracing type as found in the 

accompanying CSV file with the traces in the GitHub repository). This provides 

flexibility in the method of obtaining the raw data in the choice of imaging 

modality, cell type, and level of arborization. Future studies are needed to assess 

the ability of this approach to distinguish in vivo cell morphologies. 

4.1 Limitations 

This study has several limitations based on the imaging modality used for 

tracking the cells over time. Bright-field microscopy at 20X and 40X 

magnification is a method for imaging several cells over a short time-period 

without the potential interference of dyes that could affect the cell’s structural 

development. Bright-field imaging can also be used to quickly assess cell health 

during the culturing period. However, bright-field microscopy results in a lower 

contrast imaging modality than fluorescence microscopy, which is more 

challenging for image processing techniques to extract the neurite trajectories. 

Furthermore, the use of only 20X or 40X magnification limited the size of the 

neurites we were able to capture, which affects the sample population of 

neurons that were analyzed. This is particularly evident in the smaller sample 

sizes at the earlier time points (0.5 and 1 DIV) and the latest time points (6 DIV). 

A higher magnification or different imaging modality may allow the smaller 
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features, such as lamellipodia or young neurites, to be better captured. In 

addition, stitching multiple images may be useful for capturing extensive, 

mature neurites at later stages. 

The use of the bright-field imaging technique resulted in the choice of using 

the semi-automatic tracing program, NeuronJ (Meijering et al., 2004), to trace 

the neurites since many other automatic programs are optimized for 

highcontrast fluorescence images (Boulan et al., 2020; Ho et al., 2011; Kim, Son, 

& Palmore, 2015; Pool, Thiemann, Bar-Or, & Fournier, 2008). Although the semi-

automatic procedure may introduce some interobserver variability, the process 

will still be more reproducible than a fully manual method (Meijering et al., 

2004). Furthermore, due to the need for user input, the labor intensiveness of 

this method scales with the number of neurites. However, it is still an 

improvement over a completely manual method with better neurite centerline 

representations and negligible differences in length results (Meijering et al., 

2004). 

Moreover, without the use of fluorescence dyes, neurons cultured beyond 6 

DIV (estimated transition point between Stage 4 and 5) become difficult to 

distinguish due to the development of long neurites and dense networks at Stage 

5 (Kaech & Banker, 2006). Furthermore, a distinct qualitative morphological 

change is not present between Stage 4 and 5, and Stage 5 is likely highly 

influenced by other cell interactions, unlike the previous stages that are 

considered endogenously determined (Dotti et al., 1988). Thus, Stage 5 was not 

considered as part of the scope of the work presented here. Additional studies 

controlling the cell interactions between developing neurons would be required 

to characterize Stage 5 morphology based on environmental conditions using 

our collection of quantitative morphometrics. 

There are also some limitations in the computational methods implemented. 

In the CPT specifically, there is a balance between the selection of the 

significance level and the number of vectors to be used in the collinearity 

assessment (Byrne et al., 2009). The smaller the number of vectors used, the 

more sensitive the CPT is to detecting genuine change points (Byrne et al., 2009). 

However, if a higher significance level is desired, a larger number of vectors may 

be required (Byrne et al., 2009). In addition, the statistical analysis was 

completed on a per cell basis (using averages and sums over an entire neuron), 

rather than a per neurite basis. This may result in some loss of fine details of the 

neurites themselves, while enabling the study of the cell morphology as a whole. 

Further studies using techniques, such as a timelapse imaging, could 

complement our semi-automatic tool in assessing culture condition effects on 

individual neurites. Such individual neurite analysis may be particularly 

important for future studies on directed neuron growth. 
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5 Conclusions 
This study provided a semi-automated quantitative analysis method, including 

both common and novel morphometrics. We used this method to analyze 

growth during the initial 6 DIV for cultured neurons, which correspond to three 

of the five growth stages qualitatively described for embryonic rodent 

hippocampal neurons in culture. This semi-automated quantitative analysis 

method has many potential applications, including assessing the cell culture 

health and how certain intrinsic or extrinsic factors may alter neuron 

morphological development. The novel application of the Change-Point Test, 

which was initially developed for studying animal walking paths, could also 

provide 
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additional insight on factors that alter the neurite trajectories in future studies. 

In addition, quantifying the development of neuron morphology can inform 

parameters needed for computational simulations of neuron growth (Qian et al., 

2022), materials transport (Li, Barati Farimani, & Zhang, 2021; Li, Chai, Yang, & 

Zhang, 2019), and molecular traffic jams (Li & Zhang, 2022a, 2022b). More 

accurate computational models could help guide future in vitro studies by 

exploring experimental parameters in silico prior to costly and time intensive 

experimentation. Finally, with our semi-automatic quantitative method for 

characterizing neuron morphology, experimental results can be consistently 

assessed by both novices and experts, and results can be easily compared across 

studies.  
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Appendix A: Distributions and Analyses on All 

Morphometrics for All Observed Time Points 
A summary of the Dunn tests along with each feature’s distributions are 

showcased in Figure 8. The Dunn tests with a Bonferroni correction indicated 

significant differences between several time points, as outlined in the 

corresponding Tables below, for segment length (Figure 8a, Table 10), number 

of change points (Figure 8c, Table 12), total length (Figure 8d, Table 13), number 

of neurites (Figure 8e, Table 14), and degree (Figure 8g, Table 16). No significant 

differences between time points were detected for turning angle (Figure 8b, 

Table 11), and significant differences were only detected between DIV 1.5 and 3 

for tortuosity (Figure 8f, Table 15). 

Additionally, the sample sizes of the data set are reported in Table 1. The 

summary statistics and Anderson-Darling results for all of the morphometrics 

are detailed in Tables 2-8. The χ2 and p-values from the Kruskal-Wallis tests for 

each feature are in Table 9. Lastly, the post-hoc Dunn tests with a Bonferroni 

correction p-values are in Tables 10-16. 

 

Fig. 8 The distributions and results of the Dunn test with a Bonferroni correction used to assess each 
morphometric (a) average segment length, (b) average relative turning angle, (c) number of change 
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points; (d) total length, (e) number of neurites, (f) average tortuosity, (g) degree) for every time 
point pair are symbolically represented, as defined in (h). 
Table 1 Overall Data Set Size 

DIV Sample Size (Number of Cells) Number of Neurites Traced 

0.5 31 47 
1.0 36 58 
1.5 80 169 
2.0 135 348 
3.0 230 830 
4.0 162 668 
6.0 20 139 

Table 2 Summary Statistics and Anderson-Darling Results for Average Segment Length Per Cell 
(µm) 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 6.68 2.14 6.75 5.05 7.82 0.505 0.188 
1.0 7.39 2.53 7.43 5.58 8.36 0.831 0.0289 
1.5 8.00 2.93 7.62 5.64 9.39 1.48 0.00075 
2.0 8.82 2.93 8.90 6.39 10.35 1.15 0.00512 
3.0 9.51 2.16 9.72 8.35 10.95 1.96 <0.0001 
4.0 9.42 2.87 9.58 6.65 10.86 2.26 <0.0001 
6.0 11.48 1.45 11.73 10.24 12.36 0.413 0.308 

Table 3 Summary Statistics Anderson-Darling Results for Average Relative Turning Angle Per Cell 
(°) 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 22.18 11.65 21.75 15.49 25.00 1.37 0.00124 
1.0 22.82 10.82 23.31 15.57 29.71 0.196 0.884 
1.5 21.34 9.69 21.20 15.96 25.94 1.59 0.00039 
2.0 22.32 8.01 22.32 17.51 27.06 1.07 0.00816 
3.0 22.88 6.78 22.24 18.67 25.39 4.69 <0.0001 
4.0 21.28 4.91 21.07 18.79 23.77 1.85 <0.0001 
6.0 20.32 2.65 20.45 18.45 21.36 0.284 0.593 

Table 4 Summary Statistics Anderson-Darling Results for Number of Change Points Per 
Cell 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 2.65 1.52 2 1.5 4 1.39 0.0011 
1.0 3.56 2.97 2 1 5.25 2.52 <0.0001 
1.5 5.16 5.56 3 2 6.25 7.31 <0.0001 
2.0 8.22 8.24 6 3 10 7.98 <0.001 
3.0 13.52 10.79 11 6.25 17.75 9.38 <0.0001 
4.0 21.57 19.62 16 8.25 31 7.72 <0.0001 
6.0 39.70 23.33 33.5 22.75 50.75 0.681 0.0639 

Table 5 Summary Statistics Anderson-Darling Results for Total Length of All Neurites Per Cell (µm) 
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DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 27.53 17.43 21.70 16.92 29.76 1.91 <0.0001 
1.0 36.54 26.25 30.32 15.08 43.27 1.86 <0.0001 
1.5 53.19 43.04 38.78 23.27 66.88 4.32 <0.0001 
2.0 84.34 65.69 64.87 38.43 112.92 4.89 <0.0001 
3.0 155.13 102.75 134.34 86.02 196.46 5.02 <0.0001 
4.0 218.74 163.14 181.27 102.25 268.21 4.6 <0.0001 
6.0 554.73 337.47 485.99 312.02 719.49 0.83 0.0264 

Table 6 Summary Statistics Anderson-Darling Results for Total Number of Neurites Per 
Cell 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 1.94 0.998 2 1 2.5 2.16 <0.0001 
1.0 2.00 1.10 2 1 3 2.36 <0.0001 
1.5 2.39 2.02 2 1 3 6.6 <0.0001 
2.0 2.52 1.63 2 1 3 6.97 <0.0001 
3.0 3.67 2.25 3 2 5 6.41 <0.0001 
4.0 3.94 2.40 4 2 5 3.4 <0.0001 
6.0 5.50 2.04 5 4 7 0.907 0.0167 

Table 7 Summary Statistics Anderson-Darling Results for Average Tortuosity Per Cell 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 1.0554 0.0446 1.0379 1.0225 1.0776 1.3 0.0019 
1.0 1.0478 0.0363 1.0391 1.0161 1.0757 0.794 0.0359 
1.5 1.0530 0.0652 1.0367 1.0254 1.0507 9.68 <0.0001 
2.0 1.0630 0.0641 1.0437 1.0283 1.0685 11.9 <0.0001 
3.0 1.0815 0.1383 1.0460 1.0300 1.0725 42.6 <0.0001 
4.0 1.0536 0.0306 1.0456 1.0341 1.0623 6.14 <0.0001 
6.0 1.0462 0.0267 1.0406 1.0302 1.0498 2.02 <0.0001 

Table 8 Summary Statistics Anderson-Darling Results for Degree Per Cell 

DIV Mean Standard 

Deviation Median First 

Quartile 
Third 

Quartile 

Anderson- 
Darling Test 

Statistic 

AndersonDarling 

p-value 

0.5 1.94 0.998 2 1 2.5 2.16 <0.0001 
1.0 2.03 1.08 2 1 3 2.22 <0.0001 
1.5 2.65 2.26 2 1 4 5.92 <0.0001 
2.0 2.94 2.09 2 1 4 6.48 <0.0001 
3.0 4.53 2.89 4 2 6 6.04 <0.0001 
4.0 4.94 3.18 4 3 7 4.01 <0.0001 
6.0 8.70 3.23 8 6 10 0.364 0.405 

Table 9 Kruskal-Wallis Test Results For All Features 
Feature χ2 p-value 

Average Segment Length 

Per Cell 88.9519 <0.0001 

Average Relative Turning 

Angle Per Cell 7.7002 0.261 
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Number of Change Points 

Per Cell 234.2829 <0.0001 

Total Length of All Neurites 

Per Cell 288.0794 <0.0001 

Number of 
Neurites Per Cell 106.816 <0.0001 

Average Tortuosity 

Per Cell 12.8792 0.045 

Degree Per 

Cell 144.9114 <0.0001 

Table 10 Dunn Test with Bonferroni Correction p-values for the Average Segment 
Length Per Cell (µm) 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 0.5123 1.0000     

2.0 0.0022 0.0380 0.2433    

3.0 0.0000 0.0000 0.0000 0.0265   

4.0 0.0000 0.0001 0.0003 0.3059 1.0000  

6.0 0.0000 0.0000 0.0000 0.0000 0.0067 0.0026 
Table 11 Dunn Test with Bonferroni Correction p-values for the Average Relative Turning Angle Per 
Cell (°) 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 1.0000 1.0000     

2.0 1.0000 1.0000 1.0000    

3.0 1.0000 1.0000 1.0000 1.0000   

4.0 1.0000 1.0000 1.0000 1.0000 0.4895  

6.0 1.0000 1.0000 1.0000 1.0000 0.7938 1.0000 
Table 12 Dunn Test with Bonferroni Correction p-values for the Number of Change 
Points Per Cell 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 0.7648 1.0000     

2.0 0.0009 0.0064 0.0463    

3.0 0.0000 0.0000 0.0000 0.0000   
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4.0 0.0000 0.0000 0.0000 0.0000 0.0101  

6.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0213 
Table 13 Dunn Test with Bonferroni Correction p-values for the Total Length of All Neurites Per Cell 
(µm) 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 0.3949 1.0000     

2.0 0.0001 0.0015 0.0225    

3.0 0.0000 0.0000 0.0000 0.0000   

4.0 0.0000 0.0000 0.0000 0.0000 0.0275  

6.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045 
Table 14 Dunn Test with Bonferroni Correction p-values for the Number of Neurites Per 
Cell 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 1.0000 1.0000     

2.0 1.0000 1.0000 1.0000    

3.0 0.0001 0.0001 0.0000 0.0000   

4.0 0.0000 0.0000 0.0000 0.0000 1.0000  

6.0 0.0000 0.0000 0.0000 0.0000 0.0043 0.0255 
Table 15 Dunn Test with Bonferroni Correction p-values for the Average Tortuosity Per 
Cell 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 1.0000 1.0000     

2.0 1.0000 1.0000 0.4370    

3.0 1.0000 0.8980 0.0250 1.0000   

4.0 1.0000 1.0000 0.0542 1.0000 1.0000  

6.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Table 16 Dunn Test with Bonferroni Correction p-values for the Degree Per Cell 

DIV 0.5 1.0 1.5 2.0 3.0 4.0 
1.0 1.0000      

1.5 1.0000 1.0000     
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2.0 0.3069 0.4210 1.0000    

3.0 0.0000 0.0000 0.0000 0.0000   

4.0 0.0000 0.0000 0.0000 0.0000 1.0000  

6.0 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 
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