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Abstract

Neuron morphology gives rise to distinct axons and dendrites and plays an
essential role in neuronal functionality and circuit dynamics. In rat
hippocampal neurons, morphological development occurs over roughly one
week in vitro. This development has been qualitatively described as
occurring in 5 stages. Still, there is a need to quantify cell growth to monitor
cell culture health, understand cell responses to sensory cues, and compare
experimental results and computational growth model predictions. To
address this need, embryonic rat hippocampal neurons were observed in
vitro over six days, and their processes were quantified using both standard
morphometrics (degree, number of neurites,

1
total length, and tortuosity) and new metrics (distance between change
points, relative turning angle, and the number of change points) based on the
Change-Point Test to track changes in path trajectories. Of the standard
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morphometrics, the total length of neurites per cell and the number of
endpoints were significantly different between 0.5, 1.5, and 4 days in vitro,
which are typically associated with Stages 2-4. Using the Change-Point Test,
the number of change points and the average distance between change
points per cell were also significantly different between those key time
points. This work highlights key quantitative characteristics, both among
common and novel morphometrics, that can describe neuron development
in vitro and provides a foundation for analyzing directional changes in
neurite growth for future studies.

Keywords: Neuron, Morphogenesis, Morphometrics, Change-Point Test, Developmental
Growth Stages

1 Introduction

Mature neurons exhibit extensive arborization of their axons and dendrites
(collectively neurites) to form functional connections with neighboring cells and
receive sensory signals. The distinct neuronal structure is believed to give rise
to the neuron’s computational abilities (Cuntz, Borst, & Segev, 2007; Ferrante,
Migliore, & Ascoli, 2013; Kanari et al., 2018; van Elburg & van Ooyen, 2010;
Zomorrodi, Ferecsk’o, Kov'acs, Kr'oger, & Timofeev, 2010). In addition,
morphological differences between neuronal cell types are thought to result in
their functional differences (Khalil, Farhat, & DI otko, 2021; Krichmar, Nasuto,
Scorcioni, Washington, & Ascoli, 2002; Mainen & Sejnowski, 1996; Schaefer,
Larkum, Sakmann, & Roth, 2003; Vetter, Roth, & H"ausser, 2001). During the
development of this crucial structure in primary neurons in vitro, several
morphological changes have been categorized into distinct stages which can be
described qualitatively (Dotti, Sullivan, & Banker, 1988; Powell, Rivas,
Rodriguez-Boulan, & Hatten, 1997; Tahirovic & Bradke, 2009).

One common model for studying neuron morphological development in vitro
is the embryonic rodent hippocampal neuron (Tahirovic & Bradke, 2009). In this
model system, morphogenesis of hippocampal neurons can be qualitatively
described in five developmental stages occurring over seven days in vitro (DIV)
(Figure 1): initially, neurons appear as only round somas with no neurites, but
(1) within the first hour of plating, small protrusions, or lamellipodia, form along
the cell periphery; (2) after around 0.5 days in vitro (DIV), the lamellipodia
transforms into a few distinct, minor processes that form the preliminary
neurites; (3) at around 1-2 DIV, one of the neurites will begin to elongate at a
faster rate than the other processes and differentiate into the axon; (4) after 4
DIV, the remaining neurites will develop into dendrites and begin to elongate at
a higher rate, but still slower than that of the axons; (5) after one week in culture,
the neuronal processes will continue
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Fig. 1 Rat hippocampal neuron morphogenesis occurs in five stages (Dotti et al., 1988). First, small
protrusions, or lamellipodia, form at the soma boundary (Stage 1). Subsequently, a few lamellipodia
will continue to elongate into the initial neurites (Stage 2). Next, one of the neurites will begin to
grow faster than the others to differentiate into the axon (Stage 3). After a few days, the remaining
neurites will also accelerate growth to mature into the dendrites (Stage 4). The final stage is the
continued maturation of the entire cell, which is dependent on environmental factors and
interactions with neighboring cells (Stage 5).

to mature by forming networks with functional synaptic connections, and the
dendrites will begin to exhibit dendritic spines (Dotti et al,, 1988; Kaech &
Banker, 2006; Tahirovic & Bradke, 2009). Previously, each stage has been
qualitatively described with limited quantitative descriptions of the axonal and
dendritic lengths and growth rates (Dotti et al, 1988). However, it can be
challenging to identify the stage a culture is at using only those features,
particularly when transitioning between stages if the same cells within a
population were not tracked over time. Nevertheless, these stages are still used
as expected growth events when assessing in vitro cultures (Kaech & Banker,
2006). Neurite growth quantification is needed for consistent stage
identification to monitor culture health, test intra- and extracellular sensory
cues, and compare experiments and computational models (Liao, Webster-
Wood, & Zhang, 2021; Qian et al.,, 2022).

Many different types of quantitative representations, such as density maps
(Jefferis et al., 2007; Laturnus, Kobak, & Berens, 2020), graph theory (Gillette &
Grefenstette, 2009; Heumann & Wittum, 2009), topology (Kanari et al.,, 2018),
and morphometric statistics (Laturnus et al., 2020; Polavaram, Gillette, Parekh,
& Ascoli, 2014; Uylings & van Pelt, 2002), have been applied to describe
functionally different types of mature neurons. In addition, machine learning
techniques also have been used for identifying neuron types (Laturnus et al.,
2020) and for identifying neuronal polarity (Su et al., 2021). Laturnus et al.
(2020) noted the importance of the spatial extent and shape describing neuron
connectivity in distinguishing cell types, instead of specific branching features.
Although these quantitative representations can characterize neuronal cell
types, most have not been applied to discriminate between neurite growth
stages or time points. A few common morphometrics, such as neurite length and
number of branches, have been used to study neuron development in vitro in rat
hippocampal neurons (Dotti et al, 1988) and in stem cell differentiation to
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neural progenitor cells (Kang et al., 2017). However, the current quantitative
representations of neuron morphology do not capture details about changes in
neurite growth direction, which can change in response to chemotropic
molecules in the surrounding environment and from cell-to-cell signaling
(Bicknell, Pujic, Dayan, & Goodhill, 2018; Deinhardt et al., 2011; Ferreira Castro
etal, 2020; Tamariz & Varela-Echavarr’ia, 2015).

To characterize the stages of neuron growth in vitro and quantitatively
capture changes in neurite growth direction, we created a semi-automated tool
to systematically analyze the development of neurons. We applied this tool to
assess the development of rat hippocampal neurons in vitro. Based on
qualitative observations of neurons growing in vitro, we hypothesized that the
number of substantial changes in growth direction and the distance between
such changes varies between developmental stages. To test this hypothesis our
semi-automated tool performs quantitative analysis using both common
morphometrics used to describe mature neurons (Laturnus et al., 2020) and
new morphometrics based on analysis using a Change-Point Test (CPT) (Byrne,
Noser, Bates, & Jupp, 2009; Liao et al, 2021). The CPT implemented was
originally developed to identify locations along an animal walking path in which
the direction was changed towards a resource of interest (Byrne etal.,, 2009). As
such, this method allows a trajectory to be analyzed to identify locations of
significant directional change and the distance between these changes. Using the
CPT, our tool calculates the number of change points along a traced neurite
trajectory, the distance between change points, and the turning angle at each
change point. In this work we present the generation of a model in vitro neuron
growth dataset, an image processing workflow to prepare and trace images for
analysis, and our method for automatic morphometric evaluation of neurite
features. Finally, we assess the ability of each calculated morphometric to act as
an indicator of neuron growth stage in vitro using our model data set.

2 Methods

2.1 Data Set Generation

A data set, comprised of images of primary rat hippocampal neurons cultured
over 6 DIV and the resulting neurite traces, was created to characterize neuron
morphogenesis. To generate this data set, images of in vitro neurons were
obtained using inverted bright-field microscopy and then processed using
Neuron] (Meijering et al., 2004) to obtain traces of each developing neurite on a
cell (Figure 2) (Liao et al,, 2021).

2.1.1 Cell Culture

Cryopreserved primary, embryonic-day 18 (E18) rat hippocampal neurons
(A36513, Gibco, USA) were thawed and plated in 48-well plates (150687, Nunc,
USA) that were coated in poly-D-lysine (P6407, Sigma-Aldrich, USA), as per
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Fig. 2 There are four major steps for the methods workflow. (a-b) In the first step, cryopreserved
embryonic day 18 (E18) primary rat hippocampal neurons were thawed, cultured, and monitored
using inverted bright-field microscopy over six days in vitro (DIV) . The microscope and well plate
diagram was created with BioRender.com. (c) In the second step, images of the neurites were traced
using Neuron] and then (d) quantified using the CPT. (e) Lastly, using the neurite traces and CPT
results, selected morphometrics (Figure 3) were measured and statistically analyzed using the
Anderson-Darling test, Kruskal-Wallis test, and the Dunn test with a Bonferroni correction.

manufacturer’s protocol (Thermo Fisher Scientific, 2018). Briefly, the plate was
treated with 50 pug/mL poly-D-lysine (P6407, Sigma-Aldrich, USA) and
incubated at room temperature for 1 hour before being rinsed with sterile,
deionized water. Once dry, the plates were wrapped with Parafilm (BM999,
Bemis, USA) and stored overnight in a refrigerator (2-8°C). After the wells were
treated, the neurons were seeded at a density of 10,000 cells/cm?in Neurobasal
Plus (A3582901, Gibco, USA) supplemented with 2% B-27 Plus (A3582801,
Gibco, USA). The low densities allowed more neurites to be identified and traced
before their arborization became too dense to distinguish individuals using
bright-field microscopy. The cultures were incubated at 37°C and 5% COz2,
except during media changes and imaging periods. Twenty-four hours after
initial seeding, 50% of the media was replaced with fresh media. The cultures
were imaged using a 12 megapixel color camera on an Echo Revolve microscope
in the inverted configuration and using the bright field setting at 20X or 40X
magnification, depending on whether entire cells with their full neurite trees
could be captured in a single image, during the following time points (DIV): 0.5,
1,2, 3, 4, 6 (Figure 2).

2.1.2 Image Processing Workflow using Semi-Automated Tracing

Neurites identified in the images were semi-automatically traced using Neuron]
(Meijering et al., 2004), a plugin in Image] (Rueden et al., 2017; Schindelin et al.,
2012). All neurons included in the dataset had broad, flat somas with at least one
distinct projection. These inclusion criteria ensured that the neurons had
adhered to the surface of the plate and are an indication of good culture
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Common Morphometrics

Fig. 3 Seven metrics were used to characterize neurite morphogenesis. Among the common
morphometrics, there were four features: (a) degree or the number of endpoints for a given cell
represented by the black arrows with Arabic numerals, number of neurites for a given cell
represented by the colored brackets with Roman numerals, (b) total length of the cell or the sum of
the lengths of all of its neurites, and (c) tortuosity of a neurite, which is the total path length divided
by the shortest distance from its endpoints. The average tortuosity of the cell was assessed in this
work. (d) In addition, a novel application of the CPT led to three new features: distance between
change points indicated by /1 and Iz, number of change points represented by the numbered black
circles, and relative turning angle defined by ¢.

conditions (Kaech & Banker, 2006). In addition, to be included in the data set, all
of a cell’s projections had to be visible within a single image, ensuring that the
whole cell was captured. Overlapping neurites were excluded if their paths were
not clear to prevent assigning neurites to the wrong cell or not fully tracing a
neurite path. After all of the neurites on a cell were traced (Figure 2c), the
coordinates of each neurite trace were exported out of Neuron] as text files to
be automatically evaluated for their features. In addition, metadata detailing
which cell each neurite trace belonged to were exported from Neuron] as a
comma-separated values (CSV) file. For the morphometric analyses, each
neuron cell was characterized by all of its neurite projections (traces).

2.2 Automatic Morphometric Evaluation of Neurite Features

After the data set was generated, the features of the developing neurites were
analyzed using the CPT and quantified using both select common neuron
morphometrics and novel morphometrics derived from the CPT results (Figures
2¢, 2d, 3). The text files detailing each neurite trace were processed using R
(https://www.r-project.org/, version 4.1.2) (R Core Team, 2021) within
RStudio (RStudio Team, 2021). The subsequent statistical analyses were
completed using R (https://www.r-project.org/, version 4.1.2) (R Core Team,
2021). The violin plot distributions were generated using the seaborn package
(Waskom, 2021) in Python 3.7.6 (Python Core Team, 2021) using Jupyter
Notebook 6.0.3 (Kluyver, Ragan-Kelley, P’erez, & Granger, 2016).


https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
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Fig. 4 The CPT was run on each neurite trace to identify novel morphometrics to describe the
changes in neurite path directions. (a) First, the neurites are traced and the pixel coordinates
describing the path were exported from Neuron]. (b) For example, in the magenta trace, the small
dots represent each pixel coordinate, and the large dots represent the change points identified using
the CPT by Byrne et al. (2009). (c) Briefly, k number of vectors are formed between the coordinates
(filled circles) of the last known change point or the initial end point of the trace (solid ring, "Next
Change Point”) and the coordinate point being assessed (dashed ring, "Potential Change Point”). The
user is allowed to select g number of vectors that occur before the Potential Change Point. To assess
the collinearity, Ry + Rris compared with Rk+qusing a permutation test (Byrne et al., 2009; Conover,
1971).

2.2.1 Common Morphometrics

Four common morphometrics were selected to characterize neurite
development (Figure 3a-c): number of neurites, degree, total length per cell, and
average tortuosity per cell (Kang et al.,, 2017; Laturnus et al., 2020; Polavaram
et al,, 2014; Uylings & van Pelt, 2002). An R script was generated to calculate
these features automatically based on the trace information. For each cell,
degree and number of neurites were counted. The lengths of all of the neurite
traces per cell were summed to calculate the total length. For each neurite trace,
the length was calculated by adding the distance between consecutive
coordinate points. The fourth metric, tortuosity, was calculated by taking the
length of a given trace and dividing it by the distance between its two endpoint
coordinates. The tortuosity was averaged for each cell.

2.2.2 Novel Morphometrics Based on a Change-Point Test

The traces were also analyzed using a Change-Point Test to assess points of
significant directional change. We selected the CPT presented by Byrne et al.
(2009) because it determines changes in path direction by assessing the
collinearity of segments along the entire trajectory. This CPT was used initially
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for identifying locations of significant directional changes in animal walking
trajectories. For a full mathematical description, readers are encouraged to refer
to the original work of Byrne et al. (2009). Briefly, the original CPT took an input
of GPS data of animal travel routes and, using a permutation test (Conover,
1971), analyzed the collinearity of vectors created between subsequent
coordinate points (Figure 4) (Byrne et al., 2009). The original R script presented
by Byrne et al. (2009) was transformed into a callable function to process the
neurite traces, represented by pixel coordinate points exported from Neuron].
In addition to the coordinate data, the CPT requires the user to select a
significance level and the number of consecutive vectors to assess for
collinearity when searching for a change point (Figure 4). Using a significance
level of 0.05, we applied the CPT to each neurite trace for q vectors prior to the
potential change point. To determine g, the semi-automated tool performs the
CPT over all integer g values from g = 1 to g = 10. Each time the CPT is conducted,
the tool stores the number of change points determined for that q. Following the
procedure described in Byrne etal. (2009), the tool selects and saves the results
that produce the largest number of change points. If multiple g values result in
the maximum number of change points, the CPT result requiring the smallest g
is selected for further processing.

Using the change points identified by the CPT, three additional neurite
morphometrics were defined (Figure 3d): the number of change points, segment
length, and relative turning angle. An R script was generated to automatically
calculate these features based on the CPT results and the trace information. The
number of change points was summed per cell as a single metric. Another
metric, segment length, was defined to be the distance between two consecutive
change points. Segment length was calculated by summing the distances
between coordinate points between two consecutive change points. Lastly, the
relative turning angle was defined as the angle measured between two
consecutive segment lengths between 0°and 180°.

2.3 Statistics

Distributions of each morphometric were first tested for normality using the
Anderson-Darling test (Gross & Ligges, 2015). All distributions were determined
to be non-normal, and therefore, non-parametric analyses were used. The
Kruskal-Wallis test (R Core Team, 2021) was first used to determine whether
there are any significant changes between imaging time points for each feature.
A post-hoc Dunn test with a Bonferroni correction (Dinno, 2017) was used to
follow up with multiple pairwise comparisons. A significance level (@) of 0.05
was used for the analysis. For the Kruskal-Wallis test, the null hypothesis was
rejectbased on p < a (R Core Team, 2021). For the Dunn test, the null hypothesis
was rejected based on p < @/2 (Dinno, 2017).
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Fig. 5 Over 6 DIV, rat hippocampal neurons progress through roughly four developmental stages.
The length and number of neurites and bifurcations have notable changes, which are statistically
represented in Figure 8.

3 Results

3.1 Data Set

The data set generated is comprised of three types of data (Figure 5):
microscope images of neurons at seven time points, the associated traces for
those neurons that met the tracing criteria (Section 2.1.2), and the resulting
morphometrics (both common and new). The seven time points were selected
to observe the neurons undergo three key growth stages (Figures 1 and 5): 0.5
DIV (estimated Stage 2, n = 31 cells), 1 DIV (n = 36 cells), 1.5 DIV (n = 80 cells),
2 DIV (n = 135 cells), 3 DIV (n = 234 cells), 4 DIV (n = 162 cells), and 6 DIV (n

= 20 cells). This data is available at https://doi.org/10.5281/zenodo.6415473.

3.2 Common Metrics Performance

Several of the common metrics typically used for quantifying neuron
morphology showed a significant ability to discriminate between growth time
points. The Kruskal-Wallis test indicated that the medians were significantly
different in at least one time point for all four common morphometrics assessed.
In particular, using the Dunn test, the total length of all neurites, the degree, and
the number of neurites were significantly different between several pairs of time
points (Figure 8). For the time point typically associated with Stage 4 (4 DIV),
total length, degree, and number of neurites were significantly different from the
Stage 2 and 3 time points (0.5 and 1.5 DIV, respectively) (total length and degree
highlighted in Figure 6). However, the features were not significantly different
between 0.5 and 1.5 DIV (Figure 6). Average tortuosity was only significantly
different between 1.5 and 3 DIV (Figure 8).


https://doi.org/10.5281/zenodo.6415473
https://doi.org/10.5281/zenodo.6415473
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Fig. 6 Of the common morphometrics, the (a) total length per cell and the (b) degree were among
the features that best distinguished between 0.5 DIV (~ Stage 2), 1.5 DIV (% Stage 3), and 4 DIV (»
Stage 4). Representative neurons are on the left panels, while the distributions are on the right. The
median, upper and lower quartiles, and significance from each statistical test for each feature shown
in the violin plots (a-b) are represented by the symbols in the legend (c). The Dunn test with a
Bonferroni correction indicated that total length and degree were significantly different between
0.5 DIV and 4 DIV and between 1.5 DIV and 4 DIV.
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Fig. 7 From the novel CPT-Based morphometrics, the (a) average segment length and the (b) number
of change points were among the features that best distinguished between 0.5

DIV (xStage 2), 1.5 DIV (=Stage 3), and 4 DIV (xStage 4). On the left, representative neurons with
traces are shown. The distributions of each feature are on the right panels. The symbols in the legend
(c) represent the medians, upper and lower quartiles, and statistical significance for each feature
shown in the violin plots(a-b). The Dunn Test with a Bonferroni correction indicated that the
average segment length and the number of change points were significantly different between 0.5
DIV and 4 DIV and between 1.5 DIV and 4 DIV.
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3.3 Change-Point-Test-Based Novel Morphometrics
Performance

Two of the three CPT-based morphometrics introduced in this work varied
significantly between time points. The number of change points and average
segment length were significantly different for a majority of the time point pairs
(Figure 8), including time points typically associated with Stages 2-4 (Figure 7).
The relative turning angle was not significantly different between any of the
time points (Figure 8).

4 Discussion

Our study provides a method for the quantitative description of embryonic
rodent hippocampal neurons across the first week of culture through a
combination of common and CPT-based morphometrics. By characterizing a
sample population of cells, the morphometrics and our presented dataset can be
used in the future to assess the effects of experimental conditions in
combination with the qualitative expected growth stage milestones outlined by
Kaech and Banker (2006) and Dotti et al. (1988). At a population level, the
distributions of total length found in our study are in alignment with the single
cell values reported in Dotti et al. (1988).

When analyzing the data set at the time points associated with a specific
growth stage (Figure 1), specifically 0.5 DIV (Stage 2), 1.5 DIV (Stage 3), 4 DIV
(Stage 4), several features, both common and derived from the CPT, were
significantly different (Figures 6-7). These differences indicate that total length,
degree, segment length, and the number of change points could be used to
characterize the morphological development of these neurons and possibly be
used to distinguish between the associated stages. However, additional analysis
would be needed to match the stages, as classified by an expert observer, with
features characterized and time in vitro.

To quantify local changes that occur during neuron morphological
development, quantitative metrics of neurite growth direction are needed. Sholl
analysis (Sholl, 1953), branching angles, and tortuosity can provide a snapshot
representation of the neurite spatial organization and orientation. However,
they do not indicate if the difference in space or orientation is due to specific
intra- or extracellular signaling or due to stochastic processes. In contrast, the
CPT method (Byrne et al., 2009) applied in the presented work identifies where
along a path in which a statistically significant directional change has occurred.
From that information, the magnitude of the change and the specific angle can
be extracted. Our study demonstrated that the CPT leads to additional
morphometrics that were significantly different between key time points
(Figure 7), which may indicate important directional change events during the
growth stages, even in media without a controlled gradient of extracellular cues.
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The promising results of our semi-automatic tool for assessing neurite
morphology highlights its potential for applications in future studies on neuron
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growth in vitro. For example, future experimental studies should apply the semi-
automated morphological analysis presented here to assess neuron cultured in
the presence of specific growth factors known to affect neuron growth and
maturation, such as nerve growth factor, brain-derived neurotrophic factor, or
neurotrophin-3, to investigate whether this approach can distinguish between
such experimental conditions. Furthermore, because the CPT was initially
developed to objectively identify where the animals decide to switch from
randomly meandering to directed walking (Byrne et al., 2009), we hypothesize
that in future studies, the CPT could be applied to identify changes in neurite
growth direction in the presence of external cues. To test this hypothesis in
future work, chemotropic molecules, such as netrins and semaphorins, could be
applied at specific time points and regions to control cell growth direction to
assess the ability of these morphometrics to identify cells which are undergoing
directed versus undirected growth.

In addition, the automated portion of morphological analysis tool overall
could be used to characterize more neuron types or neurites with a more
extensive tree, as long as the neurite path can be described as a list of
coordinates and a metadata file for individual trace identification (i.e. trace
identification, the neuron cell it belongs to, and tracing type as found in the
accompanying CSV file with the traces in the GitHub repository). This provides
flexibility in the method of obtaining the raw data in the choice of imaging
modality, cell type, and level of arborization. Future studies are needed to assess
the ability of this approach to distinguish in vivo cell morphologies.

4.1 Limitations

This study has several limitations based on the imaging modality used for
tracking the cells over time. Bright-field microscopy at 20X and 40X
magnification is a method for imaging several cells over a short time-period
without the potential interference of dyes that could affect the cell’s structural
development. Bright-field imaging can also be used to quickly assess cell health
during the culturing period. However, bright-field microscopy results in a lower
contrast imaging modality than fluorescence microscopy, which is more
challenging for image processing techniques to extract the neurite trajectories.
Furthermore, the use of only 20X or 40X magnification limited the size of the
neurites we were able to capture, which affects the sample population of
neurons that were analyzed. This is particularly evident in the smaller sample
sizes at the earlier time points (0.5 and 1 DIV) and the latest time points (6 DIV).
A higher magnification or different imaging modality may allow the smaller
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features, such as lamellipodia or young neurites, to be better captured. In
addition, stitching multiple images may be useful for capturing extensive,
mature neurites at later stages.

The use of the bright-field imaging technique resulted in the choice of using
the semi-automatic tracing program, Neuron] (Meijering et al., 2004), to trace
the neurites since many other automatic programs are optimized for
highcontrast fluorescence images (Boulan et al., 2020; Ho et al,, 2011; Kim, Son,
& Palmore, 2015; Pool, Thiemann, Bar-Or, & Fournier, 2008). Although the semi-
automatic procedure may introduce some interobserver variability, the process
will still be more reproducible than a fully manual method (Meijering et al,,
2004). Furthermore, due to the need for user input, the labor intensiveness of
this method scales with the number of neurites. However, it is still an
improvement over a completely manual method with better neurite centerline
representations and negligible differences in length results (Meijering et al.,
2004).

Moreover, without the use of fluorescence dyes, neurons cultured beyond 6
DIV (estimated transition point between Stage 4 and 5) become difficult to
distinguish due to the development of long neurites and dense networks at Stage
5 (Kaech & Banker, 2006). Furthermore, a distinct qualitative morphological
change is not present between Stage 4 and 5, and Stage 5 is likely highly
influenced by other cell interactions, unlike the previous stages that are
considered endogenously determined (Dotti et al., 1988). Thus, Stage 5 was not
considered as part of the scope of the work presented here. Additional studies
controlling the cell interactions between developing neurons would be required
to characterize Stage 5 morphology based on environmental conditions using
our collection of quantitative morphometrics.

There are also some limitations in the computational methods implemented.
In the CPT specifically, there is a balance between the selection of the
significance level and the number of vectors to be used in the collinearity
assessment (Byrne et al., 2009). The smaller the number of vectors used, the
more sensitive the CPT is to detecting genuine change points (Byrne etal., 2009).
However, if a higher significance level is desired, a larger number of vectors may
be required (Byrne et al, 2009). In addition, the statistical analysis was
completed on a per cell basis (using averages and sums over an entire neuron),
rather than a per neurite basis. This may result in some loss of fine details of the
neurites themselves, while enabling the study of the cell morphology as a whole.
Further studies using techniques, such as a timelapse imaging, could
complement our semi-automatic tool in assessing culture condition effects on
individual neurites. Such individual neurite analysis may be particularly
important for future studies on directed neuron growth.
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5 Conclusions

This study provided a semi-automated quantitative analysis method, including
both common and novel morphometrics. We used this method to analyze
growth during the initial 6 DIV for cultured neurons, which correspond to three
of the five growth stages qualitatively described for embryonic rodent
hippocampal neurons in culture. This semi-automated quantitative analysis
method has many potential applications, including assessing the cell culture
health and how certain intrinsic or extrinsic factors may alter neuron
morphological development. The novel application of the Change-Point Test,
which was initially developed for studying animal walking paths, could also
provide
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additional insight on factors that alter the neurite trajectories in future studies.
In addition, quantifying the development of neuron morphology can inform
parameters needed for computational simulations of neuron growth (Qian et al,,
2022), materials transport (Li, Barati Farimani, & Zhang, 2021; Li, Chai, Yang, &
Zhang, 2019), and molecular traffic jams (Li & Zhang, 2022a, 2022b). More
accurate computational models could help guide future in vitro studies by
exploring experimental parameters in silico prior to costly and time intensive
experimentation. Finally, with our semi-automatic quantitative method for
characterizing neuron morphology, experimental results can be consistently
assessed by both novices and experts, and results can be easily compared across
studies.
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Appendix A: Distributions and Analyses on All
Morphometrics for All Observed Time Points

A summary of the Dunn tests along with each feature’s distributions are
showcased in Figure 8. The Dunn tests with a Bonferroni correction indicated
significant differences between several time points, as outlined in the
corresponding Tables below, for segment length (Figure 8a, Table 10), number
of change points (Figure 8c, Table 12), total length (Figure 8d, Table 13), number
of neurites (Figure 8e, Table 14), and degree (Figure 8g, Table 16). No significant
differences between time points were detected for turning angle (Figure 8b,
Table 11), and significant differences were only detected between DIV 1.5 and 3
for tortuosity (Figure 8f, Table 15).

Additionally, the sample sizes of the data set are reported in Table 1. The
summary statistics and Anderson-Darling results for all of the morphometrics
are detailed in Tables 2-8. The y? and p-values from the Kruskal-Wallis tests for
each feature are in Table 9. Lastly, the post-hoc Dunn tests with a Bonferroni
correction p-values are in Tables 10-16.
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Fig. 8 The distributions and results of the Dunn test with a Bonferroni correction used to assess each
morphometric (a) average segment length, (b) average relative turning angle, (c) number of change
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points; (d) total length, () number of neurites, (f) average tortuosity, (g) degree) for every time
point pair are symbolically represented, as defined in (h).

Table 1 Overall Data Set Size

DIV Sample Size (Number of Cells) Number of Neurites Traced
0.5 31 47
1.0 36 58
1.5 80 169
2.0 135 348
3.0 230 830
4.0 162 668
6.0 20 139

Table 2 Summary Statistics and Anderson-Darling Results for Average Segment Length Per Cell
(hm)

Standard Fi Third Anderson- AndersonDarling
tandar . irst ir Darling Test _val

DIv Mean Deviation Median Quartile Quartile a;t;riigstiis prvatue

0.5 6.68 2.14 6.75 5.05 7.82 0.505 0.188

1.0 7.39 2.53 7.43 5.58 8.36 0.831 0.0289

1.5 8.00 2.93 7.62 5.64 9.39 1.48 0.00075

2.0 8.82 2.93 8.90 6.39 10.35 1.15 0.00512

3.0 9.51 2.16 9.72 8.35 10.95 1.96 <0.0001

4.0 9.42 2.87 9.58 6.65 10.86 2.26 <0.0001

6.0 11.48 1.45 11.73 10.24 12.36 0.413 0.308

Table 3 Summary Statistics Anderson-Darling Results for Average Relative Turning Angle Per Cell

"

standard Fi Third Anderson- AndersonDarling
tandar . irst ir Darling Test _val

DIV Mean Deviation Median Quartile Quartile a;t;x}dgstiis prvatue

0.5 22.18 11.65 21.75 15.49 25.00 1.37 0.00124

1.0 22.82 10.82 23.31 15.57 29.71 0.196 0.884

1.5 21.34 9.69 21.20 15.96 25.94 1.59 0.00039

2.0 22.32 8.01 22.32 17.51 27.06 1.07 0.00816

3.0 22.88 6.78 22.24 18.67 25.39 4.69 <0.0001

4.0 21.28 491 21.07 18.79 23.77 1.85 <0.0001

6.0 20.32 2.65 20.45 18.45 21.36 0.284 0.593

Table 4 Summary Statistics Anderson-Darling Results for Number of Change Points Per
Cell

Standard . Third Anderson- AndersonDarling
tandar . irst ir Darling Test _val

DIV Mean Deviation Median Quartile Quartile a;t:.‘[igstiis prvatue

0.5 2.65 1.52 2 1.5 4 1.39 0.0011

1.0 3.56 2.97 2 1 5.25 2.52 <0.0001

1.5 5.16 5.56 3 2 6.25 7.31 <0.0001

2.0 8.22 8.24 6 3 10 7.98 <0.001

3.0 13.52 10.79 11 6.25 17.75 9.38 <0.0001

4.0 21.57 19.62 16 8.25 31 7.72 <0.0001

6.0 39.70 23.33 33.5 22.75 50.75 0.681 0.0639

Table 5 Summary Statistics Anderson-Darling Results for Total Length of All Neurites Per Cell (um)
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Anderson- AndersonDarling
DIV Mean Standard Median First Third Darling Test p-value
Deviation Quartile Quartile Statistic

0.5 27.53 17.43 21.70 16.92 29.76 191 <0.0001
1.0 36.54 26.25 30.32 15.08 43.27 1.86 <0.0001
1.5 53.19 43.04 38.78 23.27 66.88 4.32 <0.0001
2.0 84.34 65.69 64.87 38.43 112.92 4.89 <0.0001
3.0 155.13 102.75 134.34 86.02 196.46 5.02 <0.0001
4.0 218.74 163.14 181.27 102.25 268.21 4.6 <0.0001
6.0 554.73 337.47 485.99 312.02 719.49 0.83 0.0264

Table 6 Summary Statistics Anderson-Darling Results for Total Number of Neurites Per
Cell

Standard First Third Anderson- AndersonDarling
DIV Mean De?/rila'zgn Median Qu;:iile Qua;:ile Da;i;ri‘igs';(zst p-value
0.5 1.94 0.998 2 1 2.5 2.16 <0.0001
1.0 2.00 1.10 2 1 3 2.36 <0.0001
1.5 2.39 2.02 2 1 3 6.6 <0.0001
2.0 2.52 1.63 2 1 3 6.97 <0.0001
3.0 3.67 2.25 3 2 5 6.41 <0.0001
4.0 3.94 2.40 4 2 5 3.4 <0.0001
6.0 5.50 2.04 5 4 7 0.907 0.0167
Table 7 Summary Statistics Anderson-Darling Results for Average Tortuosity Per Cell
Standard . First Third Amf'lerson— AndersonDarling
DIv Mean Deviation Median Quartile Quartile Da;g}dgsziﬁ prvalue
0.5 1.0554 0.0446 1.0379 1.0225 1.0776 1.3 0.0019
1.0 1.0478 0.0363 1.0391 1.0161 1.0757 0.794 0.0359
1.5 1.0530 0.0652 1.0367 1.0254 1.0507 9.68 <0.0001
2.0 1.0630 0.0641 1.0437 1.0283 1.0685 11.9 <0.0001
3.0 1.0815 0.1383 1.0460 1.0300 1.0725 42.6 <0.0001
4.0 1.0536 0.0306 1.0456 1.0341 1.0623 6.14 <0.0001
6.0 1.0462 0.0267 1.0406 1.0302 1.0498 2.02 <0.0001
Table 8 Summary Statistics Anderson-Darling Results for Degree Per Cell
Standard First Third Anderson- AndersonDarling
DIV Mean De?/?a;Zn Median Quanl::ile Quall;ile Da;lt;r;gsj[l"iist p-value
0.5 1.94 0.998 2 1 2.5 2.16 <0.0001
1.0 2.03 1.08 2 1 3 2.22 <0.0001
1.5 2.65 2.26 2 1 4 5.92 <0.0001
2.0 2.94 2.09 2 1 4 6.48 <0.0001
3.0 4.53 2.89 4 2 6 6.04 <0.0001
4.0 4.94 3.18 4 3 7 4.01 <0.0001
6.0 8.70 3.23 8 6 10 0.364 0.405
Table 9 Kruskal-Wallis Test Results For All Features
Feature X2 p-value
Average Segment Length
Per Cell 88.9519  <0.0001

Average Relative Turning

Angle Per Cell 7.7002 0.261
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Number of Change Points
Per Cell

Total Length of All Neurites
Per Cell

Number of
Neurites Per Cell

Average Tortuosity
Per Cell

Degree Per
Cell

234.2829

288.0794

106.816

12.8792

1449114

<0.0001

<0.0001

<0.0001

0.045

<0.0001

Table 10 Dunn Test with Bonferroni Correction p-values for the Average Segment

Length Per Cell (pm)

DIV 0.5 1.0 1.5 2.0 3.0 4.0

1.0 1.0000

1.5 0.5123  1.0000

2.0 0.0022 0.0380 0.2433

3.0 0.0000 0.0000 0.0000 0.0265

4.0 0.0000 0.0001 0.0003 0.3059 1.0000

6.0 0.0000 0.0000 0.0000 0.0000 0.0067 0.0026
Table 11 Dunn Test with Bonferroni Correction p-values for the Average Relative Turning Angle Per
Cell ()

DIV 0.5 1.0 1.5 2.0 3.0 4.0

1.0 1.0000

1.5 1.0000 1.0000

2.0 1.0000 1.0000 1.0000

3.0 1.0000 1.0000 1.0000 1.0000

4.0 1.0000 1.0000 1.0000 1.0000 0.4895

6.0 1.0000 1.0000 1.0000 1.0000 0.7938 1.0000

Table 12 Dunn Test with Bonferroni Correction p-values for the Number of Change

Points Per Cell

DIV 0.5 1.0 1.5 2.0 3.0 4.0
1.0 1.0000

1.5 0.7648  1.0000

2.0 0.0009 0.0064 0.0463

3.0 0.0000 0.0000 0.0000 0.0000

19
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4.0 0.0000 0.0000 0.0000 0.0000 0.0101
6.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0213
Table 13 Dunn Test with Bonferroni Correction p-values for the Total Length of All Neurites Per Cell
(hm)
DIV 0.5 1.0 1.5 2.0 3.0 4.0
1.0 1.0000
1.5 0.3949 1.0000
2.0 0.0001 0.0015 0.0225
3.0 0.0000 0.0000 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000 0.0275
6.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0045
Table 14 Dunn Test with Bonferroni Correction p-values for the Number of Neurites Per
Cell
DIV 0.5 1.0 1.5 2.0 3.0 4.0
1.0 1.0000
1.5 1.0000 1.0000
2.0 1.0000 1.0000 1.0000
3.0 0.0001 0.0001 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000 1.0000
6.0 0.0000 0.0000 0.0000 0.0000 0.0043 0.0255
Table 15 Dunn Test with Bonferroni Correction p-values for the Average Tortuosity Per
Cell
DIV 0.5 1.0 1.5 2.0 3.0 4.0
1.0 1.0000
1.5 1.0000 1.0000
2.0 1.0000 1.0000 0.4370
3.0 1.0000 0.8980 0.0250 1.0000
4.0 1.0000 1.0000 0.0542 1.0000 1.0000
6.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Table 16 Dunn Test with Bonferroni Correction p-values for the Degree Per Cell
DIV 0.5 1.0 1.5 2.0 3.0 4.0
1.0 1.0000
1.5 1.0000 1.0000
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2.0 0.3069 0.4210 1.0000

3.0 0.0000 0.0000 0.0000 0.0000

4.0 0.0000 0.0000 0.0000 0.0000 1.0000

6.0 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010
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