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Abstract
Following an earthquake, ground motion time series are needed to carry out site-
specific nonlinear response history analysis. However, the number of currently
available recording instruments is sparse; thus, the ground motion time series at
uninstrumented sites must be estimated. Tamhidi et al. developed a Gaussian process
regression (GPR) model to generate ground motion time series given a set of
recorded ground motions surrounding the target site. This GPR model interpolates
the observed ground motions’ Fourier Transform coefficients to generate the target
site’s Fourier spectrum and the corresponding time series. The robustness of the
optimized hyperparameter of the model depends on the surrounding observation
density. In this study, we carried out sensitivity analysis and tuned the hyperparameter
of the GPR model for various observation densities. The 2019 M7.1 Ridgecrest and
2020 M4.5 South El Monte earthquake data sets recorded by the Community
Seismic Network and California Integrated Seismic Network in Southern California
are used to demonstrate the process. To provide a tool to quantify the uncertainty of
the generated motions, a methodology to develop realizations of ground motion time
series is also incorporated. The results illustrate that the uncertainty of the generated
motions is lower at longer periods. It is shown that the observation density in the
proximity of the target site plays a vital role in both error and uncertainty reduction
of the generated time series. To demonstrate the concept, the effect of additional
observations from combined recording networks is investigated.
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Introduction

The current number of ground-level recording instruments is approximately 2000 in
California over multiple recording networks (Southern California Earthquake Data
Center, 2022). Consequently, following a major event, ground motion time series at loca-
tions devoid of recording instruments are needed to carry out site-specific nonlinear
response history analysis. Currently, important products ‘‘ShakeCast’’ and ‘‘ShakeMap’’
established by US Geological Survey (Fraser et al., 2008; Lin et al., 2018; Wald et al.,
2008; Worden et al., 2018) provide ground motion intensity measures (GMIM), such as
peak ground acceleration and response spectral ordinates. However, as stated above,
ground motion time series at uninstrumented sites are also required for seismic perfor-
mance evaluation of specific structures.

Two commonly used methodologies for generating ground motion time series at unin-
strumented sites can be mentioned here. First, the physics-based simulations employing the
finite-fault and seismic velocity models consider the source, path, and site effects (e.g.
Aagaard et al., 2008; Atkinson and Assatourians, 2015) and the topography of the Earth’s
surface (Rodgers et al., 2019; Thomson et al., 2020). Second, the coherency function-based
simulations employing cross-spectral density (CSD) and auto-spectral density (ASD) func-
tions (e.g. Kameda and Morikawa, 1992; Konakli and Der Kiureghian, 2012; Zentner,
2013; Rodda and Basu, 2018). Several research studies have also been conducted to simu-
late unconditional spatially varying ground motions. Deodatis (1996) and Shinozuka and
Deodatis (1996) employed the spectral representation method (SRM) to simulate non-
stationary stochastic ground motions. Furthermore, conditional simulation of non-
stationary random fields was extensively investigated (Cui and Hong, 2020; Heredia-Zavoni
and Santa-Cruz, 2000; Hu et al., 2012; Vanmarcke and Fenton, 1991; Wu et al., 2015). The
physics-based approaches require detailed information regarding the subsurface properties
and fault features. However, The CSDs are driven using empirical or semi-empirical coher-
ency functions, whose coefficients are often determined via data-driven methods
(Abrahamson et al., 1991). The CSD functions might need some detailed site properties
and wave propagation characteristics. Therefore, both methods have challenges for a rapid
post-earthquake structural damage assessment in real time (Loos et al., 2020; Mangalathu
and Jeon, 2020) as they are computationally expensive and time-consuming.

Tamhidi et al. (2021, 2022b) recently developed a method to simulate ground motion
time series using a trained Gaussian process regression (GPR) model. This GPR model
interpolates the discrete Fourier transform (DFT) coefficients of the observed nearby
recorded ground motions to construct the time series at the target uninstrumented sites.
The GPR model performs conditioned simulation of ground motions at an ensemble of
target locations, imposing a comparatively low computational cost (Rasmussen and
Williams, 2006).

The intrinsic uncertainty of ground motions affects earthquake engineering disciplines,
such as the performance-based post-earthquake assessment and decision-making
(Aghababaei et al., 2021; Roohi and Hernandez, 2020; Weatherill et al., 2015). Several
studies attempted to quantify and model this randomness in various seismic problems
(Alamilla et al., 2001; Wen et al., 2003; Yazdi et al., 2022). In this study, we focus on
quantifying the uncertainty and validity of the generated motions using the GPR model
introduced by Tamhidi et al. (2021). The model’s hyperparameter (the regularization fac-
tor) is fine-tuned based on observation densities, enabling the users to choose the optimum
hyperparameter corresponding to the existing observed data set. Then, a methodology to
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generate random realizations of ground motions using the trained GPR and an inter-
frequency correlation model (Bayless and Abrahamson, 2019) is reviewed. This random
realization methodology provides a means to quantify the uncertainty of the generated
motions at the target sites. We implemented this methodology to investigate the simulated
motions’ accuracy and uncertainty using the 2019 M7.1 Ridgecrest earthquake data set
recorded by the Community Seismic Network (CSN). In addition, the performance of the
model as related to the spatial density of recording instruments is investigated for the 2019
Ridgecrest and 2020 M4.5 South El Monte earthquakes in Southern California.

Theoretical background

Suppose the ground motion acceleration time series at site s, as(t), is constructed with N
discrete data points, as(ti), i = 1, ..., N. The time series can be decomposed into its DFT
coefficients Ak (e.g. Oppenheim et al., 1997) as follows:

as tið Þ=
XN�1

k = 0

Ake
jvk ti ð1Þ

where

Ak =
1

N

XN�1

i= 0

as tið Þ cos vk tið Þ � j � sin(vk ti)½ �=Rek + j � Imk : ð2Þ

In Equations 1 and 2, vk denotes the kth DFT’s frequency and j=
ffiffiffiffiffiffiffi
�1

p
. Rek and Imk

are the DFT coefficient’s real and imaginary components at the kth frequency, respec-
tively. The DFT coefficients are assumed as random Gaussian variables, as demonstrated
by Kameda and Morikawa (1992) and implemented by Konakli and Der Kiureghian
(2012) to simulate ground motion fields. The Rek (or Imk) at site s is correlated to Rek

0

(or Imk
0
) at nearby sites s

0
. We implemented a GPR model to estimate Rek (and Imk)

given the observed Rek
0
(and Imk

0
) at the neighboring sites. It is assumed that there is a

statistically insignificant correlation between Rek (or similarly Imk) and Rej (or similarly
Imj) at the same site for different frequencies k and j, when we construct the mean esti-
mated ground motions. Tamhidi et al. (2021) showed that mean estimated values for a
multivariate Gaussian variable (here Rek or Imk) are independent of the inter-frequency
correlation between amplitudes at different frequencies. However, this inter-frequency cor-
relation must be taken into account if we want to generate random realizations of time
series at a site.

Gaussian Process Regression

A Gaussian process (GP) is a set of indexed random variables, with every finite subset fol-
lowing multivariate Gaussian distribution (Rasmussen and Williams, 2006). The standard
form of GP is shown in Equation 3:

f xð Þ ; GP m xð Þ , k x, x0ð Þð Þ ð3Þ

In Equation 3, m(x) represents the mean function value at the input vector location x, and
k(x,x

0
) is the covariance between vector locations x and x

0
. This article indicates vectors
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and matrices with lower-case and upper-case boldface symbols, respectively. Suppose there
are No and Nt number of observed and target locations, respectively. We denote f as a
No31 vector of observed values from a GP and f� as a Nt31 vector of unknown GP values
at the target locations. Also, let us symbolize the observed locations’ No3d input matrix
as X (d is the number of features for each location), whose rows contain observed loca-
tions’ input feature vectors, x. Similarly, we call X� as the Nt3d matrix of target locations.
The predictive distribution of f� is given by (Rasmussen and Williams, 2006),

f�jX�, X, f ; N (m�,S��) ð4Þ

where

m�(Nt31) = m(Nt31) + Kx�x Nt3Noð ÞK
�1
xx No3Noð Þ f No31ð Þ � m(No31)

� �
ð5Þ

S��(Nt3Nt) = Kx�x� (Nt3Nt)
� Kx�x(Nt3No)

K�1
xx No3Noð ÞKxx� (No3Nt)

ð6Þ

In Equation 4, m� and S�� stands for the posterior mean vector and covariance matrix
of the GP values at target locations, respectively. In Equations 5 and 6, m denotes a vector
of GP prior mean; Kxx and Kx�x� are the covariance matrix of the DFT coefficients at the
observed and target locations, respectively. Correspondingly, Kxx� (transpose of Kx�x) rep-
resents the covariance between the observed and predicted DFT coefficients. The covar-
iance matrices’ elements are constructed with covariance kernel, k(r), where r denotes the
distance between input vectors. Tamhidi et al. (2021) indicated that the Matérn kernel
with n = 1:5 is the optimum covariance function for the GPR model to simulate the ground
motion time series. Equations 7 and 8 illustrate Matérn (n = 1.5) kernel function and the
‘‘distance’’ between two input vectors, x and x

0
, respectively. The ‘‘distance’’ can be the

geographical distance and the difference between local soil conditions (Vs30) at two sites as
elaborated below.

kn = 1:5 rð Þ=s2
f (1+

ffiffiffi
3

p
r)exp(�

ffiffiffi
3

p
r) ð7Þ

r = u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i= 1

(xi � x
0
i)
2

vuut ð8Þ

In Equation 7, sf is the variance that governs how uncertain the GPR’s estimate is. In
Equation 8, xi is the i

th component of the input vector at location x and u is a positive scal-
ing factor, as the inverse of length-scale, l, where u= 1

l
. The length-scale, l, is a parameter

of the covariance function, which scales the ‘‘distance’’ between two locations. In other
words, a larger length-scale results in a higher correlation by reducing the ‘‘distance.’’ In
this study, all input vector’s elements are scaled with the same u. Such a covariance func-
tion is called an isotropic covariance function.

Tamhidi et al. (2020, 2021) demonstrated that a four-dimension input vector,
x= fx1, x2, x3, log (Vs30)g, is appropriate to represent sites. Vs30 is the time-average shear
wave velocity in the uppermost 30 m of the soil, and x1 through x3 are the Cartesian coor-
dinates of the site on the 3D surface of the Earth. All four input attributes are normalized,
so that each feature’s mean and standard deviation are zero and one, respectively. The
GPR model’s parameters are the distance scaling factor, u, the GP prior mean, m, and the
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variance, sf , which need to be optimized for each Rek (and Imk) at the target site using
the observations which are all known ground motions Rek

0
(and Imk

0
) within the corre-

sponding event’s data set. The maximum a posteriori estimates are chosen as the optimum
model’s parameters by maximizing the penalized log-likelihood of the observations.
Denoting the parameters as g= (u, m, sf ), Equation 9 displays the penalized log-
likelihood of the observations:

Q(g) = � 1

2
f� mð ÞTKxx

�1 f� mð Þ � 1

2
log Kxxj j � No

2
log2p � No d pl(u) ð9Þ

In Equation 9, T stands for the transpose operator and pl(u) is a non-negative penalty
function for the scaling factor u. This study uses the L2 penalty function shown in
Equation 10.

pl uð Þ= lu2 ð10Þ

The regularization factor, l, is the hyperparameter of the model that determines how
observations contribute the optimum parameters, ĝ.

Hyperparameter optimization

A higher penalty is needed when there are sparse observations (Li and Sudjianto, 2005). In
other words, the optimum hyperparameter, l̂, depends on the observation density. Thus, it
is required to tune the l̂ for various observation densities. We used the recorded ground
motions of the 2019 M7.1 Ridgecrest earthquake by the CSN within Los Angeles (Clayton
et al., 2020).

The observation density for the 252 CSN recording sites distributed over a 464 km2

region (CSN domain in Figure 1) is 0.54 sites/km2. To tune the optimum l̂ for various
observation densities, we make different data sets with the various number of observed
sites by randomly selecting out of the 252 CSN sites. Six different data sets with 252, 201,
151, 100, 50, and 25 sites are chosen. The distribution of the randomly chosen subsets is
shown in Figure 1. The Vs30 values of the CSN sites are estimated using a proxy-based
model described in Ahdi et al. (2020). The selection criterion for finding l̂ is to minimize
the average normalized root mean square error (NRMSE) between the recorded and
generated ground motions’ 5%-damped RotD50 response spectra (Boore, 2010). The
NRMSE between the recorded and estimated motions’ response spectra is calculated by
Equation 11.

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

i= 1

(PSAi � dPSAi)
2

dPSAi

2

vuut ð11Þ

In Equation 11, PSAi and dPSAi are the response spectral ordinates of the estimated and
recorded ground motions at the ith period, respectively, and Np equals to the number of
periods included within the usable bandwidth. The usable bandwidth is considered as the
mutual usable bandwidth among all observed motions, which is the reliable period range
after the noise removal of the motions (Ancheta et al., 2014). We implemented the Leave-
One-Out (LOO) cross-validation methodology (Vehtari et al., 2017) to find l̂ for each sub-
set shown in Figure 1. Nine different regularization factors, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4,
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0.6, 0.8, and 1.0, called as ltest, are examined for each subset through the following steps to
find the l̂. These ltest values are chosen, so that the l̂ for each subset falls inside the 0.01–
1.0 domain (cf. Table 1).

1. For each site, s, within the data set, s = 1,..., Nsites (Nsites = number of sites in the
data set)

1.1. Obtain the optimum parameters ĝk at the kth frequency using the observed
ground motions, which are all the recorded ground motions (excluding at site s)
by maximizing Q gkð Þ using ltest.

1.2. Generate the ground motion time series at site s using posterior mean (Equation
5) of Rek and Imk , k = 0, . . . ,N � 1, given ĝk in Step 1.1. We call this generated
time series the mean estimated ground motion.

1.3. Obtain the RotD50 spectrum of the mean estimated and recorded ground
motions at site s and calculate NRMSE between them, called as Errors.

Figure 1. Distribution of the randomly chosen subsets from CSN’s recorded 2019 M7.1 Ridgecrest
earthquake motions with (a) 252, (b) 201, (c) 151, (d) 100, (e) 50, and (f) 25 number of sites.
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2. Compute the average of Errors among all sites, s = 1, ..., Nsites, and store it as Erroravg
corresponding to ltest.

Eventually, the ltest corresponding lowest Erroravg is chosen as l̂ associated with the tar-
get data set’s observation density. Table 1 illustrates the obtained l̂ for each data set and
the corresponding Erroravg for the mean estimated ground motions.

We have employed the l̂ given in Table 1 to generate the mean estimated ground
motion time series using LOO analysis at each site within the corresponding data set.
Figure 2 depicts the distribution of the NRMSE between the recorded and mean estimated
ground motions’ RotD50 spectrum. It is demonstrated that the predicted ground motions
are reliably accurate for most of the target sites for the subsets with higher observation
density (cf. Figures 2a, through c). However, the Erroravg increases as observation density
decreases (cf. Figures 2d through f). The effect of observation density on the prediction
accuracy and uncertainty is examined in further depth in section ‘‘Uncertainty quantifica-
tion and sensitivity analysis.’’

Ground motion random realizations

It is desirable to quantify the uncertainty of the mean estimated ground motions at any tar-
get site. The posterior mean vector and covariance matrix for all target sites’ kth frequency
DFT coefficients, k = 0, ..., N21, are given by Equations 5 and 6. In this study, we gener-
ate ground motion time series at one target site at each process. Therefore, Equations 5
and 6 can be converted to Equations 12 and 13, providing the scalar posterior mean, m�,
and standard deviation, s�, for eachRek (and Imk):

m� = m̂+ kx�x(13No)
K�1

xx No3Noð Þ f No31ð Þ � m(No31)

� �
ð12Þ

s� =csf � Kx�x(13No)
K�1

xx No3Noð ÞKxx� (No31) ð13Þ

In Equations 12 and 13, kx�x is the vector of covariance among the target site and
observed sites Rek (or Imk). kx�x and Kxx are established using ĝ at the corresponding fre-
quency. The ground motion realizations at each target site are generated following below
steps:

Table 1. The optimum regularization factor, l̂, and corresponding Erroravg for various observation
densities

No. of observation Density (station/km2) l̂ Average RotD50 NRMSE (Erroravg)

251 0.54 0.05 0.27
200 0.43 0.1 0.28
150 0.32 0.1 0.27
99 0.21 0.1 0.31
49 0.10 0.2 0.30
24 0.05 0.4 0.40

NRMSE: normalized root mean square error.
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1. At each kth frequency, k = 0, ..., N21:

1.1. The posterior mean and standard deviation of Rek and Imk are calculated by
Equations 12 and 13.

1.2. The correlation between the Rek and Imk at the target site is estimated by the
correlation between Rek

0
and Imk

0
among all observed sites’ (whole data set

except target site) ground motions. Consequently, a 2 3 2 covariance matrix
for the (Rek , Imk) is established using the estimated correlation and standard
deviations resulted in Step 1.1.

Figure 2. Distribution of the RotD50 NRMSE between the recorded and mean estimated ground
motions using corresponding l̂ for CSN sites recorded M7.1 Ridgecrest earthquake having (a) 251,
(b) 200, (c) 150, (d) 99, (e) 49, and (f) 24 number of observed sites. The Test Site 1 (panels a and f) is
chosen as a target site for the assessment of the introduced methodology for random generation of
ground motions (see section ‘‘Ground motion random realizations’’).
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1.3. A set of random samples of 2 3 1 vectors of (Rek , Imk) are produced using the
estimated 2 3 1 mean vector (Step 1.1) and 2 3 2 covariance matrix (Step 1.2).
The sample size is selected so that the average of the generated samples becomes
stable and converges to the mean vector determined in Step 1.1. These generated
(Rek , Imk) are then transformed to Akj j samples.

1.4. The logarithmic mean and standard deviation of Akj j samples in Step 1.3 are
obtained.

2. The N 3 N covariance matrix of log( Akj j), k = 0, ..., N21, are constructed using the
inter-frequency correlation values given by Bayless and Abrahamson (2019) model
and calculated standard deviations in Step 1.4.

3. Random Gaussian N 3 1 vector samples of log( Akj j) are produced using the N 3 1
mean vector (Step 1.4) and N 3 N covariance matrix (Step 2).

4. The phase spectrum of the mean estimated ground motion is coherent with the nearby
observed ground motions. Therefore, the generated samples of Fourier amplitude
spectrum (FAS) in Step 3 are combined with the Phase spectrum constructed with the
posterior mean DFT coefficients to generate ground motion time series realizations.

We also examined the randomization of Fourier phase spectra; yet, the results were not
as promising as the outcomes stated in Step 4 above. We employ the 2019 M7.1 Ridgecrest
earthquake data set recorded over the CSN sites to evaluate the proposed methodology.
Test Site 1 shown in Figures 2a and f is the target site. The geotechnical properties of Test
Site 1 are summarized in Table 2. In Table 2, Z1.0 and Z2.5 are depths to the Vs = 1 km/s
and Vs = 2.5 km/s horizons, respectively, and are estimated using the SCEC CSM-S4
model (Nweke et al., 2018). In Table 2, Rrup is the closest distance to the coseismic rupture.

Two different observed sets are considered to generate ground motion realizations at
Test Site 1; first, all 251 CSN sites in Figure 2a, and second, all 24 CSN sites in Figure 2f.
The l̂ for each case is chosen from Table 1. We generated 100 ground motion realizations
at Test Site 1. Figure 3 indicates the mean estimated and five ground motion time series
realizations along the East–West (EW) direction at the Target Site 1. Figure 3a displays
that the mean estimated and generated realizations of ground motion given 251 observed
sites fit closer to the recorded one than those estimated using 24 observed sites in Figure
3b. In addition, it is observed from Figure 3a that the generated ground motion time series
using 251 observed sites exhibit minor variation (uncertainty) at long periods (cf. velocity
and displacement time series in Figure 3a). However, the higher frequency content of the
generated motions shows a greater degree of uncertainty even using 251 observations (cf.
accelerations in Figure 3a). However, Figure 3b displays that 24 observed sites are insuffi-
ciently informative to estimate the long-period content of the motions (cf. velocity and dis-
placement time series in Figure 3b). The reason for this is because the average distance
between the 24 observed sites is not close enough to predict long waves of the motion.

Table 2. Site properties of the Test Site 1 shown in Figure 2

Coordinates (longitude, latitude) Vs30 (m/s) Z1.0 (km) Z2.5 (km) Rrup (km) Hypocentral
distance (km)

(118.258�W, 34.009�N) 290 0.62 4.48 191.7 204.1

Tamhidi et al. 9
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Figure 4 depicts the mean estimated and 100 ground motion realizations’ 5%-damped
RotD50 spectra at Test Site 1 using 251 and 24 observed sites. It is acknowledged that the
generated motions’ uncertainty is lower at long periods than those at short periods.
Moreover, Figure 4 indicates that the long-period prediction (longer than 1 s) has minor
variation and error for having 251 observed sites than those estimated with 24 observa-
tions. However, neither 251 nor 24 observations are dense enough to provide informative
detail of short-length waves corresponding to the short periods. That is why it is seen in
Figures 4a and b that the short periods’ variation is high and does not differ significantly
from having 251 observations to 24 ones.

Figure 5 presents the 68% confidence interval (CI), mean 6 standard deviation, for the
RotD50 spectra of generated realizations at Test Site 1 employing 251 and 24 observed
sites. In addition, Figure 5 demonstrates the average RotD50 spectrum provided by CB14
(Campbell and Bozorgnia, 2014), ASK14 (Abrahamson et al., 2014), and BSSA14 (Boore
et al., 2014) ground motion models (GMMs) and their average within-event standard
deviation.

Figure 4. The 5%-damped RotD50 spectrum of generated ground motion realizations at the Test Site 1
using the (a) 251 (Figure 2a) and (b) 24 (Figure 2f) observed sites.

Figure 5. The 68% CI of RotD50 spectrum of generated ground motion realizations at the Test Site 1
using the (a) 251 (Figure 2a) and (b) 24 (Figure 2f) observed sites.

Tamhidi et al. 11



Figure 5a indicates that the recorded ground motion response spectrum falls inside
68% CI of the generated motions using 251 observations for the majority of periods.
Furthermore, Figure 5a shows that within-event uncertainty for the average GMMs is
greater than that of generated motions using 251 observations. Figure 5a also displays that
the logarithmic CI of the estimated motions narrows at longer periods. In contrast, the
within-event standard deviation of GMMs does not change considerably. In other words,
the estimated ground motions’ variability is less than that of GMMs, especially at long
periods. However, Figure 5b demonstrates that the recorded ground motion response
spectrum falls either outside or on the edge of 68% CI for having 24 observed sites. In
addition, Figure 5 indicates that the standard deviation from short to long periods does
not alter considerably for having fewer observations. Interested readers are referred to
Tamhidi et al. (2022a) to know more about the observation density’s effect on 68% CI of
estimated motions at other target sites of CSN.

Uncertainty quantification and sensitivity analysis

Accuracy and uncertainty of the generated time series are quantified in this section. We
employed 252 CSN sites’ LOO analysis results for the 2019 M7.1 Ridgecrest earthquake.
The logarithmic standard deviation of 100 generated pseudo-spectral accelerations (PSAs)
at two periods, T = 0.4 and 2.0 s, is obtained as a measure of generated motions’
uncertainty at short and long periods, respectively. Figure 6 depicts the distribution of the
EW PSAs’ logarithmic standard deviation at T = 0.4 and 2.0 s.

Figure 6 illustrates that estimated ground motion realizations at CSN sites on the Los
Angeles basin show minor variations at long periods (T = 2.0 s) compared to those
located outside the basin. However, the generated motions’ uncertainty at short period,

Figure 6. The PSA logarithmic standard deviation of the estimated ground motions along EW direction
at two periods T = 0.4 and 2.0 s for the M7.1 Ridgecrest earthquake CSN data set.

12 Earthquake Spectra 00(0)



T = 0.4 s, changes insignificantly between CSN sites inside and outside the Los Angeles
basin. Comparing results at T = 0.4 with 2.0 s in Figure 6 reveals that the PSA’s logarith-
mic standard deviation at long period is smaller than those of short period for sites located
on the basin. However, the PSA logarithmic standard deviation does not vary consider-
ably from the short to the long period for sites located outside the basin. This is primarily
because the observation density surrounding the target sites in southern part of the CSN
is high enough to produce reliable long-period motions. Furthermore, the sites atop the
Los Angeles basin receives more coherent long-period motions as evidenced by Kohler
et al. (2020). Thus, the estimated motions at long periods are less uncertain for the target
sites on the basin.

As a metric of observation density surrounding each target site, we determined the aver-
age distance (inside the 4D space established in previous sections) between each target site
and its four nearest observed neighbors. In this article, we refer to this distance as ‘‘average
separation distance.’’ The shorter average separation distance indicates a higher observa-
tion density surrounding the target site. Figure 7 depicts the scatter plot of the mean esti-
mated motions’ PSA NRMSE within usable bandwidth along EW, North–South (NS),
and RotD50 concerning the average separation distance. Figure 7 also depicts the fitted
lines to the scatter plots and their R-squared, R2. The separation distance in Figure 7 is
unitless as the feature vectors are all normalized, as elaborated in the ‘‘Theoretical back-
ground’’ section.

Figure 7 shows that estimation error and average separation distance have a general
direct correlation. One can recognize that having more observations closer to the target
site results in more accurate ground motion prediction, as expected and now quantified in
Figure 7. Figure 8 indicates the scatter plot of the PSA’s logarithmic standard deviation
along EW and NS at T = 0.4 and 2.0 s relative to the average separation distance. Figure
8 displays that the estimation uncertainty at T = 2.0 s grows as the average separation
distance increases. In addition, it is noticeable that in a general trend, the uncertainty of
the long-period estimation is sensitive to the observation density; but, the short-period
estimation (T = 0.4 s) is not significantly correlated with the number of observations sur-
rounding the target site. This phenomenon is due to the complexities and intrinsic unpre-
dictability of the short-period motions, making added observations less useful to produce
reliable short-period waves. Comparing the scatter plots at T = 0.4 and 2.0 s in Figure 8
reveals that the long-period motions have less variability than short-period ones at shorter
average separation distances. Figure 8 demonstrates that for a target site with average

Figure 7. Scatter plot of the PSA NRMSE with respect to the average separation distance for the 2019
M7.1 Ridgecrest earthquake CSN data set.
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distance of 0.2 from its four nearest neighbors, the estimated logarithmic standard devia-
tion for PSA is around 0.45 and 0.30 at T = 0.4 and 2.0 s, respectively. Furthermore,
Figure 8 depicts that both short and long periods’ uncertainty saturates for very long aver-
age separation distances. In other words, the GPR model produces random estimations
with similar variance at short and long periods where there are too few observations.

Figure 9 demonstrates the stacked bar plots for the proportion of target sites where the
recorded PSA falls inside (or outside) the estimated motions’ 68% CI with regard to the
average separation distance. The eight spans of average separation distance shown in
Figure 9 are selected so that each span includes an approximately same number of target
sites. Figure 9 indicates that the percentage of sites where the recorded PSA locates outside
of the 68% CI rises as average separation distance grows. This pattern becomes more
apparent at T = 2.0 s. The percentage of sites where their 68% CI includes the recorded
PSA decreases steadily for average distances greater than 0.3 and 0.2 for T = 0.4 and
2.0 s, respectively.

Consequently, it may be concluded that the target sites with higher observation densities
close to them are more likely to have the recorded PSA within their 68% CI estimation.
About 76% and 74% of the 252 target sites’ estimated PSA at T = 0.4 s captures the
recorded one within 68% CI along EW and NS, respectively. Similarly, 70% and 76% of

Figure 8. Scatter plot of the logarithmic standard deviation of PSA along (a) EW and (b) NS for the
M7.1 Ridgecrest earthquake CSN data set.
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the target sites’ generated PSA at T = 2.0 s includes the recorded spectral ordinate within
68% CI along EW and NS, respectively. The effect of other governing parameters, such as
uncertainty of the predicted site conditions (Vs30) and the surface slope of the nearby instru-
mented sites on estimations, is studied by Tamhidi et al. (2022a).

In summary, Figure 8 shows that increasing the density of instrumentation closer to the
target site reduces the variability of the generated ground motions. As a result, the higher
observation density is expected to decrease uncertainty of structural engineering demand
parameters derived from nonlinear response history analyses. Figure 9 indicates that for
the target sites with a greater observation density, the uncertainty of long-period estimated
motions is smaller than that for short periods; however, the probability that the recorded
spectrum falls within 68% CI is almost the same at both short and long periods. In other
words, for target sites with average distances shorter than 0.3, the PSA realizations are
about 80% likely to capture the recorded spectra within their mean 6 standard deviation
bandwidth.

Performance evaluation on combined network data sets

Herein, we study the potential improvement of the ground motion prediction using com-
bined observations from different seismic networks. There are various seismic networks in
California, and the combined network is called California Integrated Seismic Network
(CISN). First, we execute LOO ground motion prediction at each CISN station as a target
site using all other CISN sites (except the target site) as observation. Second, we perform
the same procedure to estimate the ground motion time series at each CISN site using all
other CISN and CSN sites as observation. Comparing the predicted motions resulting
from these two observed sets with the recorded ones reveals the improvement of the GPR
model’s output. Ground motions recorded in two recent earthquakes are employed for
this purpose: (1) 2019 M7.1 Ridgecrest and (2) 2020 M4.5 South El Monte earthquakes,
as elaborated below.

2019 M7.1 Ridgecrest earthquake

We selected 121 ground-level sites from CISN that recorded the 2019 M7.1 Ridgecrest
earthquake in Los Angeles. These 121 recording sites are widely dispersed throughout a
3100 km2 region the so-called Main domain (see Figure 10a), whereas the 252 CSN’s sites
are placed over a smaller 460 km2 region. The distribution of the CSN and CISN

Figure 9. Stacked bar plots of the percentage of target sites where the EW recorded PSA falls inside the
68% CI with respect to average separation distance for 2019M7.1 Ridgecrest earthquake CSN data set.
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installations over Los Angeles is shown in Figure 10b. The l̂ depends on the observation
density for each target site, as illustrated in Table 1. Thus, we separated the Main domain
into three subdomains: (1) Inner, (2) Middle, and (3) Exterior Domains (Figure 10b).
There is one observation density when we use just CISN sites as observation. In contrast,
the observation density and the required l̂ are different when we integrate observations
from CISN and CSN. Table 3 depicts the observation density and corresponding l̂ for
each domain. In Table 3, ‘‘Target Domain’’ refers to the region containing the target sites
for which l̂ is suggested. It should be noted that observation density for the sites within
Inner, Middle, and Exterior target domains is derived by dividing the number of sites
available inside Inner, Inner plus Middle, and Main domains by their respective areas.

Figure 10. Distribution of (a) CISN sites, (b) CISN and CSN sites, (c) RotD50 spectrum NRMSE for
having CISN sites as observation, and (d) RotD50 spectrum NRMSE for having both CISN and CSN sites
as observation for 2019 M7.1 Ridgecrest earthquake.
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Although the observation density for the Inner and Middle domains is approximately uni-
form, the Exterior domain’s density varies from one region to another, similar to the most
existing seismic networks. The aforementioned estimate of the overall observation density
for the Exterior target region is a suggested approximation by authors to use correspond-
ing l̂ given in Table 1.

Table 3 demonstrates how the sites within the Exterior domain (Figure 10b) require
l̂= 0:2 for having more observations (CISN and CSN). In contrast, the same sites with
fewer observations (Figure 10a) need a larger l̂= 0:4. In addition, it is shown that the inner
region of the CISN where the added CSN sites exist requires the smallest l̂= 0:05.

We need to make the recorded ground motions at the CSN and CISN sites consistent
with each other. First, all CISN and CSN motions are rotated to line up with the EW and
NS directions. In addition, zero padding at the records’ beginning and end is implemented
to ensure that all motions start and finish at the same Universal Time Coordinated (UTC).
Finally, the lowest sampling rate among all recorded motions is chosen as the target site’s
generated motion’s sampling rate. Figures 10c and d show the distribution of the mean
estimated motions’ RotD50 NRMSE. The average RotD50 NRMSE for all target sites
using just CISN as observation and both CISN and CSN as observation is 0.48 and 0.39,
respectively. This means that the average RotD50 NRMSE is reduced by 19% due to the
added CSN sites. In general, the NRMSE below a judgmental value 0.3 indicates a reason-
ably precise estimation in terms of both time series and response spectrum. However, an
NRMSE larger than 0.4 demonstrates a poor estimation. Interested readers are referred to
the Appendix section of Tamhidi et al. (2022a), which contains a variety of instances for
predictions’ NRMSE.

About 80% of the target sites inside the inner domain had mean estimated motions’
RotD50 NRMSE lower than 0.34. However, there are two sites within the inner domain
with RotD50 NRMSE values of 0.52 and 0.9 (orange and red points in Figure 10d).
Figure 10b indicates that the majority of added CSN observations are positioned on
almost one side of these two target points, resulting in a non-uniform observation distribu-
tion around them, which might lead to an inaccurate ground motion estimations as evi-
denced by Tamhidi et al. (2021). Table 4 compares the average of the mean estimated
ground motions’ NRMSE along each horizontal component and RotD50 spectra for vari-
ous domains.

Table 4 demonstrates that additional CSN sites generally improve the generated
motions’ accuracy along both horizontal components for Inner domain target sites.
Furthermore, Table 4 reveals that the added CSN sites had the least impact on the predic-
tions for the target sites in the Exterior domain. Therefore, the prediction for the target
sites inside the added network’s borders is improved as more observations become avail-
able. However, this effect is less substantial for the target sites outside the added network’s

Table 3. The implemented l̂ for 2019 M7.1 Ridgecrest earthquake

Observations Target domain Area (km2) Observation density (site/km2) l̂

CISN and CSN Inner 464 0.57 0.05
CISN and CSN Middle 764 0.36 0.10
CISN and CSN Exterior 3103 0.12 0.20
CISN Main 3103 0.04 0.40

CISN: California Integrated Seismic Network; CSN: Community Seismic Network.
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domain. The effect of having more observations on the predictions’ error and uncertainty
at different periods is investigated by Tamhidi et al. (2022a).

Three CISN target sites are chosen (Figures 10c and d) to indicate the improvement of
the generated motions after adding CSN sites. Figure 11 displays the predicted motions’
RotD50 spectra and velocity time series along EW. Figures 11a and b illustrate how the
amplitude of the velocity time series fits closer to the recorded one after observing addi-
tional sites from CSN. Similarly, the response spectrum of the prediction matches more
precisely to the recorded one, having more observations.

2020 M4.5 South El Monte earthquake

In addition, we evaluate the influence of added observations for the recently recorded
ground motions of the 2020 M4.5 South El Monte earthquake. Table 5 outlines the M4.5
South El Monte earthquake characteristics (U.S. Geological Survey (USGS), 2020). We
used 95 and 215 ground-level recording sites for CISN and CSN in Los Angeles, respec-
tively (see Figures 12a and b). The number of sites is obtained by eliminating those with a
too narrow usable bandwidth.

Table 6 summarizes the observation density and the corresponding employed l̂. The l̂
for Inner domain having both CISN and CSN sites and l̂ for the Main domain having just
CISN sites as observations are obtained using logarithmic interpolation and extrapolation
over the l̂ values presented in Table 1, respectively.

Figures 12c and d demonstrate the distribution of the mean estimated motions’
RotD50 NRMSE at each CISN site. The average RotD50 NRMSE among all target sites
for CISN-only and CISN-plus-CSN observed sites is 0.80 and 0.75, respectively.
Approximately 67% (12 sites) of the target sites inside the Inner domain had an NRMSE
smaller than 0.32 (Figure 12d). There are three target sites inside the Inner domain with
an NRMSE larger than 0.5, indicating that their estimates worsened after adding more
ground motions from CSN sites.

Table 7 compares the NRMSE of the mean estimated ground motions for each target
domain. Table 7 and Figure 12 indicate that the addition of observed sites from CSN,

Table 4. The prediction error along EW, NS, and RotD50 response spectra in different domains for the
2019 M7.1 Ridgecrest earthquake data set

Domain Observations EW NS RotD50

Average
NRMSE

Error
reductiona

(%)

Average
NRMSE

Error
reduction
(%)

Average
NRMSE

Error
reduction
(%)

Inner CISN and CSN 0.33 43 0.37 35 0.29 42
CISN 0.58 0.57 0.50

Middle CISN and CSN 0.56 23 0.50 11 0.47 23
CISN 0.73 0.56 0.61

Exterior CISN and CSN 0.45 10 0.46 13 0.41 9
CISN 0.50 0.53 0.45

NRMSE: normalized root mean square error; CISN: California Integrated Seismic Network; CSN: Community Seismic

Network.
aError reduction shows the reduction in the average NRMSE among all CISN target sites due to the added CSN sites.
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generally improved the prediction of the ground motions inside the Inner domain (30%
reduction in RotD50 NRMSE); yet, there are a few sites within the Inner domain where
the estimation deteriorated after observing more sites from CSN (orange sites in Figure
12d). Comparing Table 7 and Table 4 reveals that the influence of added CSN sites for the
M4.5 South El Monte earthquake is less than that for the M7.1 Ridgecrest earthquake.
There are two reasons for the latter. First, the mutual usable bandwidth of the estimated
motions for the South El Monte earthquake (0.11–0.55 s) is narrower and shorter than
that for the Ridgecrest earthquake (0.38–2.8 s) and it is discussed that the effect of the

Table 5. The 2020 M4.5 South El Monte earthquake features (USGS, 2020)

Date UTC time Mw Epicenter Depth

19 September 2020 06:38:46 4.5 South El Monte 16.9 km

UTC: Universal Time Coordinated.

Figure 11. The RotD50 and velocity time series of the prediction using CISN and CISN plus CSN
observation along EW direction for the test sites (a) No. 1, (b) No. 2, and (c) No. 3 for 2019 M7.1
Ridgecrest earthquake.
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additional observations on the precision of the generated motions is higher at long periods.
Second, the isotropic covariance functions deployed in the GPR model may provide some-
what inaccurate estimates in the epicentral area (Tamhidi et al., 2021). Thus, the added

Figure 12. Distribution of (a) CISN sites, (b) CISN and CSN sites, (c) RotD50 spectrum NRMSE for
having CISN sites as observation, and (d) RotD50 spectrum NRMSE for having both CISN and CSN sites
as observation for 2020 South El Monte earthquake.

Table 6. The implemented l̂ for 2020 M4.5 South El Monte earthquake

Observations Target domain Area (km2) Observation density (site/km2) l̂

CISN and CSN Inner 464 0.46 0.08
CISN and CSN Middle 764 0.30 0.10
CISN and CSN Exterior 3103 0.10 0.20
CISN Main 3103 0.03 0.50

CISN: California Integrated Seismic Network; CSN: Community Seismic Network.
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CSN observations might have a negligible effect on improving the estimations for the 2020
M4.5 South El Monte earthquake data set.

The influence of added observations is negligible for the sites within the Middle or
Exterior domains and, in some cases, can worsen the estimations. It should be noted that
the number of available CISN sites within the Middle domain is sparse (9 sites), which can
affect the statistical inference of the added CSN observations’ effect in that region.

Three CISN target sites are selected to demonstrate the estimated ground motion velo-
city time series using CISN-only, and CISN-plus-CSN observed sites (Figures 12c and d).
Figure 13 illustrates the estimated velocity time series along the NS direction using two
sets of observations. Figure 13 shows how the velocity time series for the CISN target sites
inside the Inner domain fits closer to the recorded one’s amplitude after the GPR model
observed more CSN sites.

Concluding remarks

This research aimed to generate post-earthquake ground motion time series at uninstru-
mented (‘‘target’’) sites. We developed a GPR model to generate such ground motions.
We explored the influence of observation spatial density (instrumented sites) on the mod-
el’s optimal hyperparameter. The optimized hyperparameter allows users to implement
the GPR model for various observation densities. It was demonstrated that the required
regularization factor is smaller for the region with a higher observation density. In con-
trast, greater regularization is needed where there are fewer observations.

We also produced ground motion realizations at the target points. This approach offers
an ensemble of estimated ground motion time series for uninstrumented sites to conduct
the site-specific nonlinear response history analysis, which reveals the uncertainty of the
predicted structural damage resulting from record-to-record variation. Quantification of
uncertainty of structural responses is a future study which is under development by the
authors. The uncertainty of the estimated ground motions is assessed using the generated
ground motion realizations at different CSN sites using the 2019 M7.1 Ridgecrest earth-
quake recorded data set. It is concluded that the number of observed sites closer to the

Table 7. The prediction error along EW, NS, and RotD50 response spectra in different domains for the
2020 M4.5 South El Monte earthquake data set

Domain Observations EW NS RotD50

Average
NRMSE

Error
reductiona

(%)

Average
NRMSE

Error
reduction
(%)

Average
NRMSE

Error
reduction
(%)

Inner CISN and CSN 0.54 7 0.46 25 0.35 30
CISN 0.58 0.61 0.50

Middle CISN and CSN 0.60 23 0.60 220 0.50 4
CISN 0.58 0.50 0.52

Exterior CISN and CSN 0.98 2 1.10 0 0.90 0
CISN 1.0 1.10 0.90

NRMSE: normalized root mean square error; CISN: California Integrated Seismic Network; CSN: Community Seismic

Network.
aError reduction shows the reduction in the average NRMSE among all target sites due to the added CSN sites.
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target site plays a vital role in the accuracy and uncertainty of the predictions, particularly
at longer periods.

The effect of having additional observations from various recording networks on pre-
diction accuracy was also investigated using the motions recorded during the 2019 M7.1
Ridgecrest and 2020 M4.5 South El Monte earthquakes. As expected, the results demon-
strated that the prediction for the target sites located inside the added observed sites’ bor-
ders generally improved; yet, there were a few sites with adjacent non-uniform
observations that their estimations worsened after observing more ground motions. The
influence of additional observations on estimations for the target sites outside the added
network’s boundaries was insignificant.
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