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Abstract: Power outage prediction is important for planning electric power system response, restora-
tion, and maintenance efforts. It is important for utility managers to understand the impact of
outages on the local distribution infrastructure in order to develop appropriate maintenance and
resilience measures. Power outage prediction models in literature are often limited in scope, typ-
ically tailored to model extreme weather related outage events. While these models are sufficient
in predicting widespread outages from adverse weather events, they may fail to capture more fre-
quent, non-weather related outages (NWO). In this study, we explore time series models of NWO by
incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization
and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count
index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting
techniques in Kats and Prophet, respectively, were built and tested using six years of daily state-
and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian
True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical
Prophet-Bottom-Up model using county-level data. We find that these forecasting models outper-
form other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive
Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels.
Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We
conclude with a discussion of these observations and possible recommendations for mitigating NWO.

Keywords: electrical power outage; non-weather outages; Prophet model; hierarchical forecasting;
Bayesian optimization

1. Introduction

Power outages demonstrate a failure in the proper functioning of an electrical distri-
bution system [1–4]. These outage events can result in substantial financial losses [5–7],
such as food spoilage [8,9] or a serious health emergency in a health facility [10], especially
when back-up sources of generation fail [11]. Developing a robust outage risk mitigation
strategy [12,13] is important for utility managers to formulate protective and preventive
measures that reduce the occurrence of electric outages. Outage forecasting models are a
useful tool for uncovering historical and future trends of outage events and can, therefore,
guide outage preventive and mitigation strategies [14].

The cause of an outage influences its magnitude or severity. Outages as a result of
extreme weather events (Extreme Weather Outages, EWO), such as a storm or high winds,
may result in a loss of power for numerous customers at a time [15–17]. Outages unassoci-
ated with adverse weather events (Non-extreme weather outages or non-weather related
outages, NWO) often affect a smaller proportion of electricity customers at a time, such
as those emanating from the ecology domain as a result of an animal disturbance [18–20].
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While in most cases (and as shown in Table 1), the average and median values of the
number of customers affected and the duration of outages from EWO often exceed those
of NWO, these NWOs have a significant cumulative effect on the electrical distribution
grid. As can be seen in the summary statistics in Table 1, the total number of outages
and total number of customers affected as a result of NWO in MA exceed those of EWO
within the studied 6-year period from 2013–2018. However, it is important to note that the
statistics presented in Table 1 are only valid for the study location and period. Large EWO
are less frequent and therefore short—term comparison (as in Table 1) gives only partial
information about the long term effect of EWO relative to NWO.

Table 1. Comparison of Extreme Weather outages (EWO) and Non-Extreme Weather outages (NWO)
in MA based on the outage data from 2013–2018. Source: statistics are based on data obtained from
MA department of public utilities [21].

EWO NWO

Average Number of Customers Affected 144 127
Median Number of Customers Affected 14 13

Average Outage Duration (Hours) 13.60 6.85
Median Outage Duration (Hours) 3.57 1.78

Total Number of Outages 61,173 75,671
Total Duration of Outages (Days) 834,513 518,644

Total Number of Customers Affected 8,810,039 9,680,001

The majority of outage forecasting models in literature have focused on
EWO [14,16,22–37] while neglecting the impact of NWO whose long-term cumulative
effects are substantial. There have been a few NWO studies that have focused on subsets of
these outages, such as animal and vegetation related outages. For example, the prediction
and analysis of animal related outages have been explored using a combination of statistical
and advance machine learning techniques [18,20,38]. Also, similar predictive techniques
for vegetation related outages (as a result of tree growth) have been explored [39].

This study explores NWO and aims to understand trends in these outages that may be
useful in improving electrical distribution grid reliability. The specific contribution of this
study include: (1) development of a quantitative metric for NWO that can aid the under-
standing and quantification of these outages, (2) development of a time series forecasting
framework that exposes critical trends and seasonal patterns in NWO, and (3) improvement
of the state-of-the-art prediction performance using proposed Bayesian and hierarchical
methods. Based on the study methodology (Figure 1), we develop a robust time series
forecasting framework for NWO at the state and county level. Our case study is based on
the state of Massachusetts (MA) with outage data from 2013–2018 [21]. After deriving a
quantitative count-based metric (Non-weather Outage Count Index, NWOCI) for NWO
and leveraging advanced data preprocessing tools in Kats [40], a Bayesian optimization
method with a Prophet model [41] is used for the state level forecast and a hierarchical
Prophet bottom-up approach is used to produce the county level forecasts. Bayesian opti-
mization helps to improve model performance and reduce computation time [42], while
hierarchical models are the optimal choice for multi—time series forecasting, especially
for grouped or subdivided data [43] (in this case, county level forecasting for multiple
counties in the study region—MA). A comparative analysis evaluates the performance of
the proposed models relative to other SARIMA and Prophet Bayesian and hierarchical
models. The forecast trend and seasonality are also analysed to better understand observed
historical and future NWO trends. The complete end-to-end methodology used in this
study is describe in Figure 1.
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Figure 1. Flow chart of methodology used for this study.

2. Methods
2.1. Data Collection
2.1.1. Outage Data

The state of MA was selected for this study based on the availability of outage reports
across the state between 2013–2018. These reports are a component of the Emergency
Response plan filed by each of the three major utilities in MA—National Grid, Eversource
Energy, and UNITIL corporation—and contain information on the date, time, location, and
cause of the outage [21].

Data preprocessing was done to ensure data integrity and develop consistent daily
time series. First, data verification procedures were used to address problems such as
typographical errors or mismatch in the location reported for the outage. Details of these
procedures can be found in the Appendix A.1. Next, steps were taken to obtain a consistent,
ready-to-use, daily time series. First, days with no outages in the aggregated time series are
replaced with zeros. Then outlier values were treated using the outlier detector algorithm
in the Kats toolkit [40] using the standard 1.5 × (IQR) outlier designation and replaced
with the interpolated value.

2.1.2. Weather Data

Wind speed data (including gust speed) between 2013–2018 (corresponding to the
range of the outage data), was collected from all 23 operating weather stations in MA
(Figure 2) at hourly level from the National Oceanic and Atmospheric Administration
(NOAA) database via the climate data online local climatological data repository [44]. The
wind gusts data are only reported when there is a short-term wind speed (typically 20 s or
less) that both exceeds 16 knots (about 18 mph) and exceeds the average wind speed by at
least 9–10 knots (10–11 mph) [45]. Whenever there is a gust speed, we replace the average
wind speed value at that hour with the gust speed to account for the influence of these
short term extreme winds. The hourly wind speed were matched with the raw outage data
corresponding to the starting time (hour) and location (shortest euclidean distance) of the
outage event and then used to delineate extreme weather outage instances.
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Figure 2. Weather stations in MA where wind speed data was collected. Source: map was developed
based on weather station data obtained from NOAA climate data repository [44].

2.2. Non-Weather Outage Count Index (NWOCI)

We classify an outage as an NWO if the outage did not occur during instances of
high wind threat and other adverse weather conditions including precipitation, lightning,
thunderstorm, and snow. First, we begin with classifying Extreme Weather Outages (EWO)
based on two indicators:

1. Categorical classification of the outage event—adverse weather conditions (which cap-
tures all other extreme weather events including Wind, Precipitation, Snow, Lightning,
and Thunderstorm)

2. Wind threat threshold: If the wind speed exceeds 40 mph—a threshold above which
it poses a high or extreme threat, according the National Oceanic and Atmospheric
Administration (NOAA) as seen in Table 2 [46], the outage is categorized as an EWO.
We use this wind threat to further validate our classification of EWO while capturing
potential mis-classified outages.

Table 2. Wind threat threshold as defined by NOAA. Source: Adapted from NOAA [46].

Threat Level Description Wind Speed (mph)

Extreme Damaging high wind:
>58An Extreme Threat to Life and Property from High Wind.

High High wind: 40–57A High Threat to Life and Property from High Wind.

Moderate Very windy: 26–39A Moderate Threat to Life and Property from High Wind.

Low Breezy to windy: 21–25A Very Low Threat to Life and Property from High Wind.

Very low Breezy: -No Discernable Threat to Life and Property from High Wind.

We then define the daily Non-extreme Weather Outage Count Index (NWOCI) as
the total number of NWOs each day in the state and each county, respectively. This is
calculated by subtracting the number of outages classified as EWO from the total number
of reported outages. It is important to note that each NWO is counted equally, regardless of
outage duration and the number of customers affected. As seen in Table 1, the duration
and number of affected customers is typically modest for NWO relative to EWO. The focus
of this study is on the frequency of NWO and not the magnitude of these events.
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2.3. Prophet Model

Prophet [41], an open-source software released by Facebook’s Core Data Science team,
was used for time series forecasting. Prophet uses a decomposable model architecture
including the following model elements: trend g, seasonality s, and holidays h.

y(t) = g(t) + s(t) + h(t) + εt (1)

In this study, we use the linear trend model specification in Prophet given as:

g(t) = kt + m (2)

where k is the growth rate and m is the offset parameter; details on the Prophet model can
be found in [47].

2.4. Bayesian Optimization Using True Parzen Estimator (TPE)

In this study, we incorporated Bayesian optimization into the Prophet time series
model, using the True Parzen Estimator (TPE) [48]. TPE is a type of Sequential Model Based
Optimization (SMBO) [49] technique that uses the Bayesian approach in an effort to reduce
computational time. The implementation of TPE Bayesian optimization in this study was
carried out using the hyperopt software package [48] in the Python programming language.
We call this integrated model, that uses the Prophet-based objective function with TPE,
Prophet-TPE. The steps in developing Prophet-TPE (as illustrated in Figure 3) include:

1. Search domain: First, the domain over which the hyperparameter search will be con-
ducted is defined. For the first iteration, a random combination of hyperparameters
within the ranges set forth in Table A1, is used. In each subsequent iteration, the
combination of hyperparameters is adjusted using the probability distribution based
on the performance of other combinations used in previous iterations.

2. Objective function: The objective function takes in a combination of hyperparameters
and output the 5-fold expanding window cross-validated root mean squared error
(RMSE) to be minimized over the Prophet model one-year ahead forecast. Unlike
a rolling window that moves the upper and lower bound with each time step, the
expanding window fixes the lower bound; thus, the amount of data considered
incrementally increases (expands) with each time step. The cross validation was
performed using the built-in cross validation diagnostic in Prophet [41]. A model is
then built to evaluate the objective function. This model is called the surrogate model.

3. History: In Prophet-TPE each iteration forms the history. This set of historical informa-
tion on the performance of a set of hyperparameters on the actual objective (minimizing
the Prophet model’s error) is used to construct the probability distributions.

4. Probability distribution: This is a mapping of the probability of error, y, for a combi-
nation of hyperparameters, x.

5. Evaluation criteria: This is the method for obtaining the next best set of hyperparame-
ters. The evaluation criteria is called the Expected Improvement (EI) which is given
as [48]:

EIy∗(x) =
∫ y

−∞
(y∗ − y)P(y|x)dy (3)

P(y|x) = P(x|y)
P

(y)P(x) (4)

P(x|y) =
{

l(x), i f y < y∗
g(x), i f y ≥ y∗

(5)

where g(x) and l(x) are probability distributions and y* is the current best set of
model hyperparameters in the history (lowest RMSE). The aim is to choose the next
hyperparameter combinations that maximizes EI.
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6. Update history: The set of distributions developed from historical information forms
the basis of a series of iterative improvement for the surrogate model until the maxi-
mum number of iterations (n = 10) is reached.
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Figure 3. Optimization methodology of the Bayesian True Parzen Estimator with the Prophet-based
objective function (Prophet-TPE).

2.5. Hierarchical Forecasting Model with Bottom-Up Approach

Hierarchical forecasting is a way to obtain disaggregated, multi-time series forecast
at finer scales that must add up to the whole [50]. This approach may improve forecast
performance while reducing dis-aggregation error. In the bottom up approach, forecasts are
obtained for lower levels in the hierarchy with upward aggregation to reconcile the forecast
with the upper levels of the hierarchy. We represent the outage data as a hierarchical tree,
with a focus on the county-level forecasts and reconciliation at the state level, as seen in
Figure 4. We then propose a Prophet model with bottom up approach (Prophet-BU) for
forecasting county-level NWOCI. The Prophet-BU forecasting approach was implemented
in this study using the scikit-hts software package [51] in the Python programming language.

County level outages

State level outages

City/Town level outages

Figure 4. Hierarchical representation of outages.
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2.6. Performance Evaluation

The performance of the proposed models is evaluated using the RMSE to assess the
difference between the daily forecasted prediction of NWOCI and the actual NWOCI at the
state level for Prophet-TPE and the county level for Prophet-BU. Since we have time series
data, the data are divided sequentially into train and test with 2013–2017 NWOCI used for
training and 2018 data used for testing for both the Prophet-TPE (state level forecast) and
the Prophet-BU (county level forecast). The default interval width of 0.8, representing the
80% confidence interval, was used to understand the forecast uncertainty of the proposed
models.

The performance of the proposed models, Prophet-TPE and Prophet-BU, is compared
with other Bayesian and hierarchical model combinations. For the state-level forecast, the
proposed Prophet-TPE method is compared with other Seasonal Autoregressive Integrated
Moving Average (SARIMA) and Prophet Bayesian models. These include: SARIMA-
TPE, SARIMA-Anneal (SARIMA model with simulated annealing), and Prophet-Anneal
(Prophet with simulated annealing). For the county-level forecast, the proposed Prophet-
BU model is compared with other Prophet and SARIMA heirachical forecasting models.
These include the Prophet and SARIMA model in combination with each of the following:
AHP (Average Historical Proportion—top down), OLS (Ordinary Least Square revision),
WLSS (Structurally Weighted Least Squares revision), FP (Forecasted Proportions—top
down), and PHA (Proportion of Historical Averages—top down). A complete list of the
models used in the performance evaluation is shown in Figure 5.

Prophet-BU (COUNTY LEVEL)B  

● Prophet-AHP
● Prophet-WLSS
● Prophet-OLS
● Prophet-WLSV
● Prophet-FP
● Prophet-PHA
● SARIMA-BU
● SARIMA-AHP
● SARIMA-WLSS
● SARIMA-OLS
● SARIMA-WLSV
● SARIMA-FP
● SARIMA-PHA

Prophet-TPE (STATE LEVEL)A
● Prophet-Anneal
● SARIMA-TPE
● SARIMA-Anneal

Figure 5. Performance Evaluation of the proposed Prophet-TPE and Prophet-BU models with model
combinations of Prophet and SARIMA Bayesian and hierarchical forecasting models.

3. Results and Finding

The result for the state level forecast (Table 3) shows the performance of the Prophet-
TPE in comparison with other models. The optimal hyperparameter values found for the
Prophet-TPE and other models are given in Table A2. We observed that the proposed
Prophet-TPE gives the best prediction for NWOCI at the state level. The Prophet-TPE
forecast results can be seen in Figure 6. A decomposition of the forecast Prophet-TPE trend
(Figure 7) reveals a positive linear growth trend in average NWOCI representing a 100%
increase from 2013–2019 (from 17 in 2013 to 34 in 2019). The seasonal decomposition plot
of the Prophet-TPE model forecast shows the temporal patterns of NWOCI with a peak in
the summer months (July peak).
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Year

N
W
O
C
I

Figure 6. One year forecast result (2018 test data) from Prophet-TPE Model. N.B: The solid blue line
shows the average forecast while the solid red line shows the observed trend of NWOCI and the
light blue region represents the 80% confidence interval for the forecast uncertainty. Also, the scatter
points represent the historical values (daily state level NWOCI) in the training data (2013–2017).

Year

N
W
O
CI

0.0

Figure 7. Top: Forecast components (trend and seasonality) with the Prophet-TPE model for the state
of MA. N.B: The top panel shows the forecast trend of NWOCI based on the Prophet-TPE state level
forecast. The bottom panel shows the decomposed yearly seasonal pattern of NWOCI.
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Table 3. Performance comparison of proposed Prophet-TPE model (state level) with other Prophet
and SARIMA Bayesian optimized forecasting models.

RMSE

Prophet-TPE (Proposed Model) 18.21
Prophet-Anneal 18.59
SARIMA-TPE 25.64

SARIMA-Anneal 22.25

For the county level Prophet-BU model, we observed an improved performance in
the proposed model relative to other hierarchical and Prophet forecasting models (Table 4),
indicating that the proposed Prophet-BU model better captures the temporal patterns of
NWOCI at the county level. As an example, the forecast result for Middlesex county using
Prophet-BU model is shown in Figure 8. In the trend decomposition plot for Prophet-BU’s
Middlesex county forecast, we also observe a linear growth in NWOCI in the county in
2013–2018 (Figure 9). The seasonal decomposition plot also shows a summer peak in
NWO in Middlesex county. The forecast and trend for all remaining 13 counties is shown
in Figures A1–A13. Note that the performance of the Prophet-BU model (like any other
time series model) varies depending on the amount of data available. Some counties as
shown in Figures A1–A13 have very sparse data while some have more data points (e.g.,
Middlesex county) and, therefore, give more robust forecasts. A table of the performance
of the Prophet-BU model (RMSE) across counties is given in Table A3.

N
W
O
C
I

Year
Figure 8. One year forecast result (2018 test data) from Prophet-BU Model for Middlesex county in
MA (corresponding NWOCI RMSE value for Middlessex county is 59.6). N.B: The solid blue line
shows the average forecast while the solid red line shows the observed trend of NWOCI and the
light blue region represents the 80% confidence interval for the forecast uncertainty. Also, the scatter
points represent the historical values in the training data (2013–2017).
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Year

N
W
O
CI

Figure 9. Forecast components (trend and seasonality) from Prophet-BU model for Middlesex county
in MA. N.B: The top panel shows the forecast trend while the bottom panel shows the decomposed
yearly seasonal pattern.

Table 4. Performance comparison of proposed Prophet-BU hierarchical model (county level) with
other Prophet and SARIMA hierarchical forecasting models.

RMSE

Prophet-BU (Proposed Model) 2.40
Prophet-PHA 2.55
Prophet-AHP 2.57
Prophet-WLSS 2.43
Prophet-OLS 2.47

Prophet-WLSV 2.59
Prophet-FP 3.81

SARIMA-PHA 3.80
SARIMA-AHP 3.80
SARIMA-WLSS 3.80

SARIMA-BU 3.81
SARIMA-OLS 3.84

SARIMA-WLSV 3.81
SARIMA-FP 3.81

4. Discussion

As shown in Figure 10, the three main causes of NWO are: (1) failed equipment,
(2) tree contact (in normal weather condition), and (3) animals.

Failed equipment accounts for 33% of all NWOs in MA (Figure 10). This is similar to
national estimates. According to a US Department of Energy study, 30% of all non-weather
related outages in the United States are a result of failed equipment [52]. Equipment failure
is a common problem in electrical distribution systems and can emanate from several
electrical components e.g., conductor lines, load breakers, transformers, etc. Much of these
outages equipment failure can be attributed to the aging electric infrastructure [53]. The
summer peak observed in the NWOCI seasonal decomposition plot (Figure 7) may be
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attributed to high demand for air conditioning in the summer. The increased electrical load
and stress on the grid may ultimately lead to more electrical equipment failures.

Figure 10. Bar chart showing the causes of NWO in MA based on outage data from 2013–2018 [21].

Tree contact as a result of vegetation growth is also a major problem in the electri-
cal distribution grid. While tree contact is most prevalent in adverse weather outage
events [54,55], there are tree contacts that occur even in normal weather conditions [56].
During the study period, 28% of NWOs in MA were a result of tree contact (Figure 10).

Animal-caused outages represent about 17% of NWO in MA (Figure 10). Squirrels and
other animals chew electrical conductors and can cause a short-circuit leading to electric
power outages [18,57,58]. Birds are a leading cause of overhead distribution outages in the
United States as a result of their roosting, nesting, and breeding activities [59,60]. Animal
interference may attribute to the observed summer peak in NWOCI (Figure 7) since there
is an increased presence of migratory animals and the summer weather is more conducive
for increased animal activity.

5. Conclusions

Unlike previous studies that focus on extreme weather outage (EWO) prediction, we
highlighted the importance of capturing non-extreme weather outages (NWO), which occur
more frequently and thus have substantial cumulative effect on the electrical distribution
grid. We introduced a metric to quantify NWO (Non-extreme Weather Outage Count Index,
NWOCI) and then proposed forecasting models to predict NWOCI at both state and county
levels. We show that our proposed models outperform other Bayesian and hierarchical
forecasting models in predicting NWOCI. Our proposed state-level model (Prophet-TPE)
and county-level model (Prophet-BU) outperformed other models by a reduction in RMSE
between 2–22% and 6–59%, respectively.

The time series trend decomposition for both proposed models shows an upward
trend in NWOCI indicating an increasing frequency of NWOs in MA. This reinforces
the importance of developing preventive measures by stakeholders and utility managers
that capture not just the EWO but also those occurring from non-extreme weather events,
such as those caused by failed equipment, tree contact in normal weather conditions, and
animals. These measures could include:
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1. Efforts to curb equipment failure (the leading cause of non-weather outage) by identi-
fying weaknesses in the distribution grid and high-risk targets for predictive mainte-
nance [52].

2. Prediction models that can forecast trends in vegetation growth and thus enable
strategic tree trimming measures to be put in place.

3. Exploring the feasibility of underground power line solutions. Undergrounding
electrical wires could be a solution especially for NWO which originate from ani-
mal interference. However, more research is needed on the cost-benefit tradeoff of
this strategy.

4. Monitoring systems (which may be put in place by utilities) to track the rate of growth
of NWOs. Such systems may reveal underlying causes of the problem and aid the
development of manageable short and long term mitigation plans.
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Appendix A

Appendix A.1. Outage Data Prepossessing

The initial data preprocessing involves data integrity and data verification procedures
to address problems such as typographical errors or mismatch in the location reported for
the outage. The data issues that were addressed during preprocessing include:

1. Missing Data: Missing data in the city or towns feature were filled by locating the
street information (where available) on Google Maps [61]. Out of 138,153 observations,
three had city/towns found in another state and two had no recorded data for city,
town, or street. These observations were removed.

2. Zero values: Data points with zero customers affected or duration of outages were
removed from our analysis. For example, utilities may report on failed equipment
even if that failure didn’t result in customers losing power (e.g., power flickers). Since
there is no realized outage for these observations, they are removed from the analysis.

3. Typographical errors, extra spaces, and inconsistent names: A thorough feature inspec-
tion was carried out to ensure that the feature elements were consistent throughout.
For example, typographical errors in street names and cities or towns were addressed
using Google Maps [61].

Appendix A.2. Computational Details

Appendix A.2.1. Software

The complete list of software used for the study includes:

1. Kats: Kats v 0.1.0 [40] was used for the time series preprocessing to ensure a consistent
time series data before developing the Bayesian and hierarchical forecasting models.

2. Prophet: Prophet v 1.0.1 [41] was used to implement the overarching Prophet forecast-
ing model which served as a backbone for all the proposed Bayesian and hierarchical
time series in this study.

3. Scikit hts: Scikit hts v 0.3.0 [51] was used to implement the hierarchical forecast-
ing models.

https://github.com/Qunlexie/bayesian-and-hierachical-forecasting-for-power-outages
https://github.com/Qunlexie/bayesian-and-hierachical-forecasting-for-power-outages
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4. Hyperopt: Hyperopt v 0.2.7 [62] was used to implement the Bayesian optimiza-
tion models.

Appendix A.2.2. Computational Time and Efficiency

In this study we have applied Bayesian and hierarchical models to the NWO predic-
tion problem. While the comparison of the time complexity of these Bayesian models with
other search models (random search or grid search) is beyond the scope of this article,
this has been extensively studied to buttress the efficiency and computational efficiency of
Bayesian models [48,62,63]. The Bayesian optimization methods explored in this study are
known to be among the most efficient in terms of obtaining the optimal set of hyperparam-
eters by intelligently using information on the performance of hyperparameters from the
training process.

Appendix A.3. Tables

Table A1. Hyperparameter search domain for the Prophet and SARIMA models.

Model Search Domain

Prophet

‘changepoint_prior_scale’: [0.0001, 0.0005, 0.001, 0.005],
‘changepoint_range’: [0.8, 0.85, 0.9, 0.95],

‘seasonality_mode’: [’additive’, ’multiplicative’],
‘seasonality_prior_scale’: [0.01, 0.1, 1.0, 10.0],

‘yearly_seasonality’: [True, False]

SARIMA
‘d’: [1, 2], ‘p’: [1, 2, 3, 4, 5], ‘q’: [1, 2, 3, 4, 5],

‘seasonal_order’: [(1, 0, 1, 7), (1, 0, 2, 7), (2, 0, 1, 7), (2, 0, 2, 7), (1, 1, 1, 7), (0, 1, 1, 7)],
‘trend’: [“n”, “c”, “t”, “ct”]

Table A2. Hyperparameter results for state-level NWOCI forecast showing the optimal hyperparam-
eter values for each of the four Bayesian Prophet and SARIMA models.

Model Hyperparameters

Prophet-TPE

‘changepoint_prior_scale’: 0.0001,
‘changepoint_range’: 0.9,

‘seasonality_mode’: ‘additive’,
‘seasonality_prior_scale’: 10.0,

‘yearly_seasonality’: True

Prophet-Anneal

‘changepoint_prior_scale’: 0.005,
‘changepoint_range’: 0.85,

‘seasonality_mode’: ‘multiplicative’,
‘seasonality_prior_scale’: 0.1,

‘yearly_seasonality’: True

SARIMA-TPE ‘d’: 1, ‘p’: 1, ‘q’: 3,
‘seasonal_order’: (2, 0, 2, 7), ‘trend’: ‘t’

SARIMA-Anneal ‘d’: 1, ‘p’: 1, ‘q’: 5,
‘seasonal_order’: (1, 0, 1, 7), ‘trend’: ‘t’
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Table A3. Performance of the Proposed Prophet BU model for each county in MA.

RMSE

Barnstable 3.63
Berkshire 2.44

Bristol 14.10
Dukes 2.44

Berkshire 0.41
Essex 3.18

Franklin 1.98
Hampden 3.97
Hampshire 1.57
Middlesex 59.65
Nantucket 0.22

Norfolk 3.86
Plymouth 4.04

Suffolk 5.56
Worcester 4.65

Appendix A.4. Figures

BARNSTABLE

N
W
O
C
I

Year

Year

Figure A1. Left: One year forecast result (2018 test data) from Prophet-BU Model for Barnstable
county in MA. N.B: The solid blue line shows the average forecast while the solid red line shows
the observed trend of NWOCI and the light blue region represents the 80% confidence interval for
the forecast uncertainty. Also, the scatter points represent the historical values in the training data
(2013–2017). Right: Trend decomposition from Prophet-BU Model for Barnstable county in MA..
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Figure A2. Left: One year forecast (2018 test data) from Prophet-BU Model for Berkshire county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Trend decomposition from Prophet-BU Model for Berkshire county in MA.

BRISTOL
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Year

Figure A3. Left: One year forecast (2018 test data) from Prophet-BU Model for Bristol county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Trend decomposition from Prophet-BU Model for Bristol county in MA.
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Figure A4. Left: One year forecast (2018 test data) from Prophet-BU Model for Dukes county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Trend decomposition from Prophet-BU Model for Dukes county in MA.
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Figure A5. Left: One year forecast (2018 test data) from Prophet-BU Model for Essex county in MA.
N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Trend decomposition from Prophet-BU Model for Essex county in MA.
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Figure A6. Left: One year forecast (2018 test data) from Prophet-BU Model for Franklin county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.
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Figure A7. Left: One year forecast (2018 test data) from Prophet-BU Model for Hamphsire county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.
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Figure A8. Left: One year forecast (2018 test data) from Prophet-BU Model for Hampden county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.
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Figure A9. Left: One year forecast (2018 test data) from Prophet-BU Model for Nantucket county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.
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Figure A10. Left: One year forecast (2018 test data) from Prophet-BU Model for Norfolk county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.
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Figure A11. Left: One year forecast (2018 test data) from Prophet-BU Model for Franklin county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue represents region represents the 80% confidence interval for
the forecast uncertainty. Also, the scatter points represent the historical values in the training data
(2013–2017). Right: Corresponding trend decomposition from Prophet-BU Model.
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SUFFOLK
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Figure A12. Left: One year forecast (2018 test data) from Prophet-BU Model for Suffolk county in
MA. N.B: The solid blue line shows the average forecast while the solid red line shows the observed
trend of NWOCI and the light blue region represents the 80% confidence interval for the forecast
uncertainty. Also, the scatter points represent the historical values in the training data (2013–2017).
Right: Corresponding trend decomposition from Prophet-BU Model.

WORCESTER
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Figure A13. Left: One year forecast (2018 test data) from Prophet-BU Model for Worcester county
in MA. N.B: The solid blue line shows the average forecast while the solid red line shows the
observed trend of NWOCI and the light blue region represents the 80% confidence interval for the
forecast uncertainty. Also, the scatter points represent the historical values in the training data
(2013–2017). The red dotted lines show the time series change point delineated by the prophet model.
Right: Corresponding trend decomposition from Prophet-BU Model.
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