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Abstract 

Forests contribute to climate change mitigation through carbon storage and uptake, 

but the extent to which this carbon pool varies in space and time is still poorly known. 

Several Earth Observation missions have been specifically designed to address this 

issue, for example, NASA's GEDI, NASA-ISRO's NISAR and ESA's BIOMASS. Yet, all 

these missions' products require independent and consistent validation. A permanent, 

global, in situ, site-based forest biomass reference measurement system relying on 

ground data of the highest possible quality is therefore needed. Here, we have assem- 

bled a list of almost 200 high-quality sites through an in-depth review of the literature 

and expert knowledge. In this study, we explore how representative these sites are in 

terms of their coverage of environmental conditions, geographical space and biomass- 

related forest structure, compared to those experienced by forests worldwide. This 

work also aims at identifying which sites are the most representative, and where to 

invest to improve the representativeness of the proposed system. We show that the 

environmental coverage of the system does not seem to improve after at least the 
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1 | INTRODUC TION 

 
Plants store about 80% of the Earth's biomass carbon (Bar-On 

et al., 2018), with forests constituting by far the largest plant car- 

bon pool (ca. 80%; Pan et al., 2013). However, estimates of the spa- 

tial distribution and temporal variation of this carbon pool are still 

imprecise (Harris et al., 2021; Santoro et al., 2021). While forests 

are vulnerable to global change (Brienen et al., 2020; McDowell 

et al., 2020; Schimel et al., 2015), they currently provide a carbon 

sink (e.g. Pan et al., 2011; van Marle et al., 2022) and could contrib- 

ute further to mitigating climate change given the large potential 

of intact and regenerating forests for carbon uptake and storage 

(Chazdon et al., 2016; Requena Suarez et al., 2019). Understanding 

the nature and distribution of forest carbon fluxes due to land use 

change and other processes depends critically on mapping the 

current distribution of vegetation biomass. Moreover, a key factor 

in projecting how and where forest regeneration or restoration 

projects would be most effective is detailed, spatially explicit 

knowledge of local biomass storage potential (see e.g. Heinrich 

et al., 2021). 

The remote sensing community has made substantial invest- 

ments to address the global challenge of mapping forest carbon 

stores, fluxes and their sequestration potential. Several ongoing 

and upcoming Earth Observation (EO) missions are designed to 

measure key structural parameters of the world's forests, their 

carbon stores and their carbon fluxes, for example, NASA's GEDI 

(Dubayah et al., 2020), NASA-ISRO's NISAR (NISAR, 2018) and 

ESA's BIOMASS (Quegan et al., 2019). Each is expected to deliver 

biomass maps with associated uncertainty. Their coverage, spatial 

resolution and range depend on mission specifications (e.g. cover- 

age of Earth's surface between 51.6° N and 51.6° S for GEDI, bio- 

mass up to 100 Mg/ha for NISAR). Although these missions offer 

novel approaches to mapping forest carbon, their products re- 

quire validation using standard procedures to bolster their uptake 

for a broad range of uses, including climate modelling, national re- 

porting and land use management (Duncanson et al., 2019). Only 

if the accuracy and uncertainty of biomass maps are comprehen- 

sively assessed and quantified will they meet the needs of the user 

communities. 

How should this be done? We argue that given the wide range 

of users, instrument sensors, platforms, often limited lifetimes 

and pace of technological change, validation strategies need a 

clear long-term ground vision. This means developing a consis- 

tent approach that covers the world's forests and is built to last. 

It requires designing and maintaining a permanent, global, in situ, 

site-based forest biomass reference measurement (henceforth, 

FBRM) system to enable independent validation of biomass prod- 

ucts and proper quantification of associated uncertainty. Building 

and sustaining this high-quality distributed system of FBRM sites 

needs to be an integral part of all EO missions aimed at mapping 

forest biomass. 

In compliance with the good practices protocol for the vali- 

dation of aboveground woody biomass products (Duncanson 

et al., 2021), the design of the FBRM system needs to follow a 

number of principles: (1) ground data should be of the highest pos- 

sible quality, with large permanent sampling plots (at least 1 ha 

in size, 10 ha minimum in total), and airborne LiDAR coverage (at 

least 1000 ha) plus complementary terrestrial LiDAR acquisitions. 

The procedures for data acquisition and database compilation 

should be standardized by following established protocols, and 

all data should be collected as synchronously as possible with EO 

measurements; (2) the system should cover the broadest possible 

range of environmental, geographical and structural conditions, so 

as to maximize the robustness of validation activities; (3) the selec- 

tion of sites should be pragmatic, that is, focusing on sites where 

previous expertise and capacity have been built and future oper- 

ation is highly likely. Establishing and maintaining multiple, high- 

quality permanent plots is challenging, especially in the tropics 
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175 most representative sites are included, but geographical and structural coverages 

continue to improve as more sites are added. We highlight the areas of poor environ- 

mental, geographical, or structural coverage, including, but not limited to, Canada, 

the western half of the USA, Mexico, Patagonia, Angola, Zambia, eastern Russia, and 

tropical and subtropical highlands (e.g. in Colombia, the Himalayas, Borneo, Papua). 

For the proposed system to succeed, we stress that (1) data must be collected and 

processed applying the same standards across all countries and continents; (2) system 

establishment and management must be inclusive and equitable, with careful consid- 

eration of working conditions; and (3) training and site partner involvement in down- 

stream activities should be mandatory. 
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(Davies et al., 2021; ForestPlots.net et al., 2021). Therefore, it is 

strategically sensible while building a potential FBRM system to 

leverage the experience, knowledge and investment of all stake- 

holders engaged in long-term permanent plot networks, from data 

originators (e.g. forest workers) to data curators. And for any such 

system to be fair and sustainable, the needs of data contributors 

should be of pivotal concern (de Lima et al., 2022). 

Previous experience with the validation of EO products demon- 

strates the value of highly integrated FBRM sites compared to 

widely distributed small forest samples as established by most na- 

tional forest inventories. This is because validation of EO-derived 

biomass maps depends strongly on accurate spatial registration of 

the ground plots, and because biomass estimates from individual 

plots are informative for calibration/validation only if the plots are 

large enough (Réjou-Méchain et al., 2014). All the aforementioned 

conditions for the inclusion of sites in a global monitoring system 

are difficult to meet, and for the moment, validation efforts for each 

individual EO mission have been based on a handful of sites. 

How many observation sites would be necessary for global 

validation of biomass maps, and where should they be located? 

From a validation perspective, these sites should ideally span a 

wide range of biomass, and should encompass a variety of forest 

structures for any given level of biomass. But from an ecological 

point of view, the sites should cover an extensive range of bio- 

climatic and biogeographic conditions, as well as contrasting to- 

pographies, soil types and geological substrates, and be exposed 

to varying levels and types of anthropogenic pressures or natural 

disturbances. Given the enormous extent and diversity of for- 

ests globally, the replication of high-quality observation sites at 

thousands of locations is unrealistic, so the theoretical challenge 

in allocating limited resources to locations involves maximizing 

their distance from each other along key dimensions, to ensure an 

optimized coverage of conditions experienced by forests around 

the world. However, because these sites should ideally already be 

established (Chave et al., 2019), the problem of site selection is 

constrained by what is available. Here, we have assembled a list 

of almost 200 potential FBRM sites through an in-depth review 

of the literature and expert knowledge. The aim of this study is 

to evaluate how representative these sites are in terms of their 

coverage of three key biomass-related dimensions, that is, envi- 

ronmental, geographical and structural, in the context of forests 

worldwide. 

Specifically, we ask the following research questions: (1) how 

well does a selection of existing forest sites represent environmen- 

tal conditions, geographical space and forest structure globally?; 

(2) which combination of sites best represents each of the three 

biomass-related dimensions over global forested areas, for any given 

number of sites?; (3) how does a combination of potential FBRM sites 

compare in terms of representativeness with an equivalent number 

of forested locations randomly selected over the globe?; (4) where 

should efforts be invested to improve the environmental, geograph- 

ical and structural coverage of the proposed FBRM system, possibly 

going beyond existing plots? 

2 | MATERIAL S AND METHODS  

 
2.1 | Potential FBRM sites 

 
We assembled a list of sites meeting all or most of the quality criteria 

required to become part of the FBRM system (e.g. plot size, likeliness 

to be revisited). We screened the following continental to global-scale 

forest plot networks for potential sites of interest: AfriTRON (Hubau 

et al., 2020), ForestGEO (Davies et al., 2021), IIASA (Schepaschenko 

et al., 2017), NEON (Metzger et al., 2019), RAINFOR (ForestPlots. 

net et al., 2021), SEOSAW (The SEOSAW Partnership, 2020), TERN 

(Cleverly et al., 2019) and TmFO (Sist et al., 2015). Peer-reviewed 

and grey literature were also searched, and expert knowledge mo- 

bilized through consultation with key stakeholders, such as EO mis- 

sion research scientists, space agencies and national forest/forestry 

departments. We tried to be as thorough and exhaustive as possible 

but some high-quality plots and networks might have escaped our 

notice and readers are encouraged to contact the corresponding au- 

thor to notify us of this. 

The screening resulted in a list of 195 potential FBRM sites 

(Table S1). Among these, plot cumulative area ranged from 0.5 ha 

for several of the Siberian sites to 125 ha at Paracou, French 

Guiana. About two-thirds of the sites had a plot cumulative area 

≥10 ha (n = 132), with about half of those that did not located in the 

Palearctic (n = 30). Potential FBRM sites were present in every for- 

ested biome, sensu Whittaker (1975), yet the coverage of annual pre- 

cipitation and mean temperature gradients was uneven (Figure S1). 

About three-quarters were affiliated to (at least) one of the eight 

large-scale networks. The rest were usually monitored by research 

institutes, universities, or national forest/forestry departments. 

We use the terminology of ‘potential’ FBRM sites, mindful that 

this list is likely to change in the future for various reasons. One is 

that most of the sites have not formally agreed to join the proposed 

system of FBRM sites (and many have probably not heard about the 

concept yet). Plus, some sites may in the end prove unsuitable, and 

others may join the initiative. However, the fairly large sample of 

sites represented in the list reported here is a useful step to test this 

study's research questions. 

 

 
2.2 | Geographical information and study area 

 
All spatial data were reprojected using a global equal-area map pro- 

jection to reflect the respective and relative area contributions of 

realms and continents. EASE-Grid 2.0 (epsg:6933), version 2 of the 

Equal-Area Scalable Earth Grid (Brodzik et al., 2012), is commonly 

used for satellite-based data distribution (see e.g. GEDI; Dubayah 

et al., 2021). This projection is preferable to the longitude–latitude 

coordinate reference system (epsg:4326), that is neither equal area 

nor conformal. The coarsest spatial resolution of all spatial datasets 

used in this study (2.5 arc-min, which is about 5 km at the equator, 

for the TerraClimate dataset; Abatzoglou et al., 2018) was chosen, 

and all datasets were resampled accordingly. Following reprojection 
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and resampling, gridded data were generated over 2920 rows and 

6940 columns, that is 20,264,800 cells in total. 

To restrict our analysis to forests, we built a forest mask using 

land cover data for 2020 from the ESA CCI Land Cover project. 

The original dataset (300 m spatial resolution; epsg:4326) was re- 

projected and resampled to 5 km (mode retained). The mask in- 

cluded cells with tree-dominated land cover classes (see Supporting 

Information for more details), for a total of 1,728,368 cells (i.e., 

around 43 million km2). Non-tree-dominated land cover classes such 

as shrubland, grassland and cropland are also pools of carbon, but 

were not considered here. 

 

 
2.3 | Environmental space 

 
Climatic, topographic and edaphic variables are widely used to inves- 

tigate the influence of the environmental space on forest structure, 

composition and functioning (see e.g. Anderson-Teixeira et al., 2015; 

Sullivan et al., 2020). 

Temperature and precipitation are key climatic factors influ- 

encing vegetation patterns (Holdridge, 1947; Whittaker, 1975), 

together with their seasonality (Mucina, 2019). So is solar radia- 

tion (Cox et al., 2016). Annual mean temperature (°C), temperature 

seasonality (% coefficient of variation [CV]), annual precipitation 

(mm), precipitation seasonality (% CV) and solar radiation (W m−2) 

were therefore selected for subsequent analysis. Data were taken 

from the TerraClimate dataset (original spatial resolution 5 km; 

Abatzoglou et al., 2018) directly, or could be computed from it fol- 

lowing O'Donnell and Ignizio (2012). 

Topographic variables and especially elevation also shape the 

spatial distribution of species and habitats (see altitudinal zonation; 

von Humboldt & Bonpland, 1805). Data on elevation above sea level 

(m) were obtained from the EarthEnv project (http://www.earthenv. 

org/; Amatulli et al., 2018). 

Soil physicochemical properties have a direct influence on veg- 

etation, as they partly determine water and nutrient availability 

(Hulshof & Spasojevic, 2020). Estimated edaphic data were ob- 

tained from SoilGrids 2.0 (original spatial resolution 250 m; Poggio 

et al., 2021). Depth-weighted averaged values over the three top- 

most soil layers (i.e. 0–5, 5–15 and 15–30 cm) were computed for 

each of the 11 variables provided. As in Sullivan et al. (2020), we 

selected variables representing both soil physical (‘texture’) and 

chemical (‘fertility’) properties. More specifically, we retained 

coarse fragment content (% volume), sand fraction (% mass), cation 

exchange capacity (cmol kg−1) and pH (H2O) (unitless). We favoured 

sand fraction over clay fraction (commonly retained in similar analy- 

ses), as the latter was modelled less accurately (Poggio et al., 2021). 

Some edaphic variables were found to be strongly correlated 

with climatic ones, like cation exchange capacity and annual mean 

temperature (Spearman's rank correlation coefficient ρ < −.75). This 

may be because edaphic variables are modelled using other vari- 

ables, including climatic ones (Poggio et al., 2021). Despite some 

strong pairwise correlations between the 10 variables selected (5 

climatic, 1 topographic and 4 edaphic), we kept them all as indica- 

tors of the environmental space as each bears relevant information. 

Correlation is unlikely to distort results from the analysis of network 

representativeness described below. Previous studies, for example, 

Anderson-Teixeira et al. (2015) or Hoffman et al. (2013), ran the 

same analysis using an even bigger number of variables (n = 17 and 

n = 37, respectively) without considering correlation. 

 

 

2.4 | Geographical space 

 
We also explored whether the potential sites were sufficiently dis- 

tant from each other to cover the entire forested area of the world. 

Since floristic composition varies greatly across continents, maxi- 

mizing geographical distance across sites and minimizing the occur- 

rence of geographical gaps is desirable in the optimal design of a 

reference measurement system. 

 

 
2.5 | Structural space 

 
Canopy height and tree cover (TC) fraction are two structural vari- 

ables commonly used to describe forest structure. Both can be 

estimated by spaceborne instruments. Canopy height (H) informa- 

tion was obtained from the GEDI L3 Gridded Land Surface Metrics, 

Version 2 dataset (Dubayah et al., 2021). Gridded data at 1 km spa- 

tial resolution (mean RH100, i.e. the 100th percentile of waveform 

energy relative to the ground, computed from individual waveforms 

collected between April 18th 2019 and April 14th 2021) were aver- 

aged to 5 km. We kept 5 km cells only when at least half of their 

area overlapped with non-empty 1 km cells. Due to GEDI discrete 

sampling and ISS-orbit limited spatial coverage (±51.6° latitude), 

only about 60% of the potential FBRM sites (n = 118) and half of the 

forested cells (n = 829,256) had canopy height information available 

from GEDI first 2 years of data collection. 

Tree cover fraction was also used, based on the PROBA-V sat- 

ellite acquisitions for 2019. These data were obtained from Version 

3.0.1 of the global land cover maps distributed by the Copernicus 

Global Land Service (Buchhorn et al., 2020). Original data at 100 m 

spatial resolution were reprojected and averaged to 5 km. 

 

 
2.6 |  Analysis of network representativeness 

 
To assess how well a network of observation sites represents envi- 

ronmental, geographical and structural conditions of forested areas 

globally, we performed a point-based ‘representativeness of net- 

work’ analysis (Anderson-Teixeira et al., 2015; Hoffman et al., 2013). 

The principle of this analysis is as follows. 

For each site, distances were computed between values at that 

site and those at any cell of the map included in the forest mask. 

More precisely, we computed Euclidean distances on standardized 

variables (after z-score normalization) for the environmental and 
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structural spaces, and great-circle distance (i.e. the shortest distance 

between two points on the Earth surface, represented here by a 

sphere) computed using the haversine formula for the geographical 

space. This resulted in site-specific environmental, geographical and 

structural distance maps. Site-specific maps referring to the same 

space were then stacked, and the minimum value retained for each 

cell to produce environmental, geographical and structural dissimi- 

larity maps. Lastly, maximum environmental, geographical and struc- 

tural distances were searched for (see Supporting Information for 

more details) and relative dissimilarity was mapped as a percentage 

of the normalized value. 

The representativeness of network analysis was performed for 

various sets of contributing sites (i.e. those included in the stack 

from which minimum values were selected) based on the following 

selection strategies: all potential FBRM sites, only those with a plot 

cumulative area ≥10 ha, the n most representative potential FBRM 

sites, n randomly selected potential FBRM sites, the n most repre- 

sentative virtual sites (i.e. cells with no potential FBRM site identi- 

fied for the time being) over global forested areas, and n randomly 

selected virtual sites (for n ranging from 5 to 118 or 195 depending 

on selection strategy and space). 

To identify the most representative FBRM or virtual sites for a 

given number of sites, n, we performed a partitioning around me- 

doids (PAM) analysis. This clustering technique is suited for our 

purpose as clusters are built around actual objects (the so-called 

‘medoids’, here potential FBRM sites or cells) and not ‘centroids’ as 

in the k-means algorithm (Kaufman & Rousseeuw, 1990). Despite 

often being regarded as deterministic (see e.g. Reynolds et al., 2006), 

there might be ties in some cases, for example, during medoid selec- 

tion when choosing between two objects that may give the same 

reduction in the cost function, that is, the sum of dissimilarities. In 

this case, selecting one object over the other would depend on the 

order in which these two objects were presented to the algorithm. 

To address this problem, we ran the original PAM algorithm a 100 

times for each number, n, of potential FBRM sites of interest, each 

time reshuffling the input dataset, and retained the most frequent 

combination to serve as the n most representative sites. For most 

representative virtual site selection, the ‘fasterPAM’ algorithm was 

used on a subset of 20,000 cells geographically spanning global 

forested areas to reduce the computational burden (Schubert & 

Rousseeuw, 2021). 

Finally, we selected potential FBRM sites randomly and ran 

the representativeness of network analysis. This operation was 

repeated 200 times, and median relative dissimilarity values re- 

tained for each cell of the study area to produce relative dissim- 

ilarity maps. The whole process was also performed for virtual 

sites selected randomly over global forested areas, with only five 

repetitions in this case because of computational cost. Only for 

n = 100 were random virtual site selection and subsequent rep- 

resentativeness of network analysis repeated 200 times (median 

retained for each cell of the forest mask), and the difference be- 

tween random versus most representative site resulting relative 

dissimilarity maps computed. 

All analyses were conducted using the R statistical comput- 

ing platform (R Core Team, 2021), and mainly packages ‘cluster’ 

(Maechler et al., 2021), ‘data.table’ (Dowle & Srinivasan, 2021), ‘gda- 

lUtils’ (Greenberg & Mattiuzzi, 2020) and ‘raster’ (Hijmans, 2021). 

 

 
3 | RESULTS 

 
3.1 |  Representativeness of a potential FBRM 

system with all pre-existing sites currently identified 

 
Environmental conditions were well represented (defined here as 

relative dissimilarity <10%, i.e., ca. a third of maximum dissimilar- 

ity) by the system of potential FBRM sites in most lowland tropical 

rainforests, the eastern part of Canada and the United States of 

America (USA), northern Europe and the west and central parts 

of Russia (Figure 1, top). Among forested areas noticeably lack- 

ing sufficient coverage of environmental conditions (relative dis- 

similarity >10%) were the western half of North America (incl. 

Mexico), Patagonia, Angola/Zambia and eastern Russia. Overall, 

the geographical and structural spaces benefited from a better 

representation by the potential FBRM sites than environmental 

space (Figure 1, centre and bottom, respectively). In the main, 

only Patagonia, the easternmost part of Siberia and New Zealand 

were poorly represented in geographical space (relative dissimi- 

larity >10%). Insufficient coverage of structural conditions (rela- 

tive dissimilarity >10%) mostly affected isolated cells present in 

limited areas such as the west coast of the USA, forested areas of 

the Himalayas and the Sunda Shelf (Sumatra, peninsular Malaysia, 

Borneo) (see Figure S2 for a close-up on portions of these three 

areas). 

 

 
3.2 | Maximum representativeness possible 

with different combinations of pre-existing sites 

currently identified 

 
Comparing the distribution of relative dissimilarity values for envi- 

ronmental, geographical and structural conditions for various sets 

of potential FBRM sites, the spread (i.e. the variability of values) was 

highest for environmental space, whatever the set of sites under 

consideration (Figure 2). Representativeness was always maximized 

when all the potential FBRM sites were included. Conversely, the 

highest relative dissimilarity values were reached whatever the 

space when using the 132 sites with a plot cumulative area ≥10 ha, 

and not the 50 most representative ones. Consistent with Figure 1, 

only a low proportion of relative dissimilarity values exceeded 10% 

when considering geographical or structural conditions. Whatever 

the value n, the identity of the n most representative sites differed 

between spaces, notably because 40% of the sites from the initial 

pool did not have canopy height information and could therefore not 

be considered when studying site contribution to the representa- 

tiveness of the structural space. For a given space, a site among the 
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FI G U R E 1 Relative environmental (top), geographical (centre) and structural (bottom) dissimilarities (%) over global forested areas with 

respect to conditions covered by potential forest biomass reference measurement sites (n = 195, top and centre; n = 118, bottom). Blank 

continental areas and hollow points (bottom), respectively, correspond to forested areas and sites not sampled (yet, for those within ±51.6° 

latitude) by GEDI. Relative dissimilarity was categorized for display purposes. Non-forested areas are in grey. The map projection is EASE- 

Grid 2.0 (epsg:6933), a global, equal-area protection and spatial resolution is 5 km. Map lines delineate study areas and do not necessarily 

depict accepted national boundaries. 
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FI G U R E 2 Relative dissimilarities for different types of distances and subsets of potential forest biomass reference measurement sites. 

There are 1,728,368 contributing cells (5 km spatial resolution) for the environmental (left) and geographical (centre) density plots, and 

829,256 for the structural (right) density plot because of GEDI discrete sampling and ISS-orbit limited spatial coverage (±51.6° latitude). The 

X-axis was cropped to 30% of relative dissimilarity for display purposes, excluding ca. 0.045% of the overall data. 

 
n most representative ones was not necessarily selected for higher 

values of n (Tables S1 and S2; Figure S3). 

 

 
3.3 |  Pre-existing site- versus random location- 

based system 

 
Less than half of global forested areas were better represented 

environmentally, geographically and structurally by the 100 most 

representative potential FBRM sites than a 100 random samples 

(proportion ranging from 39% to 48% depending on the space; 

Figure 3). This was particularly apparent for Canadian, Amazonian, 

Angolan/Zambian and Russian forested areas with respect to the en- 

vironmental space (Figure 3, top). Geographically, a better represen- 

tation was achieved by the 100 most representative potential FBRM 

sites than by a 100 random ones in the vicinity of selected FBRM 

sites, creating island-like patterns (Figure 3, center). Regional pat- 

terns were less sharp for the representation of structural conditions, 

but North American and Asian forested areas appeared generally 

better represented by the 100 most representative potential FBRM 

sites than a 100 random samples, while South American and African 

forested areas showed the opposite (Figure 3, bottom). 

 

 

3.4 |  Pre-existing site-based system improvement 

 
Increasing plot cumulative area for all sites up to at least 10 ha would 

increase the number of potential FBRM sites meeting the CEOS re- 

quirements (Duncanson et al., 2021), and consequently improve the 

environmental, geographical and structural coverage of the resulting 

system (Figure 2). The more locations in the system, the lower the 

median relative dissimilarity values, whatever the space and location 

selection strategy (Figure 4). For example, as regards environmental 

coverage, median relative dissimilarity values decreased from 11.6% 

to 10.1% to 9.2%, respectively, when the 50, 100 and 150 most 

representative potential FBRM sites were selected. Selecting the n 

most representative cells over global forested areas always provided 

better environmental, geographical and structural coverage than 

other selection strategies. A system made up of random cells was 

more representative of the environmental and geographical spaces 

than its most representative pre-existing site-based counterpart, 

whenever at least 20 locations contributed to the system. 

 

 
4 | DISCUSSION  

 
4.1 |  Guaranteeing and improving system 

representativeness 

 
Various ways were identified to guarantee and further improve the 

representativeness of the proposed system of FBRM sites. First and 

foremost, efforts (discussed extensively later) should be made to en- 

sure that every single potential FBRM site identified in this study 

joins the proposed system. The environmental coverage of the sys- 

tem does not seem to improve after at least the 175 most repre- 

sentative potential FBRM sites are included, but geographical and 

structural coverages showed a continuous although slight improve- 

ment (Figure 4). 

Second, plot cumulative area should be increased to at least 

10 ha at each site wherever this is not the case to comply with CEOS 

recommendations (Duncanson et al., 2021). This would clearly im- 

prove the environmental, geographical and structural coverage of 

the system (Figure 2), if we were to consider that sites where plots 

do not cover at least 10 ha overall should consistently be dismissed. 

Apart from plot cumulative area, ancillary data will likely need to be 

acquired, updated or upgraded, including more accurate location of 

plot corners (using differential global navigation satellite systems), 

soil samples to characterize local soil physicochemical properties, 

C
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and airborne and terrestrial LiDAR acquisitions. While the FBRM 

system is being formed, the ‘representativeness of network’ analysis 

developed in this study can help prioritize sites for main and ancillary 

data acquisition (Table S2; Figure S3). 

 
Third, efforts should be made to identify pre-existing sites in 

areas of poor environmental, geographical or structural coverage 

(Figures 1 and 3). These include, but are not limited to, Canada, 

the western half of the USA, Mexico, Patagonia, Angola, Zambia, 
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FI G U R E 3  Difference in relative environmental (top), geographical (centre) and structural (bottom) dissimilarities between a set of 

100 randomly selected cells (median of 200 runs used) and the 100 most representative potential forest biomass reference measurement 

(FBRM) sites. A network made up of randomly selected cells is less representative of local conditions than one made up of the 100 most 

representative potential FBRM sites, wherever the difference in relative dissimilarity is positive. Difference in relative dissimilarity was 

categorized for display purposes. Non-forested areas are in grey. Blank continental areas within ±51.6° latitude (bottom) correspond to 

areas not yet sampled by GEDI, and hollow points to sites not among the 100 most representative potential FBRM sites. The map projection 

is EASE-Grid 2.0 (epsg:6933), a global, equal-area protection and spatial resolution is 5 km. Map lines delineate study areas and do not 

necessarily depict accepted national boundaries. 
 

 

 

 
FI G U R E 4 Relative dissimilarities versus number of locations for different types of distances and selection strategies. Only numbers of 

locations, n, which are multiples of 5 are used here. Lines and shaded areas correspond to the median and interquartile range of relative 

dissimilarity values over global forested areas, respectively. 
 

eastern Russia, tropical and subtropical highlands (e.g. in Colombia, 

the Himalayas, Borneo, Papua). It should be noted here that in some 

of these areas, forest inventory data are already collected but with 

designs suboptimal to have been identified as potential FBRM sites 

and included in this study. Nonetheless, there will ideally be oppor- 

tunities to expand on some key locations. 

Fourth, given the obvious coverage gaps in these areas, new sites 

should be established if none already exist. The manifold added val- 

ues of long-term permanent plots compared to newly established 

ones include good knowledge of site history, the availability of an- 

cillary and recensus inventory data, and the fact that plot remea- 

surement is cheaper than establishment. Yet, relative dissimilarities 

are minimized whatever the space when most representative vir- 

tual sites (i.e. cells) instead of most representative potential FBRM 

sites are used (Figure 4). This likely arises from the fact that poten- 

tial FBRM sites are not located randomly. Individual plot networks 

were usually built with certain criteria in mind, for example, to study 

well-defined geographical areas (e.g. Australia for TERN; Cleverly 

et al., 2019) and/or to answer specific research questions (e.g. what 

are the long-term effects of logging on tropical forests for TmFO?; 

Sist et al., 2015). However, their aggregation does not guarantee a 

satisfactory representativeness of the environmental, geographical 

and structural spaces covered by global forested areas. Within a 

given biome or ecoregion, plot location might also be biased due to, 

for example, logistical considerations like accessibility. Such could be 

the case over Amazonia, where a recent study suggested that plots 

were preferentially located in areas of high ancient human impact, 

potentially slanting our understanding of Amazonian forest dynam- 

ics (McMichael et al., 2017). 

Last, to improve the system representativeness and avoid pre- 

senting a potentially distorted picture of its performances regionally 

(e.g. over-optimistic in the tropics?; see Figure 1), other spaces could 

be considered, such as biogeographical and disturbance (both exog- 

enous and anthropogenic) spaces. The former could include, among 

other information, layers of global tree species α and β diversity (Keil 

& Chase, 2019). The latter could encompass map-based informa- 

tion on, for example, forest integrity with respect to anthropogenic 

pressures (Grantham et al., 2020) or susceptibility to natural distur- 

bances (windstorms, wildfires, etc.). Concurrently, integration to the 

FBRM system of long-term permanent plot networks focused on the 

study of secondary forests such as 2ndFOR (Poorter et al., 2021) 

should be favoured to keep increasing the heterogeneity of forest 

conditions and successional stages covered by ground data. 

 

 
4.2 | Relationship between forest structure and 

aboveground biomass 

 
Environmental conditions are used to model potential (i.e. theo- 

retical) aboveground biomass (Prentice et al., 2011). Differences 

between potential and actual biomass stocks are hypothesized to 

originate from human disturbances (Pan et al., 2013). Structural 
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conditions were represented in this study using remote sensing data 

(TC fraction and canopy height derived from PROBA-V and GEDI 

data, respectively) acquired during the last 2–3 years. Their contem- 

poraneity is an asset to keep track of biomass stocks in a rapidly 

changing world. 

Aboveground biomass is commonly estimated from structural 

attributes across various scales, using, for example, tree height and 

diameter at the individual tree scale (Chave et al., 2014) and top-of- 

canopy height at the (sub-)hectare scale (Labrière et al., 2018). At 

larger scale, previous exploratory work showed that spatial varia- 

tions in the product of TC fraction and canopy height closely cor- 

responded to those of LiDAR-derived aboveground biomass carbon 

density (AGCD) maps (see ‘CCI Biomass Product Validation and 

Algorithm Selection Report’ 1 and 2; https://climate.esa.int/en/ 

projects/biomass/key-documents/). We tested how well TC × H cor- 

related with AGCD at the 5 km cell scale over global forested areas 

and for the subset of cells bearing potential FBRM sites. AGCD esti- 

mates were obtained from Spawn et al. (2020), after original data at 

300 m spatial resolution were reprojected and averaged to 5 km. We 

found that AGCD was strongly correlated with TC × H over global 

forested areas (n = 829,256, Spearman's ρ = .77, p < .001) (Figure S4). 

Root-mean-square error (RMSE), coefficient of correlation (R2) and 

bias were 26.7 MgC ha−1, 0.85 and 4.1 MgC ha−1, respectively. Similar 

statistics were obtained with potential FBRM site-bearing cells only 

(n = 118): Spearman's ρ = .74 (p < .001), RMSE = 30.5 MgC ha−1, 

R
2 = .82 and bias = 3.5 MgC ha−1. This confirmed that structural at- 

tributes are important predictors of aboveground biomass. 

Nonetheless, local information may be essential to reduce un- 

certainties in aboveground biomass due to locally variable parame- 

ters such as community wood density (Phillips et al., 2019) inferred 

using tree-by-tree identity information that at present can only be 

provided by in situ data. The pivotal role of in situ data was recently 

exemplified in the case of GEDI waveform data. Accurately predict- 

ing AGCD from GEDI waveforms alone was shown to be suboptimal 

as two forest stands with similar waveforms can have very different 

AGCD (Bruening et al., 2021), and allometries heavily rely on in situ 

training data (Duncanson et al., 2022). Beyond such direct use, tree- 

by-tree identity information can also be mobilized to calibrate and 

validate hyperspectral data (Draper et al., 2019; Jucker et al., 2018), 

which can, in turn, improve forest stratification and the use of the 

most relevant structure metrics-based allometries. In this study, 

structural coverage was represented by two of the most meaningful 

variables that can be remotely sensed over global forested areas: TC 

fraction and canopy height. Including other structure-related vari- 

ables, such as canopy height variability, could complement our un- 

derstanding of how representative the proposed FBRM sites are of 

the structural space. This analysis will gain in completeness as new 

datasets, and new versions of the ones we used, are released. The 

current GEDI L3 gridded dataset (Version 2) is still patchy, especially 

in the tropics, and coverage should keep improving with following 

versions. In addition, plant area index and vertical foliage profile, 

two variables that have already proven useful to distinguish vegeta- 

tion types (see e.g. Marselis et al., 2018), should be part of the next 

releases. Also, as boreal forests are barely sampled by GEDI due to 

ISS-orbit limited spatial coverage, incorporating canopy height in- 

formation from NASA's Ice, Cloud and Land Elevation Satellite-2 

(ICESat-2) mission (ATL08; Neuenschwander & Pitts, 2019) will help 

fill a major gap in structure data. As a complement to ICESat-2, the 

upcoming NASA-ISRO's NISAR and ESA's BIOMASS missions will 

guarantee a continuity in data acquisition for canopy height estima- 

tion after the potential end of the GEDI mission (early 2023). Note 

that at the time of writing NASA was actively exploring options for 

keeping GEDI on orbit past 2023. 

 

 
4.3 |  On the uniqueness of tropical forests 

 
The proposed system of FBRM sites should encompass a wide va- 

riety of forest conditions (incl. old-growth, regenerating, managed) 

and soil types (incl. well-drained, nutrient-poor, seasonally flooded, 

swampy). Adequate coverage of the three main forest biomes (tropi- 

cal, temperate and boreal) is also essential. But how should this ‘ad- 

equate’ coverage be established? Areal forest biome proportions of 

global forested areas are close to 50%, 20% and 30% for tropical, 

temperate and boreal forest biomes, respectively (Pan et al., 2013). 

Based on areal considerations only, this would mean that half of 

the potential FBRM sites should be located in the tropics, a fifth in 

temperate regions and the rest (about a third) in boreal ones. This 

condition is satisfied for most representative virtual sites (i.e. cells), 

whatever the value n of cells and for both environmental and geo- 

graphical distances, but not for most representative potential FBRM 

sites (Figure S5). This is likely due to the different balance of forest 

biome proportions in the list of potential FBRM sites (ca. 60%, 35% 

and 5% for tropical, temperate and boreal forest biomes, respec- 

tively) compared to global forested areas. Regarding structural cov- 

erage, forest biome proportions are most probably influenced by the 

truncated coverage of boreal forests (see above). In terms of above- 

ground biomass instead of area, forest biome proportions would be 

65%, 20%, 15% for tropical, temperate and boreal forest biomes, 

respectively (using data from Spawn et al., 2020). Focusing on either 

gross or net primary productivity (GPP and NPP, respectively) also 

shows the disproportionate contribution of tropical forests com- 

pared to their area (more than two-thirds; Pan et al., 2013), which 

is even more apparent when emphasizing on gross forest emissions 

(almost four-fifths over the years 2001–2019; Harris et al., 2021). 

Tropical sites should consequently be the cornerstone of the FBRM 

system, reasonably representing 65%–70% of all the potential FBRM 

sites. This is all the more relevant because 80%–95% of all known 

tree species in each continent were sampled in their tropical region 

(Cazzolla Gatti et al., 2022), a hyperdiversity further complicating 

community wood density determination (Phillips et al., 2019). While 

the PAM algorithm does not, either in its original or most recent 

form, include weighting options, other clustering techniques could 

be envisioned that would allow weighting existing or virtual poten- 

tial FBRM sites depending on a cell's AGCD, GPP, NPP, tree diversity 

or a combination of some or all of these. 
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4.4 | Practical implementation of a FBRM 

system and final considerations 

 
The proposed FBRM system will provide a framework within which 

a diverse community of stakeholders (e.g. EO agencies, individual 

countries, forest organizations) can make a lasting contribution to 

(and of course benefit from) a comprehensive and sustained system 

of high-quality biomass reference data. This system also has to be 

recognized and supported as an opportunity to train the next gen- 

eration of researchers with expertise at the confluence of forest 

science and remote sensing, leveraging investments made by the 

forest science community. Funding the FBRM system will require 

significant investment. However this investment, even on a global 

scale, is a fraction of the cost of a single space mission. Plus, this 

cost is likely to be largely offset by the resulting widespread, consist- 

ent and effective use of the EO-derived biomass maps. Two possible 

funding mechanisms could be imagined, one where funding bodies 

collaborate with long-term permanent plot networks and another 

where funders collaborate directly with individual plot principal in- 

vestigators. Whatever the funding scheme favoured, for the FBRM 

concept to succeed, plot networks must collect and process the data 

applying the same standards across all countries and continents, 

and subsequently share the derived data products with the global 

community, for example through the Forest Observation System 

(Schepaschenko et al., 2019). Issues on data sharing and data owner- 

ship should be limited given that plot networks will not have to share 

tree-by-tree data, only plot/subplot AGCD estimates and associated 

uncertainties. Protocol harmonization and standardization are key to 

ensuring high quality of the data generated and maximizing interop- 

erability across all FBRM sites, and should be conducted for all the 

necessary steps from fieldwork (e.g. plot shape, tree diameter meas- 

urement) to post-field data processing (e.g. allometric equations, 

error propagation scheme). It must be stressed that the proposed 

system needs to be established and managed inclusively, with care- 

ful consideration of working conditions. Training and site partner in- 

volvement in downstream activities should be mandatory. Only this 

would allow for proper recognition of the disadvantaged social, eco- 

nomic and historical context in which most staff involved in forest 

research activities operate, which is overwhelmingly true in tropi- 

cal nations. For further details on the proposed FBRM system, the 

reader is referred to the GEO-TREES initiative (Chave et al., 2021). 

 
ACKNOWLEDG EMENTS  

NL is grateful to John Armston for early exchanges on GEDI data. 

NL was supported by the European Space Agency (ESA) as part 

of the Climate Change Initiative (CCI) fellowship (Contract No. 

4000133843). NL and JC benefited from ‘Investissement d'Avenir’ 

grants managed by the French Agence Nationale de la Recherche 

(CEBA, ref. ANR-10-LABX-25-01; TULIP, ref. ANR-10-LABX-0041), 

and funding from ESA CCI Biomass (Contract No. 4000123662) and 

CNES. The Forest Observation System (FOS) initiative is funded 

by ESA under contract No. 4000114425, which supported early 

contributions by JC, SJD, SLL, OLP and DGS. The Russian plot 

data preparation and pre-processing were financially supported 

by the Russian Science Foundation (Project No. 19-77-30015). 

The work of MH is supported by funding from ESA to the Forest 

Carbon Monitoring project (Contract No. 4000135015) and the CCI 

Biomass project (Contract No. 4000123662), and by funding from 

the European Union's Horizon Europe research and innovation pro- 

gramme to the Open-Earth-Monitor Cyberinfrastructure project 

(Grant agreement No. 101059548) and the Forest Navigator pro- 

ject (Grant agreement No. 101056875). The work of SSS is carried 

out under a grant by NASA's Terrestrial Ecology and Carbon Cycle 

program (80NM0018F0590). The work of SJD is supported by the 

National Science Foundation of the USA (Award No. 2020424). The 

TmFO network and the work of PS are supported by the Ministry of 

Foreign Affairs of France. The RAINFOR network and ForestPlots. 

net are supported by funding to OLP from the British Natural 

Environment Research Council (NERC) ARBOLES project (NE/ 

S011811/1), the European Research Council (ERC) TreeMort project 

(Grant agreement No. 758873) and the Royal Society International 

Collaboration Award FORAMA (ICA\R1\180100). 

 
CONFLIC T OF INTEREST 

The authors declare no conflicts of interest. 

 

DATA AVAIL ABILIT Y STATEMENT 

Land cover data are available from the Climate Data Store (CDS) of the 

Copernicus Climate Change Service (C3S; https://cds.climate.coper 

nicus.eu/#!/home). Climatic data were obtained from Abatzoglou 

et al. (2018) (https://doi.org/10.1038/sdata.2017.191). Topographic 

data were downloaded from the EarthEnv project (http://www. 

earthenv.org/). Edaphic data are available from SoilGrids 2.0 

(https://doi.org/10.5194/soil-7-217-2021). Canopy height informa- 

tion was obtained from the GEDI L3 Gridded Land Surface Metrics, 

Version 2 dataset (https://doi.org/10.3334/ORNLDAAC/1952). 

Tree cover fraction data were obtained from Version 3.0.1 of the 

global land cover maps distributed by the Copernicus Global Land 

Service (https://doi.org/10.3390/rs12061044). Realm borders are 

available from Dinerstein et al. (2017) (https://doi.org/10.1093/ 

biosci/bix014). Aboveground carbon density (AGCD) estimates 

were obtained from Spawn et al. (2020) (https://doi.org/10.1038/ 

s41597-020-0444-4). 

 
ORCID 

Nicolas Labrière  https://orcid.org/0000-0002-8037-2001 

Mathias I. Disney  https://orcid.org/0000-0002-2407-4026 

Dmitry G. Schepaschenko  https://orcid. 

org/0000-0002-7814-4990 

Jérôme Chave  https://orcid.org/0000-0002-7766-1347 

 
R EFER EN CE S 

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. 

(2018). TerraClimate, a high-resolution global dataset of monthly 

climate and climatic water balance from 1958–2015. Scientific Data, 

5(1), 170191. https://doi.org/10.1038/sdata.2017.191 

LABRIÈRE ET AL. | 837 

https://cds.climate.copernicus.eu/%23!/home
https://cds.climate.copernicus.eu/%23!/home
https://doi.org/10.1038/sdata.2017.191
http://www.earthenv.org/
http://www.earthenv.org/
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.3334/ORNLDAAC/1952
https://doi.org/10.3390/rs12061044
https://doi.org/10.1093/biosci/bix014
https://doi.org/10.1093/biosci/bix014
https://doi.org/10.1038/s41597-020-0444-4
https://doi.org/10.1038/s41597-020-0444-4
https://orcid.org/0000-0002-8037-2001
https://orcid.org/0000-0002-2407-4026
https://orcid.org/0000-0002-7814-4990
https://orcid.org/0000-0002-7814-4990
https://orcid.org/0000-0002-7766-1347
https://doi.org/10.1038/sdata.2017.191
https://orcid.org/0000-0002-8037-2001
https://orcid.org/0000-0002-2407-4026
https://orcid.org/0000-0002-7814-4990
https://orcid.org/0000-0002-7766-1347


 
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, 

A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale 

topographic variables for environmental and biodiversity mod- 

eling. Scientific Data, 5(1), 180040. https://doi.org/10.1038/ 

sdata.2018.40 

Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Gonzalez-Akre, 

E. B., Muller-Landau, H. C., Joseph Wright, S., Abu Salim, K., Almeyda 

Zambrano, A. M., Alonso, A., Baltzer, J. L., Basset, Y., Bourg, N. A., 

Broadbent, E. N., Brockelman, W. Y., Bunyavejchewin, S., Burslem, 

D. F. R. P., Butt, N., Cao, M., Cardenas, D., … Zimmerman, J. (2015). 

CTFS-ForestGEO: A worldwide network monitoring forests in an 

era of global change. Global Change Biology, 21(2), 528–549. https:// 

doi.org/10.1111/gcb.12712 

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on 

earth. Proceedings of the National Academy of Sciences of the United 

States of America, 115(25), 6506–6511. https://doi.org/10.1073/ 

pnas.1711842115 

Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, 

J., Baliva, M., Ceccantini, G., Di Filippo, A., Helama, S., Locosselli, 

G. M., Lopez, L., Piovesan, G., Schöngart, J., Villalba, R., & Gloor, 

E. (2020). Forest carbon sink neutralized by pervasive growth- 

lifespan trade-offs. Nature Communications, 11(1), 4241. https://doi. 

org/10.1038/s41467-020-17966-z 

Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., & Savoie, M. H. (2012). 

EASE-grid 2.0: Incremental but significant improvements for earth- 

gridded data sets. ISPRS International Journal of Geo-Information, 

1(1), 32–45. https://doi.org/10.3390/ijgi1010032 

Bruening, J. M., Fischer, R., Bohn, F. J., Armston, J., Armstrong, A. H., 

Knapp, N., Tang, H., Huth, A., & Dubayah, R. (2021). Challenges 

to aboveground biomass prediction from waveform lidar. 

Environmental Research Letters, 16(12), 125013. https://doi. 

org/10.1088/1748-9326/ac3cec 

Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., & 

Smets, B. (2020). Copernicus global land cover layers—Collection 2. 

Remote Sensing, 12(6), 1–14. https://doi.org/10.3390/rs12061044 

Cazzolla Gatti, R., Reich, P. B., Gamarra, J. G. P., Crowther, T., Hui, C., 

Morera, A., Bastin, J.-F., de Miguel, S., Nabuurs, G.-J., Svenning, 

J.-C., Serra-Diaz, J. M., Merow, C., Enquist, B., Kamenetsky, M., 

Lee, J., Zhu, J., Fang, J., Jacobs, D. F., Pijanowski, B., … Liang, J. 

(2022). The number of tree species on earth. Proceedings of the 

National Academy of Sciences of the United States of America, 119(6), 

e2115329119. https://doi.org/10.1073/pnas.2115329119 

Chave, J., Davies, S. J., Disney, M. I., Duncanson, L. I., Herold, M., Labrière, 

N., Phillips, O. L., Quegan, S., Saatchi, S. S., Schepaschenko, D. G., 

Scipal, K., & Sist, P. (2021). GEO-TREES: Forest biomass reference 

system from tree-by-tree inventory data. https://earthobservatio 

ns.org/documents/gwp20_22/GEO-TREES.pdf 

Chave, J., Davies, S. J., Phillips, O. L., Lewis, S. L., Sist, P., Schepaschenko, 

D., Armston, J., Baker, T. R., Coomes, D., Disney, M., Duncanson, L., 

Hérault, B., Labrière, N., Meyer, V., Réjou-Méchain, M., Scipal, K., 

& Saatchi, S. (2019). Ground data are essential for biomass remote 

sensing missions. Surveys in Geophysics, 40(4), 863–880. https:// 

doi.org/10.1007/s10712-019-09528-w 

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., 

Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. 

C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, 

H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. 

M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allome- 

tric models to estimate the aboveground biomass of tropical trees. 

Global Change Biology, 20, 3177–3190. https://doi.org/10.1111/ 

gcb.12629 

Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., 

Zambrano, A. M. A., Aide, T. M., Balvanera, P., Becknell, J. M., 

Boukili, V., Brancalion, P. H. S., Craven, D., Almeida-Cortez, J. S., 

Cabral, G. A. L., de Jong, B., Denslow, J. S., Dent, D. H., DeWalt, 

S. J., Dupuy, J. M., Durán, S. M., … Poorter, L. (2016). Carbon 

sequestration potential of second-growth forest regeneration 

in the Latin American tropics. Science Advances, 2(5), e1501639. 

https://doi.org/10.1126/sciadv.1501639 

Cleverly, J., Eamus, D., Edwards, W., Grant, M., Grundy, M. J., Held, 

A., Karan, M., Lowe, A. J., Prober, S. M., Sparrow, B., & Morris, B. 

(2019). TERN, Australia's land observatory: Addressing the global 

challenge of forecasting ecosystem responses to climate variability 

and change. Environmental Research Letters, 14(9), 095004. https:// 

doi.org/10.1088/1748-9326/ab33cb 

Cox, C. B., Moore, P. D., & Ladle, R. J. (2016). Biogeography: An ecological 

and evolutionary approach. John Wiley & Sons. 

Davies, S. J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., 

Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P. S., Baker, 

P. J., Baker, M. E., Baltzer, J. L., Basset, Y., Bissiengou, P., Bohlman, 

S., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Zuleta, D. 

(2021). ForestGEO: Understanding forest diversity and dynamics 

through a global observatory network. Biological Conservation, 253, 

108907. https://doi.org/10.1016/j.biocon.2020.108907 

de Lima, R. A. F., Phillips, O. L., Duque, A., Tello, J. S., Davies, S. J., de 

Oliveira, A. A., Muller, S., Honorio Coronado, E. N., Vilanova, E., 

Cuni-Sanchez, A., Baker, T. R., Ryan, C. M., Malizia, A., Lewis, 

S. L., ter Steege, H., Ferreira, J., Marimon, B. S., Luu, H. T., Imani, 

G., … Vásquez, R. (2022). Making forest data fair and open. Nature 

Ecology & Evolution, 6, 656–658. https://doi.org/10.1038/s41559- 

022-01738-7 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., 

Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., 

Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., 

Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An ecoregion- 

based approach to protecting half the terrestrial realm. Bioscience, 

67(6), 534–545. https://doi.org/10.1093/biosci/bix014 

Dowle, M., & Srinivasan, A. (2021). Data.table: Extension of ‘data.frame’. 

R package version 1.14.2. https://CRAN.R-project.org/package= 

data.table 

Draper, F. C., Baraloto, C., Brodrick, P. G., Phillips, O. L., Martinez, R. V., 

Honorio Coronado, E. N., Baker, T. R., Zárate Gómez, R., Amasifuen 

Guerra, C. A., Flores, M., Garcia Villacorta, R., Fine, P. V. A., Freitas, 

L., Monteagudo-Mendoza, A., Brienen, R. J. W., & Asner, G. P. 

(2019). Imaging spectroscopy predicts variable distance decay 

across contrasting Amazonian tree communities. Journal of Ecology, 

107(2), 696–710. https://doi.org/10.1111/1365-2745.13067 

Dubayah, R. O., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, 

S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, 

H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, 

P. L., Qi, W., & Silva, C. (2020). The global ecosystem dynamics 

investigation: High-resolution laser ranging of the Earth's forests 

and topography. Science of Remote Sensing, 1, 100002. https://doi. 

org/10.1016/j.srs.2020.100002 

Dubayah, R. O., Luthcke, S. B., Sabaka, T. J., Nicholas, J. B., Preaux, S., & 

Hofton, M. A. (2021). GEDI L3 gridded land surface metrics, version 2. 

ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1952 

Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, 

K., Carter, S., Chave, J., Herold, M., Crowther, T. W., Falkowski, 

M., Kellner, J. R., Labrière, N., Lucas, R., MacBean, N., McRoberts, 

R. E., Meyer, V., Næsset, E., Nickeson, J. E., … Williams, M. (2019). 

The importance of consistent global forest aboveground biomass 

product validation. Surveys in Geophysics, 40(4), 979–999. https:// 

doi.org/10.1007/s10712-019-09538-8 

Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, 

K., Carter, S., Chave, J., Herold, M., MacBean, N., McRoberts, R., 

Minor, D., Paul, K., Réjou-Méchain, M., Roxburgh, S., Williams, 

M., Albinet, C., Baker, T., Bartholomeus, H., … Margolis, H. (2021). 

Aboveground woody biomass product validation good practices 

protocol. Version 1.0. In L. Duncanson, M. Disney, J. Armston, J. 

Nickeson, D. Minor, & F. Camacho (Eds.), Good practices for satel- 

lite derived land product validation (p. 236). Land Product Validation 

838  | LABRIÈRE ET AL. 

https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1111/gcb.12712
https://doi.org/10.1111/gcb.12712
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1038/s41467-020-17966-z
https://doi.org/10.1038/s41467-020-17966-z
https://doi.org/10.3390/ijgi1010032
https://doi.org/10.1088/1748-9326/ac3cec
https://doi.org/10.1088/1748-9326/ac3cec
https://doi.org/10.3390/rs12061044
https://doi.org/10.1073/pnas.2115329119
https://earthobservations.org/documents/gwp20_22/GEO-TREES.pdf
https://earthobservations.org/documents/gwp20_22/GEO-TREES.pdf
https://doi.org/10.1007/s10712-019-09528-w
https://doi.org/10.1007/s10712-019-09528-w
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1126/sciadv.1501639
https://doi.org/10.1088/1748-9326/ab33cb
https://doi.org/10.1088/1748-9326/ab33cb
https://doi.org/10.1016/j.biocon.2020.108907
https://doi.org/10.1038/s41559-022-01738-7
https://doi.org/10.1038/s41559-022-01738-7
https://doi.org/10.1093/biosci/bix014
https://cran.r-project.org/package%3Ddata.table
https://cran.r-project.org/package%3Ddata.table
https://cran.r-project.org/package%3Ddata.table
https://doi.org/10.1111/1365-2745.13067
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.1016/j.srs.2020.100002
https://doi.org/10.3334/ORNLDAAC/1952
https://doi.org/10.1007/s10712-019-09538-8
https://doi.org/10.1007/s10712-019-09538-8


 
Subgroup (WGCV/CEOS). https://doi.org/10.5067/doc/ceoswgcv/ 

lpv/agb.001 

Duncanson, L., Kellner, J. R., Armston, J., Dubayah, R., Minor, D. M., 

Hancock, S., Healey, S. P., Patterson, P. L., Saarela, S., Marselis, 

S., Silva, C. E., Bruening, J., Goetz, S. J., Tang, H., Hofton, M., 

Blair, B., Luthcke, S., Fatoyinbo, L., Abernethy, K., … Zgraggen, C. 

(2022). Aboveground biomass density models for NASA's global 

ecosystem dynamics investigation (GEDI) lidar mission. Remote 

Sensing of Environment, 270, 112845. https://doi.org/10.1016/j. 

rse.2021.112845 

ForestPlots.net, Blundo, C., Carilla, J., Grau, R., Malizia, A., Malizia, L., 

Osinaga-Acosta, O., Bird, M., Bradford, M., Catchpole, D., Ford, A., 

Graham, A., Hilbert, D., Kemp, J., Laurance, S., Laurance, W., Ishida, 

F. Y., Marshall, A., Waite, C., … Tran, H. D. (2021). Taking the pulse of 

Earth's tropical forests using networks of highly distributed plots. 

Biological Conservation, 260, 108849. https://doi.org/10.1016/j. 

biocon.2020.108849 

Grantham, H. S., Duncan, A., Evans, T. D., Jones, K. R., Beyer, H. L., 

Schuster, R., Walston, J., Ray, J. C., Robinson, J. G., Callow, M., 

Clements, T., Costa, H. M., DeGemmis, A., Elsen, P. R., Ervin, J., 

Franco, P., Goldman, E., Goetz, S., Hansen, A., … Watson, J. E. 

M. (2020). Anthropogenic modification of forests means only 

40% of remaining forests have high ecosystem integrity. Nature 

Communications, 11(1), 5978. https://doi.org/10.1038/s41467-020- 

19493-3 

Greenberg, J. A., & Mattiuzzi, M. (2020). GdalUtils: Wrappers for the geo- 

spatial data abstraction library (GDAL) utilities. R package version 

2.0.3.2. https://CRAN.R-project.org/package=gdalUtils 

Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, 

M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., 

Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. 

S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global 

maps of twenty-first century forest carbon fluxes. Nature Climate 

Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020- 

00976-6 

Heinrich, V. H. A., Dalagnol, R., Cassol, H. L. G., Rosan, T. M., de Almeida, 

C. T., Silva Junior, C. H. L., Campanharo, W. A., House, J. I., Sitch, S., 

Hales, T. C., Adami, M., Anderson, L. O., & Aragão, L. E. O. C. (2021). 

Large carbon sink potential of secondary forests in the Brazilian 

Amazon to mitigate climate change. Nature Communications, 12(1), 

1785. https://doi.org/10.1038/s41467-021-22050-1 

Hijmans, R. J. (2021). Raster: Geographic data analysis and modeling. 

R package version 3.5-2. https://CRAN.R-project.org/packa 

ge=raster 

Hoffman, F. M., Kumar, J., Mills, R. T., & Hargrove, W. W. (2013). 

Representativeness-based sampling network design for the 

state of Alaska. Landscape Ecology, 28(8), 1567–1586. https://doi. 

org/10.1007/s10980-013-9902-0 

Holdridge, L. R. (1947). Determination of world plant formations from 

simple climatic data. Science, 105(2727), 367–368. https://doi. 

org/10.1126/science.105.2727.367 

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, 

H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., 

Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, 

T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, 

K. A., Adu-Bredu, S., … Zemagho, L. (2020). Asynchronous carbon 

sink saturation in African and Amazonian tropical forests. Nature, 

579(7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0 

Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant 

diversity. Global Ecology and Biogeography, 29(10), 1634–1650. 

https://doi.org/10.1111/geb.13151 

Jucker, T., Bongalov, B., Burslem, D. F. R. P., Nilus, R., Dalponte, M., Lewis, 

S. L., Phillips, O. L., Qie, L., & Coomes, D. A. (2018). Topography 

shapes the structure, composition and function of tropical for- 

est landscapes. Ecology Letters, 21(7), 989–1000. https://doi. 

org/10.1111/ele.12964 

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An intro- 

duction to cluster analysis. John Wiley & Sons. 

Keil, P., & Chase, J. M. (2019). Global patterns and drivers of tree di- 

versity integrated across a continuum of spatial grains. Nature 

Ecology & Evolution, 3(3), 390–399. https://doi.org/10.1038/s4155 

9-019-0799-0 

Labrière, N., Tao, S., Chave, J., Scipal, K., Toan, T. L., Abernethy, K., 

Alonso, A., Barbier, N., Bissiengou, P., Casal, T., Davies, S. J., Ferraz, 

A., Hérault, B., Jaouen, G., Jeffery, K. J., Kenfack, D., Korte, L., 

Lewis, S. L., Malhi, Y., … Saatchi, S. (2018). In situ reference datasets 

from the TropiSAR and AfriSAR campaigns in support of upcom- 

ing spaceborne biomass missions. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 11(10), 3617–3627. 

https://doi.org/10.1109/JSTARS.2018.2851606 

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2021). 

Cluster: Cluster analysis basics and extensions. R package version 

2.1.2. https://CRAN.R-project.org/package=cluster 

Marselis, S. M., Tang, H., Armston, J. D., Calders, K., Labrière, N., & 

Dubayah, R. (2018). Distinguishing vegetation types with airborne 

waveform lidar data in a tropical forest-savanna mosaic: A case 

study in Lopé National Park, Gabon. Remote Sensing of Environment, 

216, 626–634. https://doi.org/10.1016/j.rse.2018.07.023 

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., 

Bond-Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, 

C., Hanbury-Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. 

J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. 

M., Seidl, R., … Xu, C. (2020). Pervasive shifts in forest dynamics 

in a changing world. Science, 368(6494), eaaz9463. https://doi. 

org/10.1126/science.aaz9463 

McMichael, C. N. H., Matthews-Bird, F., Farfan-Rios, W., & Feeley, K. 

J. (2017). Ancient human disturbances may be skewing our under- 

standing of Amazonian forests. Proceedings of the National Academy 

of Sciences of the United States of America, 114(3), 522–527. https:// 

doi.org/10.1073/pnas.1614577114 

Metzger, S., Ayres, E., Durden, D., Florian, C., Lee, R., Lunch, C., Luo, H., 

Pingintha-Durden, N., Roberti, J. A., SanClements, M., Sturtevant, 

C., Xu, K., & Zulueta, R. C. (2019). From NEON field sites to data 

portal: A community resource for surface–atmosphere research 

comes online. Bulletin of the American Meteorological Society, 

100(11), 2305–2325. https://doi.org/10.1175/BAMS-D-17-0307.1 

Mucina, L. (2019). Biome: Evolution of a crucial ecological and biogeo- 

graphical concept. New Phytologist, 222(1), 97–114. https://doi. 

org/10.1111/nph.15609 

Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation 

product for the ICESat-2 Mission. Remote Sensing of Environment, 

221, 247–259. https://doi.org/10.1016/j.rse.2018.11.005 

NISAR. (2018). NASA-ISRO SAR (NISAR) Mission science users' handbook. 

NASA Jet Propulsion Laboratory. 

O'Donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic predictors for sup- 

porting ecological applications in the conterminous United States: U.S. 

Geological Survey Data Series. USGS. https://pubs.usgs.gov/ds/691/ 

ds691.pdf 

Pan, Y., Birdsey, R. A., Fang, J. Y., Houghton, R. A., Kauppi, P. E., Kurz, 

W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., 

Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S. L., 

Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent 

carbon sink in the World's forests. Science, 333, 988–993. https:// 

doi.org/10.1126/science.1201609 

Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The struc- 

ture, distribution, and biomass of the World's forests. Annual Review 

of Ecology, Evolution, and Systematics, 44(1), 593–622. https://doi. 

org/10.1146/annurev-ecolsys-110512-135914 

Phillips, O. L., Sullivan, M. J. P., Baker, T. R., Monteagudo Mendoza, A., 

Vargas, P. N., & Vásquez, R. (2019). Species matter: Wood density 

influences tropical Forest biomass at multiple scales. Surveys in 

LABRIÈRE ET AL. | 839 

https://doi.org/10.5067/doc/ceoswgcv/lpv/agb.001
https://doi.org/10.5067/doc/ceoswgcv/lpv/agb.001
https://doi.org/10.1016/j.rse.2021.112845
https://doi.org/10.1016/j.rse.2021.112845
https://doi.org/10.1016/j.biocon.2020.108849
https://doi.org/10.1016/j.biocon.2020.108849
https://doi.org/10.1038/s41467-020-19493-3
https://doi.org/10.1038/s41467-020-19493-3
https://cran.r-project.org/package%3DgdalUtils
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.1038/s41467-021-22050-1
https://cran.r-project.org/package%3Draster
https://cran.r-project.org/package%3Draster
https://doi.org/10.1007/s10980-013-9902-0
https://doi.org/10.1007/s10980-013-9902-0
https://doi.org/10.1126/science.105.2727.367
https://doi.org/10.1126/science.105.2727.367
https://doi.org/10.1038/s41586-020-2035-0
https://doi.org/10.1111/geb.13151
https://doi.org/10.1111/ele.12964
https://doi.org/10.1111/ele.12964
https://doi.org/10.1038/s41559-019-0799-0
https://doi.org/10.1038/s41559-019-0799-0
https://doi.org/10.1109/JSTARS.2018.2851606
https://cran.r-project.org/package%3Dcluster
https://doi.org/10.1016/j.rse.2018.07.023
https://doi.org/10.1126/science.aaz9463
https://doi.org/10.1126/science.aaz9463
https://doi.org/10.1073/pnas.1614577114
https://doi.org/10.1073/pnas.1614577114
https://doi.org/10.1175/BAMS-D-17-0307.1
https://doi.org/10.1111/nph.15609
https://doi.org/10.1111/nph.15609
https://doi.org/10.1016/j.rse.2018.11.005
https://pubs.usgs.gov/ds/691/ds691.pdf
https://pubs.usgs.gov/ds/691/ds691.pdf
https://doi.org/10.1126/science.1201609
https://doi.org/10.1126/science.1201609
https://doi.org/10.1146/annurev-ecolsys-110512-135914
https://doi.org/10.1146/annurev-ecolsys-110512-135914


 
How to cite this article: Labrière, N., Davies, S. J., Disney, 

M. I., Duncanson, L. I., Herold, M., Lewis, S. L., Phillips, O. L., 

Quegan, S., Saatchi, S. S., Schepaschenko, D. G., Scipal, K., Sist, 

P., & Chave, J. (2023). Toward a forest biomass reference 

measurement system for remote sensing applications. Global 

Change Biology, 29, 827–840. https://doi.org/10.1111/gcb.16497 

 
Geophysics, 40(4), 913–935. https://doi.org/10.1007/s10712-019- 

09540-0 

Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, 

B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil 

information for the globe with quantified spatial uncertainty. The 

Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021 

Poorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, 

L., Bongers, F., Chazdon, R. L., Farrior, C. E., Kambach, S., Meave, 

J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Almeyda 

Zambrano, A. M., Amani, B., Andrade, J. L., Brancalion, P. H. S., 

Broadbent, E. N., … Hérault, B. (2021). Multidimensional tropi- 

cal forest recovery. Science, 374(6573), 1370–1376. https://doi. 

org/10.1126/science.abh3629 

Prentice, I. C., Harrison, S. P., & Bartlein, P. J. (2011). Global vegetation and 

terrestrial carbon cycle changes after the last ice age. New Phytologist, 

189(4), 988–998. https://doi.org/10.1111/j.1469-8137.2010.03620.x 

Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D. H. 

T., Lomas, M., D'Alessandro, M. M., Paillou, P., Papathanassiou, K., 

Rocca, F., Saatchi, S., Scipal, K., Shugart, H., Smallman, T. L., Soja, 

M. J., Tebaldini, S., Ulander, L., Villard, L., & Williams, M. (2019). 

The European Space Agency BIOMASS mission: Measuring forest 

above-ground biomass from space. Remote Sensing of Environment, 

227, 44–60. https://doi.org/10.1016/j.rse.2019.03.032 

R Core Team. (2021). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing. http://www. 

R-project.org/ 

Réjou-Méchain,  M.,  Muller-Landau,  H.  C.,  Detto,  M.,  Thomas, 

S. C., Le Toan, T., Saatchi, S. S., Barreto-Silva, J. S., Bourg, N. A., 

Bunyavejchewin, S., Butt, N., Brockelman, W. Y., Cao, M., Cárdenas, 

D., Chiang, J. M., Chuyong, G. B., Clay, K., Condit, R., Dattaraja, 

H. S., Davies, S. J., … Chave, J. (2014). Local spatial structure of 

forest biomass and its consequences for remote sensing of carbon 

stocks. Biogeosciences, 11, 6827–6840. https://doi.org/10.5194/ 

bg-11-6827-2014 

Requena Suarez, D., Rozendaal, D. M. A., De Sy, V., Phillips, O. L., Alvarez- 

Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., 

Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, 

S. C., Feldpausch, T. R., Griscom, B. W., Harris, N., Hérault, B., 

Honorio Coronado, E. N., Leavitt, S. M., … Herold, M. (2019). 

Estimating aboveground net biomass change for tropical and sub- 

tropical forests: Refinement of IPCC default rates using forest 

plot data. Global Change Biology, 25(11), 3609–3624. https://doi. 

org/10.1111/gcb.14767 

Reynolds, A. P., Richards, G., de la Iglesia, B., & Rayward-Smith, V. J. (2006). 

Clustering rules: A comparison of partitioning and hierarchical clus- 

tering algorithms. Journal of Mathematical Modelling and Algorithms, 

5(4), 475–504. https://doi.org/10.1007/s10852-005-9022-1 

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., 

Araza, A., de Bruin, S., Herold, M., Quegan, S., Rodríguez-Veiga, P., 

Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, 

M., Itoh, T., Moreno Martínez, Á., Cavlovic, J., Cazzolla Gatti, R., 

… Willcock, S. (2021). The global forest above-ground biomass 

pool for 2010 estimated from high-resolution satellite observa- 

tions. Earth System Science Data, 13(8), 3927–3950. https://doi. 

org/10.5194/essd-13-3927-2021 

Schepaschenko, D., Chave, J., Phillips, O. L., Lewis, S. L., Davies, S. J., 

Réjou-Méchain, M., Sist, P., Scipal, K., Perger, C., Herault, B., 

Labrière, N., Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., Alonso, 

A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., … Zo-Bi, 

I. C. (2019). The Forest Observation System, building a global refer- 

ence dataset for remote sensing of forest biomass. Scientific Data, 

6(1), 198. https://doi.org/10.1038/s41597-019-0196-1 

Schepaschenko, D., Shvidenko, A., Usoltsev, V., Lakyda, P., Luo, Y., 

Vasylyshyn, R., Lakyda, I., Myklush, Y., See, L., McCallum, I., Fritz, 

S., Kraxner, F., & Obersteiner, M. (2017). A dataset of forest bio- 

mass structure for Eurasia. Scientific Data, 4(1), 170070. https://doi. 

org/10.1038/sdata.2017.70 

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing 

CO2 on the terrestrial carbon cycle. Proceedings of the National 

Academy of Sciences of the United States of America, 112(2), 436– 

441. https://doi.org/10.1073/pnas.1407302112 

Schubert, E., & Rousseeuw, P. J. (2021). Fast and eager k-medoids 

clustering: O(k) runtime improvement of the PAM, CLARA, and 

CLARANS algorithms. Information Systems, 101, 101804. https:// 

doi.org/10.1016/j.is.2021.101804 

Sist, P., Rutishauser, E., Peña-Claros, M., Shenkin, A., Hérault, B., Blanc, 

L., Baraloto, C., Baya, F., Benedet, F., da Silva, K. E., Descroix, L., 

Ferreira, J. N., Gourlet-Fleury, S., Guedes, M. C., Bin Harun, I., 

Jalonen, R., Kanashiro, M., Krisnawati, H., Kshatriya, M., … Yamada, 

T. (2015). The tropical managed forests observatory: A research 

network addressing the future of tropical logged forests. Applied 

Vegetation Science, 18(1), 171–174. https://doi.org/10.1111/avsc. 

12125 

Spawn, S. A., Sullivan, C. C., Lark, T. J., & Gibbs, H. K. (2020). Harmonized 

global maps of above and belowground biomass carbon density in 

the year 2010. Scientific Data, 7(1), 112. https://doi.org/10.1038/ 

s41597-020-0444-4 

Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, 

F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., 

Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, 

T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., 

Malhi, Y., … Phillips, O. L. (2020). Long-term thermal sensitivity of 

Earth's tropical forests. Science, 368(6493), 869–874. https://doi. 

org/10.1126/science.aaw7578 

The SEOSAW Partnership. (2020). A network to understand the chang- 

ing socio-ecology of the southern African woodlands (SEOSAW): 

Challenges, benefits, and methods. Plants, People, Planet, 3, 249– 

267.          https://doi.org/10.1002/ppp3.10168 

van Marle, M. J. E., van Wees, D., Houghton, R. A., Field, R. D., Verbesselt, 

J., & van der Werf, G. R. (2022). New land-use-change emissions 

indicate a declining CO2 airborne fraction. Nature, 603(7901), 450– 

454.  https://doi.org/10.1038/s41586-021-04376-4 

von Humboldt, A., & Bonpland, A. (1805). Essai sur la géographie des 

plantes; accompagné d'un tableau physique des régions équinoxiales. 

Levrault, Schoell et Compagnie. 

Whittaker, R. H. (1975). Communities and ecosystems. Macmillan. 

 

 
SUPPORTING INFORMATION  

Additional supporting information can be found online in the 

Supporting Information section at the end of this article. 

 
 

840  | LABRIÈRE ET AL. 

https://doi.org/10.1111/gcb.16497
https://doi.org/10.1007/s10712-019-09540-0
https://doi.org/10.1007/s10712-019-09540-0
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.1126/science.abh3629
https://doi.org/10.1126/science.abh3629
https://doi.org/10.1111/j.1469-8137.2010.03620.x
https://doi.org/10.1016/j.rse.2019.03.032
http://www.r-project.org/
http://www.r-project.org/
https://doi.org/10.5194/bg-11-6827-2014
https://doi.org/10.5194/bg-11-6827-2014
https://doi.org/10.1111/gcb.14767
https://doi.org/10.1111/gcb.14767
https://doi.org/10.1007/s10852-005-9022-1
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.1038/s41597-019-0196-1
https://doi.org/10.1038/sdata.2017.70
https://doi.org/10.1038/sdata.2017.70
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1016/j.is.2021.101804
https://doi.org/10.1016/j.is.2021.101804
https://doi.org/10.1111/avsc.12125
https://doi.org/10.1111/avsc.12125
https://doi.org/10.1038/s41597-020-0444-4
https://doi.org/10.1038/s41597-020-0444-4
https://doi.org/10.1126/science.aaw7578
https://doi.org/10.1126/science.aaw7578
https://doi.org/10.1002/ppp3.10168
https://doi.org/10.1038/s41586-021-04376-4

