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Abstract—We study the problem of group testing with non-

identical, independent priors. So far, the pooling strategies

that have been proposed in the literature take the following

approach: a hand-crafted test design along with a decoding

strategy is proposed, and guarantees are provided on how

many tests are sufficient in order to identify all infections

in a population. In this paper, we take a different, yet

perhaps more practical, approach: we fix the decoder and

the number of tests, and we ask, given these, what is the best
test design one could use? We explore this question for the

Definite Non-Defectives (DND) decoder. We formulate a (non-

convex) optimization problem, where the objective function

is the expected number of errors for a particular design.

We find approximate solutions via gradient descent, which

we further optimize with informed initialization. We illustrate

through simulations that our method can achieve significant

performance improvement over traditional approaches.

I. INTRODUCTION

Group testing has recently attracted significant attention
in the context of COVID ( [1]–[6]), and several countries
(including India, Germany, US, and China) have already
deployed preliminary group-testing strategies ( [7], [8]).

Group testing has a rich history in academia and a number
of variations and setups have been examined so far ( [9]–
[12]). Simply stated, group testing assumes a population of
N individuals out of which some are infected, and the goal
is to design testing strategies and corresponding decoding
algorithms to identify the infections from the test results.
Most works revolve around proposing a particular hand-
crafted test design (e.g. random Bernoulli design) coupled
with a decoding strategy (e.g. Definite Defectives, Definite
Non-Defectives), and guarantees are provided on the number
of tests required to achieve vanishing probability of error.
Additionally, order-optimality results have been proved for
the asymptotic regime, for infinite population size.

To the best of our knowledge, the following complemen-
tary question remains unexplored: Given a fixed decoding
strategy and a given number of tests T (perhaps smaller
than what is needed to achieve zero error), what is the
best test design one may use? We examine this question
in the context of nonadaptive group testing, and for the
Definite Non-Defectives (DND) decoder, which eliminates
false negatives by construction.1

This work was supported, in part, by NSF grants #2146828 and
#1705077. We also thank Katerina Argyraki for her valuable support and
the discussions we have had.

1A discussion with a Public Health official has revealed that both private
and public lab facilities have limited testing capacity per day, and what
actually matters is how to use the available tests most efficiently.

In this paper2, we show that the above problem can
be formulated as a non-convex continuous optimization
problem. More specifically, the problem requires finding a
test-design matrix G that minimizes the expected number of
erroneous identifications (i.e. false positives). This, however,
presents two challenges: (a) the analytical computation of
the expected number of false positives turns out to be
computationally difficult; and (b) because G 2 {0, 1}T⇥N ,
we are faced with a combinatorial optimization problem.

To address these challenges, we proceed as follows: First,
we provide a lower bound on the expected number of errors,
which we use as a proxy in the optimization problem;
that bound can be computed in O(N2) runtime. We then
relax the combinatorial optimization problem based on an
equivalence result; the objective function in that relaxed
formulation as well as its gradient can be computed in
O(N2), thus enabling the use of Gradient Descent (GD). To
further improve the performance of our method, we propose
two approaches to GD: (i) an informed initialization with
information from classic test designs, such as the Constant
Column Weight (CCW) design and the Coupon Collector
Algorithm (CCA); (ii) a stochastic re-initialization of the
state of the solution every few gradient iterations (e.g. 100
iterations), in a way that allows GD to explore across various
neighborhoods, while also ensuring that the objective value
does not increase by much with each re-initialization.

Numerical evaluations show that the GD based ap-
proaches can significantly outperform classical test designs,
achieving up to 58% fewer errors with the DND decoder on
simulated infection models. Rather surprisingly, GD based
designs also significantly outperform classical test designs
when the decoder is switched to definite defectives (DD),
indicating transferability to other decoders.

Related work: We here give a brief overview of group
testing; the exact problem we consider in this work will be
detailed in Section II-A.

Three infection models are usually studied in the group
testing literature: (i) in the combinatorial priors model,
a fixed number of individuals k (selected uniformly at
random), are infected; (ii) in i.i.d probabilistic priors model,
each individual is i.i.d infected with some probability p;
(iii) in the non-identical probabilistic priors model, each
item i is infected independently of all others with prior
probability pi, so that the expected number of infected
members is k̄ =

P
N

i=1 pi. Infection models (i) and (ii)

2Due to space limitations, details can be found in the longer version [13]
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have received attention from researchers for the most part
(see for example, [14]–[24]). Infection model (iii) is the
most general, yet also the least studied one [25]; we refer
the reader to [10] for an excellent summary of existing
work on the above infection models. Our work assumes
infection model (iii) with non-identical probabilistic priors
and accepts (ii) as a special case.

Tangentially, recent works have considered correlated
infection models; see, for example, [26]–[32].

II. PRELIMINARIES

In this section, we first precisely formulate the problem
of interest, and then state a simple lemma on combinatorial
optimization that is used in our work.

A. Problem formulation

We consider the noiseless nonadaptive group testing prob-
lem with non-identical priors. There are N individuals in
the population, where individual i is infected independently
with probability pi. We assume that the value of pi is
known apriori3. Let Ui be the infection status of individual i:
Ui = {Individual i is infected}. As a result, Ui ⇠ Ber(pi).
We will denote by U = (U1, U2, ..., UN ) the vector of
infection statuses.

Testing matrix: A testing matrix G 2 {0, 1}T⇥N is a
T ⇥N binary matrix. Row t in the testing matrix represents
the individuals participating in test t, i.e., Gti = 1 represents
individual i participating in test t. The test results corre-
sponding to a particular realization of U = (U1, U2, ..., UN )
and G is defined as the vector Y = (Y1, Y2, ..., YT ) where

Yt = 1�
NY

i=1

(1�GtiUi). (1)

In words, the test t gives a positive result if any of the
individuals participating in the test are infected, otherwise
it gives a negative result4. In (1) Yt = 1 if and only if there
exists i such that both Gti = 1 and Ui = 1 (individual i is
infected). In order to infer U from Y , a decoding algorithm

r : {0, 1}T ! {0, 1}N constructs an estimate bU of the
infection statuses from the test results. In this work, we fix
the decoding algorithm, which we describe next.

DND decoder: The definite non-defective (DND) de-
coder is a well-known decoding algorithm that forms an
estimate of U by identifying those individuals who have
participated in at least one negative test as healthy and
labeling every other individual as infected – i.e., it operates
under the principle “every item is defective unless proved
otherwise”. More precisely, it outputs an estimate bU where

bUi =
TY

t=1

Y Gti
t

. (2)

3This is a standard assumption in group testing. Otherwise, epidemiolog-
ical models for disease spread can be used to estimate these probabilities
( [33]–[35]).

4Most works in group testing express the right-hand side of (1) as a
Boolean expression. However, we use this particular form (similar expres-
sion was given in [22]) as it easily admits continuous-valued relaxations
of the composing variables.

bU has zero false negatives by construction – it can be
seen that bUi = 1 whenever Ui = 1. The number of errors
(false positives) that the DND decoder makes for a particular
realization U is given by

NX

i=1

{bUi 6= Ui} =
NX

i=1

{Ui = 0} {bUi = 1|Ui = 0},

and as a result the expected number of errors E(G) under
the DND decoder for a given G is

E(G) , E
"

NX

i=1

{bUi 6= Ui}
#

=
NX

i=1

Pr(Ui = 0)Pr
⇣
bUi = 1|Ui = 0

⌘

=
NX

i=1

(1� pi)E
h
bUi|Ui = 0

i
. (3)

Further, when Ui is fixed to be 0, bUi is a function of G
and U \ {i}, where U \ {i} , (U1, ..., Ui�1, Ui+1, ..., UN )
denotes the vector U without its ith entry. Thus, fixing Ui =
0, and using (1) and (2) we have,

bUi =
TY

t=1

0

BB@1�
NY

j=1:
j 6=i

(1�GtjUj)

1

CCA

Gti

(a)
=

TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�GtjUj)

1

CCA ,

where (a) follows because of the following fact: (1 �
x)y = 1 � xy if y 2 {0, 1}. Now, denoting �t,i ,✓
1�Gti

Q
N

j=1:
j 6=i

(1�GtjUj)

◆
in the above expression, we

rewrite (3) as:

E(G) =
NX

i=1

(1� pi)EU\{i}

TY

t=1

�t,i. (4)

Our Goal: We want to minimize E(G) across all
binary matrices G of size T ⇥N , i.e., solve

Gopt = argmin
G2{0,1}T⇥N

E(G). (5)

Discussion: We first observe that �t,i is not independent
of �t0,i for t 6= t0 as they potentially share common Uj

terms. As a result, the expectation of the product term in
(4) is not trivially the product of expectations, which makes
the computation of E(G) intractable in general (indeed one
could estimate E(G) using Monte-Carlo methods, belief
propagation etc.). In Section III we provide a lower bound
for E(G) which can be computed efficiently, and which we
use as a proxy for E(G).
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We also note that in principle, (5) could be formulated
for any decoder, not just the DND decoder. However, the
particular nature of E(G) for the DND decoder admits a nice
form, for which we can propose an approximate solution
using lower bounding techniques (Section III). For decoders
such as the definite defective decoder or belief propagation
based ones, we currently do not have an approach to cal-
culate a non-trivial lower bound; this remains a challenging
open problem.

B. A combinatorial relaxation result

We now take a detour to prove a simple result that allows
one to relax combinatorial optimization problems that aim to
optimize over the vertices of an n-dimensional hypercube.
One could extend this technique for optimization over other
finite sets as well.

Lemma 1. In order to solve

argmin
x2{0,1}n

g(x), (6)

it is sufficient to solve

argmin
q2[0,1]n

f(q), (7)

where f(q) , EX⇠q g(X)

can be envisioned as a continuous extension of g(x).
The expectation in the above expression is taken w.r.t the

distribution where each Xi ⇠ Ber(qi), and the Xis are

independent of each other.

We refer the reader to Appendix A of the longer version for
the proof.

Remark: There is a long history of using relaxation
techniques to approximate solutions of combinatorial op-
timization problems (see [36] for an overview). Most of
these focus on linear programming relaxation techniques.
In Lemma 1, there is no assumption on g(·) whatsoever
and the resulting relaxation may not be a linear program.
Moreover, it may not be easy to compute f(·) in all cases
and it may also not be easy to compute the gradient rf(·)
as well. In cases where exactly computing or approximating
the gradient is easy (as is indeed the case in this work), one
can use first-order optimization techniques such as GD.

III. MAIN RESULTS

In this section, we delineate our approach to find an
approximate solution to (5). Following the discussion at
the end of Section II-A, our approach is three-fold: First,
we lower bound E(G) by another function ELB(G), whose
computation turns out to be tractable; we then use ELB(G)
as a proxy for E(G). Next, we use Lemma 1 to show that it is
sufficient to consider a continuous relaxation of the resulting
combinatorial optimization problem. Finally, we show that
the objective function in the continuous relaxation and its
gradient can also be computed efficiently, thus enabling
gradient descent.

A. A lower bound for E(G)

As a first step, the following theorem states and proves a
lower bound for E(G).

Theorem 1. Consider a random vector U =
(U1, U2, ..., UN ) where Ui ⇠ Ber(pi). For a given

testing matrix G, and under the DND decoder, the expected

number of errors (see (4)) satisfies

E(G) � ELB(G),

where

ELB(G) ,
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA .

Proof. First we recall the expression for E(G) in (4):

E(G) =
NX

i=1

(1� pi)EU\{i}

TY

t=1

�t,i.

Using the FKG inequality (see [37]–[39] or proof of Lemma
4 in [19]) one could show that

EU\{i}

TY

t=1

�t,i �
TY

t=1

EU\{i}�t,i.

A rigorous proof of the above statement can be found in
Appendix B of the longer version. The idea is to show
that �t,i is an increasing function on U (assuming a partial
ordering); using this observation, the result follows as an
application of the FKG inequality. Thus, we have

E(G) �
NX

i=1

(1� pi)
TY

t=1

EU\{i}�t,i

=
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

= ELB(G)

In all numerical evaluations we performed, E(G) and the
lower bound ELB(G) were highly correlated – we provide
example scatter plots in Figure 2 in the longer version
– which indicates that minimizing ELB(G) is a viable
alternative to minimizing E(G).

B. A continuous optimization formulation

Given the above discussion, we now propose using
ELB(G) as a proxy for E(G) – more precisely we propose
to solve the following optimization problem:

argmin
G2{0,1}T⇥N

ELB(G). (8)

We next use Lemma 1 to argue that a continuous relaxation
of (8) is equivalent to (8). Before stating the main result,
we give a definition: we say that the matrix G ⇠ Q (read as
“G is distributed according to the distribution matrix Q”)
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if each Gti ⇠ Ber(Qti) 8 t, i and the Gti variables are
independent of each other.

Corollary 1. Suppose Ui ⇠ Ber(pi) 8 i. In order to solve

the optimization problem

argmin
G2{0,1}T⇥N

ELB(G), (9)

it is sufficient to solve

argmin
Q2[0,1]T⇥N

EG⇠QELB(G). (10)

This is a direct corollary of Lemma 1, where the objective
function is ELB(G) and we associate a parameter Qti

corresponding to each Gti.
Thus, we now have the following approximate formula-

tion for which the objective function (and its gradient) can
be computed in O(N2) time complexity (see Section III-C).
The hope is that solving (11) gives sufficiently good choices
of G ⇠ Q⇤; our experimental results in Section V indicate
that this is indeed the case.

Approximate formulation: Solve for

Q⇤ = argmin
Q2[0,1]T⇥N

f(Q), (11)

where f(Q) , EG⇠QELB(G).

Given the above formulation, we can now use techniques
such as gradient descent (GD) to select the testing matrix
G. In essence, we are searching over the continuous space
of distribution matrices Q. If the gradient of f(Q) can be
efficiently computed, one could use GD to converge to a
local minima Q⇤ and pick a G ⇠ Q⇤.

C. Expression for f(Q)

We now give a closed-form expression for f(Q) and
briefly discuss the computational complexity of computing
f(Q) and its gradient; the details are deferred to Appendices
D, E and F in the longer version. We have,

f(Q) , EG⇠QELB(G)

= EG⇠Q

NX

i=1

(1� pi)
TY

t=1

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

(a)
=

NX

i=1

(1� pi)
TY

t=1

EG⇠Q

0

BB@1�Gti

NY

j=1:
j 6=i

(1�Gtjpj)

1

CCA

=
NX

i=1

(1� pi)
TY

t=1

0

BB@1�Qti

NY

j=1:
j 6=i

(1�Qtjpj)

1

CCA , (12)

where in (a) the expectation is pushed inside the product
terms as ELB(G) is linear when viewed as a function of a
single Gti. In Appendix D we discuss an O(N2) algorithm

that simplifies the computation of f(Q) above. Given (12),
one could derive an expression for the gradient rf(Q)
by calculating each partial derivative @f(Q)

@Qlm
. The details

of the derivation can be found in Appendix E. Moreover,
in Appendix F, we discuss the computation of rf(Q) in
O(N2) runtime.

IV. ALGORITHMS

Leveraging the approximate formulation in (11), we here
explore a GD approach to find good choices of G. Our
proposed approach uses informed initialization with infor-
mation provided by traditional group test designs. Thus,
it can be viewed as a way to refine and improve existing
designs via local search. Moreover, we propose a variation
of GD that numerically seems to converge to good choices
of G in many situations even without informed initialization.

A. Baseline test designs

We use the following two group test design algorithms as
baselines for comparison:
• Constant column weight (CCW) design (see [18],

[40]). This design was introduced in the context of group
testing for identical priors5, but we adapt it to be applicable
for non-identical priors as well, in addition to identical
priors. Here we construct a randomized G assuming that
all individuals have the same prior probability of infec-
tion pmean (this assumption is trivially true if the priors
are identical), where pmean is defined as the mean prior
probability of infection 1

N

P
N

i=1 pi. The testing matrix G is
constructed column-by-column by placing each individual
in a fixed number ( 0.69T

Npmean
) of tests, uniformly at random.

• Coupon Collector Algorithm (CCA) from [25]. The
CCA algorithm was introduced in [25] for the case of non-
identical, independent priors. In short, the CCA algorithm
constructs a random non-adaptive test design G by sampling
each row independently from a distribution (we refer the
reader to [25] for the exact description of this distribution).
The idea is to place objects which are less likely to be
infected in more number of tests and vice-versa.

B. Test designs based on gradient descent

We are now ready to describe the gradient descent (GD)
approaches to search for G. The high-level idea for our
algorithms is as follows:
• We consider the approximate formulation in (11). Pick

an initial point Q(0).
• At each gradient iteration l, update Q(l)  Q(l�1) �

✏rQf(Q), where ✏ is the step size. Project Q(l) onto
[0, 1]T⇥N by resetting negative entries to 0 and entries
greater than 1 to 1.

• Stop based on some stopping criteria (e.g. limit number
of gradient steps or check for convergence).

5Most of these were proposed in the context of combinatorial priors.
However, Theorem 1.7 and Theorem 1.8 from [10] imply that any algorithm
that attains a vanishing probability of error on the combinatorial priors,
also attains a vanishing probability of error on the corresponding i.i.d
probabilistic priors.
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(a) DND decoder.
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(b) DD decoder.

Fig. 1: Priors sampled from an exponential distribution with mean 0.05, N = 1000. We average over 10 such instances.

• Let Q⇤ be the resulting output. Sample a matrix G⇤

where G⇤ ⇠ Q⇤ and return it.
As it turns out, in our experiments, the choice of initial-

ization plays a significant role in finding good choices of
G. We propose the following initializations.
• GD + CCW init. We first sample a testing matrix

according to the CCW testing matrix and set Q(0) as this
matrix. The GD proceeds with this initialization.
• GD + CCA init. We first sample a testing matrix

according to the CCA testing matrix and set Q(0) as this
matrix. The GD proceeds with this initialization.

Notably, any other state-of-the-art test design could have
been used as initialization. In principle, the above approach
can be perceived as a way to refine existing test designs via
local search. Alternatively, we also propose a modification
to the GD approach called GD + sampling that helps avoid
getting stuck in a local minima by encouraging GD to
explore multiple neighborhoods. The idea is use stochastic
re-initialization of the solution state every few gradient
iterations, while ensuring that the value of the objective
function is approximately preserved. First note that the
objective value f(Q) is the mean of f(G) with G ⇠ Q.
Therefore, it is reasonable to expect that typical realizations
of G will be such that f(G) is close to f(Q). Given
this idea, we propose the following: start from the all 0
initialization. However, every few gradient iterations, we
replace the current solution state Q(l) by Gs where Gs is
sampled from the distributed matrix Q(l), i.e., Gs ⇠ Q(l).
This encourages GD to explore different neighborhoods
while (approximately) preserving the monotonocity of GD.

V. NUMERICAL RESULTS

In this section, we show simulation results to demonstrate
the improvement our GD based approaches provides.

Test designs compared: We compare the testing matrices
G obtained via each of the following methods: CCW, CCA,
GD + CCW init., GD + CCA init., GD + sampling. For
completeness, we consider also the trivial all 0-initialization
for GD (which we call GD + 0 init), where the initial point
Q(0) is set to all zeros.

Set-up: We first fix the prior probabilities of infection
(p1, p2, ..., pN ) – each pi is sampled from an exponential
distribution with mean 0.05; if pi > 1, we set it to 1. We
repeat for 10 such prior distributions. For each design, we
estimate E(G) via Monte-Carlo simulations.

Metrics: We use the false positive (FP) rate (defined as
the fraction of uninfected individuals incorrectly determined
to be infected) to measure the performance w.r.t the DND
decoder. Recall that the DND decoder results in 0 false
negatives (FN) by construction.

Transferability to other decoders: As our GD methods
aim for optimal designs with the DND decoder, a natural
follow-up question is how they perform with other decoders.
We compare the performance of each of the test designs
w.r.t the Definite Defective (DD) decoder. One could also
consider other decoders, such as ones based on belief propa-
gation, but these result in both FP and FN, and consequently
the comparison between different methods is not trivial; it
requires weighing FP against FN, which can be application
specific. We refer the reader to Section 2.4 in [10] for a
precise description of DD decoder.Consequently, DD has 0
FP by construction. In this case, we use as performance
measure the false negative (FN) rate.

Observations: In Figure 1a, we plot the FP rate for each
test design w.r.t DND decoder, as a function of T . We
observe that the GD based methods significantly outperform
CCW and CCA6. Notably, the improvement of our enhanced
GD with informed initialization or sampling seems inversely
proportional to T , which is of practical importance.

Next, we plot the FN rate of each test design w.r.t the DD
decoder, as a function of T in Figure 1b. The performance
trend here is similar to what was observed with the DND
decoder, which further supports the usefulness of our GD
based approach and its transferability to other decoders.

6Interestingly, CCW outperforms CCA here, despite using less informa-
tion about the priors. We refer the reader to Appendix G in the longer
version for cases where CCA outperforms CCW.
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