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Abstract This work investigates the application of space—time fractional-order operators to the simulation of
linear elastic waves propagating in 1D periodic structures resting on a viscoelastic foundation. More specifically,
this study focuses on the possible application of fractional-order mathematics as the foundation to develop effi-
cient reduced-order models capable of capturing the wave dynamics in periodic, viscoelastic one-dimensional
metamaterials. By leveraging a space—time fractional formulation of the wave equation, we develop a homoge-
nized model capable of capturing either material or geometric inhomogeneity and viscoelastic behavior. First,
we derive the dispersion relation for a 1D infinite periodic bar resting on a longitudinal viscoelastic foundation
using integer order formulation, which serves as a reference point in this work. Then, we obtain the dispersion
relationships associated with two different fractional formulations. The first formulation relies on the use of
time-fractional derivatives and focuses on capturing the dissipation induced by the viscoelastic foundation.
The second formulation relies on the use of space—time fractional derivatives in order to lead to a homoge-
nized one-dimensional model of the periodic bar. In order to achieve real-valued fractional orders, a matching
approach between the dispersion relations of the fractional- and integer-order differential equations is used.
Numerical simulations show that the space—time fractional wave equation serves as an effective homogenized
model that well represents the wave propagation in a 1D periodic bar on a viscoelastic foundation. The results
also illustrate that the use of space-fractional derivatives allows modeling the dynamics within (low order)
frequency band gaps, a result typically not achievable with classical homogenization techniques.

Keywords Periodic structures - Viscoelastic foundations - Homogenization - Fractional calculus

List of symbols
Pi Mass density for material i
0; Effective mass density for material i in time-fractional wave equation
0 Effective mass density in space—time fractional wave equation
E; Young’s modulus for material i
E Effective Young’s modulus in space—time fractional wave equation
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Length of material i within the unit cell
Length of the unit cell
Cross-sectional area
Elastic stiffness parameter of the viscoelastic foundation
Damping parameter of the viscoelastic foundation
Effective elastic stiffness parameter of the viscoelastic foundation
Effective damping parameter of the viscoelastic foundation
Wavenumber in integer-order Bloch wave solution
Wavenumber in time-fractional Bloch wave solution
Wavenumber in space—time fractional Bloch wave solution
Frequency
Angular frequency
N(E) Real component
) Imaginary component
u; Integer-order Bloch wave solution for material i
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Time-fractional Bloch wave solution for material i
Space—time fractional Bloch wave solution
Ui Periodic function defined in integer-order Bloch wave solution for material i

i’ Periodic function defined in time-fractional Bloch wave solution for material i
U Amplitude in space—time fractional Bloch wave solution

Ai Exponent defined in integer-order Bloch wave solution for material i
A Exponent defined in time-fractional Bloch wave solution for material i

Bi Time-fractional order for material i in time-fractional wave equation
o Space-fractional order in space—time fractional wave equation
B Time-fractional order in space—time fractional wave equation

1 Introduction

The rapid advancements in additive manufacturing techniques have further focused on the attention of the
engineering community on the design and analysis of complex heterogeneous structures with non-trivial
geometries. To date, many examples of architectured structures exploit either the periodic gradation of materials
or of geometric structural features to tailor the dynamic behavior [1-5]. In the case of periodic structures,
systems are assembled by repeating periodically in space a fundamental unit cell that captures in itself all
the distinctive constitutive material and geometric features of the overall structure. The properties of the unit
cell can be designed to enable the periodic structure to exhibit unique wave-guiding characteristics including
wave shaping, collimation, focusing, and steering [4-9]. These remarkable properties of periodic structures
have resulted in a wide range of applications in the most diverse fields of engineering, nanotechnology, and
even biotechnology. Specific examples of applications of periodic structures include biological implants and
wearable devices [10,11], micro/nano-electromechanical devices [7,8,12], and even macroscale structures
relevant to aerospace, railway, and civil engineering applications [13—16].

In several of the aforementioned examples, the heterogeneous structures are often accompanied by elastic
and viscoelastic elements that further the ability to tailor its wave-guiding characteristics. As an example, the
soft filaments used in solid-propellant rocket motors [13], the ballast underlying railway tracks, foundations of
buildings and off-shore pipelines [15—17], the cushioning and air gaps used in performance footwear, and even
the foundation structure of most biological implants [10,11, 18] can be abstracted and analyzed as either elastic
or viscoelastic foundations that when combined with the heterogeneous parent structure could be designed
potentially to achieve vibration and shock control and stress wave propagation. Indeed, the interplay between
periodic structures and structural foundations in these types of applications adds more flexibility to the design
and creates new degrees of freedom to control the overall dynamics. In all these applications, the ability to
develop accurate and computationally efficient models is paramount to achieving the full performance potential.

During the past few decades, several analytical and numerical approaches have been proposed to simu-
late the dynamics of periodic structures on different types of foundations. Based on the underlying physical
model and the numerical technique adopted to simulate the model, the most established approaches could
be broadly classified into five categories: discrete approaches, classical homogenization approaches, asymp-
totic approaches, computational homogenization approaches, and nonlocal homogenization approaches. We
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briefly review these approaches in the following section. The key highlights of the different approaches, their
advantages, and the challenges faced by them are summarized in the following:

e Discrete approaches are invariably based on the classical (local) approach to continuum mechanics. From
a high-level perspective, these approaches are characterized by a process of discretization of the system in
space and/or time, or discretization of the system response in terms of appropriately chosen test functions.
Examples of the former approach include finite difference methods [19] and finite element methods [20],
while examples of the latter approach include plane-wave expansion methods [21] and variational methods
[22]. These techniques have found good success and are still widely used, but they are subject to an implicit
trade-off between computational time and prediction accuracy (that is directly related to the resolution of the
specific approach). Additionally, for structures with multiscale spatial inhomogeneity or memory effects,
discrete methods require very fine resolution to capture accurately the multiscale response and lead rapidly
to computational resources that are beyond available capabilities. This is often encountered in the simulation
of porous, polymeric, and functionally graded materials [18,23,24].

e Classical homogenization approaches eliminate the spatial variation of the material and geometric param-
eters typical of heterogeneous structures by replacing them with so-called effective parameters, that is
spatially independent (constant) parameters capable of representing the behavior of the original structure
in an approximate sense [25,26]. These homogenized (or effective) properties facilitate the use of classi-
cal continuum theory for the simulation of the response of these complex media. While homogenization
approaches offer a powerful alternative that is not subject to the same computational cost of discrete meth-
ods, classical homogenization approaches encounter some important limitations when applied in a dynamic
regime. The homogenized material properties can be representative of the actual heterogeneous medium
only when the wavelength of the propagating wave is sufficiently larger than the characteristic length scales
of the microstructural features. This limits their application to the low-frequency regime and does not allow
classical homogenization approaches to predict the existence of frequency band gaps [27,28].

e Asymptotic approaches use either multiscale expansions of bulk (homogenized) material properties in the
spatial domain or perturbation of homogenized response fields in the temporal domain to capture some
aspects of microstructural features and memory effects. Examples of asymptotic methods used for the
analysis of complex structures include high-frequency homogenization that is used for spatial homoge-
nization of periodic structures [27,29], as well as higher-order averaging, incremental harmonic balance,
and multiple scales analysis [11,16,30] which are typically used to capture memory effects across different
temporal scales. Very recently, advanced asymptotic homogenization techniques have been developed to
model complex hierarchical biological structures [31-33] and nonlinear heterogeneous materials [34,35].
Despite providing a very successful approach to broadband homogenization, a major limitation of asymp-
totic methods follows from the rather complex analytical derivation that is only viable for limited types of
structural analysis (and under specific loading conditions). In the context of the present study, we also note
that comprehensive models capable of combining asymptotic methods in both space and time (necessary
to analyze periodic structures on viscoelastic foundations) appear to be absent in the literature.

o Computational homogenization approaches construct a microscale boundary value problem to capture the
influence of the microstructure at the continuum (macroscopic) level [36]. Along with the development
of computational methods, in the past 2 decades, computational homogenization has received increasing
attention. Examples include, but are not limited to, finite element-based [37,38], FFT-based [39,40], and
even data-driven [41,42] computational homogenization techniques. While this class of homogenization
approaches can well capture the multiscale behavior, the strong coupling between computational methods
and homogenization indicates that these approaches are still computationally expensive [32].

e Nonlocal homogenization approaches based on fractional-order calculus have been recently used to model
the response of heterogeneous periodic media as well as viscoelastic media [28,43—47]. Fractional-order
operators enable the differentiation and integration to any real or complex order, are intrinsically multiscale,
and provide a natural way to account for several complex physical mechanisms such as nonlocal effects
[45,48-50], medium heterogeneity [51,52], and memory effects [53—56]. While time-fractional operators
enable memory effects (i.e., the response of a system is a function of its past history), space-fractional
operators can account for medium heterogeneity and nonlocal effects. In other terms, while temporal
fractional derivatives physically represent damping and dissipation that occur in lossy or viscoelastic
materials [57-59], spatial fractional derivatives are indicative of attenuation in systems that potentially are
still conservative [28,44]. In other terms, space-fractional derivatives are ideal tools to capture frequency
band gaps in which attenuation is due to multiple back scattering and not to energy dissipation. Indeed, this
latter concept was leveraged in previous studies [28,44—46] to obtain the homogenized equations governing
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the dynamic response of periodic structural elements. One of the most notable results of these studies was
the observation of the validity of the fractional homogenized equations beyond the classical homogenization
limit and their ability to capture the response within (low order) frequency band gaps. Remarkably, unlike
discrete approaches, fractional calculus-based nonlocal homogenization approaches are often associated
with lower computational cost [23,24,28]. This discussion suggests that fractional calculus can serve
as a powerful mathematical tool for the homogenization and analysis of dissipative periodic structures,
such as periodic systems resting on viscoelastic foundations. In this regard, we note that a comprehensive
space—time fractional homogenized formulation capable of modeling periodic structures with dissipation
is still missing. Finally, we note that the formulation developed in [28,43] resulted in complex-valued
fractional orders that renders the model sensitive to numerical approximations adopted in the evaluation
of complex-order fractional operators. A method capable of casting the homogenized problem in terms of
only real-valued fractional orders would greatly benefit accuracy and efficiency.

While the above discussion is not meant to provide a comprehensive overview of the broad topic of computa-
tional methods for periodic systems, it does highlight some key limitations of these established methodologies.
From the above discussion, we conclude that existing approaches are not theoretically and computationally
equipped to provide a comprehensive and simultaneous account of spatial and temporal attenuation that can
occur in the response of dissipative periodic structures, such as those connected to elastic and viscoelastic
foundations. However, fractional calculus-based approaches present the most promising route in terms of the
range of validity, accuracy, and potential computational efficiency to model the different physical mechanisms
underlying the response of periodic and lossy structures.

In this study, we leverage fractional calculus to develop a comprehensive temporal and spatial homogeniza-
tion approach. More specifically, we extend the previously developed space-fractional approaches [28] to time-
and space-fractional approaches that simulate the response of periodic structures on viscoelastic foundations.
The coexistence of Bragg scattering resulting from material periodicity and the viscoelastic effects from the
foundation can be simultaneously captured by space- and time-fractional operators, respectively. Moreover,
by deriving real-valued fractional model parameters, the proposed method will address numerical instabilities
characteristic of previously developed fractional-order approaches. The overall contributions of this study are
threefold:

e To formulate a reference one-dimensional periodic system on a foundation we consider a bi-material
periodic rod resting on a viscoelastic foundation. In the following, we will refer to the periodic rod on the
foundation as the “periodic system," for the sake of brevity. The viscoelastic foundation is idealized by
means of lumped spring and damper elements operating in parallel; this simple modeling assumption allows
easily exploring the range of possible foundation conditions (from purely elastic to purely viscous). First, the
classical integer-order governing equations describing the periodic system are derived and their analytical
dispersion relations are presented. The analytical solutions of the fully resolved integer-order model provide
the reference solution to validate the prediction obtained from the fractional-order homogenized model.
Further, the dispersion relations will be used to derive the fractional model parameters.

e To develop a time-fractional order homogenization approach we develop a reduced-order model that
captures the impact of the viscoelastic foundation on the bi-material periodic bar by using time-fractional
operators. By leveraging the memory effect of time-fractional derivative, we propose a periodic time-
fractional wave equation that allows to capture the ultra-low band gap as well as damping effect brought
by external viscoelastic forces.

e To develop a space—time fractional-order homogenization approach we further homogenize the bi-material
periodic bar in the second step using space-fractional operators to capture the spatial heterogeneity and its
impact on the system dynamics. Specifically, we further extend the periodic time-fractional wave equation
obtained in the first step into the homogeneous space—time fractional-order wave equation. While the time-
fractional operators capture the viscoelastic effects, the space-fractional operators, at the same time, are
leveraged to capture wave propagation characteristics due to material periodicity.

Note that in each fractional-order homogenization step, the homogenization, or the dynamic equivalence
between the original integer model and the fractional models, is achieved by matching dispersion relations.
Specifically, we derive the dispersion characteristics of the corresponding fractional-order elastodynamic
equations and compare them directly to the dispersion relations derived from the integer-order model. This
enables an inverse strategy to determine the fractional model parameters. We highlight that the strategy to
determine the model parameters in a fractional model can follow different avenues such as: (T1) matching
techniques based on representative system characteristics (in the case of this study, the dispersion properties)



On the fractional homogenization of one-dimensional elastic metamaterials 265

Unit cell

Fig.1 Schematic showing the configuration of a 1D bi-material bar on a longitudinal viscoelastic foundation. The bar is composed
of periodic sections made of two different materials. Sections containing material 1 and material 2 are distinguished using white
and black colors. For each material i = 1, 2, E; is Young’s modulus, p; is density, and L; is length of material section. The evenly
distributed longitudinal viscoelastic foundation is illustrated using Kelvin—Voigt model. The elastic effect is represented using
springs with stiffness k and the damping is represented using dampers with damping coefficient ¢

[28,43]; (T2) derivation of physics-driven laws [60,61]; and (T3) data-driven techniques [23,51,62], depending
on the underlying physics being captured. Broadly speaking, matching techniques are suitable when fractional
calculus is employed to simplify models while maintaining accuracy (e.g., fractional homogenization and
model-order reduction, like in the present study). In the case of evolutionary nonlinear problems, such as
contact dynamics [60], viscoelastic mechanics [63], and dynamic fracture [61], physics-driven laws could be
defined and embedded in the order definition so as to determine the order variation based on the instantaneous
response of the system. Finally, to describe physical mechanisms that are intrinsically fractional and, as such,
not fully described by integer-order operators (e.g., anomalous and hybrid transport processes), data fitting
selected characteristics of fractional models against experimentally obtained data becomes an indispensable
tool. Typically used approaches in this latter category include standard regression techniques [56,57] and even
machine learning techniques [23,64,65]. While there is a lack of widespread consensus on general inverse
methods, the inverse strategy adopted here does not have any bearing on the generality of the fractional-order
homogenization technique, developed in this study for periodic systems.

Before proceeding further, we emphasize that the periodic bar system was chosen in order to enable a
clear and more transparent development of the fractional-order homogenized model since it enables analytical
approaches to obtain the dispersion relations (required for the inverse problem) and the system response from
the governing equations (required for validation) for both the integer- and fractional-order models. However,
the overall time- and space-fractional model development strategy, the inverse strategy, and the validation
procedure are highly general in nature and can be extended to other periodic structural elements on viscoelastic
foundations.

The remainder of this paper is structured as follows: First, we derive the dispersion relation and the
analytical solution of the integer-order governing equations that describe the response of the periodic system
in Sect. 2. Then, in Sect. 3, we develop the fractional-order homogenized models and determine the fractional
model parameters. Finally, in Sect. 4 we validate the fractional-order homogenized model via direct numerical
simulations and also explore the ultra-low-frequency band gap as well as the dissipating characteristics of
periodic bars attached to elastic foundations.

2 Periodic bar on a viscoelastic foundation: integer-order formulation

In this section, we first present a periodic 1D bi-material bar structure with a longitudinal viscoelastic foundation
as shown in Fig. 1. To determine the fractional model parameters of the corresponding effective model, we
derive the governing equations and the dispersion relationship describing the wave propagation through this
structure using a fully resolved integer-order formulation.

2.1 Governing integer-order equations and dispersion relation

We consider an infinite bi-material periodic bar resting on a viscoelastic foundation, as shown in Fig. 1. As
illustrated in Fig. 1, the periodic bar consists of two sections and the viscoelastic foundation has uniform
properties throughout the length of the bar. The length of the two sections within the periodic bar are denoted
as L1 and L, such that the lattice constant of the bar is A}, = L1 + L». The coordinate system is chosen such
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that the origin coincides with the interface of the two sections (see Fig. 1). It follows that section #1 appears
for x € [-L; + NAyr, NAL], while section #2 appears for x € [NAL, L> + NAy], where N is the set of
integers and x is the spatial location along the length of the bar. Further, the elastic modulus, density, and
cross-sectional area of each section are assumed to be homogeneous and are indicated as E;, p;, and A; with
i € {1, 2}, respectively.

In the classical locally elastic description, the governing equation of a heterogeneous bar resting on a
heterogeneous viscoelastic foundation is expressed using integer-order differential operators as [28]:

0%u(x, 1) c(x)] du(x, 1) k(x) 19 du(x, 1)
or2 +[p<x)} a1 +[p<x>}”(x’”_Mﬁ[mmm ox }

where u(x, t) denotes the axial displacement of the bar at the spatial location x and time instant . Further,
E(x), p(x), and A(x) denote the Young’s modulus, density, and cross-sectional area of the heterogeneous bar,
respectively. Similarly, k£ (x) and c(x) denote the stiffness and viscous damping coefficients of the heterogeneous
foundation. For the periodic bar introduced previously in this section, the Young’s modulus and density are
both periodic functions with a spatial period A (= L1 + L), and the cross-sectional area is assumed uniform
across the length of the bar (that is, A(x) = A). Further note that, within each section of the bar, both material
and geometric properties are uniform. Finally, for the homogeneous viscoelastic foundation, the elastic and
damping properties are constant functions in space, that is, k(x) = k, and c¢(x) = c. Following the above
assumptions, we simplify the governing equation provided in Eq. (1) to the following version that is applicable
to each individual section of the bar:

9%u; N ¢ du; N k E; 3%u; @

e I i

ar o op ot op | p Ox2
wherei = 1Vx e[-L;i+NAL, NArL]andi =2V x € [NAL, L> + NAL]. Further, we have denoted c/ A

and k/A as ¢ and k, respectively. Henceforth, in the interest of a more compact notation, we will not explicitly
denote the functional dependence of the axial displacement on the spatial and temporal variables.

(1

2.2 Dispersion relation

In this section, we obtain the dispersion relation for the system discussed in the previous section. Broadly
speaking, the dispersion relations can be derived by assuming either (1) a real-valued wavenumber and deriving
the corresponding complex angular frequency or (2) a real-valued frequency and deriving the corresponding
complex wavenumber [66,67]. While the former approach enables capturing transient decay (via the imaginary
component of the frequency) in amplitudes typical of free vibrations of damped systems, the latter approach
is more suitable in capturing spatial decay (via the imaginary component of the wavenumber) resulting from
multiple scattering in forced systems. Examples of the two approaches can be found in [68—70]. In this study,
we primarily consider the latter approach to analyze the spatially damped time-harmonic waves in the periodic
system. For this purpose, we first assume a time-harmonic solution for the axial displacement u; of each
section within the bar. Next, the periodic nature of the coefficients in the governing differential equation of
the bar (resulting from the periodic variation in the bar properties) allows using Floquet theorem to describe
the spatial displacement as a quasi-periodic function across adjoining unit cells [71]. Consequently, the axial
displacement of each section within the bar can be assumed given by:

ui (x, 1) = U; (x)el** el (3)

where U; denotes the amplitude of section i. Given the quasi-periodic nature of the axial displacement, the
amplitude is a periodic function such that U;(x) = U;(x + Ar). Note, this latter expression also ensures
consistency of the displacement field at the interface between two adjoining unit cells within the bar. Further,
in Eq. (3), j = +~/—1 denotes the imaginary number, and ;1 and @ denote the Floquet wavenumber and the
angular frequency, respectively. Note that as we previously clarified, both u and @ can be complex-valued to
capture spatial attenuation and temporal dissipation of the axial response of the beam, respectively.

By substituting the ansatz in Eq. (3) into Eq. (2), we obtain the following governing equation describing
the spatial variation of the amplitude U;:

32U; aU; 5k joc  (w)lp
2j in)?— — —t— — Ui=0 4
P taAng o+ ) E L E i “)
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where for convenience, we use x™* to represent the relative position of x within the current periodic interval.
The relation between x* and x is given as x* = x — NAL Vx € [-L; + NAL, Ly, + NAL]. The solution of
the above second-order ordinary differential equation is obtained as:

Ui (.x) = Uile()"ifjﬂ)x* + Uize(,)"ifju_)x* (5)

where U;; and Uj; are either real or complex constants. Further, u; is given as:

(6)

Note that unlike #; (x) in Eq. (3), the solution to U;(x) in Eq. (5) is periodic in nature. Substituting Eq. (5)
back into Eq. (3), the overall displacement field in the periodic bar can now be expressed as:

ui(x, 1) = Upei X" eix ol | ;5e(=4imiima” gl glot )

The dispersion relations for the periodic bar can be derived by establishing a relationship between the set of
four constants U;; and U;>. Imposing the continuity of displacement and axial force at the interface of the two
sections (that is, at x = 0) results in the following set of two equations:

u1(0) = uz(0) (8a)
ou ou
AR (8b)
dx x=0 dx x=0

An additional set of two equations are established below by using the Floquet theorem in order to relate the

displacement and axial force at x = —Lj and at x = Lj:
ur(—Ly) = up(Ly)elAr (9a)
0 0 :
lﬂ — Egﬂ elHAL (9b)
dx x=—L, dx x=L»

By using the displacement field solution in Eq. (7) within the above-provided set of continuity conditions, we
obtain the following algebraic set of equations:

1 1 -1 ~1 Al
Eq1X —EA —Ex)p E>p By
e—MLIHinAL e~ Li+inAL _ohala ol A= 0 (10)

El)»]e_)”ll‘lﬂuAL —El)nle_)‘lLl—"_jMAL _Ezﬂzeksz Ez)nzeﬂzl‘z B>

For a nontrivial solution to the displacement field of the periodic beam the determinant of the coefficient matrix
in Eq. (10) must be set to zero. This yields the dispersion relation for the periodic bar as:

. . . . o E1hr | E2)g
cos (WAL) = cos (jA1L1) cos jAaLo) — —sin JA1L1) sin Ao Lo) | —— + —— (11D
2 Exdy  Erh

The roots of the above nonlinear equation, for a given value of w, give the value of the Floquet wavenumber
. More specifically, we have:

1 1
n= o cos™! [cos (GX1L1)cos (jAaLo) — Esin (GA1L1) sin (jAaLo) ( (12)

L

E>ho EiA AL

where M is the set of integers and cos ! (-) is the inverse cosine function. Without any loss of generality, we
choose M = 0 here by taking the principal value of the inverse cosine function. This latter choice merely
results in a folding of the dispersion curves across the irreducible part of the first Brillouin zone of the periodic
bar (as also evident from the results presented later in this section). In the absence of the viscoelastic foundation
(that is, k = ¢ = 0), Eq. (11) reduces to the dispersion relation of an elastic bi-material periodic bar [29].
Similar to the case where k = ¢ = 0, the real (%t(2)) and the complex (J(p)) part of the wavenumber capture
the wave oscillation and wave attenuation, respectively [28,29]. By using the complex wavenumber approach,
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Fig. 2 3D plots showing the evolution of the dispersion curves for the 1D bi-material periodic bar on a viscoelastic foundation. a
and b show how the dispersion relations evolve with the characteristics of the viscous foundation (¢ € [0, 3 x 10°] and k = 0); ¢

and d show how the dispersion relations evolve with the characteristics of the elastic foundation (k € [0, 3 x 10 andc = 0). It
can be observed that (1) the viscous foundation mainly affects J(u) such that the wave will become evanescent at all frequencies,
and (2) the elastic foundation mainly affects the dispersion at ultra-low frequencies by creating an additional band gap. The
evolution of the three band gaps is explicitly illustrated in (¢) and (d) by projecting on the top and bottom planes using three
shaded gray regions. The left shaded region is the ultra-low band gap created by the elastic foundation and the middle and right
shaded regions are the band gaps created by material periodicity. Red arrow lines indicate the growth of the ultra-low band gap

size with the elastic constant k. (Color figure online)

Eq. (12) is derived to represent a solution for steady-state elastic waves [29]. Note that while other approaches
such as complex frequency and even complex wavenumber/frequency formulation can be used [68—70] are
also available for deriving dispersion relations, they are more suitable for analyzing transient waves (or free
wave dissipation) in periodic structures, not for analyzing steady-state waves. Moreover, unlike the complex
frequency approach which requires solving the nonlinear dispersion relation equation in Eq. (11), the same
dispersion relation equation can be easily solved via inverse cosine function using the complex wavenumber
approach. We remark that despite the different available approaches, the overall purpose (developing fractional
homogenized model) as well as the physical mechanism (the dispersion relation) in this study should remain
unchanged; hence, these approaches (that are used to derive dispersion relations) do not alter the overall
framework of the inverse strategy.

In the subsequent analysis, we consider a periodic bar consisting of two alternating materials. The cor-
responding mechanical properties of the two sections are E; = 70 GPa, p; = 2700 kg/m> (consistent with
aluminum) and E; = 110 GPa, p = 8100 kg/m3 (consistent with brass). Each section is assumed to have
equal length L1 = L, = 1 m. The dispersion relation in Eq. (12) can be used to obtain some qualitative
insights on the effect of the viscoelastic foundation on the behavior of the periodic bar. For this purpose, we
performed two independent parametric studies. Study 1: we set k = 0 and analyze the impact of ¢; and Study 2:
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Fig. 3 2D plots of dispersion curves for the 1D bi-material periodic bar on a viscoelastic foundation. a and b show how the
dispersion relation changes in study 1 (with ¢ varying and k = 0); ¢ and d show how dispersion relation changes in study 2 (with
k varying and ¢ = 0). It can be observed that when without viscoelastic foundation (both k = 0 and ¢ = 0), band gaps shown
by the two gray regions (same for other figures in this study) exist approximately in frequency interval [800 Hz, 1300 Hz] and
[2000 Hz, 2300 Hz], in agreement with the results obtained in [28]. Band gaps of periodic bars with no viscoelastic foundation
(that is, k = 0 and ¢ = 0) are highlighted with gray colored regions

we set ¢ = 0, and analyze the impact of k. The results of these studies are presented in Figs. 2 and 3. Note that
the 3D plots in Fig. 2 are presented to show the detailed evolution of the dispersion curves with continuously
distributed values of k and ¢. The 2D plots in Fig. 3 are presented to show the dispersion relations for selected
values of k and ¢ (see legends in Fig. 3 for those values). Also note that, unlike the shaded regions in the 3D
plots that help understanding the evolution of the band gaps (the shaded regions are not shown in the case of
¢ # 0 where J(u) > 0 at all frequencies so the band gaps do not exist), the shaded regions in the 2D plots
only represent the band gaps of the periodic bars without viscoelastic foundation; this serves as a reference to
identify variations in the dispersion curves. In order to better illustrate the dispersion relations as well as the
wave propagation behavior, we use f = w/2m (in the unit Hz) in all the plots to denote the frequency.

A detailed analysis of the results corresponding to the parametric studies leads to the following observations:

e As evident from the results presented in Figs. 2a, b and 3a, b, the existence of a viscous foundation leads
to energy dissipation which results in a nonzero value of J(u) at all frequencies. As ¢ increases for a given
frequency f, the dissipation effect becomes stronger, and thus J(u) also increases at the specific f. This
characteristic can be explicitly observed in Fig. 3b. Recall that this latter phenomenon is different from
spatial attenuation (which is a conservative phenomenon) and it results in a reduction in size of the band
gap (which is connected to spatial attenuation). This latter behavior is consistent with the nature of lossy
metamaterials as extensively presented in the literature [3,56,57].
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e The existence of the elastic foundation in the absence of damping (that is ¢ = 0) results in the occurrence of
a very low-frequency band gap that can potentially shift down to zero frequency (see Figs. 2¢, d and 3c, d).
In Sect. 4, we will numerically validate the occurrence of the low-frequency band gap by considering the
steady state response of the periodic system for selected values of k. Further, an increase in the size of this
band gap can be observed with an increase in the value of k. Figure 3¢ and d shows the detailed evolution
of the ultra-low band gap. (see the increasing size of the shaded region indicated by the arrow lines for
f € [0Hz, 500 Hz]). Broadly speaking, the introduction of the elastic foundation results in a rightward shift
(i.e., higher frequencies) of the frequency-dispersion curves. This behavior differs from that of periodic
bars not resting on elastic foundations. The ultra-low-frequency band gap can be linked with the dynamic
characteristics of elastic metamaterials that use either local or nonlocal elastic resonators to achieve low-
frequency band gaps [4,5,72,73]. In these studies, the elastic resonator appendages create alternative routes
for the distribution of elastic energy and manipulate the band structure of the parent structure to introduce
a low-frequency band gap. We merely note that the elastic foundation can be regarded as a set of elastic
resonators with infinite mass. Hence, the introduction of the elastic foundation in this case, combined with
the intrinsic back scattering effects within the periodic beam (resulting in attenuation band gaps), provides
alternative routes that lead to the unique band gap characteristics.

e We also observe that while viscoelastic foundations and viscoelastic elements (within periodic structures)
both lead to similar dissipation behavior (resulting from the damping effect), they lead to widely different
attenuation behavior. We anticipate that this fundamental difference is rooted in the difference in the
functional dependence of the elastic energy on either the displacement or strain field. More specifically, in
the case of viscoelastic foundation the elastic energy depends directly on the displacement and velocity of
the bar, while in the case of viscoelastic elements the energy depends on the strain induced in the bar.!.

3 Homogenization via fractional-order calculus

In this section, we develop the fractional-order model for the analysis of the periodic bar on the periodic
viscoelastic foundation. As areminder from the previous sections, the overall procedure consists of determining
the space—time fractional-order governing equations and obtaining the value of the fractional parameters
describing the response of the system. In this regard, the conclusions derived from the parametric studies
conducted in Sect. 2 motivate a direct implementation of fractional-order operators to achieve a reduced-
order homogenized representation of the periodic system. In order to clearly present the development of the
fractional-order model and, more importantly, to highlight the connection and relevance of fractional calculus
to the different phenomena observed in the response of the periodic system, we divide the overall procedure
into two steps:

e Step I time-fractional operators are used to capture the impact of the viscoelastic foundation on the response
of the periodic bar. More specifically, the differ-integral nature of the time factional operators enables a
direct route to model memory effects in time resulting from the presence of the viscoelastic foundation.
This approach results in the formulation of a time-fractional bi-material bar model that retains the periodic
variation of material properties but no longer consists of an explicit viscoelastic foundation. We have
schematically illustrated this concept in Fig. 4. As evident from the figure, each section within the original
periodic system along with the corresponding foundation element is replaced by a reduced model consisting
of a bar with modified (fractional model) properties. Broadly speaking, this can be interpreted as a model-
order reduction technique where the impact of the different foundation elements are directly captured
within the time-fractional operator and periodic material properties of the fractional bi-material bar. This
procedure is analogous to the fractional model-order reduction technique developed in [43] and extends
the latter formulation from lumped to continuum level description.

e Step 2 the time-fractional bi-material bar model, obtained from step 1, is further homogenized by using
space-fractional operators. This step results in a space and time-fractional order elastodynamic formulation
with uniform material properties that fully captures the response of the bi-material periodic bar attached
to the viscoelastic foundation. This final step is illustrated in Fig. 4. This procedure is analogous to the
fractional-order homogenization techniques developed in [28,45,46] for periodically stiffened structural
elements. We highlight that, in contrast to the aforementioned studies, the present study also accounts for

! Recall that for a 1D viscoelastic element the stress and strain (also strain rate) are related as: o (x) = Ee(x) + E'é(x) =
Edu/dx + E'du/dx [13]
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Fig. 4 Two step homogenization via fractional operators. Time-fractional operators are exploited in the first step to capture the
viscoelastic foundation and space-fractional operators are further leveraged in the second step to homogenize the space periodic
time-fractional bar model

the dissipation resulting from the periodic viscoelastic foundation via the time-fractional operator (in step
1). The most immediate consequence of this extension is reflected in the time-space fractional form of the
governing equations.

A detailed discussion of the mathematical formulation underlying the two steps described above is presented
in the following two sections. In each section, we also present the inverse strategy to determine the value of
fractional-order parameters.

3.1 Step 1: time-fractional bi-material periodic bar model

As mentioned in the introduction to Sect. 3, we develop a time-fractional elastodynamic formulation to capture
the impact of the viscoelastic foundation on the response of the periodic bar. Several theoretical [58,74] and
experimental [75-78] studies provided direct evidence of the ability of time-fractional operators to capture
memory effects and frequency-dependent material properties (such as those typical of viscoelastic materi-
als). Consequently, time-fractional constitutive models have been extensively used in the literature to model
viscoelastic behavior [55-57,79,80]. A detailed review of the different fractional-order approaches to vis-
coelasticity can be found in [59]. Given the extensive literature available on the application of time-fractional
differential equations to the modeling of viscoelasticity, we do not focus on the fractional-order mathematics
but rather leverage available results to develop the reduced-order model and the inverse strategy.

3.1.1 Constitutive modeling

The extensive evidence showing the ability of time-fractional operators in accurately capturing the underlying
physical processes in viscoelastic materials motivates the introduction of the time-fractional operators in the
classical governing equations (Eq. (2)) of the periodic bar system. Recall that a fractional-order derivative (say,
of order ) can be considered as an interpolation between consecutive integer-order derivatives (n —1 < 8 < n;
n e N1)[81]. By following the above considerations, we replace the second-order, first-order, zero-order
temporal derivatives of the axial displacement field (that capture the effect of the viscoelastic foundation on
each section) on the left-hand side of Eq. (2) by a time-fractional derivative, hence obtaining the following set
of time-fractional partial differential equations:

N 3ﬂfﬁ,’ _ 3212,'

Pigm =Eiga (13)
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where i = 1 Vx € [-L1 + NAL,NAL]andi = 2V x € [NAL, L, + NArL]. The overall procedure
is schematically illustrated in Fig. 4 (see the step 1 procedure). In Eq. (13), #; denotes the axial response
of the time-fractional periodic bar. Further, 8; € (0, 2] denotes the time-fractional order and p; denotes an
effective “fractional density” parameter having units of [kg'm~3s2~#]. From a physical perspective, p; can
be interpreted as a visco-inertial term that simultaneously captures the viscoelastic behavior, induced by the
foundation, and the inertia of the periodic system [43,63]. To allow the use of integer-order initial conditions,
the fractional-order derivative introduced in Eq. (13) is chosen according to the left-handed Caputo definition:

i« g (g 1 T (t) g
l= D’ He = d t — nl_,Bt_ld 14
defi 0 <e ) F(”i_ﬂi)/(; g 70 ! (1

where n; = [B;], ['(-) is the Gamma function, t is a dummy variable of integration, and 7 is the independent
variable of integration that in this case takes the physical meaning of time.

3.1.2 Inverse strategy

In order to determine the fractional parameters, 8; and p;, we need the dispersion characteristics of the time-
fractional governing equations in Eq. (13) in order to follow the inverse strategy outlined previously. For this
purpose, in analogy with the approach in Sect. 2, we first consider the solution of the time-fractional governing
equations. Since the spatial heterogeneity of the bar is retained in this model, the Floquet theorem can be used to
derive the solution to Eq. (13). Consequently, the axial displacement of each section within the time-fractional
bar can be chosen as:

i (x, 1) = U; (x)ex el (15)

where U; (x) isa periodic function with period A and & denotes the Floquet wavenumber of the time-fractional
periodic bar. To obtain the dispersion relation for the time-fractional wave equation in Eq. (13), we assume
to = 0 and r — o0 such that [82] (also see the supplementary material (SM) for more detailed derivation):

[%Dfl (ejwt) — %Dtlgl (eja)t) |t_)OO — Gw)ﬂieja)t (16)
Substituting the above ansatz into Eq. (13), we obtain that:
0°U; _U; _o o (o)fip; | -
— +2j j ——F— |U; =0 17
a2 DA (i) E i (7

Note that the limit condition ¢+ — oo is introduced to simplify the derivation of time-fractional Caputo
derivative. When ¢ < oo is a finite value, Caputo derivative of an exponential function returns Mittag—Leffler
functions, not the function with exponential kernels shown in Eq. (16) [82]. We highlight that it is physically
compatible to assume t+ — oo when deriving the wave dispersion relation and the steady-state solution simply
because: (1) In the context of the dispersion analysis, we look at the intrinsic (eigenvalue-like) response of
the system which is essentially time independent and (2) in the context of steady-state analysis, we ignore the
temporal oscillation and therefore the overall response does not depend on time.
The solution of the second-order ordinary differential equation derived in Eq. (17) is given by:

0i(x) = Ot 4 el =i’ (18)

where U ;1 and U ;2 are either real or complex constants. Further, )~»,~ is given as:

S N\Bi 4.
i,:,/% (19)

To ensure that the time-fractional wave equation in Eq. (13) captures the same dynamic behavior given by
the fully resolved integer-order wave equation in Eq. (2), it is necessary to enforce the equivalence of their
dispersion relations. By comparing Egs. (5) and (18), it can be found that:

{(Uij, his i} = (Uij, My 1) (20)
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where j € {1, 2}. Substituting the expressions for A; and N; into above equation produces the following
expression for the effective fractional density:

. jeo+k+ (@)’pi _ (k= piw’)cos (5p;) +cwsin (58)  (k — piw?)sin (5 ;) — cweos (5i) .
P Gw)ﬂi - wbi wbi J

1)

Note that in Eq. (21), p; and B; represent two unknown quantities. Hence, in order to determine the values
of p; and B an additional independent condition is required. This second condition is chosen as J(p;) = 0.
Note that if the effective fractional density is a complex quantity, then J(p;) would also contribute to the
dissipation in the system, preventing us from distinguishing the specific extent to which p; and B; capture
viscoelasticity. However, we require that the fractional-order f; captures the entire effects of the viscoelastic
foundation. To guarantee that p; € R, it is sufficient to enforce that:

(k — piow?)sin (%ﬁi) — Zweos (%,3,-) —0 (22)
which leads to the following expressions for 8; and p;:
5 2 tan=! ( cw ) (232)
; = — tan _— a
Lo k — pjw?
k- pio? c
pi= = (23b)

wbicos(54)  wPisin(%B;)

Remarkably, the condition J(p;) = 0 also ensures that 8; € R, as evident from the expression above.
This latter aspect is instrumental in avoiding computational complexities associated with the evaluation of
complex valued fractional derivatives (see [28,43,44]). As evident from Eq. (23), both p; and B; are functions
of the angular frequency w. This observation is consistent with the frequency-dependent properties noted for
viscoelastic materials. From a different perspective, the fractional-order formulation for the periodic bar results
in a variable order §;, where §; is a function of the angular frequency w. In other terms, the derived model allows
the underlying formulation to evolve naturally in the frequency domain, guided by the frequency-dependent
variable-order law that is presented in Eq. (23a). Note that the overall formulation is still constant-order in the
spatial domain. In other terms, the fractional-order that determines the strength of nonlocality (here, resulting
from the material heterogeneity) is uniform across the domain of the solid. We refer the interested reader
to [23,24] for detailed discussions on a generalized formulation for variable-order elasticity and its practical
applications.

The expressions for the fractional model parameters in Eq. (23) allow us to draw insights into the fractional
model-order reduction. We evaluate 81 (w) and p; () for the aluminum-brass periodic bar configuration intro-
duced in Sect. 2, for different combinations of the foundation coefficients. The parametric studies performed
here are identical to study 1 and study 2 conducted in Sect. 2.2 and the results are presented in Figs. 5 and
6, respectively. First, note that, in the limiting case when k = ¢ = 0, the time-fractional bar equation given
in Eq. (13) reduces exactly to the integer-order governing equations given in Eq. (2) as also evident from the
integer-order values for the time-fractional order 8; and the classical values for p;. Further, a more detailed
analysis of the results leads to the following observations on the effect of the foundation coefficients on the
fractional model parameters:

e Impact of ¢ all the fractional model parameters approach the corresponding limiting case result asymp-
totically, as the frequency ( f) increases. As the damping ¢ increases, for a given value of f, the effective
density p; increases while the time-fractional order B; decreases. These results are consistent with the
literature on time-fractional viscoelasticity [55,57,79]. Further, note that in all the cases 8; € [1, 2] hence
indicating a dominance of the visco-inertial regime over the viscoelastic regime [63] as well as a hybrid
propagation mechanism of the elastic waves in the periodic system [45,57].

e Impact of k all the fractional model parameters present a non-smooth variation marked by the presence
of either a jump (as in ;) or a cusp (or equivalently, point of inflection, as in p; which stands in direct
constant to the previous set of results (where k = 0). From a mathematical perspective, the dispersion
curves for k # 0 do not satisfy C! continuity, while the dispersion curves for k = 0 are C! continuous.
Note that the jump in B; from 8; = 0 to f; = 2 is expected since the time-fractional order cannot lie in
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Fig. 5 Curves of the fractional orders 1, 82 and the effective fractional densities o, p, in study 1. a and b show how $; and p,
change with ¢ when k = 0; ¢ and d show how 8 and p, change with ¢ when k = 0. Note that 81 and S, have the same trends as
f changes. Same conclusion also applies to p; and p,

the interval (0, 2) as it is representative of a dissipative dynamics. Unlike the previous case, there is no
damping in the present system and hence, the system is conservative in nature.

3.2 Step 2: Space—time fractional homogeneous bar model

Recall that the differ-integral nature of space-fractional operators enables them to capture nonlocal effects
rooted in either material heterogeneity or intentionally nonlocal geometric designs to achieve accurate and
computationally efficient descriptions of complex structures at the continuum level [23,28,47]. As an example,
space-fractional operators were leveraged in [28,46] to achieve homogenized models that could accurately pre-
dict band gaps and spatial attenuation in periodically stiffened structural elements. Similarly, space-fractional
operators were also used to accurately capture the response of porous and functionally graded structural ele-
ments [23,24]. We merely note that the aforementioned studies did not consider the effect of viscoelastic
foundations and, in a more general sense, the interplay between time and space-fractional operators, that is
between dissipative and attenuating mechanisms. Nonetheless, we leverage (and combine) this recent progress
in space-fractional mechanical models and the formulation developed in step 1 to develop a space—time frac-
tional homogenized bar model. As in the development of step 1, we begin with the constitutive modeling and
develop an inverse strategy to derive the space—time fractional model parameters for practical applications.



On the fractional homogenization of one-dimensional elastic metamaterials 275

3 . —
—k=0
25t i 101 ::.-.E_;;,; R [ S k= 1x10']
FA —-—-]E? =2x10%
2 ! - - k=3x10Y
1 1
— ! _];7 =0 - 1
Q 15 I B .. k= 1x101]1 Q N
: meme k= 21010 10° :
1 I - - k=3x10"|] Lo
1 TAz"
0.5 ' pre
1 |
1 1
0 —— ’ - ; 100 - ; '
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
f(Hz) f(Hz)
(a) f (b) /1
3 . —
—k=0
25t i 1010 :,:S‘\\ ........ k= 1x10%] {
il —-—-k = 2x10"
2 : - - k= 3x10"
1
= 1
~ : _]f =0 & !
«Q 1.5 : ........ kE=1x101| 1 <L s i
| ——-k = 2x10% 1077 i
1 | - = £ =3x10"| Eiican
1 i
osf i |
1
! 0
0 g " : . 10 . . . .
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
f(Hz) f(Hz)
(¢) B2 (d) p=

Fig. 6 Curves of the fractional orders 81, 82 and the effective fractional densities p, o, in study 2. a and b show how 8] and p,

change with k when ¢ = 0; ¢ and d show how B> and p, change with k when ¢ = 0. Note that B1 and B, have the same trends as
f changes. Same conclusion also applies to p; and p,

3.2.1 Constitutive modeling

In this section, in addition to the time-fractional operators in the reduced-order model in Eq. (13), we introduce
space-fractional operators to map the bi-material periodic bar to a homogenized material system described
by space-fractional constitutive relations. More specifically, the periodic (spatial) variation in the material
properties of the bar (in the fully resolved integer-order model or the time-fractional periodic bar model) is no
longer retained in the present space—time fractional model. The overall procedure is schematically illustrated
in Fig. 4 (see the second step). Based on the space-fractional 1D wave equation proposed in [28] and the time-
fractional wave equation used in Sect. 3.1, the space—time fractional wave equation describing the longitudinal
displacement is now given by:

Pu 0%

PoF = Eoma @4)

where 8 € (0,2] and @ € (0, 2] denote the time and space-fractional order, respectively. u denotes the
axial response of the space—time fractional periodic bar. E is the effective “elastic modulus” of the fractional
homogenized bar and has units of [kg'm®~3s~2]. Further, 5 denotes the “effective” density of the space—time
fractional homogenized bar, analogous to p; in step 1 (see Eq. (13)). Analogous to the time-fractional operator,
the space-fractional operator in Eq. (24) is chosen according to the Caputo definition. Note that the Caputo
derivative of a constant function is zero [81]. This latter characteristic is critical in ensuring that a translation
of the body (or equivalently, the origin of the coordinate system) results in zero strain and stress (that is, the
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right-hand side of Eq. (24) is zero). In other terms, the Caputo definition guarantees frame invariance of the
space—time fractional-order model [45,83].

3.2.2 Determination of the fractional-order parameters

Similarly to the approach in Sect. 3.1.2, we derive the dispersion characteristics of Eq. (24) to estimate the
different parameters for homogenization of the bi-material periodic bar on the viscoelastic foundation. Note
that differently from the model in step 1, where we assumed different wave solutions for the two sections
and enforced continuity conditions, here we can assume a single wave solution that describes the entire
homogenized medium. Consider the following two ansatzes:

i t) = Uellrel@! (25a)
H(x 1) = Ueiixgier (25b)

where U is the amplitude of the wave, and /& denotes the homogenized Floquet wavenumber with its real part

% > 0. Note that, two different space exponential functions e/** and e ¥ are formulated in the first and
second ansatz to represent backward and forward propagating waves, respectively. We now evaluate the space-
fractional Caputo derivatives in both two cases. Specifically, we consider the periodic bar to be semi-infinite
long such that by taking the lower bound to be —oo and oo for backward and forward propagating waves,
space-fractional Caputo derivatives with respect to harmonic inputs are given by:

LCpr (77) = iy 260
L-Cpe (e—jﬁx> = [y (26b)

where the fractional operators _ C D%(-) and $ D% (-) are also called as left-handed and right-handed Liouville—
Caputo derivative, respectively, defined as:

e proy ] / SO
“Dif W =mo = | g @0 dr (27a)
L-C o _ (=" < d" f(r) _n—a—1

D f(x) = NCEA 1o (t —x) dr (27b)

Detailed derivation of Eq. (26) is given in the SM. Similar to the time-fractional case shown in Eq. (16), the
space-fractional Caputo derivative of space-harmonic wave inputs also returns in exponential form, therefore
simplifies mathematical derivation. Note that the same approach is adopted in [28] to obtain a closed-form ana-
lytical solution to space-fractional wave equations. Substituting Eq. (25) into Eq. (24) and using the properties
in Egs. (16, 26), we obtain the dispersion, for both forward and backward propagating waves, as:

1
) NVEE
ﬁ=—j{p () } 28)

E

We again match the above dispersion characteristic of the fractional wave equation to Eq. (12) that is:

n=p (29)

to enforce equivalence in the dynamics of the homogenized model and of the fully resolved bi-material
periodic bar with a viscoelastic foundation. The fractional model has four parameters {8, «, p, E } that must
be determined from the equivalence of the dispersion relation (which provides only a single equation). To
determine the values of the four unknown model parameters, we first obtain ,3 and p using an additional
analysis that involves matching the temporal dynamics, and then estimate E and « from the equivalence of the
dispersion relations.

To determine B and p, we consider matching the temporal dynamics of the integer and fractional models. For
this purpose, we equate the Laplace transforms of the dynamic terms of the integer and space—time fractional
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wave equations, that are, the left-hand sides of Eqs. (1) and (24), respectively. The Laplace transforms of the
left-hand sides of Eqgs. (1) and (24) are given, respectively, by:

2u  _du - 5 —
L pm +c¥ +ku) = pU(s)s”+cU(s)s + kU (s) (30a)
8Pu
T _ A ﬁ
L (,0 o7F ) = pU(s)s (30b)

where p denotes the effective density of the periodic bar obtained via the classical rule of mixture approach
[25]:

Lip1 Lops
p = €19
Li+Ly Li+Ls
Now, by substituting s = jw and equating the Laplace transforms, we obtain that:
pw) = p()* +2(w) +k (32)

Note that the functional form of the above expression is identical to Eq. (21) (step 1). This is not surprising
since we are, in principle, mapping the system dynamics from the time domain in step 1 to the Laplace domain
in the present case. Simplifying Eq. (32) and enforcing I(p) = 0, we obtain:

5 2t —1( cw > (332)
= "tan | =——— a
7 k — pw?

k — pw? _ cw
wPcos(5B)  wPsin(FB)

p = (33b)
Note that above presented results can also be directly obtained from Eq. (23) by assuming that p; is equivalent
to the effective density presented in Eq. (32) [25].
By using the expressions for 8 and p in Eq. (33) within the equivalence of between dispersion relations
presented in Eq. (29), we obtain:
SN2 = -
. k
i = PG +TG) + .
)
Recall that u is a complex number in general (particularly, when the frequency is located within a band gap).

Upon considering the polar expression i = |u|e’?, where 6 denotes the argument of 1, E can be simplified
as:

p(jw)* + (o) +k

E= — (35)
|12l [cos((6 + F)a) + jsin((6 + 5)ar)]
Again, by imposing S(E) = 0 we obtain the following closed-form expressions for « and E:
) _
o= tan ™! _L (36a)
T+ 20 k — ,oa)2
A k — pw? cw
E = (36b)

[ul%cos (Bar)  |w|%sin (Bar)

As expected, the fractional model parameters and the effective material properties are a function of frequency.
Further, analogous to the inverse strategy outlined for step 1, imposing S(E) = 0 ensures that both « and E
are real valued in nature. The real valued nature of « is in contrast to the study conducted in [28], where a
complex valued o was obtained to describe the attenuation band gaps and space-fractional dynamics of the
periodic bar. We will discuss this aspect in more detail in the parametric study presented below.

We repeat the parametric studies performed previously in Sect. 3.1.2 to analyze the impact of the foundation
parameters (k and ¢) on the fractional model parameters. The results are presented in Figs. 7 and 8 for study



278 W. Ding et al.

@ 15} —z=0 dl.slé; ==10
........ C — 6 - -
i 81X 106 ........ &= 1x10°
1 e = 2% 10 1 ¢ ol
- - &=3x10° Fe=ma= RI0
— - - ¢=3x10%
0.5 0.5 ]
0 * - t L 0 i
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
f(Hz) f(Hz)
(a) B (b) «
107 : : ' 102
— =0
........ c=1x108
1004 ——eg=2x10°] 10" NW—
by - - &=3x108 7 -0
:e|'\‘\ { ........ c=1x108
ST AN 3 & 1o — NOJE
- - ¢=3x10°
104 L 109 L
10° ‘ : : 10 : ' : ‘
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
f(Hz) f(Hz)
() » d E

Fig. 7 Results showing how the time-fractional order B, the space-fractional order «, the effective fractional density p, and the
effective fractional modulus E vary with the frequency f in study 1

1 and 2, respectively. As evident from the results, the conclusions noted on the impact of ¢ and k on the time-
fractional order and effective density in the step 1 model directly extend to the step 2 time-fractional order and
effective density parameters. Hence, in the following we only discuss the impact of the foundation parameters
on the space-fractional order « and on the effective modulus of elasticity E. In this regard, note that the values
of o and E vary significantly within the dispersion band gap indicating a shift in the underlying transport
process from being propagating to attenuating in nature. This is more clearly evident from study 2, where we
observe that & € {0, 2} in the propagating bands (indicating a classical wave propagation), while « € (1.5, 2)
in the band gaps (indicating anomalous propagation characteristic of attenuating solids [45]. We merely note
that the presence of damping leads to an asymptotic approach to the limiting case (as also seen in step 1). On
the other hand, note that the presence of band gaps has no effect on the values of the time-fractional order and
the effective density (as also the case in step 1 model). This is expected since the presence of band gaps is a
direct result of the spatial periodicity of the system which is captured via the space-fractional component of
the overall fractional-order homogenized model.

Note that, in the limiting case of k=0,c=0 (that is, in the absence of the viscoelastic foundation), and
when the angular frequency is within the band pass regime, @« = 8 = 2 as expected. For this combination of
the orders, it can be shown using Eqgs. (33, 36) that the effective speed of pressure waves in the bar, given by:

. |E w
b= === 37)
pon
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Fig. 8 The zero orders correspond with ultra-low band gap phenomenon. Results showing how the time-fractional order g, the
space-fractional order «, the effective fractional density 0, and the effective fractional modulus E vary with the frequency f in
study 2. Note that the four parameters vary drastically within the ultra-low band gap imposed by k

is consistent with classical predictions [25]. We note also that, under the previous condition (% =0,¢c =0), the
values of «, B, and ¥ are in exact agreement with the results obtained in the fractional-order homogenization
technique proposed in [28]. However, in the more general case, when either k # 0 or ¢ # 0 the results
presented in this study differ from the predictions in [28]. More specifically, for the case when the angular
frequency is located within a band gap, the space-fractional order « is complex valued in [28] while it is real
valued in the present approach. While the approach presented in [28] is still valid, it was pointed out that the
use of complex-order fractional derivatives has some drawbacks leading to computational inaccuracies and
instabilities.

4 Numerical simulations and validation

In this section, we perform two parametric studies (different from the previously defined study 1 and study
2) to validate the two different fractional-order homogenized models developed for the periodic bar attached
to a longitudinal viscoelastic foundation. In the first study, we analyze the effect of the excitation frequency
on the steady-state response of the system and in the second study, we analyze the effect of the foundation
coefficients on the steady-state response. In all the cases, we consider only the section of the infinite periodic
system in the positive x-axis and apply a forcing condition consisting of a sinusoidal axial displacement of
unit magnitude at x = 0. In each study, we validate the fractional model prediction against the corresponding
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integer-order solution. Note that the analytical expressions for the steady-state response of the different models
were presented previously while deriving the corresponding dispersion characteristics.

First, we simulate and compare the dynamic response of the periodic system by using the different integer-
and fractional-order models for three different excitation frequencies: 100 Hz, 500 Hz, and 1000 Hz. The results
of this study are presented in Fig. 9. In each case, we first simulate the response of the periodic bar with a
purely viscous foundation (k = 0 and ¢ = 1x 10°) and then with a purely elastic foundation (k = 1x10'? and
¢ = 0). First, Fig. 9a reveals a spatially decaying response at f = 100Hz (a frequency value that lies within
the low-frequency band gap). Next, as evident from Fig. 9, the match between the fully resolved integer-order
model and the developed fractional-order model is excellent for all cases. The root-mean-square-error (RMSE)
for the fully fractional (space—time fractional model in step 2) in Fig. 9 is 0.0137, 0.0086, 0.0324, 0.1042,
0.0063, and 0.0056, respectively, for subplots (a) to (f) in Fig. 9. Note that the RMSE of the fractional solution

! with respect to the reference solution u; is evaluated by:

N
RMSE(u/) = {% 3 (ulf _ ul.)z} (38)

i=1

u

where N denotes the number of points used in the spatial discretization of the periodic system, and u lf = u for

the step 1 fractional solution and u i.f = u for the step 2 fractional solution. The simulation results indicate that
under the variation of wave frequency, both time-fractional and space—time fractional solutions are in great
agreement with the reference integer-order solution. The attenuation in the wave amplitude as well as the wave
phase is well captured via the fractional-order homogenized model. Further analysis leads to the following
discussions:

o Steady-state wave response is more sensitive to changes in the elastic foundation due to its ability of creating
very low-frequency band gaps. When frequency f is in a band gap (f = 100Hz and f = 1000 Hz), the
displacement error is much smaller than the case when f is in a pass band (f = 500Hz). This is due to
the fact that the decaying waves in frequency band gaps (the low-frequency band gap created by elastic
foundation and the high-frequency band gap created by material periodicity) can reduce the magnitude
of scattering effects that occur at periodic material interfaces. For relatively low frequencies shown here
(f = 100Hz), the fractional-order homogenization results match the integer-order solutions fairly well
and almost exactly in the band gaps. However, for higher frequencies and particularly within pass band
regimes (f = 500Hz, where the wavelength is approximately less than two times the length of the unit
cell), the accuracy of the homogenization process tends to reduce (reflected in the RMSE values) since
the response is increasingly dominated by scattering effects occurring at the interfaces between different
materials.

e Damping effects due to a purely viscous foundation are well captured by the fractional-order model. Given
that J(u) # 0 holds when ¢ > 0 (see Fig. 3), waves decay at all frequencies due to energy dissipation.
While this characteristic is insensitive to the input frequency, amplitude and phase are not. Changes in decay
patterns with different input frequencies are shown in Fig. 9a, ¢ and e. Besides the external damping effects,
wave decay patterns are also affected by material periodicity. Note that when frequency f = 100Hz, waves
decay in both the purely elastic case and the purely viscous case, but show different amplitude and phase
(see Fig. 9a, b). This indicates that when f = 100Hz, wave propagation is primarily affected by the
external viscoelastic foundations, not material periodicity. In contrast with the above discussion, when
frequency f = 1000Hz, band gap exists in both the purely elastic case and the purely viscous case (due
to material periodicity) such that amplitude and phase of wave responses are very close (see Fig. 9e, f),
regardless of the foundation type. This indicates that when f = 1000 Hz, wave propagation is dominated
by scattering effects occurring at periodic material interfaces, not external viscoelastic foundations.

We conclude with a parametric study on the impact of the viscoelastic coefficients k and ¢ on the steady
state response of the periodic system for a fixed value of the excitation frequency. The results of this study are
presented in Fig. 10a and b for the integer-order model, in Fig. 10c and d for the time-fractional model, and in
Fig. 10e and f for the space—time fractional model. As evident from the results, the value of ¢ does not affect
significantly the wave phase. On the other hand, in the study 2 case, the period and phase of the 1D wave vary
for different values of k. We immediately observe that this phenomenon coincides with the dispersion curves
presented in Fig. 3c. Note that due to the increase of k, 9%(u) decreases and eventually leads to the increase
of wave period. We highlight that this phenomenon is in fact also consistent with general observations in the
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classical mass-spring-damper model [84]. For the fractional models, irrespective of the value of ¢ change,
the two homogenized fractional-order wave equations always produce responses having the same period and
phase. We merely note that this observation can be also substantiated by Fig. 3a in which 9(u) does not vary
with ¢ when f = 500Hz. Again, as for the previous set of parametric studies, a very low degree of mismatch
is noted in the magnitude of the displacement response. The RMSE for the fully fractional model are 0.0959,
0.0395, 0.0256, and 0.0197 for the case when k = 0 (see Fig. 10e) and 0.0959, 0.0969, 0.0980, and 0.0997
for the case when ¢ = 0 (see Fig. 10f). From visual inspection and RMSE values, we confirm that the results
between the integer model and the two fractional models are in good agreement, irrespective of the specific
combination of the foundation coefficients.

The different parametric studies conducted above establish concretely that the space-fractional model can
capture very effectively the attenuation associated with band gaps induced by the spatial periodicity of the
bar, while the time-fractional model captures the viscoelastic behavior (by representing the dissipation with
a single time-fractional derivative instead of a multiple spring and damping elements). These characteristics
make fractional models more attractive than corresponding integer-order representations.

5 Conclusions

This paper proposed a homogenization technique for one-dimensional periodic systems based on fractional-
order operators in both time and space. The study generalizes previous fractional homogenization techniques
by considering elastic wave propagation in 1D periodic bars resting on a viscoelastic foundation. The system
being considered encompasses periodicity in both the main waveguide (i.e., different materials) and in the
supports (i.e., periodic stiffening and damping elements), hence providing a very general configuration for
the study of conservative and non-conservative 1D periodic media. It also allows accounting for periodicity
in either the stiffness or the damping distributions, hence effectively providing a generalized model for the
analysis of periodic viscoelastic inhomogeneous systems. The analysis of the dispersion relations shows that
besides the classical Bloch wave dispersion behavior, phenomena including very low-frequency band gaps
and wave dissipation are observed and carefully linked to the different periodic elements of the design. In
order to obtain a homogenized model able of capturing the effect of the original heterogeneous composition of
the system on the wave propagation behavior, space-fractional and time-fractional operators were introduced.
Based on this approach, two different fractional-order models were proposed based on time-fractional and
time-space fractional partial differential equations. By matching the dispersion behavior predicted by the
fractional equations to that of the initial (fully resolved) integer-order model, the values of the fractional orders
and of the effective parameters in the fractional homogenized models were obtained. As part of this process,
we also developed an approach to obtain real-valued fractional orders, as opposed to complex fractional
orders obtained in previous methodologies. This approach helped removing complexities and instabilities in
the numerical evaluation, as well as clarifying the physical interpretation of the different terms of the model.
Numerical simulations clearly indicated the outstanding potential of fractional homogenization techniques by
capturing very accurately the wave propagation behavior of the original heterogeneous system. Even more
notable is the ability of the method to capture the response within the low-order band gaps (that is in the
transition region between long and short wavelength dominated behavior), a characteristic not available in
traditional homogenized models.
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