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A B S T R A C T

This study presents a generalized multiscale nonlocal elasticity theory that leverages distributed order fractional
calculus to accurately capture coexisting multiscale and nonlocal effects within a macroscopic continuum.
The nonlocal multiscale behavior is captured via distributed order fractional constitutive relations derived
from a nonlocal thermodynamic formulation. The governing equations of the inhomogeneous continuum are
obtained via the Hamilton principle. As a generalization of the constant order fractional continuum theory, the
distributed order theory can model complex media characterized by inhomogeneous nonlocality and multiscale
effects. In order to understand the correspondence between microscopic effects and the properties of the
continuum, an equivalent mass–spring lattice model is also developed by direct discretization of the distributed
order elastic continuum. Detailed theoretical arguments are provided to show the equivalence between the
discrete and the continuum distributed order models in terms of internal nonlocal forces, potential energy
distribution, and boundary conditions. These theoretical arguments facilitate the physical interpretation of
the role played by the distributed order framework within nonlocal elasticity theories. They also highlight the
outstanding potential and opportunities offered by this methodology to account for multiscale nonlocal effects.
The capabilities of the methodology are also illustrated via a numerical study that highlights the excellent
agreement between the displacement profiles and the total potential energy predicted by the two models under
various order distributions. Remarkably, multiscale effects such as displacement distortion, material softening,
and energy concentration are well captured at the continuum level by the distributed order theory.
1. Introduction

Recent developments seen in additive manufacturing technologies
have rapidly changed the landscape of engineered materials by en-
abling the fabrication of complex architectured materials that were
inconceivable only a decade ago. These novel materials find important
applications in the most diverse fields of engineering, nanotechnology,
biotechnology, and even medicine. Specific examples of the different
applications of complex architectured materials include, but are not
limited to, biological implants [1,2], lightweight aerospace, automobile
nd naval structures [3,4], metamaterials designed for wave-guiding
and vibration control [5–8], and even micro/nano-electromechanical
evices [9,10]. In all these applications, the ability to achieve accurate
predictions is paramount to deliver optimal designs and performance
once these complex systems are deployed in the field. The need for
accuracy combined with the rapidly increasing complexity of archi-
tectured materials continued strengthening the demand for modeling
techniques capable of capturing the complex nature of these material
systems.

In recent years, many experimental and theoretical investigations
have reinforced the understanding that many of the above mentioned
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material classes exhibit non-negligible multiscale behavior. Addition-
ally, these studies have also highlighted the prominent role of size-
dependent effects (also referred to as nonlocal effects) that initially
were believed to be important only for micro and nanoscale structures.
Nonlocal effects can originate from different sources. The most well-
known and studied included long-range interatomic and intermolecular
interactions as well as material heterogeneity at micro- and nano-
scales [11–13]. However, nonlocal interactions can also be generated
at the macroscale by means of intentionally nonlocal designs [6,8]
and medium heterogeneity [4,14–17]. Since the source of the nonlocal
effects are typically specific to a material scale, the corresponding
effects were often assumed to be localized at the respective scale while
becoming negligible once integrated over the larger scales. This is one
of the reason why early work on nonlocal scale effects was mostly
focused on micro and nanoscale devices. However, in recent years the
interest in nonlocal mechanics has rapidly expanded also following the
realization that nonlocal forces naturally arises in the homogenization
of heterogeneous systems, regardless of the scale. From these perspec-
tive, composite or porous materials can be seen as classical examples
of nonlocal macroscale materials.
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The understanding that nonlocality can arise at different scales,
leads to an even more challenging scenario that is the possibility for
nonlocal interactions to occur and interact across dissimilar scales. It
is immediate to see how this latter scenario involves the simultaneous
presence of nonlocal and multiscale elasticity concepts. This general-
ized elasticity problem involving nonlocal effects at different scales
will be indicated in the rest of this manuscript as multiscale nonlocal
elasticity. The current literature of nonlocal elasticity has primarily been
concerned with what might be referred to as single-scale nonlocality,
and hence it has not specifically identified this multiscale nonlocal phe-
nomenon. However, we emphasize that multiscale nonlocality should
be expected in most real-world applications characterized by material
and geometric heterogeneities. The latter conclusion follows not only
from the observation of previously studied systems [14,18,19], but it
also becomes a rather natural consequence of the design approach at
the core of next generation architectured materials.

A few examples of multiscale nonlocal elastic behavior can be
observed in real-world structures. Consider structures made from either
functionally graded materials or porous materials with spatial grada-
tions of the porosity. While the presence of medium heterogeneity (due
to spatial variation in material properties or porosity) results in nonlo-
cality [15,16], the gradation of the structural properties, to (artificially)
generate different underlying scales within the resulting structure, leads
to a multiscale behavior [18]. Multiscale nonlocal elasticity can also
be found in other classes of structures such as, for example, struc-
tures made from layered composites [20], elastic metamaterials [6],
multi-layer graphene sheets [21], semiconductor devices containing
wafers of different transition metal elements [9], and even electronic
devices containing atomic coatings with different atoms [10]. In these
different classes of structures, multiscale nonlocal elasticity can give
rise to a variety of effects including, but not limited to, softening or
stiffening, displacement distortion, anomalous wavenumber–frequency
dispersion, energy concentration at different scales, and surface effects.
The above discussion suggests that theoretical and numerical method-
ologies capable of capturing the simultaneous effect of nonlocality
and multiscale behavior as well as their complex interaction will play
an increasingly growing role to enable the design and performance
prediction of the next generation of structures and materials.

1.1. Brief overview of existing multiscale approaches

Over the past few decades, several theoretical and computational
approaches have been proposed to model the multiscale response of
complex systems. Based on the underlying physical model, the most
established multiscale approaches can be broadly classified into three
categories: molecular approaches, local continuum approaches, and
nonlocal continuum approaches. The following section is not meant to
provide a comprehensive overview of such a broad and complex topic
as multiscale mechanics, but it is intended to highlight some key aspects
that limit the applications of established computational mechanics
methodologies to the present problem of multiscale nonlocal elasticity.
The key highlights of the different approaches and the challenges faced
by them are summarized in the following:

• Molecular approaches: resolve the structure at the molecular level
which, in turns, allows capturing fine level interactions either at
the molecular or higher scales. Typical examples in this category
include density functional theory [22] and molecular dynam-
ics [23]. By simultaneously accounting for the finest material
scales and for all molecular interactions, molecular approaches
can accurately capture multiscale nonlocal behavior. However,
this class of techniques involves a number of degrees of freedom
that scales proportionally to the number of particles, hence not
making the approach suitable for simulations at the macro scales.
2

• Local continuum approaches: leverage the classical (local) elasto-
dynamic theory to simulate and predict the response of complex
structures. Typical examples include discrete methods [18] and
asymptotic methods [20,24]. Discrete approaches such as, for
example, finite element method, finite difference method, and
model-order reduction techniques have found good success but
are subject to an implicit trade-off between accuracy (directly
related to the resolution of the specific discrete method) and
computational time. In fact, for media with multiscale inhomo-
geneities (e.g. porous and fractal media) the discretization process
requires fine spatial and temporal resolutions that lead rapidly
to unattainable computational resources [15,16,18]. On the other
hand, asymptotic methods, that use multiscale expansions of bulk
(homogenized) material properties to capture information across
scales, are often associated with lower computational costs. How-
ever, a major limitation of asymptotic methods follows from their
rather complex analytical derivations that are only possible for
limited types of structural analysis (and under specific loading
conditions) [24]. Finally, note that, irrespective of the nature
of the method, the underlying classical continuum mechanics
assumptions do not allow the resulting formulation to capture
nonlocal effects at any given scale.

• Nonlocal continuum approaches: extend the previous continuum
formulations by introducing the contributions of long-range non-
local interactions via differ–integral or integral constitutive equa-
tions. Depending on whether the nonlocal contributions are mod-
eled using the strain field, the stress field, or the displacement
field, the differ–integral approaches can be classified as strain-
driven [25,26], stress-driven [27], or displacement-driven [28,
29], respectively. Based on the nature of the kernels used to cap-
ture the nonlocal interactions, these approaches can be identified
as integer-order [25–27] (use exponential kernels) or fractional-
order [29–33] (use power-law kernels typical of fractional calcu-
lus) approaches. Another rapidly growing approach to nonlocal
mechanics is known as peridynamics [19]; this is a purely integral
method in nature. Discussions on the impact of differ–integral
operators compared with purely integral operators are beyond
the scope of this study. For more details, the interested reader is
referred to [19,28]. While existing classes of nonlocal approaches
have been able to address a multitude of aspects typical of the
response of size-dependent nonlocal structures, the nonlocal ef-
fects in these approaches are assumed to be restricted to a specific
scale, typically the continuum scale. Consequently, based on the
underlying formulation, they can capture only softening or stiff-
ening response but not both simultaneously (a key feature of
multiscale effects). Very recently, a few studies [34,35] have
expanded existing nonlocal approaches to model multiscale ef-
fects. However, these latter methods accounted for effects across
only two scales and did not provide a general framework to be
extended to multiple scales.

From the above discussion, it emerges that existing approaches are not
theoretically and computationally equipped to provide a comprehen-
sive account of the physical phenomena involved in multiscale nonlocal
elasticity. The present study attempts to address this technical gap by
leveraging the nonlocal properties and intrinsic multiscale capabilities
of distributed order (DO) operators.

Distributed order operators are a natural multiscale generalization
of the concept of constant order (CO) fractional operators. While a CO
fractional operator is a differ–integral operator with a power-law kernel
defined at a specific constant order, DO operators integrate the funda-
mental power-law kernel (typical of CO operators) over an extend range
of orders [36]. Given that the fundamental kernel of a CO operator is
retained, DO operators automatically inherit their nonlocal properties.
It follows that DO operators can naturally capture nonlocal behavior

defined at multiple scales. The inherent multiscale and nonlocal (in
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time and/or space) nature of DO operators has found applications
in the modeling of several complex systems such as, for example,
viscoelastic systems with multiple relaxation times [37], anomalous
transport processes marked by the presence of multiple temporal and
spatial scales [38], and materials with complex microstructure that
evolve with externally applied thermal and/or mechanical loads [39].
A detailed review of the applications of DO fractional calculus (DO-FC)
to the analysis of real-world multiscale systems can be found in [40].

1.2. Objectives and contributions of the study

In the present study, we leverage the unique properties of DO-FC to
model multiscale nonlocal elasticity. Broadly speaking, the stress–strain
constitutive relations are reformulated by means of DO operators in
order to achieve a positive-definite and well-posed continuum formu-
lation that captures nonlocal effects coexisting over an extended range
of scales. The resulting theory can be interpreted as a fundamental
extension to the existing continuum level approaches, because concep-
tually it combines the strengths of asymptotic (local continuum) and
nonlocal continuum approaches. In fact, the DO model can be divided
into two fundamental modules that capture the two different physical
phenomena underlying multiscale nonlocal elasticity. First, we model
nonlocal effects at a specific scale using a nonlocal continuum approach
based on constant-order fractional mechanics. Next, we use a multiple
scale expansion of the fractional-order via a distributed range of orders,
analogous to asymptotic methods, to capture multiscale effects.

The overall contributions of this study are four fold.

• We develop a generalized distributed order nonlocal elasticity
theory (DO-NET) using DO-FC. Starting from a nonlocal ther-
modynamic formulation based on DO operators, DO fractional
stress–strain constitutive relations are derived. Finally, the strong-
form of the governing equations and of the boundary conditions
is obtained using Hamilton’s principle and standard variational
simplifications.

• We develop an equivalent mass spring lattice model (MSLM) by
discretizing the DO-NET continuum governing equations and the
associated boundary conditions. The MSLM is instrumental to
obtain critical insights on the way distributed-order fractional op-
erators can be leveraged to capture nonlocal interactions building
up across scales. For this purpose, we transform the fundamental
differ–integral operators to a purely integral form [31]. This
allows the displacement derivatives within the DO operators of
the stress–strain constitutive relation to be expressed in terms
of the relative displacement of pairs of particles interacting at
a particular scale. Upon discretization, the relative displacement
terms can be interpreted as the elongation of elastic springs,
enabling a straightforward (and transparent) route to derive the
equivalent MSLM.

• We complement the derivation of the MSLM from the strong-
form governing equations by conducting two additional (theo-
retical) analyses that establish equivalence between the traction
boundary condition and the potential energy of the discrete and
continuum representations. The direct equivalence of the trac-
tion boundary conditions across the two representations (without
requiring any constraints or additional terms) indicates a con-
sistent model that is free from boundary and loading effects.
In this regard, we note that the strain-driven and the stress-
driven nonlocal continuum approaches require either additional
(artificial) boundary constraints or correction terms (that depend
on the specific boundary and loading conditions) in order to
achieve well-posed continuum descriptions consistent with dis-
cretized lattice models [41]. Further, the analysis of equivalence
of the potential energy across the two different representations
helps identifying and isolating surface effects that are typical of
multiscale nonlocal responses [42,43].
3

• We conduct a comprehensive parametric study by simulating
the response of a multiscale nonlocal structure. Simulations are
performed via the MSLM and the DO-NET and evaluate the dis-
placement field and the potential energy under different loading
and boundary conditions, and order distributions. Apart from
providing numerical evidence of the equivalence between the
DO-NET and the MSLM (as expected), the parametric studies
highlight the consistent predictions (free from boundary and load-
ing effects) made from either approach. More importantly, the
numerical studies provide critical insights on the impact of the
nature of the order distribution on the (overall) degree of nonlo-
cality of the structure. These qualitative insights are anticipated
to aid identification of the order distribution in practical appli-
cations. Finally, we also use the numerical results to highlight
that multiscale nonlocal effects such as displacement distortion,
material softening, and energy concentration are well captured at
the continuum level description of the distributed order theory.

The remainder of this paper is structured as follows. In Section 2,
e introduce a sample problem to illustrate the multiscale nonlocal
ehavior and the fundamental multiscale characteristic of DO opera-
ors. In Section 3, we develop the generalized DO-NET starting from
onlocal thermodynamic arguments. Next, in Section 4, we develop a
physically consistent 1D MSLM starting from DO equilibrium relations
derived in Section 3, and prove (theoretically) the force and energy
equivalence between MSLM and DO-NET. Finally, in Section 5 we
umerically establish the equivalence between the MSLM and DO-NET
ia direct comparison of the mechanical responses obtained from both
he approaches.

. The role of DO nonlocal elasticity theory

In this section, we will address the unique potential that DO opera-
ors offer with respect to modeling the response of multiscale nonlocal
tructures. To facilitate the understanding of how the DO-FC can enable
ultiscale nonlocal simulations, we discuss an illustrative example con-
isting of a two-dimensional transversely-nonlocal lattice. The 2D lat-
ice can be seen as obtained by stacking a sequence of one-dimensional
nfinite nonlocal periodic lattices along the 𝑦-direction, as shown in
Fig. 1. The 1D lattices are simplified microscopic representations of
molecular chains (i.e. mass–spring chains typical of molecular dynamic
formulations) and are subject to (nonlocal) long-range forces acting in
the 𝑥-direction. Each layer can have a different degree of nonlocality,
as schematically indicated by the different order 𝛼(𝑦). It is this latter
characteristic that determines its transversely nonlocal behavior.

The modeling of the above described lattice system builds upon two
fundamental assumptions: (1) the strength of long-range interactions in
each layer can be modeled via a power-law kernel of order 𝛼𝑟 ∈ (0, 1)
with 𝑟 = 0, 1,… , 𝑛𝑟 −1, 𝑛𝑟, and (2) the different layers within the lattice
are connected in the 𝑦-direction by stiff links (when compared to the
more compliant nonlocal links in each layer). A detailed discussion
on the motivation and physical significance of these assumptions is
provided in the following:

• Assumption 1: the assumption of power-law type long-range forces
is motivated by early studies on nonlocal elasticity where differ-
ent functional definitions of the nonlocal kernel were obtained
by matching interatomic nonlocal behaviors [11,12]. Following
a similar conceptual approach, the order 𝛼𝑟 (which characterizes
the strength of the nonlocal interactions) in each layer can be
obtained by fitting the power-law kernel against experimentally
or theoretically derived long-range interaction data. The selection
of the power-law kernels allows capturing the nonlocal behavior
of a given layer by means of constant-order fractional continuum
models [31,35]. It follows that this assumption does not limit the
general character of the modeling approach and of the results,

while being justified by available experimental evidence. We
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Fig. 1. Schematic of the nonlocal lattice with transverse nonlocality. Each layer oriented along the 𝑥-direction can exhibit a different level of nonlocality or, equivalently, a different
alue of the exponent 𝛼 of the power-law. (a) The mass points are periodically distributed in both the 𝑥 and 𝑦 directions. Dashed lines (aligned in the 𝑥 direction) represent the
xistence of nonlocal interactions between the masses on the layer. The nonlocal interaction is captured via a constant fractional order 𝛼𝑟, 𝑟 = 0, 1,… , 𝑛𝑟 − 1, 𝑛𝑟. Different dashed
ine styles represent different levels of nonlocality, hence different values of the constant order 𝛼𝑟 along the 𝑦 direction. Solid lines (aligned in the 𝑦 direction) represent rigid
onnections between the point masses. (b) A closer view of the nonlocal interactions in a layer (e.g. 𝑟 = 0) and at a generic point 𝑥𝑖. The nonlocal interactions between the mass
𝑖 and the other lattice points are indicated by the dashed double-arrow lines.
e

𝐹

w
n
t
c

𝐹

𝐹

f

merely note that recent studies [28] have also presented nonlocal
formulations capable of using generalized attenuation kernels.
These results suggest that future extension of the DO approach to
general kernels could also be envisioned. Following the power-
law assumption, the force of interaction between two particles 𝑝
and 𝑞 (where 𝑝 ≠ 𝑞) located on the layer 𝑟 can be expressed as:

𝐹 (𝑟)
𝑝𝑞 (𝑥𝑝, 𝑥𝑞 , 𝑟) =

𝐹 𝑟0𝛥𝑢𝑝𝑞
|𝑥𝑝 − 𝑥𝑞|

2+𝛼𝑟
(1)

where 𝐹 (𝑟)
0 can be interpreted as a material constant that carries

information about the elastic constants (analogous to local dis-
crete MSLM models where the constant is typically referred to
as the spring constant), the characteristic length [12], and the
strength of the nonlocal interactions within the layer. Further,
𝛥𝑢𝑝𝑞 = 𝑢𝑝 − 𝑢𝑞 denotes the relative displacement between the two
particles. Thus, in general, 𝐹 𝑟0 ≜ 𝐹 𝑟0 (𝛼𝑟).

• Assumption 2: the rigid connections in the 𝑦-direction guarantee
that the motion of individual particles in each layer is restricted
to the axial direction. We will show that this assumption allows
for a simpler yet comprehensive derivation of a DO operator that
evidently characterizes the response of the overall lattice. Note
that this assumption of negligible through-the-thickness deforma-
tion is typical of many structural applications involving slender
structures (e.g. beams and plates).

We consider the problem of homogenizing the 2D lattice to achieve
an equivalent 1D nonlocal continuum capable of accurately capturing
the axial motion of the medium subject to a transverse distribution of
nonlocality (see Fig. 2). For this purpose, we can separate the process
into two steps: (1) reducing (i.e. homogenizing) the initial 2D lattice
to a 1D lattice oriented along the 𝑥-direction (hence collapsing the
𝑦-dimension), and (2) taking the continuum limit of the resulting 1D
lattice to obtain the final 1D continuum.

In the first step, the transverse dimension 𝑦 is reduced (e.g. assum-
ing that the characteristic dimension in the 𝑦-direction is negligible
compared to that in the 𝑥-direction) so that the nonlocal interactions
etween two particles 𝑝 and 𝑞 on any given layer can be expressed
s a summation of the contributions from each layer (conceptually
4

u

quivalent to systems of springs in parallel), in the following manner:

(𝐻)
𝑝𝑞 (𝑥𝑝, 𝑥𝑞) =

𝑛𝑟
∑

𝑟=0
𝐹 (𝑟)
𝑝𝑞 (𝑥𝑝, 𝑥𝑞 , 𝑟) (2)

here the superscript (𝐻) denotes the nonlocal force in the homoge-
ized 1D lattice. The total nonlocal force on the generic particle 𝑝 (due
o all the remaining particles in the homogenized 1D infinite medium)
an be obtained by using Eqs. (1), (2):

(𝐻)
𝑝 =

𝑞=∞
∑

𝑞=−∞
𝐹 (𝐻)
𝑝𝑞 (𝑥𝑝, 𝑥𝑞) =

𝑛𝑟
∑

𝑟=0

𝑞=∞
∑

𝑞=−∞

𝐹 𝑟0 (𝛼𝑟)𝛥𝑢𝑝𝑞
|𝑥𝑝 − 𝑥𝑞|

2+𝛼𝑟
(3)

The double summation in Eq. (3) (one over the number of layers in the
transverse direction, and one over the number of particles in the axial
direction) allows capturing the effect of the interatomic forces acting in
parallel and it will be shown to be at the basis of the occurrence of DO
operators in the homogenized continuum. To further substantiate this
argument, consider the continuum limit expression for the total force
𝐹 (𝐻)
𝑝 in Eq. (3). For this purpose, we cast the inter-particle (discrete)
force constant 𝐹 𝑟0 (𝛼𝑟) in the following manner:

𝑟
0 (𝛼𝑟) = 𝑘0𝛥𝑥

⏟⏟⏟
𝑇1

𝜅(𝛼𝑟)𝛥𝛼
⏟⏟⏟

𝑇2

(4)

where 𝑘0 denotes a force per unit displacement (analogous to the
stiffness constant of a discrete spring) of the nonlocal lattice, and 𝛥𝑥
denotes the periodic spacing along the axial direction of the lattice
(see Fig. 1). In the context of the 2D lattice, these terms (combined as
𝑇1) capture the discrete equivalent of the elastic properties of the 1D
nonlocal continuum. Analogous to the power-law index1 that controls
material properties in functionally graded materials [3], the remaining
two terms (combined as 𝑇2) capture the variation in the elastic prop-
erties (i.e. in 𝑇1) along the 𝑦-direction in the original 2D lattice. The
dimensionless function 𝜅(𝛼) physically denotes the change in material
properties per unit order. This latter aspect is more evident considering
the transformation 𝛼 = 𝑔(𝑦), where the function 𝑔(𝑦) captures the

1 Note that the power-law index of functionally graded materials is different
rom the power-law index (or, equivalently, exponent) of the power-law kernel
sed in fractional-order approaches to nonlocal elasticity.
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Fig. 2. Illustration of the MSLM equivalent to a 1D finite DO nonlocal rod. (a) Finite 2D MSLM with transversely distributed order of nonlocality 𝛼𝑟, 𝑟 = 0, 1,… , 𝑛𝑟 −1, 𝑛𝑟. Different
ashed line styles represent different levels of nonlocality in each layer. (b) The equivalent 1D MSLM (red circles connected by solid black line) overlapped with the 1D nonlocal
od with a DO operator ∫ 1

0 𝜅(𝛼)d𝛼 (orange rectangular box). By combining all the parallel nonlocal interactions, the 𝑦 direction in the 2D lattice system can be reduced so to obtain
an equivalent 1D MLSM. The 1D MSLM consists of uniformly distributed 𝑛 + 1 mass points (red circles) and DO nonlocal interactions modeled by elastic springs 𝑘𝑖𝑗 (shown as
double arrow blue lines) on the 𝑥 direction. The corresponding 1D rod governed by DO-NET (shown as a rectangle in orange) has length 𝐿 = 𝑛𝛥, where 𝛥 is the distance between
two nearest lattice points (or mesh size) in the equivalent 1D MSLM. Specifically, for a given mass point 𝑥𝑖 in MSLM, springs are placed on both its left and right sides. Unlike
the infinite lattice system in Fig. 1, springs are placed only on either the right or left side at the boundary points 𝑥0 and 𝑥𝑛, respectively.
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ariation of the degree of nonlocality across different layers stacked in
he transverse direction. Under this transformation, 𝑇2 can be expressed
s:

2 = 𝜅(𝛼𝑟)𝛥𝛼 = 𝜅(𝑔(𝑦𝑟))
[

𝐷𝑔(𝑦)|𝑦𝑟
]

𝛥𝑦 (5)

where 𝑦𝑟 is the spatial location along the transverse direction such that
𝛼𝑟 = 𝑔(𝑦𝑟) and 𝐷(⋅) denotes the first order spatial derivative. Combining
the functions within the composite function 𝜅(𝑔(𝑦𝑟)), followed by a
product and grouping of 𝜅(𝑔(𝑦𝑟)) and

[

𝐷𝑔(𝑦)|𝑦𝑟
]

, the above expression
can be recast in the following manner:

𝑇2 = 𝜅(𝛼𝑟)𝛥𝛼 = 𝜅(𝑦𝑟)𝛥𝑦 (6)

It follows that the function 𝜅(𝑦) denotes the strength of the variation
of the degree of nonlocality across the transverse direction, which is
expressed analogously via 𝜅(𝛼), albeit through the order variable.

Now, by substituting the expression for 𝐹 𝑟0 in Eq. (3) and taking the
continuum limit, we obtain:

lim
𝛥𝛼→0

[

lim
𝛥𝑥→0

𝐹 (𝐻)
𝑝

]

= 𝑘0 ∫

𝛼max

𝛼min
𝜅(𝛼)

[

∫

∞

−∞

𝑢(𝑥𝑝) − 𝑢(𝑥′)

|𝑥𝑝 − 𝑥′|
2+𝛼

d𝑥′
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
CO fractional derivative

d𝛼

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
DO fractional derivative

(7)

where 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 are the minimum and maximum value of constant-
order 𝛼𝑟. As evident from the above expression, DO derivatives ap-
pear naturally from the homogenization process applied to a complex
medium characterized by heterogeneous distribution of nonlocal ef-
fects. In other terms, the transverse stacking of the nonlocal chains
with different degree of nonlocality generates different material scales
within the structure which are captured within the order variation
of the DO derivative. It is important to note that, the order varia-
tion can be localized to a single material scale such as, for example,
porous beams with spatially varying degree of porosity (see [15,16]).
However, in this latter case, the material is heterogeneous in nature
with properties (e.g. in the case of a porous beams, properties could
refer to the level of porosity) localized to a specific material scale.
We merely note that this class of structures are better described by
a different class of fractional operators denominated variable-order
operators [15,16]. In the present case (Fig. 1), the material properties
or particles) are uniform and localized on a specific layer. Additionally,
5

ach layer exhibits nonlocal interactions of a specific degree that is
ocalized on the given layer. Hence, the existence of the order variation
s a manifestation of the multiscale nature of the structure and not
erely of the material inhomogeneity localized to a specific scale. In
act, a further look at Eqs. (4) and (7) highlights how the multiple scales
nd the material properties localized at the corresponding scales are
aptured via the strength function of the DO derivative. In summary,
he application of DO operators is suitable for structures where the
rder variation is resolved across different (coexisting) material scales,
hile the application of variable-order operators is suitable when the
rder variation is localized (or resolved) within a single material scale.
n very crude terms, this latter concept can be interpreted as analogous
o material scales coexisting in a parallel (DO) or series (VO).
The above discussion provides a simple yet powerful physical inter-

retation of the DO operator for mechanics and create a route to un-
erstand and model continua of practical interest such as, for example,
ulti-layer graphene sheets [21], multi-layer heterogeneous atomic
oatings [10], semiconductor devices containing wafers of different
lements [9], and other multiscale structures mentioned previously in
he introduction. This section illustrated, via a simple example, the mul-
iscale origin of DO operators in elastic continua. In the following, we
ill develop a complete and rigorous formulation of three-dimensional
O elasticity.

. Mathematical formulation of DO nonlocal elasticity

In this section, we formulate the DO nonlocal elasticity theory
DO-NET). Specifically, we develop the DO-NET framework by using
classical definition of the local kinematics and a generalized DO
onlocal thermodynamic framework. By satisfying the first and second
rinciple of thermodynamics, an Eringen-like nonlocal definition of the
O stress can be obtained. Based on the kinematics and constitutive
elations, the governing equations and the associated boundary condi-
ions will be derived using both the Hamilton principle and the balance
f linear momentum. Note that while there exist other alternative
pproaches to deriving DO theory (for example, developing the DO
ersion of the existing CO formulations based on fractional kinemat-
cs [29,44]), in this study we take an approach based on nonlocal
onstitutive relations.
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3.1. Derivation of DO constitutive relations

In analogy with seminal approaches to nonlocal elasticity based on
nonlocal stress–strain constitutive relations [12,25], we start from the
classical (local) definition of the deformation gradient:

𝑭 = d𝒙
d𝑿

(8)

where 𝒙 and 𝑿 denote coordinates in the deformed and undeformed
configuration, respectively. Recall that the deformation gradient tensor
𝑭 relates differential line elements d𝒙 and d𝑿 within the deformed and
undeformed configurations, so that the infinitesimal strain tensor can
be expressed as:

𝝐 = 1
2
(

𝛁𝒖 + 𝛁𝑻 𝒖
)

(9)

where 𝒖 = 𝒙 − 𝑿 represents the displacement field, and 𝛁(⋅) is the
gradient operator.

By using the above described kinematic relations in conjunction
with thermodynamic equilibrium conditions, nonlocal constitutive re-
lations can be obtained. For a nonlocal solid, the energy at a given
point is affected by long range cohesive interactions (hence by energy
exchange) with other particles within the horizon of nonlocality. Con-
sequently, the internal energy density is a functional such that 𝑒 =
𝑒(𝝐,ℛ(𝝐), 𝜂) [26]. In this functional, ℛ(⋅) is a linear integral operator
that captures the nonlocal energy exchanges, and 𝜂 is the entropy. In
classical nonlocal approaches, these linear integral operators ℛ(⋅) are
defined using monotonically decaying kernels such as, for example,
exponential kernels [26] or CO power-law kernels [31]. As an example,
Carpinteri’s 1D CO nonlocal elasticity formulation [31], the linear
integral operator that constitutes the energy density as well as the
constitutive relation is defined using a CO Riesz Riemann–Liouville
(R–RL) fractional integral as:

𝜎CO(𝑥) = ℛCO(𝜖) = 𝐸 R−RL
𝑎𝑰

1−𝛼
𝑏 𝜖(𝑥) (10)

where 𝐸 is the Young’s modulus of the 1D solid; the superscript □CO

indicates constant order operators; 𝛼 ∈ (0, 1] is defined to guarantee the
CO order 1−𝛼 ∈ [0, 1); 𝑎 and 𝑏 are the left- and right-handed bounds of
nonlocal horizon at 𝑥. Detailed definitions of the fractional operators
as well as of the related parameters can be found in SM Section 1.
Although the R–RL linear integral operator in Eq. (10) can capture
nonlocality, its CO power-law attenuation kernel is not general enough
to capture complex multiscale nonlocal effects. In the following, we will
generalize this constitutive formulation to the DO form.

Consider a 3D nonlocal solid that exhibits multiscale nonlocal inter-
actions similar to the 2D lattice structure shown in Fig. 1. We define
the following 3D DO linear integral operator:

ℛ(𝝐) = R−RL
𝑎1
1−𝛼,𝜿(𝛼)
𝑏1

R−RL
𝑎2
1−𝛼,𝜿(𝛼)
𝑏2

R−RL
𝑎3
1−𝛼,𝜿(𝛼)
𝑏3

(𝑪 ∶ 𝝐)

= ∫

1

0
𝜅𝑖𝑗𝑘𝑙(𝛼)

(

R−RL
𝑎1
𝑰1−𝛼
𝑏1

R−RL
𝑎2
𝑰1−𝛼
𝑏2

R−RL
𝑎3
𝑰1−𝛼
𝑏3

)

(

𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙
)

d𝛼
(11)

where 𝜿(𝛼) = 𝜅𝑖𝑗𝑘𝑙(𝛼) is the fourth-order tensorial strength-function. The
product of the two fourth-order tensors (𝜿 and 𝑪) via the subscripts
{𝑖, 𝑗, 𝑘, 𝑙} follows the Hadamard product rule. Subscripts {1, 2, 3} rep-
resent the three orthonormal axes in 3D space. Further, R−RL

𝑎𝑖
1−𝛼,𝜅(𝛼)
𝑏𝑖(where 𝑖 ∈ {1, 2, 3}) are the DO Riesz Riemann–Liouville integrals

introduced in Eq. (S7). The fractional order 𝛼 ∈ (0, 1] as noted in
the terminals of the definite integral (∫ 1

0 (⋅)d𝛼); 𝑎𝑖 and 𝑏𝑖 are the left-
and right-handed bound of nonlocal horizon in the 𝑖th direction. In
contrast to the CO operator in Eq. (10), which only captures nonlocality
characterized by a CO strength 𝛼, the proposed DO linear integral oper-
ator serves as a superposition of different orders that allows capturing
multiscale nonlocality (see discussion on DO operators in SM Section
S1 and Section 2).

According to Polizzotto [26], the first and second principle of
thermodynamics are modified for a nonlocal elastic solid as:

̇

6

𝑒̇ = 𝝈 ∶ 𝝐 + ℎ − ∇⋅𝒒 + 𝑃 ∀𝒙 ∈ 𝑽 (12a) p
𝑇 𝜂̇𝑖𝑛𝑡 = 𝝈 ∶ 𝝐̇ − 𝜓̇ − 𝜂𝑇̇ − ∇𝑇 ⋅
𝒒
𝑇

+ 𝑃 ≥ 0 ∀𝒙 ∈ 𝑽 (12b)

where □̇ denotes the first-order time derivative, ℎ is the heat generated
internally per unit volume, 𝒒 is the heat flux density, 𝑇 is the absolute
temperature, 𝜓 is the Helmholtz free energy, and 𝑽 is the total volume
of the solid. The above thermodynamic balance laws differ from a
classical form by the term 𝑃 on their right-hand side. The term 𝑃 in
the above expressions is added to enable a point-wise (strong) enforce-
ment of the thermodynamic balance laws for nonlocal solids [26]. As
discussed in [26], 𝑃 can be interpreted as a nonlocal energy residual
that represents the energy exchanged by a point with all other points
within its nonlocal horizon. Although Eqs. (12) differ from the classical
irst and second principle of thermodynamics due to the term 𝑃 , the
eak form of these equations is obtained as:

∫𝑽
𝑒̇d𝑽 = ∫𝑽

(𝝈 ∶ 𝝐̇ + ℎ − ∇⋅𝒒) d𝑽 ∀𝒙 ∈ 𝑽 (13a)

𝑽
𝜂̇𝑖𝑛𝑡d𝑽 = ∫𝑽

(

𝝈 ∶ 𝝐̇ − 𝜓̇ − 𝜂𝑇̇ − ∇𝑇 ⋅
𝒒
𝑇

)

d𝑽 ≥ 0 ∀𝒙 ∈ 𝑽 (13b)

which are identical to their classical counterparts. Note that the non-
local energy residual 𝑃 vanishes under integration because of the
insulation condition (see [26]).

Using the weak statement of thermodynamics shown in Eq. (13)-
b, we derive the nonlocal constitutive relations. Since Eq. ((13)-b)
must hold for any thermo-elastic deformation process, we first consider
thermo-elastic deformation at uniform temperature, that is ∇𝑇 = 0
within the volume 𝑽 . Next, recall that for local solids the Helmholtz
free energy has functional dependence on the local strain and temper-
ature, that is, 𝜓 = 𝜓(𝝐, 𝑻 ). However, for nonlocal solids, the additional
nonlocal interactions alter this functional dependence and we have
𝜓 = 𝜓(𝝐,ℛ(𝝐), 𝑇 ), where the additional functional dependence of 𝜓 on
the integral operator ℛ accounts for the impact of the nonlocal inter-
actions. Finally, by substituting ∇𝑇 = 0 and the functional relationship
of the Helmholtz free energy 𝜓 = 𝜓(𝝐,ℛ(𝝐), 𝑇 ) into Eq. ((13)-b) we
obtain [26]:

∫𝑽

(

𝜎 −
𝜕𝜓
𝜕𝝐

−ℛ
(

𝜕𝜓
𝜕ℛ(𝝐)

))

∶ 𝝐̇d𝑽 − ∫𝑽

(

𝜂 +
𝜕𝜓
𝜕𝑇

)

𝑇̇ d𝑽 ≥ 0 ∀𝒙 ∈ 𝑽

(14)

o guarantee the inequality holds for any thermo-elastic process with
rbitrary 𝝐̇ and 𝑇̇ , we obtain the following constitutive laws:

=
𝜕𝜓
𝜕𝝐

+ℛ
(

𝜕𝜓
𝜕ℛ(𝝐)

)

∀𝒙 ∈ 𝑽 (15a)

𝜂 = −
𝜕𝜓
𝜕𝑇

∀𝒙 ∈ 𝑽 (15b)

Substituting them back into Eq. ((12)-b), we obtain the strong state-
ment of the second law of thermodynamics:

𝑇 𝜂̇𝑖𝑛𝑡 = −∇𝑇 ⋅
𝒒
𝑇

≥ 0, ∀𝒙 ∈ 𝑽 (16)

Eq. ((15)a) provides a thermodynamic restriction to the constitutive
equations for nonlocal elasticity. Finally, we define the Helmholtz free
energy as:

𝜓 = 1
2
𝝐 ∶ ℛ(𝝐) (17)

ubstituting the above expression within Eq. ((15)a), we obtain the DO
onlocal constitutive relation (and its indicial form) as:

𝝈 = ℛ(𝝐) = R−RL
𝑎1
1−𝛼,𝜿(𝛼)
𝑏1

R−RL
𝑎2
1−𝛼,𝜿(𝛼)
𝑏2

R−RL
𝑎3
1−𝛼,𝜿(𝛼)
𝑏3

(𝑪 ∶ 𝝐)

𝑖𝑗 = ∫

1

0
𝜅𝑖𝑗𝑘𝑙(𝛼)

(

R−RL
𝑎1
𝑰1−𝛼
𝑏1

R−RL
𝑎2
𝑰1−𝛼
𝑏2

R−RL
𝑎3
𝑰1−𝛼
𝑏3

)

(

𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙
)

d𝛼
(18)

ote that, similar to the stiffness tensor 𝑪 , the symmetry of the strain
nd stress tensors requires that the strength-function tensor 𝜿 satisfies
oth major and minor symmetries. A detailed proof of this claim is

rovided in SM Section S4.
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By using the definitions of the stress and strain fields provided
above, the total deformation energy (𝛱) of the nonlocal solid can be
xpressed as:

= 1
2 ∫𝑽

𝝈 ∶ 𝝐d𝑽

= 1
2 ∫𝑽

𝝐 ∶ R−RL
𝑎1
1−𝛼,𝜿(𝛼)
𝑏1

R−RL
𝑎2
1−𝛼,𝜿(𝛼)
𝑏2

R−RL
𝑎3
1−𝛼,𝜿(𝛼)
𝑏3

(𝑪 ∶ 𝝐)d𝑽 (19)

Note that, unlike the local continuum description, the potential energy
obtained following the DO approach is not quadratic in nature. In order
to ensure that the potential energy is positive-definite and that the
governing equations derived from the defined potential energy are well-
posed, it is required that the attenuation kernel is positive-definite and
symmetric in nature [26]. In this regard, the DO formulation presented
in Eq. (18) does not violate these requirements since the DO operator
admits the positive-definite and symmetric power-law kernel within the
individual CO fractional integrals (R−RL𝑎𝑖𝑰

1−𝛼
𝑏𝑖

(⋅)).
Although the condition of symmetry helps achieving a positive-

definite and well-posed formulations, in classical (integer-order) ap-
proaches to nonlocal elasticity this condition restricts the application
of the resulting theory to isotropic structures; hence, leading to a
modeling approach not general enough to represent many applications
of practical interest and characterized by asymmetric interactions [5,
19,28]. This aspect was also very recently discussed in [45] which high-
lighted the misuse of a classical Eringen’s nonlocal integral approach
in functionally graded materials. In this context, note that, although
the DO formulation proposed in Eq. (18) adopts a symmetric power-
law kernel, unlike CO operators, the tensorial strength-function 𝜿(𝛼)
(see Eq. (11)) allows the DO formulation to easily capture anisotropic
nonlocality as well as material heterogeneity. On the other hand, the
strength-function serves as an additional parameter (beyond the size
of the nonlocal horizon, and the fractional-order) that allows com-
bining the different fractional integrals in a ‘heterogeneous’ fashion
by weighting them using order-dependent strengths (that is, 𝜅𝑖𝑗𝑘𝑙(𝛼)).
In other terms, the strength-function can be tuned to model material
heterogeneity while still adopting a symmetric kernel and hence, a
positive-definite formulation.

In order to better illustrate the capability of the DO formulation
to model anisotropic nonlocality as well as material heterogeneity,
consider the following DO nonlocal formulation applied to anisotropic
nonlocal materials:

𝜎𝑖𝑗 (𝒙) = I1−𝛼,𝜿(𝛼)
(

𝜆(𝒙)𝛿𝑖𝑗𝜖𝑘𝑘 + 2𝜇(𝒙)𝜖𝑖𝑗
)

(20)

with spatial-dependent heterogeneous Lamé parameters 𝜇(𝒙) and 𝜆(𝒙).
Note that here we use the compact notation I(⋅) to denote the 3D DO
nonlocal integral in Eq. (11). To show how DO-NET can explicitly
model anisotropic nonlocality and material heterogeneity, we define
the component of the strength-function tensor as:

𝜅11 = 𝜅22 = 𝜅33 = 𝜅1(𝛼), 𝜅12 = 𝜅13 = 𝜅23 = 𝜅2(𝛼),

𝜅44 = 𝜅55 = 𝜅66 = 𝜅3(𝛼)
(21)

such that the corresponding stress components obtained via DO-NET in
Eq. (20) can be further expressed as:

𝜎𝑖𝑗 = (2𝜇 + 𝜆) I1−𝛼,𝜅1(𝛼)𝜖𝑖𝑗
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

axial nonlocal effects

+𝜆 I1−𝛼,𝜅2(𝛼)𝛿𝑖𝑗 (𝜖𝑘𝑘 − 𝜖𝑖𝑗 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
lateral nonlocal effects

, 𝑖 = 𝑗

𝜎𝑖𝑗 = 2𝜇 I1−𝛼,𝜅3(𝛼)𝜖𝑖𝑗
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

shear nonlocal effects

, 𝑖 ≠ 𝑗
(22)

It is seen that, by reformulating the DO stress in Eq. (20), we ex-
plicitly obtain the contributions of the nonlocal effects brought by
the anisotropic deformation and accordingly define the effective Lamé
parameters 𝜇 and 𝜆 to account for material heterogeneity. By observing
he DO constitutive relation in Eq. (22), we immediately obtain that the
O formulation can model anisotropy via the strength-tensor. Specifi-
ally, while traditional nonlocal theories (such as Eringen’s nonlocal
7

elasticity [25]) use a single attenuation function to capture homoge-
neous nonlocal effects, 𝜅1(𝛼), 𝜅2(𝛼), and 𝜅3(𝛼) can be tuned to capture
anisotropic nonlocal effects caused by axial, lateral, and shear deforma-
tion, respectively. Moreover, unlike Eringen’s formulation which can
only model homogeneous materials to guarantee positive-definiteness
and symmetry of attenuation kernel [26], the strength-function tensor
(𝜅𝑖𝑗𝑘𝑙(𝛼)) within the DO operator can be used to model material hetero-
eneity, while the inner attenuation kernel is still symmetric and hence
atisfies the necessary (kernel) requirements. From a mathematical
erspective, it appears that the DO formulation in Eq. (18) captures the
heterogeneity in the nonlocal solid via the order-dependent strength-
function instead of using the spatially-dependent (anisotropic) consti-
tutive matrices. This is remarkable since the DO theory provides a
possible route to model anisotropic nonlocality via nonlocal constitu-
tive relations while still achieving a positive definite potential energy
(through the symmetric power-law kernel). We merely note that the
expressions in Eq. (22) suggest that the proposed formulation also
compares closely with the anisotropic nonlocal theory proposed in [46]
where a so-called two-fold anisotropy is introduced using anisotropic
nonlocal kernel functions.

A more generalized approach to model anisotropic nonlocality, fol-
lowing the strategy proposed in [46], is to consider strength-functions
in 𝜅𝑖𝑗𝑘𝑙 to be multivariate. In principle, this can be achieved via the
following extension of the DO formulation in Eq. (11):

ℛ(𝝐) = R−RL
𝑎1
1−𝛼1 ,𝜿(𝛼1)
𝑏1

R−RL
𝑎2
1−𝛼2 ,𝜿(𝛼2)
𝑏2

R−RL
𝑎3
1−𝛼3 ,𝜿(𝛼3)
𝑏3

(𝑪 ∶ 𝝐)

= ∫

1

0 ∫

1

0 ∫

1

0
𝜅𝑖𝑗𝑘𝑙(𝛼1, 𝛼2, 𝛼3)

×
(

R−RL
𝑎1
𝑰1−𝛼1
𝑏1

R−RL
𝑎2
𝑰1−𝛼2
𝑏2

R−RL
𝑎3
𝑰1−𝛼3
𝑏3

)

(

𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙
)

d𝛼1d𝛼2d𝛼3

(23)

where the strength-functions not only depend on specific indices (the
subscripts in 𝜅𝑖𝑗𝑘𝑙), but also on the different contributions from 𝛼1,
𝛼2, and 𝛼3. However, a comprehensive review of the literature [40]
suggests that anisotropic definitions of DO operators have never been
utilized (unlike anisotropic CO definitions that do exist, see for ex-
ample, [32]). Additional comments and insights on the impact and
relevance of the anisotropic definition, in regards to the present prob-
lem of multiscale nonlocal elasticity, would require a more detailed
theoretical (and even computational) analysis.

Before proceeding further, we make some additional remarks on
the impact of nonlocal effects on material scales within homogeneous
and heterogeneous structures. In this regard, recall that, for isotropic
structural elements, nonlocal effects strongly impact the response of
nano- and micro-scale structures, while they are not prominent in the
response of macroscale structures; in other terms, the horizon of nonlo-
cality is restricted to nano or micro-scopic length scales within isotropic
structures. Thus, it can be stated that the horizon of nonlocality is
‘‘length’’- or ‘‘scale’’-dependent and accordingly the mathematics has
to be tailored to capture accurately this non-trivial interplay between
the different length scales. We note that this scale dependence of
the mathematical formalism is discussed in detail while analyzing
the (mathematical) impact of different nonlocal kernels in [28]. As
demonstrated in [28], the specific choice of the kernel (assumed as a
power-law function in this study) should not be universal but rather
determined based on the theoretical and/or experimental knowledge of
the microstructure.; the interested reader is referred to Section 6 of [28]
for a detailed discussion.

3.2. Derivation of governing equations via Hamilton’s principle

In this section, we derive the strong-form of the DO equilibrium
equations governing the response of the nonlocal solid by using varia-
tional principles. Note that the governing equations could also be de-
rived by using linear momentum balance over a representative volume

element of the nonlocal domain (see SM Section S4). Both approaches
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yield identical results, however the variational approach is more imme-
diate while the use of linear momentum balance requires extra care in
accounting for the effects of the nonlocal interactions [26,47].

We use the Hamilton’s principle to derive the strong-form of the
overning equations:

∫

𝑡1

𝑡0
( +  −𝛱)d𝑡 = 0 (24)

In the above equation,  and denote the kinetic energy and the work
one by externally applied forces on the nonlocal solid, respectively.
ote that the nonlocality does not alter either the expressions of the
inetic energy or of the external work done on the solid.  and  are
xpressed as:

 = 1
2 ∫𝑽

𝜌 (𝒖̇ ⋅ 𝒖̇) d𝑽

 = ∫𝑽
𝜌𝒃 ⋅ 𝒖d𝑽 + ∫𝜞

𝒕⋅𝒖d𝜞
(25)

where 𝜌 denotes the density of the solid, 𝒃 denotes the volumetric body
forces applied, and 𝒕 denotes the surface tractions. By substituting the
expressions for the deformation energy, kinetic energy, and external
work in the Hamilton’s principle in Eq. (24) and applying standard rules
of variational calculus, we obtain:

∫

𝑡1

𝑡0

[

∫𝑽
(𝛁 ⋅ 𝝈 + 𝜌𝒃 − 𝜌𝒖̈) 𝛿𝒖d𝑽 + ∫𝜞

(𝝈 ⋅ 𝒏 − 𝒕) 𝛿𝒖d𝜞
]

d𝑡 = 0 (26)

Since the above expression must hold true for all variations 𝛿𝒖 and
all possible time intervals [𝑡0, 𝑡1], we obtain the following governing
equation:

𝛁 ⋅ 𝝈 + 𝜌𝒃 − 𝜌𝒖̈ = 0, ∀𝒙 ∈ 𝑽 (27)

subject to the following boundary conditions:

𝝈 ⋅ 𝒏 − 𝒕 = 0, ∀𝒙 ∈ 𝜞

𝛿𝒖 = 0, ∀𝒙 ∈ 𝜞
(28)

where the former is the DO nonlocal traction boundary condition
(TBC) and the latter is the displacement boundary condition (DBC).
While, on the surface, the above derivation appears equivalent to the
classical elastodynamic formulation, there are important details to be
considered. Notably, the R–RL type DO operator within the stress field
is self-adjoint in nature and this specific behavior, along with the
underlying symmetry in 𝑪 and 𝜿, simplifies significantly the variational
calculations in Eq. (26). A detailed discussion on self-adjointness, sym-
metry, and the variational calculations can be found in Section S3,
Section S4, and Section S5 of the SM. Moreover, it is noteworthy that
the use of DO fractional constitutive relation (see Eq. (18)) does not
affect the general form of the nonlocal governing equations and the
corresponding boundary conditions.

4. Physical interpretation of DO nonlocal elasticity theory

The previous sections have presented a detailed mathematical for-
mulation of the DO-NET. To be able to apply this formulation to the
solution of practical problems, it is fundamental to establish a connec-
tion between the mathematical structure and the physical behavior of
the medium. To address this aspect, we employ the MSLM to develop
a mechanical structure that is physically equivalent to the DO-NET
and that can be used to derive some high level understanding of the
connections between discrete scales (typical of microstructural or even
molecular models) and continuum scales. The MSLM has found many
previous applications in multiscale nonlocal elasticity problems [31,
48]. By interpreting nonlocal interactions in continuous media as the
continuum limit of spring forces between discrete lattice points, MSLM
can be used to establish more direct connections between the nonlocal
theoretic formulation and the physical characteristics of the models.
These models, often used to represent the medium at microstructural
8

level, provide a direct approach to interpret the multiscale nature
captured by DO-NET (see Fig. 1). In this regard, not only the MSLM
can be used to model DO nonlocal elasticity problems, but it can be
leveraged to unravel the physical implications of DO-NET at the micro
scales.

In the following, we illustrate the approach by taking a one-
dimensional nonlocal rod as a sample problem. The rod is assumed to
have a non-uniform distribution of nonlocality along the 𝑦 (thickness)
direction. The rod will be modeled based on the MSLM and compared
with the continuum DO formulation. The equivalence of these two
models will be shown both in terms of the linear momentum and of
the elastic energy. The resulting equivalent MSLM model will allow
drawing important conclusions about the DO-NET formulation. The
nonlocal rod example was chosen to maintain a fairly straightforward
mathematical formulation, hence facilitating the understanding of the
DO-NET and of the correspondences with the MSLM model. At the
same time, the results are general and provide considerations directly
applicable to a three dimensional continuum.

4.1. Mass spring lattice model (MSLM) of a nonlocal rod

Consider a rod having a non-uniform distribution of nonlocality
along the 𝑦 (thickness) direction. The system can be seen as a layered
rod where each layer exhibits nonlocal behavior in the 𝑥 direction and
where the degree of nonlocality changes across different layers (but it is
constant along the same layer). This system can be modeled via MSLM
by modifying the 2D unbounded lattice system in Fig. 1 to represent
a finite domain (see Fig. 2). This lattice can also be considered as an
equivalent (simplified) microscale representation of the nonlocal rod
and it will be helpful to provide a practical physical interpretation of
DO-NET. The development of the MSLM can be broadly divided into
the following steps:

[S1] The nonlocal rod, whose multiple scale nature originates from
the non-uniform (transverse) distribution of nonlocality, is trans-
lated into a finite 2D lattice system consisting of nonlocal chains
stacked along the transverse direction. The nonlocal chains
stacked in the transverse direction have different degree of non-
locality, similar to the unbounded 2D lattice system introduced
in Section 2 (see Fig. 1).

[S2] Recall from the discussion in Section 2 that the multiscale non-
local effect, resulting from the transverse variation of properties
in the 2D lattice system, can be captured within a DO derivative
defined on the axial (1D) direction. This is evident from Eq. (7),
where the effect of the underlying multiple scales (stacked in the
transverse direction) is captured within the strength function of
the DO derivative and the nonlocality in each scale is captured
via the CO derivative (within the DO derivative). In conclusion,
we note that the DO derivative enables to reduce the 2D descrip-
tion following the presence of multiple scales to a simpler (1D)
description.

[S3] Following the above discussion, the 2D finite lattice system
describing the nonlocal rod (in [S1]) can be effectively reduced
to a 1D lattice system where the long-range connections are
captured via DO derivatives. In this 1D lattice system, the in-
formation of the multiple scales underlying the nonlocal rod,
will be captured in the strength function 𝜅(𝛼). In more specific
terms, the summation of all the spring forces (from the different
material scales) at a given point in the 2D lattice system should
be captured effectively in a 1D DO form of the stress–strain
constitutive relation (see Eq. (S36)). This reduction scheme is
also illustrated in Fig. 2. In the remaining study, we will refer to
the 1D lattice system as the 1D DO MSLM (or simply, MSLM) of
the nonlocal rod.
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[S4] The derivation of the MSLM model reduces to estimating the
different spring stiffness such that the (1D) DO nonlocal equation
of motion (EOM) and boundary conditions (BC) are obtained
from the MSLM upon continualization. The details of the 1D
DO-NET, obtained by assuming 𝒖(𝒙) ≡ 𝑢(𝑥) (that is, only axial
deformation occurs) in Eq. (27), is provided in SM Section 6. The
equivalence between the two formulations (that are DO-NET and
MSLM) will be assessed both by evaluating the linear momentum
and the deformation energy. Note that the steps through [S1]-
[S3] are self-contained and complete. In the following we will
focus specifically on [S4], where we develop the equivalent
spring stiffness for the 1D DO MSLM.

.1.1. Linear momentum equivalence
Consider the simplified 1D DO MSLM (see Fig. 2b) obtained by

educing the order of the finite 2D lattice (see Fig. 2a). By using
ewton’s second law, the EOM of a given particle 𝑖 of the lattice can
e written as:
𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝑖𝑗 (𝑢𝑗 − 𝑢𝑖) + 𝐹

(E)
𝑖 = 𝑚𝑢̈𝑖 ∀ 𝑖 ∈ [1, 𝑛 − 1] (29)

here 𝑘𝑖𝑗 denotes the spring stiffness between point 𝑖 and 𝑗 equivalent
o the set of parallel springs in the 𝑦 direction, 𝑛 is the total number of
articles, and 𝐹 (E)

𝑖 denotes the external force acting on the particle 𝑖.
y taking the continuum limit Eq. (29) can be expressed as:

lim
𝛥→0

1
𝛥

[ 𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝑖𝑗 (𝑢𝑗 − 𝑢𝑖) + 𝐹

(E)
𝑖

]

= lim
𝛥→0

𝑚
𝛥
𝑢̈𝑖 ⇒ lim

𝛥→0

1
𝛥

[ 𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝑖𝑗 (𝑢𝑗 − 𝑢𝑖)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙

+𝑓 (E)(𝑥𝑖) = 𝜌̃𝑢̈𝑖 (30)

where 𝛥 = 𝐿∕𝑛 is the distance between two nearest points, 𝐿 is the
length of the lattice in the 𝑥-direction, and 𝑓 (E)(⋅) is the force density
unction with dimensions of force per unit length [N∕m]. As evident
rom the above expression 𝜌̃ (= lim𝛥→0(𝑚∕𝛥)) denotes the mass per
unit length of the lattice. Note that, the term 𝜙 indicated in the above
expression should converge to the divergence of stress in the continuum
description. Hence, in order to enforce the equivalence between the
DO-NET and 1D MSLM, it is required that:

lim
𝛥→0

1
𝛥

[ 𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝑖𝑗 (𝑢𝑗 − 𝑢𝑖)

]

= 𝐸𝐴∫

1

0
𝜅(𝛼)

(

𝐷 R−M
0𝑫

𝛼
𝐿𝑢(𝑥)

)

d𝛼

= 𝐴 [𝐷𝜎] ≡ 𝐴 [∇⋅𝜎] (31)

where 𝐸 and 𝐴 denote the Young’s modulus and cross-sectional area
f the 1D nonlocal solid, respectively. In Eq. (31) above, we have used
Eq. (S39) to express the divergence of the stress in the 1D governing
equation (see SM Section S6). As evident from the above equation, the
development of the MSLM equivalent to the continuum DO formulation
reduces to the evaluation of the terms 𝑘𝑖𝑗 , as highlighted previously
in Section 4.1. It appears that a straightforward and, in fact, natural
approach to determining the 𝑘𝑖𝑗 consists in a numerical discretization
of the DO term 𝐷𝜎(𝑥𝑖). Note that Eq. (31) holds because in the 1D
case the divergence of the DO stress ∇⋅𝜎 is equivalent to the first order
derivative of the DO stress 𝐷𝜎.

Broadly speaking, the numerical approximation of DO operators
consists of two key steps: (1) approximation of the integral operator
∫ 1
0 (⋅)d𝛼, and (2) approximation of the constant fractional operator
𝐷 R−M

𝑎𝑫
𝛼
𝑏 (⋅) [40]. Note that step 1 requires a discretization of the

interval of the order [0, 1], and step 2 requires a discretization over the
spatial domain [0, 𝐿]. The discretization of the order interval in step 1
yields [40]:

lim
𝛥→0

1
𝛥

[ 𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝑖𝑗 (𝑢𝑗 − 𝑢𝑖)

]

= 𝐸𝐴
𝑛𝛼
∑

𝑟=0
𝑤𝑟𝜅(𝛼𝑟)𝛥𝛼

[

𝐷 R−M
0𝑫

𝛼𝑟
𝐿 𝑢(𝑥𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

]

(32)
9

Step 2
where the distributed order interval [0, 1] was divided uniformly into
𝛼 increments with size 𝛥𝛼 = 1∕𝑛𝛼 . 𝑤𝑟 is a set of numerical integration
eights, which is determined from the numerical technique followed
o approximate the integral [40]. The expression in square brackets is
he constant order fractional operator that must be approximated in
tep 2. In order to differentiate the parameters for spatial discretization
over a mesh of points 𝑥𝑖 with 𝑖 = 0,… , 𝑛, see Fig. 2), we also use 𝛼𝑟
with 𝑟 = 0,… , 𝑛𝛼 to denote distributed order discretization in step 1
approximation. In step 2, each fractional-order derivative (with order
𝛼𝑟, 𝑟 = 0,… , 𝑛𝛼) in Eq. (32) is approximated independently such that:

lim
𝛥→0

1
𝛥

[ 𝑛
∑

𝑗=0,𝑗≠𝑖
𝑘𝛼𝑟𝑖𝑗 (𝑢𝑗 − 𝑢𝑖)

]

= 𝐸𝐴
[

𝐷 R−M
0𝑫

𝛼𝑟
𝐿 𝑢(𝑥𝑖)

]

(33)

where 𝑘𝛼𝑟𝑖𝑗 denotes the nonlocal spring stiffness resulting from an in-
finitesimal order element within the order interval [0, 1]. Before pro-
ceeding further with the numerical approximation, we note from a
physical perspective that, 𝑘𝛼𝑟𝑖𝑗 can be regarded as the strength of the
nonlocal interactions in a single layer in the 2D lattice, and 𝑘𝑖𝑗 accounts
for the total parallel nonlocal interactions of all layers along 𝑦-direction.
In this regard, the total nonlocal spring stiffness between the points 𝑖
and 𝑗 can be expressed by combining Eqs. (32),(33) as:

𝑘𝑖𝑗 =
𝑛𝛼
∑

𝑟=0
𝑤𝑟𝜅(𝛼𝑟)𝑘

𝛼𝑟
𝑖𝑗 𝛥𝛼 (34)

The above expression further reinforces the role of DO operators to
account for nonlocal effects characterized by long-range interactions
acting in parallel. This observation is consistent with the previous
multiscale configuration in Section 2 and also further substantiates the
equivalence between the 1D DO rod and the MSLM.

Note that the approximation in Eq. (33) applies to any order 𝛼𝑟 ∈
(0, 1). Hence, in the interest of a more compact notation, in the follow-
ing derivation we will drop the subscript 𝑟 and simply denote 𝛼𝑟 as 𝛼
and 𝑘𝛼𝑟𝑖𝑗 as 𝑘

𝛼
𝑖𝑗 . The detailed expression for the differ–integral operator

(

𝐷 R−M
0𝑫

𝛼𝑟
𝐿 𝑢(𝑥𝑖)

)

can be found in Eqs. (S39,S40) of Section S6. Further,
the details of the numerical approximation for 𝐷 R−M

0𝑫
𝛼𝑟
𝐿 𝑢(𝑥𝑖) can be

found in Section S7 of the SM. Thanks to the R-M definition, the nu-
merical approximation of the aforementioned differ–integral operator
contains the relative displacement terms (𝑢(𝑥𝑗 ) − 𝑢(𝑥𝑖) ≡ 𝑢𝑗 − 𝑢𝑖) (see
Eq. (S45) of SM Section S7). Indeed, recalling the configuration of
MSLM in Eq. (29) and the requirement of model equivalence in Eq. (33)
for a given point 𝑥𝑖, the stiffness 𝑘𝛼𝑖𝑗 of the nonlocal spring between 𝑥𝑖
and 𝑥𝑗 can be read off from the coefficient of the term (𝑢(𝑥𝑗 )−𝑢(𝑥𝑖)) (of
Eq. (S45) in SM Section S7) as:

𝑘𝛼𝑖𝑗 =
𝐸𝐴𝛥

2𝛤 (1 − 𝛼)

×

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛼(𝑥𝑖 − 𝑥𝑗 )−(1+𝛼) + 𝛼(1 + 𝛼)(𝑥𝑖 − 𝑥𝑗 )−(2+𝛼)𝛥 𝑗 = 0

𝛼(1 + 𝛼)(𝑥𝑖 − 𝑥𝑗 )−(2+𝛼)𝛥 0 < 𝑗 < 𝑖 − 1
𝛼(1+𝛼)
1−𝛼

𝛥−(1+𝛼) 𝑗 = 𝑖 − 1
𝛼(1+𝛼)
1−𝛼

𝛥−(1+𝛼) 𝑗 = 𝑖 + 1

𝛼(1 + 𝛼)(𝑥𝑗 − 𝑥𝑖)−(2+𝛼)𝛥 𝑖 + 1 < 𝑗 < 𝑛

𝛼(𝑥𝑗 − 𝑥𝑖)−(1+𝛼) + 𝛼(1 + 𝛼)(𝑥𝑗 − 𝑥𝑖)−(2+𝛼)𝛥 𝑗 = 𝑛

∀ 𝑖 ∈ [1, 𝑛 − 1]

(35)

urther, the stiffness of the springs connecting the boundaries to their
djacent points are obtained as:

𝑘𝛼01 =
𝐸𝐴𝛥

2𝛤 (1 − 𝛼)

[

𝛼(𝑥1 − 𝑥0)−(1+𝛼) +
𝛼(1 + 𝛼)
1 − 𝛼

(𝑥1 − 𝑥0)−(1+𝛼)
]

≡ 𝐸𝐴
𝛤 (1 − 𝛼)

[ 𝛼
1 − 𝛼

𝛥−𝛼
]

𝑘𝛼𝑛−1,𝑛 =
𝐸𝐴𝛥

2𝛤 (1 − 𝛼)

[

𝛼(𝑥𝑛 − 𝑥𝑛−1)−(1+𝛼) +
𝛼(1 + 𝛼)
1 − 𝛼

(𝑥𝑛 − 𝑥𝑛−1)−(1+𝛼)
]

≡ 𝐸𝐴 [ 𝛼 𝛥−𝛼
]

(36)
𝛤 (1 − 𝛼) 1 − 𝛼
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where 𝑘𝛼𝑛−1,𝑛
2 denotes the spring stiffness between 𝑛−1 and 𝑛. A detailed

reatment of above two cases (and the corresponding spring constants)
an be found in SM Section S8. This completes the derivation of the
attice equivalent to the continuum EOM for all body points within
he 1D solid except the only remaining term 𝑘𝛼0𝑛 that connects two
oundary points 𝑥0 and 𝑥𝑛.
Note that to further guarantee the equivalence between the MSLM

nd the DO-NET, the 𝑘𝛼0𝑛 should be determined so that the total spring
orces acting at the boundary points 𝑥0 and 𝑥𝑛 are equivalent to con-
inuum boundary conditions defined in the DO-NET. For this purpose,
e adapt the strategy followed in deriving the stiffness of the bulk
onlocal connections. More specifically, we aim to obtain: (1) the
xpression of the force developed at the two boundary points 𝑥0 and
𝑛 from the nonlocal spring interactions in the MSLM, and (2) the
iscrete (numerical) approximation of the continuum boundary force
n DO-NET, in terms of the relative displacements between the different
oints. Finally by comparing directly the coefficient of 𝑢𝑛 − 𝑢0, we read
ff the nonlocal stiffness 𝑘𝛼0𝑛.
We consider the derivation at left boundary point 𝑥0. The total force

n 𝑥0 due to the nonlocal connections denoted by 𝐹M
0 , is obtained by

sing balance of forces as:

M
0 =

𝑛−1
∑

𝑗=1
𝑘𝛼0𝑗 (𝑢𝑗 − 𝑢0) + 𝑘

𝛼
0𝑛(𝑢𝑛 − 𝑢0) (37)

where 𝑘𝛼0𝑛 is to be determined. The superscript
′M′ in 𝐹M

0 indicates that
he same was obtained from the MSLM. Now, by using the expressions
or the stiffness of the different nonlocal springs from Eq. (35) we
btain:

M
0 = 𝐸𝐴𝛥

2𝛤 (1 − 𝛼)

×

[𝑛−1
∑

𝑖=1
𝛼

𝑢𝑖 − 𝑢0
(𝑥𝑖 − 𝑥0)1+𝛼

+ 𝛥
𝑛−1
∑

𝑖=2
𝛼(1 + 𝛼)

𝑢𝑖 − 𝑢0
(𝑥𝑖 − 𝑥0)2+𝛼

+
𝛼(1 + 𝛼)
1 − 𝛼

𝑢1 − 𝑢0
𝛥1+𝛼

]

+ 𝑘𝛼0𝑛(𝑢𝑛 − 𝑢0)

(38)

t appears that, in order to derive an expression for 𝑘𝛼0𝑛, we must derive
n expression for 𝐹M

0 .
To guarantee the boundary equivalence between the MSLM and

he DO-NET, the discrete MSLM-based formulation of the total force
t the boundary in Eq. (37) (that is, 𝐹M

0 ) should be equivalent to the
ractions defined in 1D DO-NET (see Eq. (S36) of Section S6) upon
ontinualization. Recall that, for the classical (local) MSLM with con-
ections only between nearest-neighbor lattice points [49], the spring
orce 𝐹M(𝑙)

0 acting at the boundary point 𝑥0 can be expressed using
aylor’s approximation as:

M(𝑙)
0 = 𝑘01(𝑢(𝑥1) − 𝑢(𝑥0)) ≈ 𝑘01𝛥

(

𝐷𝑢(𝑥0) +
𝛥
2
𝐷2𝑢(𝑥0)

)

(39)

𝑘01 denotes the spring stiffness between 𝑥0 and 𝑥1 for local the MSLM.
The continuum limit for the above expression is obtained as:

𝐹C(𝑙)
0 = lim

𝛥→0
𝑘01𝛥

(

𝐷𝑢(𝑥0) +
𝛥
2
𝐷2𝑢(𝑥0)

)

= 𝐸𝐴
[

𝐷𝑢(𝑥)||
|𝑥=𝑥0

+ lim
𝛥→0

(𝛥
2
𝐷2𝑢(𝑥)

)

|

|

|

|𝑥=𝑥0

]

(40)

where we used lim𝛥→0 𝑘01𝛥 = 𝐸𝐴. Note that the two differential
terms 𝐷𝑢(𝑥) and 𝐷2𝑢(𝑥) correspond to the boundary conditions and the
governing equation at 𝑥 = 𝑥0, respectively [49]. Inspired by the local
MSLM approach shown in Eq. (39), it can be proved that total forces

2 The comma in the subscript of 𝑘𝛼𝑛−1,𝑛 is used to separate 𝑛−1 and 𝑛 to avoid
onfusion in the notation, and does not indicate any derivative (as usually done
n indicial notation).
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acting at 𝑥 = 𝑥0 in DO nonlocal MSLM can be formulated as:

𝐹C
0 = lim

𝛥→0
𝐹M
0 = lim

𝛥→0
𝐸𝐴

×
[

(1
2

M
𝑥0−𝛥

𝑫𝛼
𝑥0
𝑢(𝑥) − 1

2
M
𝑥0
𝑫𝛼
𝑥𝑛
𝑢(𝑥)

)

|

|

|

|𝑥=𝑥0
+
(

−𝛥
2
𝐷 M
𝑥0
𝑫𝛼
𝑥𝑛
𝑢(𝑥)

)

|

|

|

|𝑥=𝑥0

]

(41)

with the previously non-determined nonlocal stiffness 𝑘𝛼0𝑛 given as:

𝑘𝛼0𝑛 = 𝑘𝛼𝑛0 =
𝐸𝐴

2𝛤 (1 − 𝛼)
×

[

(𝑥𝑛 − 𝑥0)−𝛼 + 𝛼𝛥(𝑥𝑛 − 𝑥0)−(1+𝛼) + 𝛼(1 + 𝛼)𝛥2(𝑥𝑛 − 𝑥0)−(2+𝛼)
]

(42)

etailed derivation of 𝑘𝛼0𝑛 is provided in SM Section S9. The description
bove completes the derivation of all spring stiffness terms within the
onlocal MSLM and establishes the equivalence between the MSLM
nd the DO-NET for all the lattice points including boundary and body
oints. More importantly, with the continuum expression obtained
or nonlocal MSLM, the equivalence of the traction boundary condi-
ions (TBC) between MSLM and DO-NET can be further shown, hence
trengthening the ability of DO-NET to properly represent the physical
ystem at the micro-scales. Detailed proof of the TBC equivalence is
rovided in SM Section S10.

.1.2. Energy equivalence
In this section, we further substantiate the equivalence between

he continuum limit of the MSLM and DO-NET on the basis of energy
rguments. In addition to establishing the equivalence from an energy
erspective, we will also show how the energy approach helps isolating
nd characterizing surface effects due to nonlocality [42]. Note that,
lthough we started from a linear momentum equivalence approach
n order to derive the MSLM and then followed up demonstrating
he energy equivalence, the opposite path (that is, starting from an
nergy equivalence to derive the MSLM and then demonstrating the
orce-equivalence) will yield identical results. We merely note that this
atter approach is more useful to derive higher dimensional MSLM since
hey enable the application of variational-principles to derive governing
quations in a straightforward fashion.
Similar to Section 3.2, we start by deriving the explicit expressions

or the total potential energy obtained via both the DO-NET and the
SLM. For the DO-NET, following Eq. (19), the total potential energy
or the 1D DO nonlocal rod can be obtained as:

C1 = ∫

𝐿

0

1
2
𝐸𝐴

[

𝐷𝑢(𝑥)𝛼𝑢(𝑥)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
UC1 (𝑥)

d𝑥 (43)

UC1 (𝑥) denotes the potential energy density function. In the above
equation, we used the superscript ′C1

′ to denote the total potential
energy derived at continuum level. Similarly, for the discrete MLSM
based on the formulation of force equivalence in Section 4.1.1, the total
energy stored in the MLSM’s springs is given by:

𝛱M =
𝑛
∑

𝑖=0
UM
𝑖 =

𝑛
∑

𝑖=0

[

1
4

𝑛
∑

𝑗=0,𝑗≠𝑖

(

∫

1

0
𝜅(𝛼)𝑘𝑖𝑗 (𝛼)d𝛼

)

(𝑢𝑗 − 𝑢𝑖)2
]

(44)

where UM
𝑖 is the elastic energy stored in all the springs (local as well as

nonlocal) connecting to a given point 𝑖. The superscript ′M′ in the above
equation is used to distinguish the energy obtained via the MSLM from
the DO continuum theory. Note that an additional multiplicative factor
1∕2 is added in the potential energy of the springs in the above equation
in order to equally distribute the spring potential energy between the
two points connected via a given spring. Using Eqs. (43),(44), we will
establish an exact match between the potential energies obtained via
the DO continuum formulation and the MSLM.

By expanding the relative displacement term (𝑢𝑗−𝑢𝑖)2 using binomial
theorem, the UM term in Eq. (44) can be expressed in a straightforward
𝑖
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manner as:

UM
𝑖 = 1

4

𝑛
∑

𝑗=0,𝑗≠𝑖

(

∫

1

0
𝜅(𝛼)𝑘𝑖𝑗 (𝛼)d𝛼

)

(

𝑢2𝑗 − 𝑢
2
𝑖

)

− 1
2
𝑢𝑖

𝑛
∑

𝑗=0,𝑗≠𝑖

(

∫

1

0
𝜅(𝛼)𝑘𝑖𝑗 (𝛼)d𝛼

)

(

𝑢𝑗 − 𝑢𝑖
)

(45)

sing the above simplification, we transferred the algebraic expression
𝑢𝑗 −𝑢𝑖)2 in UM

𝑖 into 𝑢2𝑗 −𝑢
2
𝑖 and 𝑢𝑗 −𝑢𝑖, which enables a simplification of

he resulting expressions in terms of the spring forces in Eq. (29). Now,
y multiplying and dividing the right-hand side of the above expression
y the inter-particle spacing 𝛥, and then taking the continuum limit, we
btain:

lim
𝛥→0

UM
𝑖 = lim

𝛥→0
𝛥𝐸𝐴

( 1
4
𝐷𝛼𝑢2(𝑥𝑖) −

1
2
𝑢(𝑥𝑖)𝐷𝛼𝑢(𝑥𝑖)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
UC2 (𝑥𝑖)

= lim
𝛥→0

𝛥UC2 (𝑥𝑖)

(46)

or body points. Following the same procedure, we also obtain the
ollowing expressions:

lim
→0

UM
0 = lim

𝛥→0
𝛥𝐸𝐴

( 1
4
𝐷𝛼𝑢2(𝑥0) −

1
2
𝑢(𝑥0)𝐷𝛼𝑢(𝑥0)

)

+ 𝐸𝐴
( 1
4
𝛼𝑢2(𝑥0) −

1
2
𝑢(𝑥0)𝛼𝑢(𝑥0)

)

= lim
𝛥→0

𝛥UC2 (𝑥0) + Ub(𝑥0)

lim
𝛥→0

UM
𝑛 = lim

𝛥→0
𝛥𝐸𝐴

( 1
4
𝐷𝛼𝑢2(𝑥𝑛) −

1
2
𝑢(𝑥𝑛)𝐷𝛼𝑢(𝑥𝑛)

)

− 𝐸𝐴
( 1
4
𝛼𝑢2(𝑥𝑛) −

1
2
𝑢(𝑥𝑛)𝛼𝑢(𝑥𝑛)

)

= lim
𝛥→0

𝛥UC2 (𝑥𝑛) − Ub(𝑥𝑛)

(47)

for the two boundary points. Comparing Eqs. (46) and (47), it can
e found that total energy at the boundary points contain two terms
b(𝑥0) and Ub(𝑥𝑛) that are independent of the discretization, and a
ommon term UC2 (𝑥𝑖) which matches exactly the expression of the
otential energy at the internal points (see Eq. (46)). Consequently,
rom Eqs. (46),(47) we obtain that:

C2 (𝑥) = lim
𝛥→0

1
𝛥
UM(𝑥) = 𝐸𝐴

( 1
4
𝐷𝛼𝑢2(𝑥) − 1

2
𝑢(𝑥)𝐷𝛼𝑢(𝑥)

)

(48)

uch that the total elastic energy stored in MSLM can be expressed as:

lim
→0
𝛱M = 𝛱C2 = ∫

𝐿

0
UC2 (𝑥)d𝑥 + Ub(0) − Ub(𝐿)

= 𝐸𝐴
( 1
4
𝛼𝑢2(𝑥) − 1

2
𝑢(𝑥)𝛼𝑢(𝑥)

)

|

|

|

|

𝐿

0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛱M1

+ 1
2 ∫

𝐿

0
𝐸𝐴 (𝐷𝑢(𝑥)𝛼𝑢(𝑥))d𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛱M2

+Ub(0) − Ub(𝐿)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝛱M3

= 𝛱C1

(49)

In the above equation, the terms 𝛱M1 and 𝛱M2 are obtained via
integration by parts of the expression for UC2 (𝑥) from Eq. (46). Note
that the term 𝛱M1 exactly cancels the term 𝛱M3 . This establishes the
equivalence of 𝛱M, 𝛱C1 , and 𝛱C2 . Note that while 𝛱C1 and 𝛱C2

represent the same physical quantity, that is the potential energy of the
continuum, there is a difference in the procedure adopted to obtain the
two expressions. While 𝛱C1 was obtained directly from the continuum
expression of the potential energy density UC1 , 𝛱C2 was obtained by
starting from the discrete expressions of the potential energy density
UM
𝑖 . Hence, we chose to denote them separately. Further, note that

for 𝜅(𝛼) = 𝛿(1), the DO nonlocal operator becomes a local integer
operator such that both Ub(0) = Ub(𝐿) = 0. This indicates that the
boundary energy terms in 𝛱M3 arise primarily due to nonlocality
11
and can be interpreted as a surface effect due to the truncation of
the nonlocal interactions at the boundary. This latter observation also
coincides with investigations conducted via classical approaches to
nonlocal elasticity [42,43]. Accounting for surface effects is critical in
several applications at the nano- and micro-scales [42,43,50,51].

5. Numerical examples

In this section, we show via numerical means the equivalence
between the MSLM and the proposed DO-NET. We consider the con-
tinuum limit of the mass–spring lattice presented in Section 4 (a 1D
onlocal rod) in Fig. 3. For the sake of simplicity and without loss
f generality, we assume that the length and area-normalized Young’s
odulus of 1D rod are 𝐿 = 1 m and 𝐸 = 1 Pa∕m2, respectively.
Before proceeding to present the numerical results, we briefly dis-

uss the procedure adopted to obtain the numerical solutions of the
SLM and the DO-NET. The MSLM is already in a discretized form
hat is amenable to a straightforward numerical implementation; recall
he set of algebraic equations in Section 4.1. The solution for the DO-
ET requires some more discussion. Recall that the approximation of
O operators is divided into two steps. For the first step, involving
he approximation of integral operator ∫ 1

0 (⋅)d𝛼, we use the trapezoidal
cheme [40,52]. Using the trapezoidal scheme, the fractional stress 𝜎 in
q. (S24) can be approximated as a multi-term (discrete) DO fractional
erivative as:

(𝑥) ≈
𝑛𝛼−1
∑

𝑟=0

𝛥𝛼
2

[

𝜅(𝛼𝑟)
2

(C
0𝑫

𝛼𝑟
𝑥 𝑢(𝑥) − C

𝑥𝑫
𝛼𝑟
𝐿 𝑢(𝑥)

)

+
𝜅(𝛼𝑟+1)

2
(C
0𝑫

𝛼𝑟+1
𝑥 𝑢(𝑥) − C

𝑥𝑫
𝛼𝑟+1
𝐿 𝑢(𝑥)

)

]

(50)

which is composed of 𝑛𝛼 number of CO derivatives. In the above
approximation, the discretization for the order integral is identical to
Eq. (32). Further, the same discretization is also utilized to evaluate
the derivative of the stress field, 𝐷𝜎(𝑥). For step two, involving the
approximation of the CO fractional derivative with order 𝛼𝑖, we use
the rectangular rule outlined previously in SM Section S7 (see Eq. (S42–
S44)). While it is possible to adopt other techniques, this choice ensures
that the same level of numerical approximation is used in both the DO-
NET and the MSLM models (recall that the rectangular rule was used
in the process of deriving MSLM in Section 4).

5.1. Numerical results

In this section, we present the static response of the DO-NET and
MSLM for different loading conditions and order distributions. More
specifically, we consider the following different test cases:

• Test case 1: four different continuous distributions of the or-
der 𝛼 with support in the closed interval [0, 1] are evaluated.
Specifically, we consider the uniform, linear, beta, and truncated
normal distributions. Their respective plot is provided in Fig. 4a.
The purpose of this test case is to explore the impact of the
different 𝛼−distributions on the nonlocal response and the ability
of the DO-NET to capture different distributions. In all cases, the
external load is applied at the end-point via a DBC and a TBC,
which are given as 𝑢(𝐿) = 1 m and 𝑇 (𝐿) = 0.1 N.

• Test case 2: different 𝛼−distributions are evaluated (see Fig. 4-
b). The purpose of this test case is to analyze the reduction of
the DO model to a CO model via transition of the 𝛼−distribution
from a uniform distribution to a dirac-delta distribution centered
at 𝛼0, that is, 𝛿(𝛼 − 𝛼0). The evolution of the uniform distribution
to 𝛿(𝛼 − 𝛼0) is simulated through a series of normal distributions
centered at 𝛼0 with reducing scale. In this test case, a uniformly
distributed axial force 𝐹 (𝑥) = 5 N is applied on the body along
with the DBC and TBC used in test case 1, that is, 𝑢(𝐿) = 1 m and
𝑇 (𝐿) = 10 N, respectively.
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Fig. 3. Schematic of a 1D nonlocal rod under a distributed axial load 𝐹 (𝑥). This structure is used as benchmark problem to evaluate the performance of the DO formulation. The
left boundary is fixed while the right boundary can be subject to either a prescribed displacement 𝑢0 or traction 𝑇0.
Fig. 4. Strength-functions 𝜅(𝛼) for two test cases. (a) shows test case 1 containing the strength-functions 𝜅(𝛼) of four classical continuous distribution with finite support on
[0, 1]. Specifically, the uniform, linear, beta (with 𝑎 = 2 and 𝑏 = 5), and truncated normal (with loc = 0.9 and scale = 0.15) distributions. (b) shows test case 2 containing the
strength-functions 𝜅(𝛼) of four evolutionary continuous distributions. Specifically, the evolution starts from uniform distribution, to truncated normal distribution with loc = 0.7 and
scale = 0.5, to truncated normal distribution with loc = 0.7 and scale = 0.25, and eventually, to Dirac-delta distribution at 𝛼 = 0.7. Legends ′scale = 0.5′ and ′scale = 0.25′ are used
to differentiate the two truncated normal distributions. Detailed information on these distributions and meaning of parameters can be found in the Python open source package
scipy.stats [56].
he properties of the different distributions are provided in Table 1.
ote that while the above distributions were chosen to validate the
roposed MSLM and DO-NET under diverse conditions, most of these
istributions have direct physical interpretation in real-world appli-
ations such as, for example, heterogeneous impurity distribution in
raded junctions [53], functionally graded materials with linearly vary-
ing properties [54], and even alloys with log-normal distributed grain
size [55]. By exploring eight different distributions of 𝛼, we intend
to provide a variety of conditions that could serve as fertile ground
to identify possible applications across different fields involving mul-
tiscale nonlocal problems. The externally applied loads and boundary
conditions for both the cases are schematically illustrated in Fig. 3. The
left-boundary of the rod is fixed, that is, 𝑢(0) = 0. As for the numerical
iscretization, 𝑛𝛼 = 100 points for the DO interval 𝛼 ∈ [0, 1] and 𝑛 = 100
oints for the spatial domain of the 1D rod [0, 1]m were adopted for
the discretization. Both cases used uniformly distributed stencils. Note
that the numerical discretization of 𝑛𝛼 = 100 and 𝑛 = 100 is selected
o reduce the error between the MSLM and DO-NET simulation results
nder any variation of the distributed order. For the sake of brevity,
n the following section we only focus on the analysis of simulation
esults, not on the numerical aspects. We refer the interested readers to
M Section 12 for a detailed convergence study. The numerical results
re presented in Figs. 5–7 in terms of the displacement response and
potential energy densities.

Fig. 5 shows the displacement fields of the DO-NET and MSLM
obtained for all test cases. Fig. 5a.1 and Fig. 5a.2 present the results
obtained for the DBC in test cases 1 and 2, respectively. Fig. 5b.1 and
Fig. 5b.2 present the results obtained for the TBC in test cases 1 and 2,
respectively. A detailed analysis of these results leads to the following
observations and conclusions:

• As evident from Fig. 5a.1 and Fig. 5a.2, the displacement fields
simulated via the DO-NET and MSLM, for both the test cases 1
12
Table 1
Measures of central tendency corresponding to the different 𝜅(𝛼) in Fig. 4.

Test case 1

Properties Uniform Linear Beta Truncnorm

Mean 0.5000 0.6667 0.2857 0.8359
Median 0.5000 0.7071 0.2644 0.8517
Mode – 1 0.2 0.9
Standard deviation 0.2887 0.2357 0.1597 0.1095

Test case 2

Properties Uniform Scale=0.5 Scale=0.25 Dirac-delta

Mean 0.5000 0.5578 0.6472 0.7
Median 0.5000 0.5775 0.6646 0.7
Mode – 0.7 0.7 0.7
Standard deviation 0.2887 0.2665 0.2041 0

and 2 under DBC, are in excellent agreement with each other.
Fig. 5b.1 and Fig. 5b.2 show that there is a small difference
between the response of the DO-NET and MSLM for the TBC.
Nonetheless, the maximum point-wise difference between the DO-
NET and MSLM response is less than 2% (of either the DO-NET
or MSLM response), for all the 𝛼−distributions, which indicates
a good match. We merely note that the difference between the
two formulations under TBC is larger than the difference under
DBC because the whole derivation of MSLM and its equivalence
with TBC in DO-NET are based on the rectangular approximation
(in Section 4.1.1). While this approximation brings error at the
boundaries when applying TBC, the DBC case does not involve
approximation of the forces at the boundary points and thus
accumulates smaller errors. The close match between the response
of the DO-NET and MSLM for all the test cases demonstrates the
equivalence of their EOMs in Eqs.(S36,(30)) and validates the
MSLM.

• The results in Fig. 5a.1 and Fig. 5b.1, which correspond to the test
case 1, suggest that an increase in the degree of nonlocality leads
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2

Fig. 5. Numerical results of the predicted displacement distribution. (a.1) and (a.2) show results for test case 1 and 2 under DBC; (b.1) and (b.2) show results for test case 1 and
under TBC. Results labeled ′ − M′ refer to predictions obtained using the MSLM model, while the label ′ − C′ indicates results provided by the continuous theory of DO-NET.

The black dashed–dotted line indicates results obtained from the local 1D system.
to a greater distortion of the displacement field of the nonlocal
solid with respect to the local solid (obtained for the distribution
𝜅(𝛼) = 𝛿(𝛼 − 1)), under the same loads and boundary conditions.
This is a direct result of the softening effect of the solid when
subject to an increasing degree of nonlocality [29,31,57].
In order to better understand the above conclusions, we first dis-
cuss a possible approach to compare the degree of nonlocality of
different 𝛼−distributions. Recall that all the 𝜅(𝛼) are normalized,
that is, ∫ 1

0 𝜅(𝛼)d𝛼 = 1; in other terms, the area under all 𝜅(𝛼)
curves in Fig. 4 is equal to 1. The measures of central tendency
of the different 𝜅(𝛼), provided in Table 1, suggest that the beta
distribution predominantly carries information from lower values
of 𝛼, followed by the uniform and linear distributions which
carry information from progressively higher values of 𝛼. The
truncnorm distribution derives the maximum information from
the highest values of 𝛼. This trend is reflected from both the
mean (𝛼𝜇) and median (𝛼0.5) of the distributions which, starting
from the minimum values seen in the beta distribution, increase
progressively for the uniform, linear, and truncnorm dis-
tributions. Recall also that a lower value of the fractional-order
in constant fractional-order nonlocal theories is indicative of
a higher degree of nonlocality [29,57]. It immediately follows
that, the degree of nonlocality increases with decreasing 𝛼𝜇 and
𝛼0.5.
13
The results in Fig. 5a.1 and Fig. 5b.1 are consistent with the above
discussion. As evident from these results, the beta distribution
(which has the lowest 𝛼𝜇 and 𝛼0.5) leads to the most pronounced
softening effect, while the truncnorm distribution (which has
the highest 𝛼𝜇 and 𝛼0.5) leads to the lowest effect in terms of
softening.

• Following the above discussion, we expect that in test case 2, the
uniform distribution will be associated with the strongest soft-
ening effect, followed by the truncnorm distribution with scale
0.5 and the truncnorm distribution with scale 0.25. Finally, the
CO distribution 𝜅(𝛼) = 𝛿(𝛼 − 0.7) is expected to be affected the
least from softening effects (compared with the local response).
Indeed, the results in Fig. 5a.2 and Fig. 5b.2 are consistent with
the above discussion. Also of interest is that, for this test case, the
response obtained by the uniform 𝜅(𝛼) appears to converge to the
CO response, when 𝜅(𝛼) evolves from the uniform distribution to
the Dirac-delta distribution via the sequence of truncated normal
distributions.

• The above two points suggest that the consistent softening re-
sponse, with increasing degree of nonlocality, is observed inde-
pendently of the loading and boundary conditions. This obser-
vation is in contrast with strain-driven approaches which are
typically ill-posed for different loading and boundary conditions
and can lead to inconsistent predictions [41].
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Fig. 6. Potential energy density under DBC. (a.1) and (a.2) show simulation results of test case 1 and 2, respectively; (b.1) and (b.2) show simulation results of test case 1 and 2,
espectively. (a.1) and (a.2) compare simulation results between U𝑀

𝑖 and UC2 while (b.1) and (b.2) compare results between UC1 and UC2 . Simulation results based on UM, UC1 ,
nd UC2 are labeled with ′M′, ′C′

1, and
′C′

2, respectively. (a.1) and (a.2) show that UM and UC2 are in excellent agreement, while (b.1) and (b.2) show that UC1 and UC2 are not
due to the extra boundary energy terms Ub defined in UC2 ).
Figs. 6 and 7 present the potential energy densities obtained via
he DBC and TBC, respectively. In each case, we compute the potential
nergy density using three previously derived expressions: UC1 and
C2 defined at continuum level, and UM

𝑖 defined at discrete level.
ccordingly, we use the displacement fields obtained via the DO-NET
o compute UC1 and UC2 , and the displacement field obtained via
SLM to compute UM

𝑖 . In sub-figures (a.1) and (a.2), we compare
he potential energy density obtained via the MSLM (UM

𝑖 ) and the
ontinuum expression UC1 for the two test cases 1 and 2, respectively.
ext, in the sub-figures (b.1) and (b.2), we compare the two continuum
xpressions UC1 and UC2 for the two test cases 1 and 2, respectively.
he results presented in Figs. 6 and 7 lead to the following observations
nd remarks:

• From Fig. 6(a.1),(a.2) and Fig. 7(a.1),(a.2), the match between
UC2 and UM

𝑖 is excellent for all the points within the domain
of the rod, and for the boundaries located at 𝑥 ∈ {0, 𝐿}. This
is not surprising since the displacement fields computed by DO-
NET and MSLM are in excellent agreement and UC2 was obtained
via the continuum limit of UM

𝑖 (see Eqs. (46),(48)). Note that,
at the boundary points, we compute UC2 (0) and UC2 (𝐿) by also
considering the boundary energy terms Ub(0) and −Ub(𝐿), respec-
tively (see Eq. (49)). Recall that boundary energy contributions
were isolated in Section 4.1.2 by ensuring a consistency between
14

the numerical discretization adopted for the continuum model
and the MSLM. By considering the boundary energy terms Ub,
we observe a concentration of the deformation energy at the
boundaries. This behavior is also present in the lattice model
(UM

𝑖 ). It appears that the strength of this energy concentration is
proportional to the degree of nonlocality, that is, it is maximum
for the 𝜅(𝛼) with the maximum degree of nonlocality (beta
distribution in test case 1 and uniform distribution in test
case 2). Note that the boundary energy terms in Eq. (49) were
related to the so-called surface energy existing in micro/nano
structures. At this scale, the impact of the long-range interactions
(typically resulting from atomic interactions) operating at the
surface is significant, since the surface thickness is comparable
to the length-scale of the system [42].

• Unlike the above observation, the potential energy densities
UC1 and UC2 presented in Fig. 6(b.1),(b.2) and Fig. 7(b.1),(b.2)
present a poor match. While, at a first glance, this difference
might seem to suggest an inconsistency between the two con-
tinuum expressions UC1 and UC2 , in practice it should be an
expected outcome. Indeed, this difference is a direct result of
the definitions for UC1 and UC2 that were aimed at capturing
different underlying phenomena. More specifically, while UC1

was defined at a strictly continuum level (via Eq. (43)), UC2 was
defined specifically (by leveraging the MSLM and the numerical
technique in Section 4.1.2) to capture the surface energy densities
that are typically observed at very fine (e.g. atomic) scales. In
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o

Fig. 7. Potential energy density simulation results under TBC. (a.1) and (a.2) show simulation results of test case 1 and 2, respectively; (b.1) and (b.2) show simulation results
f test case 1 and 2 respectively. In particular, (a.1) and (a.2) compare simulation results between U𝑀

𝑖 and UC2 ; (b.1) and (b.2) compare simulation results between UC1 and UC2 .
Simulation results based on UM, UC1 , and UC2 are labeled with ′M′, ′C′

1, and
′C′

2, respectively. (a.1) and (a.2) show that UM and UC2 are in excellent agreement, while (b.1) and
(b.2) show that UC1 and UC2 are not (due to the extra boundary energy terms Ub defined in UC2 ).
the following point, we provide some additional observations that
clarify this subtle yet important difference.

• First, observe from the different nonlocal response in Fig. 5 that
the displacement of the system, obtained via both the DO-NET
and MSLM, is at least 𝐶2 continuous (apparent from the lack of
inflection points). Hence, it immediately follows that the strain
and stress definitions at continuum level, and consequently the
potential energy density (UC1 ) are smooth (also evident from
sub-figures (b.1) and (b.2) in Figs. 6 and 7). Next, note that
although UC1 and UC2 differ at a local (point-wise) level, at
a global level the total potential energies 𝛱C1 , 𝛱C2 , and 𝛱M

should be equivalent (according to Eq. (49)). This can be seen in
Tables 2 and 3 where the total potential energies computed for the
different test cases are provided. As evident from these results, the
total potential energy obtained from the three different potential
energy densities, match very well and are within a 1% difference
from each others. It can be envisioned that, since UC2 isolates
the surface energy contributions from the total potential density
and the total potential energies are the same irrespective of the
specific definitions (as it should be from a physical perspective),
the remaining energy is redistributed in the 1D system when using
the expression for UC2 . This is also evident from the insets within
the sub-figures (b.1) and (b.2), where one can observe that UC1 >
UC2 in the selected region of the 1D nonlocal rod.
15
• To further clarify the latter comment on the energy redistribution
obtained via UC2 , let us consider an alternative definition of UM

𝑖
which also conserves the total deformation energy of the 1D
MSLM:

UM1
𝑖 = 1

4

𝑖
∑

𝑝=0

𝑛
∑

𝑞=𝑖

𝑀1(𝑖)
𝑞 − 𝑝

(

∫

1

0
𝜅(𝛼)𝑘𝑝𝑞(𝛼)d𝛼

)

(

𝑢𝑝 − 𝑢𝑞
)2 (51)

where 𝑀1(𝑖) = 1 for body points 0 < 𝑖 < 𝑛 and 𝑀1(𝑖) = 1∕2 for
two boundary points 𝑖 = 0, 𝑛. Recall that Eq. (45) computes UM

𝑖 at
a point 𝑖 by taking half of the energy of all the springs with one
end fixed at the point 𝑖 into account (𝑘𝑖𝑗 with 0 ≤ 𝑗 ≤ 𝑛). Contrary
to Eq. (45), Eq. (51) computes UM1

𝑖 by considering all springs that
contain the point 𝑖 within their span (𝑘𝑝𝑞 with 0 ≤ 𝑝 ≤ 𝑖 and 𝑖 ≤
𝑞 ≤ 𝑛). More specifically, under this definition, for a given spring
connecting two point 𝑝 and 𝑞, the spring energy will be distributed
not only at these two points, but also at all the points in-between
them. Fig. 8 shows the comparison between UM1

𝑖 and UC1 under
DBC. It can be seen that compared with UC2 and UM

𝑖 in Fig. 6 and
Fig. 7, UM1

𝑖 does not possess any boundary energy concentration.
Although this alternative definition does not exactly match UC1 ,
the scale and distribution of the potential energy density is much
closer than the previous results in Fig. 6 and Fig. 7. Based on
the above discussions, it is reasonable to attribute the difference
between UC1 and UC2 to different definitions of the potential
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Table 2
Total potential energy computed in the case of displacement boundary condition (DBC). C1, C2, and M represent total potential
energy formulation 𝛱C1 , 𝛱C2 , and 𝛱M, respectively.

Test case 1

Total potential energy Uniform Linear Beta Truncnorm

𝛱C1 0.3630 0.4029 0.3087 0.4435
𝛱C2 0.3632 0.4057 0.3139 0.4435
𝛱M 0.3702 0.4110 0.3161 0.4521

Test case 2

Total potential energy Uniform Scale=0.5 Scale=0.25 Dirac-delta

𝛱C1 3.0430 2.7478 2.4053 2.3062
𝛱C2 3.0650 2.7675 2.4229 2.3303
𝛱M 3.1637 2.8531 2.4934 2.3981
Table 3
Total potential energy computed under traction boundary condition. C1, C2, and M represent total potential energy formulation
𝛱C1 , 𝛱C2 , and 𝛱M, respectively.

Test case 1

Total potential energy Uniform Linear Beta Truncnorm

𝛱C1 0.6609×10−3 0.6081×10−3 0.7212×10−3 0.5624×10−3

𝛱C2 0.6668×10−3 0.6123×10−3 0.7333×10−3 0.5650×10−3

𝛱M 0.6752×10−3 0.6082×10−3 0.7907×10−3 0.5529×10−3

Test case 2

Total potential energy Uniform Scale=0.5 Scale=0.25 Dirac-delta

𝛱C1 7.2925 6.8022 6.1958 6.0073
𝛱C2 7.3022 6.8153 6.2127 6.0326
𝛱M 7.2712 6.7837 6.1734 5.9547
Fig. 8. Numerical estimates of the potential energy density UM1
𝑖 and UC1 under DBC. (a) shows results for test case 1, and (b) shows results for test case 2. The difference between

UM1
𝑖 and UC1 is found to be much smaller than the previous case in Fig. 6, especially at both boundary points. This indicates that an alternative definition (UM1

𝑖 ) can reduce the
inconsistency of the potential energy density between MSLM and DO-NET.
energy and not to any inconsistency between the DO-NET and
the MSLM approaches.

In addition to the above numerical results, we present yet another
argument that support the equivalence between DO-NET and MSLM,
namely, the distribution of the elastic spring stiffness 𝑘𝛼𝑖𝑗 . Here, we
present the distribution of 𝑘𝑖𝑗 obtained from the truncated normal
distribution in Fig. 4a. Fig. 9 shows detailed results of 𝑘𝛼𝑖𝑗 . To facilitate
the presentation, we consider log(𝑘𝛼𝑖𝑗 ) in the plots presented in Fig. 9. As
evident from Fig. 9, 𝑘𝛼𝑖𝑗 decays symmetrically about any point within
the nonlocal solid. The symmetry of 𝑘𝛼𝑖𝑗 is more evident from the 2D
(top-view) projection of the surface plot in Fig. 9b. Recalling that the
spring stiffness is a direct indicator of the strength of nonlocality, the
decay in the nonlocal spring stiffness in the MSLM is analogous to
the characteristics of the attenuation kernel of the DO-NET or of other
types of nonlocal elasticity theories [25,31]. Observe that the boundary
nonlocal stiffness terms (𝑘𝛼0𝑗 , 𝑘

𝛼
𝑖0, 𝑘

𝛼
𝑛𝑗 , 𝑘

𝛼
𝑖𝑛) decay at a slower rate and are

much stiffer than the nonlocal springs within the MSLM when |𝑥 − 𝑥 |
16

𝑖 𝑗
is large enough. In fact, it is also evident from Eq. (35) that the body
spring stiffness decay via a power-law with exponent −(2 + 𝛼) while
the boundary spring stiffness decay predominantly with an exponent
−(1+𝛼). In order to better present this phenomenon, in Fig. 9a we have
compared selected combinations of these stiffness with the following
functions:

𝑓1(𝑥𝑖, 𝑥𝑗 ) = log
(

∫

1

0

𝜅(𝛼)
|𝑥𝑖 − 𝑥𝑗 |

2+𝛼
d𝛼

)

,

𝑓2(𝑥𝑖, 𝑥𝑗 ) = log
(

∫

1

0

𝜅(𝛼)
|𝑥𝑖 − 𝑥𝑗 |

1+𝛼
d𝛼

)

(52)

The choice of these functions is also motivated from their appearance
within the DO-NET constitutive relations in Eq. (S38,40), respectively.
Hence, from a different perspective, this comparison will also demon-
strate an equivalence between the degree of nonlocality obtained via
the MSLM and DO-NET. In Fig. 9a, the function 𝑓 (𝑥 , 𝑥 ) is presented
1 𝑖 𝑗
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Fig. 9. Elastic spring stiffness distribution. (a) shows scatter plot of log(𝑘𝑖𝑗 ). Green circle and blue square lines are the power-law decay function 𝑓1(𝑥𝑖 , 𝑥𝑗 ) and 𝑓2(𝑥𝑖 , 𝑥𝑗 ) defined
in Eq. (52), respectively. Black and pink lines are projections of body spring stiffness log(𝑘𝛼𝑖𝑗 ) and boundary spring stiffness log(𝑘(𝑏)𝑖𝑗 ); (b) shows overall distribution of log(𝑘𝛼𝑖𝑗 ) using
heat map plot.
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for points {𝑥𝑖, 𝑥𝑗} such that 𝑥𝑖 + 𝑥𝑗 = 1, and compared against the cor-
esponding curves projected from the 𝑘𝛼𝑖𝑗 surface plot at two different
lanes where either 𝑥𝑖 or 𝑥𝑗 are constant. The condition 𝑥𝑖 + 𝑥𝑗 = 1
uggests that we extract the stiffness from the diagonal along the sur-
ace plot of 𝑘𝛼𝑖𝑗 . Further, we have also compared the function 𝑓2(𝑥𝑖, 𝑥𝑗 )
ith the boundary stiffness {𝑘𝛼𝑖0, 𝑘

𝛼
𝑛𝑗} (denoted as 𝑘(𝑏)𝑖𝑗 collectively in

the legend of the plot). As evident, the match between the different
functions and the MSLM stiffness is excellent. More importantly, since
boundary points at 𝑥0 and 𝑥𝑛 are connected with all the boundary
springs, the energy stored within all these boundary springs contributes
to the potential energy density UM

𝑖 for 𝑖 = 0 and 𝑖 = 𝑛. Under the same
deformation field, boundary points can store much higher potential
energy than body points. Remarkably, this observation also supports
the previous discussion on the surface effects and energy concentration
at the boundary.

In conclusion, our theoretical formulation and numerical results
have shown that on the one hand MSLM provides a very effective route
to a physical interpretation of DO-NET, and on the other hand DO-
NET can be regarded as an effective multiscale homogenization method
for complex nonlocal systems. Specifically, for a complex MSLM with
co-existing nonlocality shown in Fig. 2, the traditional approach to
study its mechanical response is to first (1) obtain equations of motion
by Newton’s second law, and then (2) to solve the equations [58].
Although this approach is straightforward and easy to use, the computa-
tional cost increases drastically with the increase in problem complexity
and spectrum of spatial scales involved. A typical example that directly
exemplifies this problem is the class of molecular dynamics simula-
tions. Although nowadays molecular dynamics can simulate up to one
billion particles [59], the overall spatial scale is still restricted to the
ano or, at most, the micro scales due to the computational cost.
o address this problem, multiscale methods such as extended finite
lement method (XFEM) and bridge domain method (BDM) [60] are
roposed. Similarly, for large scale particle and lattice systems (as the
SLM in this study), direct numerical simulation is computationally
xpensive and becomes rapidly unfeasible for large systems. The DO-
ET provide an effective and computationally efficient approach to
odel the system at the macro scales while still retaining a significant
mount of information from the smaller scales. Finally, we emphasize
hat the above obtained correspondence between the MSLM and DO-
ET not only holds for the static equilibrium shown above, but also
17

or dynamic equilibrium. This is a direct result of the fact that the c
iscrete MSLM was derived via the equivalence with the elastodynamic
ontinuum formulation, as evident from Eq. (30).

. Conclusions

This study focused on the identification and characterization of
he complex physical phenomenon of multiscale nonlocal elasticity.
his mechanism arises from the coexistence of multiple material scales
n complex heterogeneous structures such as, for example, layered
omposites, functionally graded and porous materials. In these classes
f material and structural systems, heterogeneity localized at differ-
nt scales produces nonlocal effects (of varying strength) subject to
ross-interaction due to the overall multiscale nature of the prob-
em. The identification of multiscale nonlocal elasticity, as a phys-
cal phenomenon resulting from the coexistence and interaction of
ither multiscale or nonlocal effects was shown to be well-captured
y distributed-order operators. Indeed, by using a sample structural
roblem consisting in a layered multiscale nonlocal material, this study
emonstrated that the DO operators can successfully capture multiscale
ffects, nonlocal effects, as well as the interaction between them. This
atter observation motivated the development of a 3D distributed-
rder nonlocal elasticity theory (DO-NET) capable of modeling this
ype of generalized multiscale nonlocal continua. The DO-NET was
erived from a nonlocal thermodynamic formulation where multiscale
ffects were modeled using DO derivatives. Important aspects of the
nalysis including the derivation of governing equations via variational
rinciples, the assessment of the well-posed nature of the governing
quations, and their ability to capture heterogeneity and anisotropy
contrary to classical nonlocal approaches developed in literature) were
resented in detail.
To further understand the ability of the DO-NET to capture the

nderlying multiscale nonlocal mechanisms as well as its effectiveness
n modeling complex continua, we presented a generalized mass spring
attice model (MSLM) approach representing an equivalent system
ade of parallel distribution of long-range elastic springs. The stiffness
f each long-range spring was obtained by discretizing the distributed
rder derivatives in the DO-NET governing equations and by leveraging
he mathematical equivalence between the fractional-order Caputo and
he fractional-order Marchaud derivative. By taking the continuum
imit, the MSLM was proved to be equivalent to the proposed DO-NET
n terms of linear momentum, potential energy, and traction boundary

onditions. These theoretical analyses provided critical insights on
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the ability of the DO-NET to achieve consistent predictions free from
paradoxical behavior or boundary effects (often found in classical non-
local approaches), as well as the ability to capture surface effects and
energy concentration (typical of multiscale effects). To further illustrate
the equivalence between the DO-NET and MSLM approaches, and to
present different phenomena typical of multiscale systems such as mate-
rial softening, surface effects, and energy concentration, comprehensive
numerical simulations were conducted. Numerical results have shown
an excellent match between the two modeling approaches in terms
of both the displacement field and the total potential energy. The
equivalence between the DO-NET and the MSLM not only contributes to
the understanding of the nonlocal mechanisms captured by the DO-NET
but, more importantly, illustrates the outstanding potential of DO-NET
to accurately model at continuum level complex multiscale nonlocal
systems.

In conclusion, the physically-consistent and well-posed DO-NET
approach to multiscale nonlocal continua provides a critical step to
establish accurate and efficient fractional-order continuum mechanics
approaches to modeling the response of real-world complex structures.
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