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This study presents a physically-consistent displacement-driven reformulation of the concept of action-at-a-
distance, which is at the foundation of nonlocal elasticity. In contrast to the class of existing approaches
that adopts an integral stress—strain constitutive relation, the displacement-driven approach is predicated on
an integral strain-displacement relation. One of the most remarkable consequence of this reformulation is
that the (total) strain energy is guaranteed to be a convex and positive-definite function without imposing
any constraint on the symmetry of the nonlocal kernel. This feature is critical to enable the application of
nonlocal formulations to general continua exhibiting asymmetric interactions; ultimately a manifestation of
material heterogeneity. Remarkably, the proposed approach also enables a strong (point-wise) satisfaction of
the locality recovery condition and of the laws of thermodynamics, which are not foregone conclusions in most
classical nonlocal elasticity theories. Additionally, the formulation is frame-invariant and the nonlocal operator
remains physically consistent at material interfaces and domain boundaries. The study is complemented by a
detailed analysis of the dynamic response of the nonlocal continuum and of its intrinsic dispersion, leading
to the consideration that the choice of a nonlocal kernel should depend on the specific material. Examples of
either exponential or power-law kernels are presented in order to demonstrate the applicability of the method
to different classes of nonlocal media. The ability to admit generalized kernels reinforces the generalized nature
of the displacement-driven approach over existing integral methodologies, which typically lead to simplified
differential models based on exponential kernels. The theoretical formulation is also leveraged to perform
numerical simulations of the linear static response of nonlocal beams and plates further illustrating the intrinsic
consistency of the approach, which is free from unwanted and unrealistic boundary effects.

1. Introduction

Experimental and theoretical investigations have shown that, irre-
spective of the spatial scale, size-dependent effects or nonlocal effects
can become prominent in the response of several structures in the most
diverse fields of engineering, nanotechnology, biotechnology, and even
medicine (Eringen, 1972; Romanoff and Reddy, 2014; Romanoff et al.,
2020; Patnaik et al., 2021a; Alotta et al., 2020; Zhu et al., 2020).
The study and analysis of nonlocal effects has increasingly become an
important component of structural design and analysis. Specific exam-
ples of size-dependent structures include sensors, biological implants,
micro/nano-electromechanical devices, and even macroscale structures
such as stiffened or sandwiched panels in naval and aerospace applica-
tions (Zhu et al., 2020; Alotta et al., 2020; Nair, 2019; Pradhan and
Murmu, 2009; Romanoff et al., 2020; Patnaik et al., 2021a). In the
case of micro- and nano-structures, for example those involving carbon
nanotubes or graphene sheets, nonlocal effects can be traced back to
interatomic interactions, and even medium heterogeneity (Pradhan and

* Corresponding authors.

Murmu, 2009; Wang et al., 2011; Trovalusci et al., 2017; Tuna et al.,
2019; Patnaik et al., 2021b; Lal and Dangi, 2019). These nonlocal forces
operate at the nanoscale and hence do not significantly contribute to
the overall macroscopic response. For these reasons, nonlocal effects
have long been considered negligible at the macro scales. However, at
the macro scales, nonlocal effects can originate from material hetero-
geneities (Bazant, 1976; Romanoff and Reddy, 2014; Trovalusci et al.,
2014; Patnaik and Semperlotti, 2020a; Alotta et al., 2020; Romanoff
et al., 2020; Hollkamp and Semperlotti, 2020; Patnaik et al., 2021a)
or even from intentionally nonlocal designs (Nair, 2019; Zhu et al.,
2020). While long-range interactions occur naturally in heterogeneous
materials (e.g. interactions between the layers of a functionally graded
material), they can also be induced artificially via carefully designed
structural links in the intentional nonlocal designs. The existence of
size-dependent effects leads to a softening or stiffening of the structure
when compared to the predictions made from the classical (local) con-
tinuum mechanics formulation. Additionally, size-dependent structures
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exhibit anomalous wavenumber—frequency dispersion characteristics
leading to wavenumber/frequency dependent wave speeds, contrary
to constant wave speeds achieved via local descriptions (Fellah et al.,
2004a; Buonocore et al., 2019; Fellah et al., 2004b; Patnaik and Sem-
perlotti, 2020a; Hollkamp and Semperlotti, 2020). Consequently, the
ability to accurately model size-dependent effects has profound implica-
tions for the diverse applications in the aforementioned examples. The
inability of the classical continuum theory in capturing size-dependent
effects prevented its use in these types of applications and led to the
development of nonlocal continuum theories.

Seminal studies by Kroner (1967), Edelen and Laws (1971), and
Eringen and Edelen (1972), Eringen (1972) laid the theoretical foun-
dation of nonlocal elasticity, and explored its role in the modeling
of nonlocal size-dependent structures. The mathematical description
of the nonlocal continuum theories proposed in these seminal studies
relied on the introduction of additional contributions, resulting from
long-range nonlocal interactions, in terms of a convolution integral of
the strain field in the constitutive equations. Over the years, several
researchers (Silling, 2000; Lazopoulos, 2006; Di Paola et al., 2013;
Pisano et al., 2021; Romano and Barretta, 2017; Rahimi et al., 2017)
have proposed different modifications to the formulations presented
in the seminal studies (Kroner, 1967; Edelen and Laws, 1971; Eringen
and Edelen, 1972). From a mathematical standpoint, these approaches
belong to a class of the so-called strong integral methods that capture
nonlocal effects by re-defining the stress—strain constitutive law in the
form of a convolution integral of either the strain or the stress field over
a certain spatial domain (the so-called horizon of nonlocality). Depend-
ing on whether the nonlocal contributions are modeled using the strain
or the stress field, the integral method can be classified as a stress-
driven (Romano and Barretta, 2017) or a strain-driven (Polizzotto,
2001; Polizzotto et al., 2004, 2006) approach. Further discussions on
the origin of nonlocal effects, existing theories of nonlocal elasticity,
and their applications can be found in this recent review study (Shaat
et al., 2020).

Although the strain- and stress-driven integral approaches to nonlo-
cal elasticity have been able to address a multitude of aspects typical
of the response of size-dependent nonlocal structures, some important
challenges still remain open. In both these approaches, the nonlo-
cal continuum formulation is based on a nonlocal definition of the
stress-strain constitutive relation and a local definition of the strain—
displacement kinematic relation. In other terms, the effect of nonlocal-
ity is accounted only via the constitutive stress—strain relations. Indeed,
we will show that it is this assumption that is at the root of several of
the challenges faced by the existing approaches. These challenges are
summarized in the following:

+ The strain-driven approach leads to a Fredholm integral of the
first-kind, which results in ill-posed boundary-value problems.
Consequently, its application to model nonlocal structures of prac-
tical engineering interest (e.g. beams) leads to inconsistent (also
called ‘paradoxical’) predictions when the same analysis is per-
formed under different loading conditions (Challamel and Wang,
2008; Fernandez-Saez et al., 2016; Romano et al., 2017). The
issue of an ill-posed formulation was addressed by adopting either
a mixed-phase (local and nonlocal) approach (Pisano et al., 2021;
Eroglu, 2020) or a stress-driven approach (Romano and Barretta,
2017), which led to nonlocal constitutive boundary conditions.
Mathematically speaking, these nonlocal constitutive boundary
conditions are additional constraints required to guarantee well-
posedness of the integral equations. Notably, the stress-driven
approach is yet to achieve a practical numerical implementation
(e.g. finite element method) and currently relies on analytical
methods to simulate the nonlocal response. While the analytical
approach does provide interesting insights, it prevents the ap-
plication of the stress-driven theory to more complex scenarios
involving, as an example, higher dimensional structures subject
to general loading conditions or nonlinear behavior.
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+ Further, the most direct result of adopting either the strain- or
the stress-driven constitutive formulation consists in the inability
to achieve a positive-definite and convex strain energy density.
This follows from the fact that the strain energy density consists
of the product between a function and its convolution with a
kernel, which does not yield a quadratic form. Consequently, the
only route to achieve a positive-definite (total) strain energy is to
require a symmetric nonlocal kernel (Polizzotto, 2001; Romano
and Barretta, 2017). While possible, such a condition restricts the
application of the resulting theory to structures exhibiting asym-
metric long-range interactions (Askari et al., 2008; Trovalusci
et al., 2014, 2017; Zhu et al., 2020; Sumelka, 2017). This aspect
was also discussed very recently in Batra (2021), which high-
lighted the misuse of Eringen’s stress—strain nonlocal constitutive
relation to model functionally graded structures.

In addition to the restriction on the symmetry of the convolution
kernel, several studies also restrict the functional nature of the
kernel. More specifically, most strain- and stress-driven integral
approaches reduce to simplified differential models using the
special exponential kernel (Pradhan and Murmu, 2009; Askes and
Aifantis, 2011; Wang et al., 2011; Romano and Barretta, 2017; Lal
and Dangi, 2019). The use of an exponential kernel, while being a
plausible option, prevents the application of the resulting theory
to a wide class of structures, particularly those exhibiting anoma-
lous attenuation and dispersion (as we will show in Section 6).
Examples include highly scattering and multifractal media (Fellah
et al.,, 2004a; Hollkamp et al., 2019; Buonocore et al., 2019;
Hollkamp and Semperlotti, 2020), biological media (Fellah et al.,
2004b; Magin, 2010), and structures with intentionally designed
nonlocal connections (Nair, 2019; Zhu et al., 2020).

The use of a nonlocal stress-strain constitutive relation violates
the locality recovery condition which states that, for a physically
consistent nonlocal formulation, a uniform stress field and a
length-scale independent strain energy must be recovered from
a uniform strain field (Polizzotto et al., 2006). Notably, this
limitation was addressed very recently in Pisano et al. (2021) via
an enhanced mixed-phase model, albeit in a weaker form that
satisfies only the local stress recovery condition.

As noted in Polizzotto et al. (2004), the use of a nonlocal stress—
strain constitutive behavior is not robust to boundary and surface
effects in finite domains. This is a direct result of an inconsis-
tent (and incomplete) truncation of the nonlocal kernel (often,
exponential) at boundaries.

Some of the above mentioned challenges are also described in Pisano
et al. (2021). In this study, we attempt to address these conceptual
as well as practical limitations of the existing approaches to non-
local elasticity via fundamental changes in the nonlocal constitutive
modeling. More specifically, we reformulate the concept of action-at-
a-distance by using nonlocal kinematic relations with a generalized
kernel (not restricted to exponential functions). We analyze the specific
advantages of the proposed approach and illustrate how this method
is well equipped to address the different challenges faced by existing
integral approaches.

The concept of nonlocal kinematics can be traced back to a seminal
study of Drapaca et al. on modeling nonlocal solids by using fractional
calculus (Drapaca and Sivaloganathan, 2012). Fractional-order opera-
tors are a class of differ-integral operators, uniquely equipped to model
temporal and spatial memory effects in complex materials (Carpinteri
et al., 2014; Mashayekhi et al., 2018; Failla and Zingales, 2020; Magin,
2010; Lazopoulos and Lazopoulos, 2020). The authors in Drapaca and
Sivaloganathan (2012) reformulated the classical (local) deformation
gradient tensor by using fractional-order derivatives and used the
fractional deformation gradient tensor to build the nonlocal continuum
theory. This approach was later refined by Sumelka in Sumelka (2014,
2017) and applied to the analysis of slender engineering structures.



S. Patnaik et al.

A key limitation of the above mentioned studies (Drapaca and Sival-
oganathan, 2012; Sumelka, 2014) consists in an ad-hoc imposition
of force and moment balance principles. The governing equations
in these studies were derived by a direct replacement of the local
stress tensor (in the classical continuum governing equations) with the
nonlocal stress tensor. However, as shown in Polizzotto (2001), the
application of global balance principles to derive governing equations
with nonlocal operators leads to the presence of (additional) integral
terms. Further, the traction boundary conditions in these studies were
identical to Cauchy’s postulate for surface tractions. The presence of
nonlocal interactions however, leads to a modification of Cauchy’s
postulate resulting in nonlocal traction conditions (Dell’Isola et al.,
2012, 2015; Sidhardh et al., 2021a). A significant benefit of adopting
fractional-order (nonlocal) kinematics was exposed in Patnaik et al.
(2020b, 2021c,a), where the authors could define a positive-definite
nonlocal continuum formulation ultimately enabling the use of varia-
tional principles. This latter approach had both theoretical advantages
including the formulation of well-posed governing equations (Patnaik
et al., 2020b, 2021c), the incorporation of nonlinear effects (Sidhardh
et al., 2020; Patnaik et al., 2020c; Sidhardh et al., 2021b), thermo-
dynamic consistency (Sidhardh et al.,, 2021a), as well as practical
implications like the ability to develop finite element solutions (Patnaik
et al., 2020b, 2021c). These advantages allowed the application of the
fractional-order kinematic approach to model the response of different
nonlocal structures subject to mechanical and thermomechanical load-
ing conditions (Patnaik et al., 2021a; Patnaik and Semperlotti, 2020a).
In all the above mentioned studies, consistent predictions free from
boundary and loading effects were obtained.

In this study, we extend the fractional-order kinematic approach
proposed in Drapaca and Sivaloganathan (2012), Sumelka (2014),
Patnaik and Semperlotti (2020a) and Patnaik et al. (2021b), to develop
a generalized and well-posed nonlocal kinematic approach. In the
following, we will refer to this approach as the displacement-driven
approach to nonlocal elasticity. Broadly speaking, this approach uses
a general differ-integral (nonlocal) definition to capture the strain—
displacement relations of a nonlocal continuum. It is exactly this feature
that allows the displacement-driven approach to overcome the lim-
itations of existing integral approaches. The process of formulating
the displacement-driven approach, analyzing its characteristics, and
exploring its application, can be divided into three main tasks:

« First, we will develop the displacement-driven approach to nonlo-
cal elasticity based on generalized nonlocal (differ-integral) oper-
ators introduced within the classical (local) strain—displacement
relation. This approach leads to a convex and positive-definite
formulation without requiring a symmetric kernel. In this process,
we will also analyze the satisfaction of the locality recovery condi-
tion, the frame-invariance of the formulation, and the consistent
behavior of the nonlocal operator at boundaries. We will com-
plete the analysis of the displacement-driven continuum approach
by casting the formulation within a thermodynamic framework
and demonstrating its thermodynamic consistency. In this regard,
we will show how this approach allows a strong (point-wise)
imposition of thermodynamic balance laws, consistent with the
principles of thermodynamics.

Following the development of the displacement-driven constitu-
tive relations, we will derive the equilibrium equations describing
the response of the nonlocal solid by using variational princi-
ples. Further, we will derive dispersion relations describing the
transient dynamics of the nonlocal bulk solid. By taking the
example of either an exponential or a power-law kernel, we will
demonstrate how the specific choice of the kernel should not be
universal but rather determined based on experimental dispersion
characteristics carrying the signature of the specific material.
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« Finally, we will apply the displacement-driven approach to model
the linear static response of nonlocal beams and plates. For this
purpose, we will employ the shear-deformable Timoshenko beam
and Mindlin plate models. Since the Euler-Bernoulli beam and
the Kirchhoff plate formulations can be recovered as special
cases from the Timoshenko and Mindlin formulations, the lat-
ter choice allows obtaining more general results. Using a finite
element procedure, we will numerically simulate the response
of the structural elements for various combinations of nonlocal
kernels, kernel parameters, and loading conditions. The choice of
using a finite element based solver follows from the flexibility
afforded by this method in dealing with general loading condi-
tions as well as integral boundary conditions, typical of nonlocal
models (Polizzotto, 2001; Patnaik et al., 2021b). The numerical
results will show that the displacement-driven approach predicts
a consistent softening behavior irrespective of the nature of the
kernel and loading conditions. Further, we will provide some
broad discussions highlighting the capability of the developed
approach in modeling stiffening effects, nonlinear effects, and
physical phenomena involving the propagation of discontinuities
(e.g. fracture and impact).

The remainder of the paper is structured as follows: first we dis-
cuss the formulation and the relevance of nonlocal elasticity via the
displacement-driven approach in Section 2. The analysis of the frame-
invariance of the formulation and of the behavior of the nonlocal
operator at boundaries follows in Section 3. We discuss the thermo-
dynamic consistency of the formulation in Section 4. In Section 5, we
derive the governing equations for the displacement-driven approach.
We derive the dispersion relations for a 1D nonlocal bulk solid in
Section 6 and use the relations to discuss the importance of adopting
material-informed kernels. Finally, we apply the proposed approach
to model the linear static response of nonlocal beams and plates in
Section 7.

2. Reformulation of nonlocal elasticity: Displacement-driven ap-
proach

As mentioned in the introduction, the motivation to reformulate the
classical approaches to nonlocal elasticity follows from the non-convex
nature of the strain energy density obtained via these approaches.
To better highlight this aspect, we first provide a brief review of the
classical integral approaches to nonlocal elasticity.

In the classical approaches (either strain- or stress-driven) to nonlo-
cal elasticity, the stress and strain at a given point within the nonlocal
continuum are related by an integral (convolution) operator. This
integral operator enriches the response of a point with the information
of the response of a collection of points located within a character-
istic distance known as the horizon of nonlocality. Depending on the
specific approach, the stress-strain constitutive relation consists of
the convolution of a spatially (monotonically) decaying kernel with
either the strain (Eringen and Edelen, 1972; Polizzotto, 2001) or the
stress (Romano and Barretta, 2017) field in the following fashion:

Strain-driven approach: o,;(x) = /7 Cijpa ke (x, x e gy (x")dx! (1a)
2

Stress-driven approach: ¢,;(x) = '/7 Siju Ko (%, X' )og (x")dx'! (1b)
2

where o;;(x) and ¢;;(x) denote the stress and strain tensor at a point
x within the domain of the solid 2, and x’ is a point within the
horizon of nonlocality 2 C Q. C and S are the fourth-order material
elasticity and compliance tensors, respectively. K (x,x’) and K (x, x")
are the nonlocal kernels that determine the strength of the long-range
interactions between the points x and x’, in the strain- and stress-driven
approaches, respectively.
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The constitutive relations in Eq. (1) result in the following expres-
sions for the total strain energy (/7) and the strain energy density (U(x))
of the nonlocal solid (Polizzotto, 2001; Romano and Barretta, 2017):

Strain-driven approach:

I = l/ [gij(x)Lcijk,xg(x,x’)sk,(x’)dx’] dx (2a)
2Ja 7

Uz;)
Stress-driven approach:

m=1 / [ai,-(X) L Sijk,lCa(x,x’)ak,(x’)dx'] dx (2b)
2 Ja 2

U(x)

It appears from the above expressions that, in either the strain- or
stress-driven approach, the strain energy density cannot be reduced to
a quadratic form, and hence it is not always guaranteed to be positive-
definite. While it is possible to achieve a positive value for the total
strain energy, this imposes restrictions on the nature of the kernel, that
is, the kernel must be positive and symmetric in nature (Polizzotto,
2001; Romano and Barretta, 2017). It was argued, in the introduction,
that this latter requirement on symmetry can prevent the application
of the resulting theory to several cases of practical relevance (Batra,
2021). As an example, consider a collection of particles that is either
heterogeneous or subject to thermal gradients. In such case, the inter-
actions on either side of a given particle are not symmetric (Askari
et al., 2008; Trovalusci et al., 2014, 2017; Zhu et al., 2020; Batra,
2021; Sumelka, 2017), hence violating the assumption of a symmetric
kernel. In other terms, from a physical perspective, the assumption of a
symmetric kernel can be considered valid only for isotropic structures
with an underlying symmetry in the arrangement of particles (Tuna
et al., 2019). Mathematically speaking, the restriction of a symmetric
kernel is a direct result of the fact that the strain energy density
functional is not guaranteed to be positive or convex in nature (simply
because it consists of the product of the integral of a function and
the function itself, which is not always convex in nature). As noted in
classical (local) continuum mechanics, a well-posed elastostatic formu-
lation is guaranteed iff the strain energy density is both convex and
positive-definite in nature.

A possible route to achieve a convex and positive-definite formu-
lation consists in maintaining the quadratic form of the strain energy
density, analogous to local elastic continuum mechanics, such that the
stress is a work-conjugate of the strain:

1 1 1

Eaijeij = zcijkleijgk/ = ESijk[Giijl 3
The use of the above quadratic form for the strain energy density
requires nonlocality to be introduced directly into the strain tensor, or
equivalently into the stress tensor, while using a non-integral stress—
strain constitutive relation. Indeed, this can be achieved by insisting
that the strain-displacement (kinematic) relations are nonlocal (differ-
integral) in nature while the stress-strain constitutive relation follow
the local continuum formulation. By following the latter argument, we
define the infinitesimal strain tensor and the Cauchy stress tensor as:

U=

€= % [Vu +€uT] (4a)
c=C:¢ (4b)

where u(x) is the displacement field. V is a differ-integral gradient
operator defined as:

V() =D,()%+ D, ()9 + D.(-)2 (5)

where (%, §, 2} are the Cartesian basis vectors. EX/(-) is a differ-integral
operator similar to the convolution operations in Eq. (1) and is defined
in the following manner:

BX_¢=L crK(x,x) [D‘,qs] dx’ (6)
! Q; Xj
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where ¢ is an arbitrary function. ¢* is a scalar multiplier for the differ-
integral operator in the %; direction, which will be used to enforce
frame-invariance and dimensional consistency of the formulation in
Section 3. K(x,x’) denotes the nonlocal kernel of the displacement-

driven approach. Further, Di, ¢ indicates the classical first-order deriva-
J —
tive dq.')/dx;.. For a nonlocal horizon 2 ;= [x_/,x +,-] in the % ; direction

about the point x, the nonlocal operator can be expanded as:

Xj Xy

_ ’ 1 ’ * 7 ’ 1 ’

ij(ﬁ = c_/ /X K(x,x") [Dx; (].’7] dxj + c+/_ '/x K(x,x") [Dx;qﬁ] dxj 7
_. ;

J

where ¢* and ¢} are independent scalar multipliers. The length of
the horizon of n(j)nlocality on either side of the point x in the %;
direction are denoted as /__ and /, , such that I, =x;—x_ and I, =
Xy, —x;. In general, I, #1y, implying that the horizon of nonlocality
is not necessarily symmetric, like in cases involving material interfaces
or boundaries falling within the horizon. This aspect is schematically
illustrated in Fig. 1.

Revisiting the strain energy density of the nonlocal solid obtained
via the proposed constitutive formulation, we obtain:

1 — p— p— —
U= 5 Cijua [ij u; + Dx,uj] [Dx,uk + kau,] (€))

Nonlocal stress Nonlocal strain

which immediately demonstrates its convex nature, irrespective of
whether the nonlocal kernel is symmetric or asymmetric in nature. We
denominate this nonlocal approach as the “displacement-driven approach
to nonlocal elasticity” since nonlocality is embedded via the nonlocal
strain—displacement kinematic relations Eq. (4a). Note that the stress—
strain constitutive relations in Eq. (4b) are non-integral in nature
contrary to the classical stress- and strain-driven approaches to nonlocal
elasticity (Polizzotto, 2001; Romano and Barretta, 2017). Remarkably,
this functional form for the stress—strain constitutive relation trivially
satisfies the locality recovery condition (Polizzotto et al., 2006). More
specifically, it ensures that a uniform strain field induces a uniform
stress field, and consequently, we obtain a length-scale independent
strain energy density via Eq. (3).

The displacement-driven formulation deserves some additional re-
marks. While the approach was presented starting on strain energy
arguments, the same formulation can be derived via standard con-
tinuum mechanics arguments. In this study, we favored the former
approach to clearly highlight the connection to a convex and positive-
definite nonlocal formulation. When following a continuum mechanics
approach, the displacement-driven formulation can be derived by start-
ing from a nonlocal deformation gradient tensor which relates the
differential line elements in the deformed and undeformed configura-
tions by using the differ-integral gradient operator defined in Eq. (5).
More specifically, the nonlocal deformation gradient tensor, which
maps a differential element in the undeformed configuration to the
deformed configuration, can be defined as:

Fy=Dy,x 9)

where X and x denote points within the undeformed and deformed co-
ordinates, respectively. Following the above definition for the nonlocal
deformation gradient tensor, a fully nonlinear Lagrangian and Eulerian
description of the strain tensor can be derived by using the scalar
difference of the differential line elements in the deformed and unde-
formed configurations, similar to classical continuum formulation. The
same approach, albeit by using specialized power-law kernels, which
transforms the gradient operator in Eq. (5) into a nonlocal gradient
operator containing the well established fractional-order derivatives,
can be found in Drapaca and Sivaloganathan (2012), Sumelka (2014)
and Patnaik and Semperlotti (2020a).

Note that the model relies on the important hypothesis of nonlocal
kinematics. While this hypothesis might appear unsettling in the con-
text of the more classical continuum approaches, we emphasize that
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Fig. 1. Schematic illustration of the horizon of nonlocality at different points in a 2D domain. In general, for a domain characterized by asymmetric interactions, L #l, and
for a domain characterized by anisotropic interactions, IIZL #lg, AE{-+). These general cases, corresponding to the point x;, are denoted as the full horizon. In the case of a
domain characterized by symmetric nonlocal interactions (see x,), the horizon of nonlocality is equal to /, on either sides in all the directions. However, the horizon of nonlocality
must be truncated due to the presence of boundaries. As an example, the horizon is truncated at x,, such that X <l .Ina similar way, it follows that for a point located on

the boundary x =0 it must be /__=0.

such definition is simply a reformulation of the concept of action-at-
a-distance. This hypothesis results in assuming that the response of a
selected point within the solid is affected directly by the response of a
collection of points within the horizon of nonlocality. Given that the
differ-integral operator is applied directly to the displacement field,
from a physical standpoint, the formulation accounts for long-range
interactions that are proportional to the relative displacement of distant
points within the horizon. Recall that, in the continuum description
of the displacement-driven approach, differential line elements are de-
fined using nonlocal deformation gradients. It follows that, a change in
length of an infinitesimal line at the point x, between the undeformed
and the deformed configurations, would be affected directly by the
response of the points within the nonlocal horizon of x. This is indeed a
reformulation of action-at-a-distance that is often implemented in terms
of long-range forces.

3. Frame-invariance: Enforcement and implications

The reformulation of the kinematic relations via differ-integral op-
erators requires a thorough investigation of frame-invariance which
states that a rigid-body motion should not induce a change in the strain
energy. In this section, we derive expressions for the scalar multipliers
({e*., ¢} }) such that frame-invariance is satisfied at all points within the
nonlocal continuum. Remarkably, the satisfaction of frame-invariance
via the scalar multipliers also ensures dimensional consistency of the
formulation and a consistent behavior of the nonlocal operator at
material boundaries.

3.1. Enforcing frame-invariance

Consider the following rigid-body motion superimposed on the
undeformed configuration of the body:

xX,)=CH+00nX, (10

where C(r) is a spatially constant term representing a translation and
Q() is a proper orthogonal tensor denoting a rotation. Under this
rigid-body motion, the deformation gradient tensor F” should be an
orthogonal tensor such that FXTFX = I. More specifically, the nonlocal
deformation gradient tensor should transform as = Q in order to
ensure that the strain measures corresponding to the rigid-body motion
are null. From the definition of F* given in Eq. (9) it follows that:

— Xj Xy
D pi=c / K(x,x"D!, 20X+ / K(x, x")D!, yi(x',1)dx]
X J X J
S :

(€8]

Further, noting that Dl, C;(1) =0 and Q = Q(r), we obtain:
j

Di{)(i(x,-f) = Quxy; = Quby; = Qyj 12
J

Thus, under the rigid body motion y:

Xj X+v
D, 1= [ci/ /x Ko, x'ydx) + ¢, /X | ! x(x,x’)dx;] 0, (13)
. ;

To achieve frame-invariance, that is, enforcing 5xj X = Q,; at all points
within the continuum for all time instants, we require that:

1 1
x e T
2/ RGexdx g [0 Ko, x!)d!

14)

* * _
(X ey )=

Notably, the above expressions for ¢* and c} also ensure the dimen-
sional consistency of the formulation.’ !

Here below we provide the expressions of {c* ,c* } for some kernels
commonly adopted in literature: Y

« Exponential kernel: K(x,x") = exp (—"‘]_—"" ), where /;, is a material
parameter: 0
I -t I -l
* * 1 J +j
, =4 |1- - , — |1- -
(15)
 Power-law kernel: K(x,x') = |x—x'|"%/T'(1 — «), where I'(-) is
the well known Gamma function and « € (0,1] is a material
parameter:
* * _ l _ a—1 l _ a—l}
{cij,chj}—{zF(Z 0!)1,! s 21“(2 a)l+/ ae)

We merely note that, by assuming the above power-law form for
the nonlocal kernel, and substituting the corresponding expres-
sions of {cj_,cj;j} in Eq. (7), we recover the definition of the
Riesz—Caputo fractional-order derivative as presented in Patnaik
and Semperlotti (2020a). Consequently, the fractional-order ap-
proach to nonlocal elasticity presented in Patnaik and Semperlotti
(2020a) can be recovered from the displacement-driven approach,

as a special case.

While the above results are limited to the exponential and the power-
law kernels, the approach is general and can be extended to other
nonlocal kernels such as, for example, bell and conical curves employed
in classical strain- and stress-driven models of nonlocal elasticity (Poliz-
zotto, 2001). In each case, the constants ¢* and ¢} must be derived by
using Eq. (14). We will analyze the specific impact of different nonlocal
kernels in more detail in Section 6.

3.2. Behavior of the nonlocal operator at boundaries

A detailed analysis of the expressions for the scalar multipliers ¢*

J

and ¢} in Eq. (14) presents some interesting insights on the nature of
J
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the kernel at material boundaries that will be of practical relevance.
For the most general definition of the kernel KX(x, x’) and the location
of the point x, recall that, I #1, . It immediately follows from Eq. (14)
that ¢* # ¢} . This latter condition, apart from ensuring an exact
satisfaction of lframe—invariance, also ensures the completeness of the
nonlocal kernel at points close to the material boundaries or at points
located on the boundary itself. In order to demonstrate this latter
aspect, we investigate the behavior of the nonlocal operator Bx/qﬁ at
a point located on the boundary of the nonlocal solid given in Fig. 1.

For a point (say x) located on one of the boundaries (identified by
the normal in the jth direction), either /_ — 0 or I, — 0 (see Fig. 1).
Here below we present the expression for the nonlocal operator when
l_j — 0 (similar expressions hold when / o 0). This limiting case,
upon using the expression for cjj in Eq. (14), gives:

.= . 1
lim D, ¢ = lim [ ————
;=0 l-;=0 2/ 0; K(x, x")dx'
Xoj —I,j Jj

0 NS ’
K(x,x )Dx, (;bdxj
X J

=l
0; )

Xt
+c / " K(x,x")D!, pdx’ a7
j X(J/ x; J

Since the interval length (= l,j) of the left integral within the right-
hand side of the above equation is infinitesimal, D)lc, ¢ can be assumed

to be constant within the left integral, and equa[ to the boundary
condition:

Dy#=Dy 9| (18)
Substituting Eq. (18) in Eq. (17) leads to Eq. (19) in Box 1. From
Eq. (20), it is immediate to observe that the right-handed operator
captures nonlocality ahead of the point x, (in the jth direction), and the
left-handed operator is reduced to the classical first-order derivative.
From a mathematical standpoint, the definition of the nonlocal operator
ensures that, independent of the nature of the kernel, we recover a
local behavior every time the size of the nonlocal horizon on any given
side of a point approaches (or is equal to) zero. This suggests that the
truncation of the nonlocal horizon and the corresponding convolution
at the boundary have been accounted for in a consistent manner. From
an atomistic or molecular dynamic perspective, the reduction of the
left-handed operator to the classical first-order derivative is physically
analogous to the annihilation (or removal) of long-range interactions
between atoms or molecules close to material boundaries (Tuna et al.,
2019).

Before proceeding further, we merely note that the equality ¢* =
c¢; holds iff the nonlocal kernel is symmetric and o= 1. The
above conditions require that the body has uniform material properties
(such that the nonlocal kernel exhibits uniform spatial characteristics)
and the point under consideration has a symmetric horizon of non-
locality (possible for points located sufficiently far from the material
boundaries).

4. Considerations on thermodynamics

In this section, we explore the implications of a displacement-driven
approach on the thermodynamic formulation of the nonlocal solid and
we will show how this approach is uniquely equipped to enforce the
laws of thermodynamics in a strong (point-wise) sense.

First law of thermodynamics: For a nonlocal solid, the statement
of the conservation of energy for a point x includes, in addition to
the local strain energy, the energy associated with the long-range
interactions with points contained within its horizon of nonlocality.
The functional relationship between the energy density (e) and the
different energy exchanges (local and nonlocal) is typically expressed as
e = e(g;, R(g;), n) where ¢, is the local strain field, R(¢,;) denotes a linear
integral operator which models nonlocality in the solid, and 7 is the
entropy of the solid (Polizzotto, 2001). Broadly speaking, the nonlocal
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strain in the displacement-driven approach allows combining the local
strain ¢, and its integral R(¢;). More specifically, given the nonlocal
kinematic relations described in Section 2, the contribution of the
energy contained in the long-range interactions is fully captured in the
nonlocal strain. In this context, recall the argument that the nonlocal
kinematic relations were a reformulation of the concept of action-at-a-
distance, and hence carry information of nonlocal interactions within
the solid. It immediately follows that the internal energy density of
the solid can be expressed explicitly as a function of the nonlocal
strain. Mathematically, for the displacement-driven approach, we have
e = e(g,n), where ¢ is the nonlocal strain. This latter conclusion is
remarkable as it allows the first law of thermodynamics to be applied
in a strict sense at every point in the domain:

é=o0y;

gjth—gq;; Vx€Q 21

where the notation ([]) indicates the first-order derivative with respect
to time, A is the heat generated internally per unit volume, and q is the
heat flux density.

Second law of thermodynamics: The second law of thermodynamics
states that the internal entropy production rate within a solid is non-
negative for all points inside the solid, that is, /7, > 0 V x € Q. In order
to apply the second law of thermodynamics to the displacement-driven
formulation, we consider the internal entropy production rate:

)
where T denotes the absolute temperature of the solid. In analogy
with the classical approach, we introduce the Legendre transformation
y = e — Ty, where y denotes the Helmholtz free energy. By following
the rationale presented in defining e = e(e, ), it immediately follows
that w = (e, T). By using the Legendre transformation along with
Eq. (22) we obtain:

Tﬁ0=ai,eij—lp—nT—ri%zov:ce.q (23)

Note that the statement of the second law of thermodynamics for the
displacement-driven approach is analogous to the classical Clausius—
Duhem inequality in its function form, hence presenting a clear depar-
ture from several classical nonlocal approaches characterized by the
presence of additional terms. These additional terms, resulting from
a functional dependence of y on R(g,;), prevent casting the second
law of thermodynamics in a strong-form. Indeed, these terms disappear
only when a weak-form is considered (that is, /_Q Ao = 0). The ability
to satisfy the second law of thermodynamics only in a weak sense
is the main source of physical inconsistencies of classical nonlocal
formulations, as highlighted in Polizzotto (2001).

The Clausius-Duhem inequality in Eq. (23) can be used to derive
thermodynamically consistent constitutive equations which should be
equal to the ones introduced in Section 2. By substituting the functional
relationship w = y(e, T), the inequality in Eq. (23) is simplified as:
Tﬁoz(aij—%>éij—<n+g—¥>T—ri%zOVer @4
Since the above inequality must hold for arbitrary choices of the inde-
pendent fields € and T at all times, we obtain the following constitutive
laws:

P
o, =¥ yxeQ

i G, (252)

a
n=-2 vxen (25b)

Finally, by using the above constitutive relations within Eq. (23), we
obtain:

Tig=-T, 2 20VxeQ (26)

which establishes the strong-form of the second law of thermodynam-
ics.
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J

which immediately yields:
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Box I.

5. Governing equations

In this section, we derive the strong-form of the equilibrium equa-
tions governing the response of the nonlocal solid by using variational
principles. Note that the governing equations can also be derived by us-
ing the more classical Newtonian approach based on force and moment
balance over a representative volume element of the nonlocal domain.
Although both approaches yield identical results, the variational ap-
proach is deemed more direct given that the explicit use of forces and
moments balance would require additional care in accounting for the
effect of the nonlocal interactions, as described in detail in Polizzotto
(2001) and Sidhardh et al. (2021a).

We derive the strong-form of the governing equations by using the
Hamilton’s principle:

/25(H—V—T)dt:0 27)
B

In the above equation, V' and T denote the work done by externally
applied forces and the kinetic energy of the system, respectively. Recall
that IT denotes the total strain energy of the nonlocal solid. Substituting
the expressions for the different physical variables, we obtain:

/25 1/(0 : e)dV—/(Z-u)dV— (?-u)dA—l/p(u-u)dV di=0
t 2 Q Q 002 2 Q

Strain energy

External work Kinetic energy

(28)

where dV and dA indicate volume and area elements of the nonlocal
solid, respectively. b and 7 are prescribed values of the body force per
unit volume and the surface traction per unit area, respectively, and
p denotes the density of the solid. Note that the extended Hamilton’s
principle in Eq. (27) is a universal statement, in the sense that it
is applicable to any nonlocal elasticity formulation, regardless of the
definition of the strain energy density and of the nonlocal operator. We
merely note that the specific nature of the nonlocal operator (specific
to each type of approach) only affects the expression of the governing
equations in strong-form and the mathematical simplifications required
to derive them. From a physical perspective, the variational statement
in Eq. (27) with a nonlocal definition for II, can be interpreted as
the continuum limit of the Hamilton’s principle applied to a discrete
collection of nonlocal particles with long-range interactions (Silling
and Lehoucq, 2010; Dell’Isola et al., 2012, 2015). This is because,
the nonlocal definition for the strain energy, can be interpreted as
the continuum limit of the sum of the energies corresponding to the
long-range interactions between a set of particles that interact in a
nonlocal manner (see, for example, continualization of 1D lattices with
exponential decay Di Paola et al., 2013 and power-law decay Carpinteri
et al., 2014; Patnaik et al., 2021b) in the strength of the long-range
interactions).

By simplifying Eq. (28) using principles of variational calculus, we
obtain the governing equation as:

€~6+3=pi4'Vxe.Q (29)
The associated boundary conditions are obtained as:

I,-6=t or u=u VYxeoiQ (30)

where u is the externally applied displacement load. The detailed
derivation of the governing equation and the associated boundary
conditions (including the variational simplifications and principles as-
sociated with the nonlocal operator) is provided in Appendix.

The operator I,(-) in Eq. (30) is defined as:

jﬁ(.) =
where #t = n,% + n,y + n,Z is the unit normal vector at the surface of
the solid. In the above equation, I X/(') is an integral operator defined
in the following manner:

n L% +n, 0,09 +n1,()2 3D

5 xj+l,/ X;
I.p=c* / K(x, x")pdx] + ¢ / K(x, x)pdx (32)
J x J

J
j xj—l+j

Further, the gradient operator, denoted by V() in Eq. (29), is a differ-
integral operator (analogous to V(-) in Eq. (6)) containing the above
defined integral operators:

V() =D} [I.()] &+ D} [I,()] 5+ D} [I.()] 2 = D,()% + D,()p + D.()2
(33)

Note that the natural boundary conditions are integral (and hence,
nonlocal) in nature, consistent with existing integral approaches to
nonlocal elasticity (Polizzotto, 2001; Romano and Barretta, 2017).
From a physical perspective, the nonlocal natural boundary conditions
account for the combined effect of long-range forces exerted on the
boundary points by points located within the nonlocal solid. While the
use of variational principles allowed obtaining the nonlocal natural
boundary conditions in a relatively straight-forward manner, the use
of global conservation principles (mechanical balance laws) requires a
careful modification of the surface tractions to account for the nonlocal
interactions of the boundary points. In other terms, Cauchy’s postulate
for surface tractions requires a modification to account for the nonlocal
interactions. This latter aspect has been addressed in detail in Dell’Isola
et al. (2012, 2015) and Sidhardh et al. (2021a).

6. Dispersion relations and choice of kernels

The nonlocal elastodynamic framework presented in Section 5 al-
lows for the derivation of wavenumber—frequency dispersion relations
describing the transient response of the nonlocal bulk solid. It is antic-
ipated that the dispersion relations functionally depend on the nature
of the nonlocal kernel used to model nonlocality within the solid. In
this section, we derive the dispersion relations for an unbounded 1D
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nonlocal isotropic solid and use them to gain insight into the specific
effects of the nature of the nonlocal kernel.

The governing equation describing a 1D nonlocal isotropic solid, in
the absence of body forces, can be extracted from Eq. (29) by assuming
u = uX (as commonly done in literature) and b= 0, as:

ED,Du= pii (34)

where E is the modulus of elasticity of the isotropic solid. To obtain
the dispersion relation, we substitute in the elastodynamic equation the
following ansatz:

u(x, 1) = upe' k=" (35)

where u, is the amplitude of the longitudinal wave, k denotes the
wave-number, w denotes the angular frequency of free longitudinal
vibrations, and i = \/—_1 Using the expressions for the differ-integral
operators in Eq. (34), we obtain the following expression for the
dispersion relation in an unbounded nonlocal solid:

[se] (s
o + ike‘”“‘EDi [/ K(x, x')/ K, sHe*s ds’dx’ | = 0 (36)
14 - —o0

The above expression provides important insights into the nature of
the formulation. First, the expression suggests that for a well-posed
formulation resulting in bounded wave speeds, it is essential that the
convolution integrals in Eq. (36) exist and are bounded. This latter con-
dition is always satisfied if the nonlocal kernel: (1) decays spatially with
the increasing inter-particle distance, that is, D)lc K& x") < 0V{x,x'},
and (2) is positive-definite (more concretely, the Fourier transform of
the kernel is positive everywhere Bazant and Chang, 1984). Note also
that, a decaying kernel, also guarantees the existence of the integrals
in Eq. (14) which are essential to enable a frame-invariant formulation.
This condition is also consistent with existing approaches to nonlocal
elasticity, which invariably use decaying kernels (Eringen and Edelen,
1972; Silling, 2000; Lazopoulos, 2006). At this stage, following the
analysis of frame-invariance and of the dispersion relations, we are
well-equipped to summarize all the sufficient requirements for the
nonlocal kernel in order to ensure a physically consistent formulation:
the kernel should be positive-definite and must decay monotonically
with increase in the interparticle distance.

Note that further simplifications of the expression in Eq. (36) re-
quires the specific functional definition of the nonlocal kernel. From
a practical perspective, this suggests that the applicability of a given
functional form of the nonlocal kernel, to model a certain class of
nonlocal structures, depends on whether the dispersion characteristics
obtained by simplification of Eq. (36) match experimentally obtained
dispersion characteristics of the class of materials under consideration.
This latter aspect becomes evident by considering the example of the
exponential and the power-law kernels introduced in Section 2. The
dispersion relations for the exponential and the power-law kernels are
obtained by using Eq. (36) as:

2
2
Exponential kernel: (%) -k <1 11<212) (37a)
P\ 1+
0
2
Power-law kernel: (g) -k [cos (z + ax) +isin (7 + )| (kl*)z(al_l>
k P e e
Propagation Attenuation
(37b)

While the derivation of the dispersion relation is straightforward for
the exponential kernel (given the exponential nature of both the kernel
and the assumed wave solution), some special relations are required
to derive the dispersion relations for the power-law kernel. These re-
lations (that concern the fractional-order derivatives of an exponential
function) as well as the derivation of the dispersion relations for the
power-law kernel can be found in Patnaik et al. (2021b). In the power-
law dispersion, /* = 1m is a dimensional constant which is used to
enforce dimensional consistency for the 1D unbounded solid (Hollkamp
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et al., 2019; Patnaik et al., 2021b). This constant is required for the 1D
unbounded solid because frame-invariance is trivially satisfied for the
only possible rigid-body motion, that is, translation in this case (Patnaik
et al., 2021b).

The nature of the dispersion relations obtained for the exponen-
tial and power-law kernels presented above lead to the following
observations and conclusions:

+ The use of an exponential kernel is suitable for modeling nonlocal
structures which are dispersive but not attenuating in nature. Ex-
amples of such structures can include micro- and nano-structures
such as carbon nanotubes, thin films, monolayer graphene sheets,
and nanobeams made of metals (Eringen, 1972; Pradhan and
Murmu, 2009; Wang et al., 2011; Askes and Aifantis, 2011; Lim
et al.,, 2015). Additionally, macrostructures made of function-
ally graded materials and sandwiched cores, also exhibit similar
dispersive characteristics (Romanoff and Reddy, 2014; Romanoff
et al., 2020).

The power-law kernel is suitable for materials which exhibit
anomalous attenuation and dispersion. Note that the real and
imaginary parts of the dispersion relation in Eq. (37b) correspond
to the propagating and attenuating component of the wave. Exam-
ples of such structures can include macrostructures such as highly
scattering media (e.g. fractal, porous, and layered media) (Fellah
et al., 2004a; Buonocore et al., 2019; Patnaik et al., 2021a) and
even animal tissues (Fellah et al., 2004b; Magin, 2010). Periodic
media (Hollkamp et al., 2019; Hollkamp and Semperlotti, 2020;
Patnaik and Semperlotti, 2020a) and structures with intention-
ally designed nonlocal geometric features (such as, for example,
acoustic black hole metamaterials Nair, 2019 and metasurfaces
with intentionally designed nonlocality Zhu et al., 2020) also
exhibit similar characteristics. Remarkably, the dispersion as well
as the attenuation in the wave speeds in several classes of these
structures, exhibit a power-law dependence on the wave-number
as also captured by the use of the power-law kernel (Fellah et al.,
2004b; Hollkamp and Semperlotti, 2020; Fellah et al., 2004a;
Buonocore et al., 2019; Patnaik and Semperlotti, 2020a).

The dispersion characteristics obtained using the exponential ker-
nel matches exactly the dispersion relation obtained via classical
differential models recovered from Eringen’s approach by using
exponential kernels (Askes and Aifantis, 2011; Wang et al., 2011).
The motivation behind adopting the differential model follows
from a good match of the predicted dispersion against experimen-
tal observations, particularly for different nanostructures such
as, for example, graphene tubules and carbon nanotubes. As
established in (Romano et al., 2017), this procedure of obtain-
ing a simplified differential model (based on the strain-driven
approach) leads to ill-posed formulations with inconsistent pre-
dictions for different static loading conditions. On the contrary,
the displacement-driven approach enables a well-posed static
framework while recovering the same dynamic characteristics.
Since the differential approaches to nonlocal elasticity are re-
covered by assuming (only) the exponential kernel within Erin-
gen’s approach (Pradhan and Murmu, 2009; Wang et al., 2011;
Askes and Aifantis, 2011; Lal and Dangi, 2019), these approaches
are not suitable to model structures which exhibit anomalous
attenuation-dispersion characteristics. This observation suggests
that the displacement-driven approach is more general, since the
kernel can be modified to capture the behavior of a wider class
of size-dependent structures.

The above discussion highlights the relevance of the generalized pro-
cedure, involving analysis of both singular (e.g. power-law) and non-
singular (e.g. exponential) kernels, adopted in this study. The discus-
sion also suggests that the application of any nonlocal approach to
modeling of practical structures must involve the a priori selection
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of a suitable kernel, guided by experimentally observed dispersion
characteristics.

7. Application to nonlocal beams and plates

In this section, we use the displacement-driven approach to analyze
the static response of slender nonlocal structures, including a Timo-
shenko beam and a Mindlin plate. Similar to previous analyses, we will
consider separately the effect of either the exponential or the power-
law kernel, on the static response of the nonlocal structures subject to
different loading conditions. For each structure, we will first present
the nonlocal constitutive formulation, followed by the numerical results
generated using the fractional-order finite element method (f-FEM).
The f-FEM is a highly general formulation that is well-suited for both
singular and non-singular kernels (Patnaik et al., 2020b). The algorithm
of the f-FEM is discussed in detail in (Patnaik et al., 2021c) and, for
the sake of brevity, details are not repeated here. For completeness,
we note that the nonlocal formulation involving the exponential kernel
can also be simulated by adapting the classical nonlocal finite ele-
ment procedure (Polizzotto, 2001; Ansari et al., 2018; Sidhardh and
Ray, 2018), from a strain-driven approach to a displacement-driven
approach. Since we have considered shear-deformable structures in
the following analyses, we adopted a reduced-order Gauss quadrature
integration for the evaluation of the shear stiffness matrices in order
to avoid shear-locking effects (Reddy, 2003). More specifically, for the
nonlocal Timoshenko beam we used 2 and 1 Gauss quadrature elements
to numerically integrate the bending and shear stiffness matrices, re-
spectively. Analogously, for the nonlocal Mindlin plate, we used 2 x 2
and 1 x 1 Gauss quadrature points for the bending and shear stiffness
matrices, respectively.

Analogous to classical finite element procedures, the numerical
solution in the f-FEM is obtained by discretization of the Hamiltonian
of the nonlocal structure by using an isoparametric formulation. Con-
sequently, we only provide the weak-form of the governing equations
for both the nonlocal Timoshenko beam and the nonlocal Mindlin plate.
The corresponding strong-form of the governing equations can be easily
obtained by following the derivation of the 3D governing equations in
Section 5. In fact, the strong-form nonlocal governing equations do not
generally admit closed-from analytical expressions for the most general
loading conditions. Hence, for the sake of brevity, we do not provide
again the strong-form of the governing equations.

7.1. Application to nonlocal beams

In this section, we apply the displacement-driven approach to model
and analyze the static response of nonlocal shear-deformable beams.
We consider a nonlocal beam of uniform cross-section with length L,
width b, and thickness A,. A schematic of the beam, along with the
chosen Cartesian coordinate axes, is provided in Fig. 2. As evident from
Fig. 2, the coordinate axes are chosen such that the mid-plane of the
beam is identified as z = 0. The displacement field components at a
spatial point x(x, y, z) of the beam can be expressed by following the
shear-deformable Timoshenko formulation as Reddy (2003):

u(x) = ugp(x) — z0,(x) (38a)

w(x) = wy(x) (38b)

where u; and w, denote the axial and the transverse displacement of
the mid-plane of the beam, respectively. 6, denotes the rotation of the
normal to the mid-plane of the beam, about the % axis.

Employing the nonlocal strain-displacement relation given in
Eq. (4a), we obtain the following expressions for the strains developed
in the nonlocal beam:

£,,(x) = D up(x) — 2D, 0,(x) (39a)
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Va2 (%) = D wy(x) — 0,(x) (39b)

The stress developed in the beam can be derived from the stress—strain
constitutive relation in Eq. (4b).

Using the nonlocal strains and stresses generated in the beam, the
total strain energy can be expressed as:

1 [k e
I = E/o /—bb /—hb [GXXEXX +Ks‘7xz7xz] dzdydx (40)
2 Y2

where k; is the shear correction factor chosen as x; = 5/6 throughout
this study (Reddy, 2003). Finally the work done by external loads on
the beam can be expressed as:

Lot %
14 :/ /-» /_h [quo+sz0+M9X0x] dzdydx (41)
o St

where { F,, F,} are the loads applied externally in the % and £ directions,
respectively. Further, M, is the moment applied about the j axis. The
nonlocal equilibrium equations describing the static response of the
nonlocal beam can now be derived by applying variational principles
61 -v)=0).

7.1.1. Results and discussion

In this section, we analyze the effect of different kernels and differ-
ent loading conditions on the static bending response of the nonlocal
beam. In all simulations, we considered an isotropic beam having
Young’s modulus E = 30 GPa and Poisson’s ratio v = 0.3. The geometric
dimensions of the beam were taken as L, = Im and b, = h, = L,/10. As
mentioned previously, we analyzed the effect of two different kernels:
the exponential kernel and the power-law kernel, on the response
of the nonlocal beam. In each case, we have assumed an isotropic
and symmetric horizon of nonlocality such that I_ =1, = I, for
points sufficiently far from the boundaries. Recall from Sections 2
and 3 that this symmetry is broken (I_X *#1 er) for points close to the
boundaries (see Fig. 1). Note that while the choice of the different
material properties and geometric parameters was somewhat arbitrary,
their numerical values do not affect the applicability of the model and
the generality of the results presented here below.

Using the above described scheme, we analyzed two different load-
ing conditions: (a) a cantilever beam subject to a transverse force at
its end-point, and (b) a simply-supported beam subject to a uniformly
distributed transverse load (UDTL). For each boundary condition, we
obtained the response of the beam for the following different kernel
parameters:

* Exponential kernel: the kernel parameter /, was varied in (0, 0.005]
m (= (0,L,/200]) and the nonlocal horizon parameter /, was
varied in [0.5,1]m (= [L,/2,L,]). The lowest value for I/, was
chosen as /;, = 107% instead of zero because the choice of /[, = 0
leads to a singularity within the exponential kernel, wherein the
exponential kernel reduces to a Dirac-delta operator (Romano
et al., 2017).

Power-law kernel: the nonlocal horizon [  was varied in [0.5, 1lm
(= [Ly/2,Ly]) and the kernel parameter a, also called as the
fractional-order (Patnaik and Semperlotti, 2020a), was varied in
[0.7,1].

The numerical results, expressed in terms of the maximum trans-
verse displacement of the beam, are presented in Figs. 3 and 4 for
the exponential kernel and the power-law kernel, respectively. Note
that the maximum transverse displacement of the nonlocal beam is
non-dimensionalized against the analogous value obtained for a local
beam. The non-dimensionalized maximum transverse displacement is
indicated by w. Results show that the proposed displacement-driven
approach predicts a consistent softening response, that is, w > 1, for
different combinations of the kernel parameters and loading conditions.
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Fig. 2. Schematic of the rectangular beam illustrating the different geometric parameters.

Given this general observation, we proceed to critically analyze the
effects of the two different kernels and of their parameters.

The results presented for the exponential kernel in Fig. 3, lead to
the following observations:

* Effect of I,: In the limiting case /|, — 0, the classical (local)

solution w — 1 is recovered (Romano and Barretta, 2017; Pisano
et al., 2021). This observation is consistent with the fact that
Iy = 0 reduces the exponential kernel to the Dirac-delta operator,
which results in a reduction of the nonlocal model to its local
elastic counterpart. Note also that, an increase in the value of /,
first leads to an increase in the degree of softening followed by an
asymptotic decline, as a function of /,. Nonetheless, irrespective
of the specific value of /,, the nonlocal beam exhibits a softening
effect, that is, w > 1. This behavior is observed independently of
the loading conditions and is a direct result of the nature of the
exponential kernel as discussed in the following.
Note that the strength of the nonlocal interactions between two
material points, separated by a certain distance (say d;) within
the nonlocal beam, is directly related to the value of the nonlocal
kernel. In this case, the strength of the nonlocal interactions can
be given as « [exp(—d/Iy)]/], (the I, in the denominator appears
from the multipliers . and ;) Consider the following function
for a fixed value of d;:

1 d
slg) = - exp <‘T°>
0 0

A quick analysis of the above function reveals that g(/,) increases
initially with an increase in /), to reach a global maximum at
Iy = d,. Following the maximum, it asymptotically approaches
zero with increase in /), that is, lim10_>oo g(ly) = 0. It is exactly
this behavior that is reflected in the static response curves of
the nonlocal beam in Fig. 3. Notably, this behavior is also ob-
served in the response of atomic lattice models (Eringen, 1983;
Lim et al., 2015; Pisano et al., 2021). This observation is also
consistent with our discussion in Section 6, where we indicated
that the dispersion relation obtained from the exponential kernel
is well suited to model the dynamic response of nano- and micro-
structures, typically presented in the form of atomic lattice chains.
Further, the result presented above is also consistent with predic-
tions made for nonlocal beams in recently developed well-posed
integral approaches (Pisano et al., 2021).

Effect of 1;: It appears that the length of the horizon of nonlocal-
ity I, does not significantly affect the degree of softening when
O(l;/L;) = 1. Recall that the parameter /, physically represents
the size of the horizon of nonlocality, that is, it determines the
distance beyond which two particles no longer interact via long-
range forces. In this context, the apparent insensitivity of w to
changes in /, (in the chosen range) is a direct result of the fact
that K(x,x’) = e"**'I/lo ~ 0 for |x — x| > 5l,. Thus, the effect
of the nonlocal kernel is always accounted completely (in the
chosen range for /,) and does not change appreciably with a
further increase in /,. However, note from Section 3 that, /,
plays a critical role (along with c: and cj‘rx) in achieving frame-
invariance, dimensional consistency, as well as completeness of
the kernel.

(42)
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We now proceed to analyze the results obtained for the nonlocal
beam modeled via the power-law kernel. A detailed analysis of the
results presented in Fig. 4 leads to the following conclusions:

« Effect of a: For a = 1 we recover the classical (local) solution w =
1, consistent with the nature of the power-law kernel (Patnaik
and Semperlotti, 2020a; Sumelka, 2014). Next, observe that a
decrease in the value of « leads to a consistent increase in the
degree of softening, irrespective of the nature of the loading
conditions. A decrease in the value of « leads to an increase in
the value of the power-law kernel |x — x'|™* for a fixed value of
|x — x'|. This suggests that a decrease in the value of a leads to an
increase in the degree of nonlocality and a higher degree of soft-
ening. We merely note that the above findings are also consistent
with results presented in existing fractional-order approaches to
nonlocal elasticity (which employ the power-law kernel) (Patnaik
et al., 2020b, 2021c). We highlight that there exists a critical
value of @ (= 0.4 for the nonlocal beam), below which the beam
undergoes excessive softening and the model breaks down. More
detailed discussions on this aspect can be found in Patnaik et al.
(2020b), Sidhardh et al. (2020) and Sumelka (2014).

Effect of I;: An increase in the value of /, leads to signifi-
cant softening in the case of a power-law kernel. The enhanced
softening is a direct result of the fact that, an increase in the
value of /, leads to an increase in the size of the horizon of
nonlocality. Consequently, a larger number of points within the
solid contribute to the nonlocal interactions leading to an increase
in the degree of nonlocality. Again, this observation is supported
by results presented in fractional-order approaches to nonlocal
elasticity (Patnaik et al., 2020b, 2021c). Note that, unlike con-
straints on the lower limit for «, the value of /, can approach
zero. In fact, in the limiting case / + — 0, we recover the classical
local solution (Sidhardh et al., 2021a; Patnaik et al., 2021b).

7.2. Application to nonlocal plates

We conclude this study by analyzing the response of nonlocal shear-
deformable plates, in a manner similar to the analysis of nonlocal
beams in Section 7.1. For this purpose, we consider a rectangular
plate of uniform thickness, illustrated in Fig. 5. The length, width, and
thickness of the plate are denoted by L,, B, and h,, respectively. The
Cartesian reference frame, as indicated in Fig. 5, is chosen such that
0 denotes the mid-plane of the plate. In the chosen reference
frame, the displacement field components at a spatial point x(x, y, z) can
be expressed by following the shear-deformable Mindlin formulation
as Reddy (2003):

z =

u(x) = uy(x,y) — z0,.(x, ) (43a)
v(x) = vy(x, y) — 20,(x, y) (43b)
w(x) = wy(x,y) (43c)

where u, v, and w, denote the displacements at the mid-plane of the
plate along the %, , and Z directions. 6, and 6, denote the rotations of
the transverse normal at the mid-plane of the plate, about the $ and %
axes.
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Fig. 3. Bending response measured in terms of the maximum non-dimensionalized displacement of the nonlocal beam, modeled using the exponential kernel. The beam is (a) a
cantilever beam subject to an transverse load at its end-point, and (b) simply-supported at all its edges and subject to a UDTL. The response is parameterized for different values

of the kernel parameter /, and the nonlocal horizon /.

(@

Fig. 4. Bending response measured in terms of the maximum non-dimensionalized displacement of the nonlocal beam, modeled using the power-law kernel. The beam is (a) a
cantilever beam subject to an transverse load at its end-point, and (b) simply-supported at all its edges and subject to a UDTL. The response is parameterized for different values

of the kernel parameter « and the nonlocal horizon /.

— >
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By

Fig. 5. Schematic of the rectangular plate illustrating the different geometric
parameters.

The nonzero nonlocal strains, corresponding to the deformation
field in Eq. (43), are obtained by using Eq. (4a) as:

£y (X) = Bxuo(x, y)— ZBXGX(X, y) (44a)

11

€,,(x) = D,vy(x, y) — 2D, 0,(x, y) (44b)
7o) = Dyug(x ) + Dutg(x.3) = 2 [Dy0u(x. ) + Dby e )| (440)
V(%) = Dywy(x. ¥) = O,(x, ) (44d)
7y2(%) = Dywy(x, ) = 0,(x, ) (44e)

The nonlocal stresses developed in the nonlocal plate can now be
evaluated using the stress—strain constitutive relation in Eq. (4b).

Using the nonlocal strains and stresses generated in the plate, the
total strain energy can be expressed as:

h
1 (b B o7
I :z A A hy [o‘xxsxx +0,,€y, F 0y Vxy T KOy Vxz
2

dzdydx (45)

+K O-yzyyz]
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Finally the work done by external loads on the plate can be expressed
as:

h
v /”/%/%
= —h
.
0 0 -

where {F,, F,, F,} are the loads applied externally in the %, , and 2
directions, respectively. Further, {M,_, M, } are the moments applied
about the $ and % axes, respectively. The nonlocal equilibrium differ-
ential equations describing the static response of the nonlocal plate can
now be derived by applying variational principles. The response of the
nonlocal plate is numerically simulated using the f-FEM and the results

are presented in the following section.

[quo + Fyug + Fouwg + My 0, + My 6, | dzdydx

(46)

7.2.1. Results and discussion

In this section, we analyze the effect of different kernels and differ-
ent boundary conditions on the static bending response of the nonlocal
plate. In all the simulations, we considered an isotropic plate with
material properties identical to the nonlocal beam in Section 7.1.1. The
in-plane dimensions of the plate were chosen as L, = B, = lm, and
thickness was chosen as h, = L,/10. We considered the effect of the
exponential kernel and the power-law kernel, similar to the analysis
conducted for the nonlocal beam. In each case, we have assumed an
isotropic and symmetric horizon of nonlocality such that I_ =1 + =17
for points sufficiently far from the boundaries. We analyzed the static
response of the plate subject to a UDTL for two different kinds of
boundary conditions: (a) the plate clamped at all the edges, and (b)
the plate simply-supported at all its edges, for different combinations
of the kernel parameters. The constraints on the generalized displace-
ment coordinates corresponding to these boundary conditions are as
follows Reddy (2003):

‘ £=1{0,L,) tuy=vy=wy=0,=6,=0
Clamped plate : { $=(0.B)) t uy=vp=wp =6, =0, =0 (47a)
. x={0,L,} :vg=wy=0,=0
ly- late : 4 4 b
Simply-supported plate { 9=1{0.B,) t uy= 1wy =0, =0 (47b)

For each boundary condition, we obtained the response of the plate for
the following different kernel parameters:

» Exponential kernel: the kernel parameter [, was varied in
(0,0.005]m (= (0, L,/200]) and the nonlocal horizon parameter /,
was varied in [0.5, 1lm (= [L,/2,L,)). As for the beam, the lowest
value for /;, was chosen as /;, = 107 instead of zero.

* Power-law kernel: the nonlocal horizon parameter /, was varied in
[0.5,1lm (= [L,/2. L,]) and the kernel parameter « was varied in
[0.7,1]. Similar to the nonlocal beam, there exists a constraint on
the lower limit of a (=0.4 for the nonlocal plate), while the value
of + can approach to zero (Patnaik et al., 2021c).

The numerical results, in terms of the maximum transverse displace-
ment obtained at the mid-point of the plate, are presented in Figs. 6
and 7 for the exponential kernel and the power-law kernel, respectively.
Analogous to the nonlocal beam, the transverse displacement of the
mid-point of the nonlocal plate is non-dimensionalized against the
analogous value obtained for a local Mindlin plate. As evident from
the results, the considerations noted for the nonlocal Timoshenko beam
directly extend to the nonlocal Mindlin plate as well.

7.3. Few additional remarks

The displacement-driven approach predicts a consistent softening
response for both nonlocal beams and plates, irrespective of the na-
ture of the kernel and the loading conditions. This is a significant
outcome when compared to the often incoherent predictions of clas-
sical (integer-order) strain-driven integral approaches (Challamel and
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Wang, 2008; Fernandez-Saez et al., 2016; Romano et al., 2017). The
results obtained from the displacement-driven approach are free from
stiffening effects or even the absence of nonlocal effects noted in some
strain-driven methods, under selected loading conditions. This latter
statement does not suggest that stiffening effects are not expected
in nonlocal structures; it only implies that stiffening effects should
not be predicted by strain-driven approaches (Romano et al., 2017;
Pisano et al.,, 2021). Indeed, several nonlocal structures do exhibit
stiffening effects (Romano et al., 2017; Patnaik et al., 2021b; Pisano
et al., 2021). In this context, we highlight here that the displacement-
driven approach can be extended in a straight-forward and physically
consistent manner to capture both stiffening and softening effects. This
has been established exclusively for the power-law kernel in Patnaik
et al. (2021b). Further, the displacement-driven approach is also well-
suited for the geometrically nonlinear analyses of nonlocal structures.
The extension to geometrically nonlinear analyses has been performed
in Sidhardh et al. (2020, 2021b) and Patnaik et al. (2020c) to analyze
the nonlinear bending and postbuckling response of nonlocal structures
described by the power-law kernel.

In addition to the above discussed capabilities, the displacement-
driven approach also enables a direct route to modeling physical phe-
nomena involving discontinuities (such as, for example, fracture and
impact). In order to demonstrate the latter ability, we present here
below, some connections of the displacement-driven approach with
peridynamics (Silling, 2000; Silling and Lehoucq, 2010). However, we
will also discuss towards the end of this section, that there are some
important and notable differences between the peridynamic approach
and the displacement-driven approach.

The key characteristic of the peridynamic approach consists in
the purely integral nature of the formulation (a direct result of the
purely integral nature of peridynamic nonlocal operator) which allows
the resulting formulation to model structural damage, fracture, and
other discontinuities in a straightforward fashion (Silling, 2000). In
this regard, the nonlocal operator used in the displacement-driven
approach (defined in Eq. (6)) can be expressed in a purely integral
form, analogous to the peridynamic nonlocal operator, following a few
mathematical manipulations outlined below. First, the definition of the
nonlocal operator in Eq. (6) is recast as:

D, ¢= /5 cr K, x') [Dl; (¢(x;)—¢(x,))] a/ (48)
J

where ¢ is an arbitrary function. Note that ¢(x;) in the previous

equation is independent of x;. which allows us to bring the same term

within Di, (). Next, by using integration-by-parts, we obtain that:

D, ¢= /7 ¢t [Di, K(x, x')] [qb(xj)—q.')(x;.)] ax!
Qj J

+cr [IC(x, x) (qs(x}) — (x j))] (49)

X,
*i
X_.

%o

where, recall that, {x‘/’x +,-} denote the terminals of the horizon of
nonlocality 5j. Eq. (49) can be expressed finally as:

D, ¢= /5 T K(x, x') [qﬁ(xj)—qb(x})] dx’ +¢y (50)

D,;¢=Dy; d~do

where we assumed that the constant of integration ¢, is absorbed
within the modified nonlocal operator (that is, CDX/qb). Further, in
obtaining Eq. (50) from Eq. (49), we denoted D)'(, K, x') = K(x, x').
J
The following additional remarks are essential to put the above

analysis in perspective:



S. Patnaik et al. European Journal of Mechanics / A Solids 92 (2022) 104434

(@) ()
1.05 1.05
1.04 1.04
1.03 1.03
® 102 ® 10
1.01 1.01
1 1
0.5 0.5

6
x1073

6
x107

Fig. 6. Bending response measured in terms of the non-dimensionalized displacement at the center point of the nonlocal plate subject to a UDTL and modeled using the exponential
kernel. The plate is (a) clamped at all its edges and (b) simply-supported at all its edges. The response is parameterized for different values of the kernel parameter /, and the
nonlocal horizon /.
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Fig. 7. Bending response measured in terms of the non-dimensionalized displacement at the center point of the nonlocal plate subject to a UDTL and modeled using the power-law
kernel. The plate is (a) clamped at all its edges and (b) simply-supported at all its edges. The response is parameterized for different values of the kernel parameter « and the
nonlocal horizon /.

» Note that the functional expression for the modified nonlocal
operator in Eq. (50), in principle, matches the functional expres-
sion of the peridynamic nonlocal operator (Silling, 2000). More
specifically, analogous to the peridynamic nonlocal operator, the
direct dependence of the nonlocal operator on the displacement
field rather than its spatial derivatives, enables the resulting
formulation to capture structural discontinuities efficiently. This
latter characteristic of the displacement-driven approach is in di-
rect contrast with the classical strain- or stress-driven approaches
to nonlocal elasticity which, as discussed in Silling and Lehoucq
(2010), are not amenable to the modeling of phenomena involv-
ing discontinuities.

While, following the above discussion, it might appear that the
displacement-driven approach is closely related to the peridy-
namic approach, there are important differences to be consid-
ered, owing to the fundamental differ-integral nature of the
displacement-driven approach (as opposed to the purely integral
nature of the peridynamic approach). A direct result of this
difference is evident from the nature of the constant of integration
¢, that appears from the boundary of the nonlocal horizon (see
Eq. (49)) in the displacement-driven approach and is absent in the
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peridynamic approach. Hence, in order to achieve true equivalence
between both the approaches it is required that ¢, — 0. This latter
condition is possible only when the nonlocal kernel approaches
K(x,x") = 0 at the ends of the nonlocal horizon ({x_j S Xy, 1 in all
the directions. While this latter condition is not guaranteed for all
kernels, the discussion on the ability of the displacement-driven
approach in capturing discontinuities still holds true.

There exists yet another perspective on the nature of the term
¢y. Note that this term can in principle be treated as a jump
parameter that enables to capture discontinuous phenomena such
as, for example, flow across dissimilar interfaces, evolution of
microstructure due to nucleation of dissimilar grains, or even
dynamic fracture. In fact, this concept appears analogous to the
formalism used in Patnaik and Semperlotti (2021d), where a
unique mathematical operator available from the mathematical
field of variable-order calculus was utilized to design a similar
jump parameter to simulate dynamic fracture.

In addition to the nature of the term ¢,, a major difference
between the peridynamic approach and the displacement-driven
approach follows from the route followed to achieve frame-
invariance. In this regard, note that the differ-integral definition
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of the nonlocal operator in the displacement-driven approach al-
lows for a consistent definition for strain in the nonlocal material,
analogous to classical continuum measures. This latter feature
is not a characteristic of the peridynamic approach where the
concept of strain is rather disjointed from the classical interpre-
tation of strain, primarily due to the purely integral nature of
the peridynamic nonlocal operator. As a result, the peridynamic
nonlocal operator requires additional constraints to be imposed
on the material model (more specifically, requires the material
to be nonpolar in nature Silling and Lehoucq, 2010) in order
to achieve frame-invariance. On the other hand, the nonlocal
operator of the displacement-driven approach enables a straight-
forward treatment of frame-invariance irrespective of the nature
of the underlying material model and of the kernel definition
(see Section 3). From this perspective, the displacement-driven
approach can be considered more general than the peridynamic
approach.

Finally, the consistent definition for the strain measure in the
displacement-driven approach combined with the consistent be-
havior of the nonlocal operator at material boundaries also en-
sures a straightforward treatment of displacement boundary con-
ditions analogous to the classical (local) continuum theory. On
the other hand, the peridynamic approach requires the definition
of an ad hoc region near the boundary (that is, a collection or
set of points) for the application of the displacement boundary
conditions (Silling, 2000). Notably, both the approaches result in
nonlocal traction boundary conditions. While the traction bound-
ary conditions are always incorporated within the equilibrium
equations in the peridynamic approach, they require additional
care in the displacement-driven approach depending on the cho-
sen simulation technique. In this regard, we merely note that
the nonlocal nature of the traction boundary conditions in the
displacement-driven approach does not concern us immediately
as we simulated the governing equations using a finite element
technique. Recall that traction boundary conditions are implic-
itly satisfied when obtaining the solutions using finite element
techniques and are accurate up to the order of the specific finite
element method.

The above discussion highlighting the ability of the displacement-
driven approach to model both softening and stiffening effects, nonlin-
ear effects, and physical phenomena involving discontinuities, suggests
that the displacement-driven approach presents a promising alternative
to the analysis of nonlocal structures.

8. Conclusions

We presented an approach, that leverages strain—displacement re-
lations formulated in a differ-integral form, to model nonlocal effects
in an elastic solid. This method was dubbed as the displacement-
driven approach to clearly differentiate it from the existing stress-
and strain-driven techniques. The mathematical, physical, and ther-
modynamic consistency of the method were carefully demonstrated,
and shown to address some critical deficiencies of existing models of
nonlocal elasticity. This approach may also be seen as a generalization
of fractional-order formulations of nonlocal elasticity that restrict the
nonlocal kernel to power-law type. The well-posedness of the elastic
governing equations, which is a requisite for consistent modeling of
elastic behavior, is achieved by the present approach. This observation
is a direct consequence of the positive-definite and convex deformation
energy density achieved by using the displacement-driven approach.
The formulation also presents some other important benefits including
the ability to adopt asymmetric kernels (required to capture from
material heterogeneities), and the proper truncation of the nonlocal
horizon at physical boundaries to maintain the completeness of the
kernel. These features will be fundamental as nonlocal theories start
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percolating into a broad spectrum of practical applications. We also
derived the dispersion relations for a 1D infinite solid and showed
the practical influence of some commonly used nonlocal kernels. It
was found that different kernels capture different features of dynamic
behavior, and hence their selection for dynamic analyses should be
properly pondered. Finally, numerical simulations were performed to
investigate the static response of nonlocal Timoshenko beams and non-
local Mindlin plates. Numerical results highlighted the very consistent
physical behavior enabled by the displacement-driven approach. This
consistency was observed from the monotonic softening in the elastic
response following an increase in the degree of nonlocality; a behavior
observed irrespective of the choice of the nonlocal kernel, and of
the loading and boundary conditions. In conclusion, the displacement-
driven formulation provides a powerful framework to model nonlocal
effects in elastic solids while enabling the use of different kernels that
are representative of different dynamic material behavior.
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Appendix. Derivation of the strong-form of equilibrium equations

In the following, we present the details of the steps involved in
the derivation of differ-integral (nonlocal) equilibrium equation for the
nonlocal solid. For this purpose, we recall the Hamilton’s principle in
Eq. (28):

1
/25[1/(6 : e)dV—/(Z~u)dV—/ - wydA
0 39 e 02

Strain energy (1)

External work

-1 / PG - w)dV | dr = 0 (28)
2 /o

Kinetic energy

The variations of the terms corresponding to the external work and
kinetic energy are identical to their counterparts in local elasticity and
hence, in the following, we will derive only the variation of the strain
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energy. By using the symmetry in the strain tensor, we express the
variation of the strain energy as:

1, = / ’ / 0,;(x) 6D, |u;(x)] dV dt
n Je /

I,

(51)

Now, by using the definition of the nonlocal operator ij(') from
Eq. (7), we obtain:

x; , déui(x;.) ,
12=/ / / 6,/(x) cj_/ %'y | ——L | dx’
J dx’, J

2, Ja, e, x_ ]

* B ’ daui(x}) ’
+c+j /x K(x,x") T dxj dxjdxkdx,- (52)
J
where, recall that, x_; = x;—/_ and x4; = x;+1, . Each of the two terms

within the innermost mtegral in the above expressmn can be re-written
by changing the order of integration over the nonlocal spatial variable
(x;.) and the local spatial variable along the same direction (x;). This
gives:

déu; (x ) X+
1, —/ / / cf/ // K(x, x")o;;(x)dx;
¥

_

5w
J

K(x, x")o;;(x)dx; dx;dxkdxl- (53)

=l
ot

~~

15 [ou))]
J

Next, by denoting the convolutions of the nonlocal stress tensor as
I (x )| and I * e, (x’.) and using integration-by-parts to separate
J

the variation from the displacement field, we obtain that:

__/ / / [5u,.(x;)]
o, Ja, Jo,
d (.-
dx’ (c‘jlx}
J
’ % - ’ - ’
+ /Q ) /Q ' [5ui(xj)] [c_j ; [a,,(xj)] eI [a,.j(xj)” ‘a% dxgdx,;

(54)

[o‘ij(x;)] + c:‘_j I;r; [aij(x;.)]> dx;dxkdx,-

By using the definition for fx/(') given in Eq. (32), we obtain the
following simplified expression for 7,:

5 AL 355 dx; dx,d
B '/‘(;x. '/f;x Lx. [ ui(xj)] T xj e
i k J
+/ / [5u,-(xj)] [ijoij(xj)] ’ dx; dx;
o, Jo,, 09,

Note that, in obtaining the above result, we interchanged the (dummy)
variables x;. and x;, for the sake of brevity. Finally, by substituting the
above result in Eq. (51), we obtain:

Il=/tlt2 [—/Q[(G-a)~5u]dv+ 1

Applying the fundamental principle of variational calculus, we recover
the governing equations in Eq. (29) and the boundary conditions in
Eq. (30).

In order to summarize the variational simplifications performed
above, we report below the variation of the nonlocal operator defined
on the 1D space. This statement is more lean and hence, more trans-
parent. The variation of the nonlocal operator defined in Eq. (6), on a
finite-dimensional 1D space £, € [0, L], is given as:

(55)

) - 6u| dA| dr (56)

/ f) 8 [Dg(0] dx = - / 5500 [ B, (0] ax+ s [T, 57)
Qx gx

15

European Journal of Mechanics / A Solids 92 (2022) 104434

where f(x) and g(x) are arbitrary functions. The definitions for I,(-),
and 5x(-) can be found in Egs. (31)—(33). Note that the variational
principle presented in Eq. (57), for the nonlocal operator defined in
Eq. (6), is highly general since it is applicable irrespective of the
definition of the nonlocal kernel. However, assuming a power-law
kernel within the definition of the nonlocal operator (as a particular
case) reduces the nonlocal operator to a fractional-order derivative,
as mentioned in the discussion following Eq. (16). This special case
also provides additional evidence in support of the above derived
variational principle because it can be directly compared with results
available in the literature of fractional-order variational calculus (see,
for example, Patnaik et al., 2021b, 2020b; Agrawal, 2007; Atanackovi¢
et al., 2008; Almeida, 2012).
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