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Abstract

Safety requirements in dynamical systems are commonly enforced with set in-
variance constraints over a safe region of the state space. Control barrier func-
tions, which are Lyapunov-like functions for guaranteeing set invariance, are an
effective tool to enforce such constraints and guarantee safety when the system
is represented as a point in the state space. In this paper, we introduce extent-
compatible control barrier functions as a tool to enforce safety for the system
explicitly accounting for its volume (extent) within an ambient workspace. In
order to implement the extent-compatible control barrier functions framework,
we first propose a sum-of-squares optimization program that is solved pointwise
in time to ensure safety. Since sum-of-squares programs can be computationally
prohibitive, we next propose an approach that instead considers a finite number
of points sampled on the extent boundary. The result is a quadratic program
for guaranteed safety that retains the computational advantage of traditional
barrier functions. While this alternative is generally more conservative than the
sum-of-squares approach, we show that conservatism is reduced by increasing
the number of sampled points. Simulation and robotic implementation results

are provided.
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1. Introduction

A controlled dynamical system is considered safe if it can be ensured that
a given set of safe states is forward invariant under the action of a controller,
i.e., the system state remains within the safe set for all time when initialized
within the safe set. For example, collision avoidance between robots, obstacle
avoidance during waypoint navigation, or lane changing for autonomous vehicles
can be cast as invariance constraints. Techniques for enforcing safety of dynam-
ical systems via invariance constraints include level-set methods [1], methods
leveraging reachability analysis [2], and model-predictive control methods [3].

When a nominal but possibly unsafe controller is available, control barrier
functions (CBF's), introduced in [4], act as a particularly effective tool to enforce
safety for control-affine dynamical systems. CBF's have been applied for collision
avoidance in multi-robot systems [5], adaptive cruise control [4], motion planning
[6], and safety for robotic manipulators [7]. Traditionally, CBFs are used in
conjunction with quadratic programs (QPs) to compute at each time instant a
safe control input.

Existing CBF-based approaches focus on establishing forward invariance for
the system state, also called the system configuration. The system’s volume (or
extent) in its ambient workspace must therefore be implicitly included in defin-
ing the set of safe states via a CBF. In some cases, this is straightforward and
can be achieved by, e.g., shrinking the safe set [8 [9]. For example, consider an
application of adaptive cruise control for a vehicle [4]. In this case, the vehicle’s
length is accounted for when defining a safe following distance, and ultimately
when defining an appropriate CBF. In other cases, incorporating the physical
extent when defining an appropriate closed-form barrier is considerably more
challenging or not possible, even when the system’s extent and safe workspace
are geometrically simple. This is because CBF-based methods rely on charac-

terizing the safe set as a level-set of a function that is known in closed form.
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For example, consider a vehicle maneuvering in a two dimensional region such
as a parking lot. The vehicle’s state is defined by its two dimensional position
and its heading angle, and its extent is described by its physical footprint. The
safe region of the workspace is defined as a two dimensional region excluding
obstacles. In this case, collision of the vehicle with an obstacle depends on the
geometric relationship between the vehicle’s position, heading, extent, and ob-
stacles. Even when the vehicle’s extent and the workspace are simple geometric
shapes, as in the case study in this paper, this relationship is complex and makes
it difficult or impossible to define an appropriate classical CBF as a function of
system state that is exactly the set of safe states. At best, it may be possible
to obtain a closed-form approximate safe set, but this approximation will gen-
erally be conservative. Moreover, if the system’s extent changes—for example,
a vehicle docks with a trailer—then the classical CBF must be redesigned.

In this paper, we propose a novel CBF-based approach for ensuring safety
constraints of a control-affine dynamical system that explicitly accounts for
extent in an ambient workspace. We then define an extent-compatible CBF that
uses a modified CBF constraint to ensure that the extent set always remains
within the safe set of the workspace. We first propose implementing the resulting
constraint using a sum-of-squares (SOS) optimization program [10]. Since SOS
programs can be computationally difficult for high dimensional systems and are
only applicable when the safe and extent sets can be represented as polynomials,
we next prove that the guarantee on system safety can be retained by considering
only a finite set of sampled points on the boundary of the extent set, and we
propose a QP-based controller using the sampled points. This sampling-based
approach relies on bounds of Lipschitz constants of functions appearing in the
barrier function formulation and therefore may be more conservative than an
SOS approach, however, the conservatism can be controlled by increasing the
number of sample points. The proposed framework is demonstrated with a case
study of a vehicle navigating in a two dimensional region, as motivated above.

This paper is organized as follows: Section [2| presents background on CBFs.

Section [3| proposes the extent-compatible control barrier function formulation
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that is the main contribution of this paper. Section {4|introduces the QP-based
controller and presents two solution methods to guarantee safety: a method
utilizing SOS programming and a method that uses a finite number of points
sampled on the extent set boundary. Section || consists of a case study which
implements the proposed framework both in numerical simulations and on a

differential drive robot. Section [6] provides concluding remarks.

2. Mathematical Background

In this section, we provide background on the traditional control barrier

function formulation. To that end, consider a control-affine dynamical system
&= f(z)+g(z)u, (1)

where f and g are locally Lipschitz continuous, x € D C R" is the state of the
system, D is assumed to be open, and u € R™ denotes the control input.

Associated with the system is a safe set C C D, defined as the super zero
level set of a continuously differentiable function h: D — R, ie., C ={z € D |
h(z) > 0}. We call h the safe function. To ensure forward complete trajectories,
we assume throughout that the safe set C is bounded. If forward completeness
can be guaranteed in other ways, e.g., by ensuring that the control inputs are
such that the vector field in is globally Lipschitz, the assumption that C is
bounded is not needed for the presented theory to hold true.

As presented in [11}[12], one can use zeroing control barrier functions (ZCBF's)
in order to guarantee forward invariance of a safe set. In particular, a contin-
uously differentiable function h : D — R satisfying the regularity condition
2 h(z) # 0 for all z such that h(z) = 0 is a Zeroing Control Barrier Function
(ZCBF) if there exists a locally Lipschitz extended class IC function « such that
for all z € D,

sup { 5@ + ot + alhte) } = 0, ®
where we recall that a continuous function o : R — R is extended class K if

a(0) = 0 and it is strictly increasing.
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In the instance that a safe function h defining a safe set C is also a ZCBF,

choosing a control input at each state x from the set
oh
v = {uern| B (1) + gloy) + @) 20}
guarantees that the safe set C is forward invariant [11]. Specifically, if 2(0) € C
and U(z) as in (3)) is non-empty for all z € D, then, as shown in [I3] Theorem 4],
any continuous feedback controller v : D — R™ such that u(z) € U(x) for all

x € D is such that z(t) € C for all ¢ > 0.

3. Extent Compatible Control Barrier Functions

In this section, we first formalize the problem statement, followed by the
notion of extent-compatible control barrier functions for systems of the form .
We then prove that such functions enable guaranteed safe control of the system,

including its extent.

3.1. Problem Statement

Given a ZCBF, [13] Theorem 4] guarantees that the system state will remain
within the safe set C when control inputs are continuous in = and chosen accord-
ing to u(x) € U(x) for all z € D, where U(z) is as defined in (3). This notion of
safety, however, requires the extent of the system to be implicitly accounted for
in the characterization of the safe set within the system domain. In this section,
we define a notion of system safety that explicitly includes the physical volume
of the system within an ambient workspace that is distinct from the domain
of the statespace as described in, e.g., [I4, Ch. 3]. To that end, let W C R¥
denote this workspace and assume W is open; when the system state is z € D,
the system physically occupies some subset of W that depends on z, and the
set of safe states is now characterized as a subset C C W. We encapsulate this
notion of volume with an extent function F such that E(z,y) < 0 means the
point y € W is within the system’s extent when the state of the system is z € D.
Additional mild technical assumptions avoid pathological cases, as formalized

in the following definition.
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Definition 1 (Extent Function). An extent function E : D x W — R is a

continuously differentiable function such that:

1. E(x) ={y € W| E(x,y) < 0} is nonempty for all z € D,

2. a%E(:};y) # 0 for all (z,y) such that E(z,y) =0, and

3. for all § > 0, there exists € > 0 such that for all x € D and all y € W,
if |E(z,y)| < € then infycoeq |y — 9ll < 6 where 08(z) = {y € W |
E(z,y) = 0},

Condition 1 is the key condition of the definition. In particular, the set
E(x) C W above defines the system’s extent when its state is & € D, and
0E(x) = {y € W | E(z,y) = 0} denotes the extent boundary. As a simple
example, if the extent contains all points within a distance d > 0 of the system
state x, then W = D and we may choose E(z,y) = ||y — z||* — d. Conditions 2
and 3 are mild technical conditions. In particular, Condition 2 ensures that the
gradient with respect to y of E' does not vanish on the extent set boundary £(x),
which is entirely analogous to standard regularity assumptions on traditional
control barrier functions as is made in, e.g., [11], and Condition 3 ensures that
E(x,y) only approaches 0 at the extent boundary. For example, Condition 2
is violated for E(z,y) = (y — x)® with D = W = R because E(z,y) as a
function of y has zero slope when x = y, and E(z,y) = —cos(y — x) with
D =W = (-3m/2,37/2) violates Condition 3 when & = 0 because E(z,y)
approaches zero as y approaches the domain boundary {—37 /2,37 /2}, which
is far from the extent set boundary 0&(z) = {—n/2,7/2}. In our experience,
extent functions of practical use always satisfy these technical conditions.

Given an extent function, we aim to ensure that the extent of the system is
contained within the safe set for all time, i.e., £(z(t)) C C for all ¢ > 0 along

trajectories of . An example of such a problem setup is shown in Fig.

Problem 1. Given a control affine dynamical system as in with extent
function E(x,y), synthesize a controller u which guarantees E(x(t)) C C for all

t > 0 whenever £(x(0)) C C.
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Figure 1: A motivating example, where a differential drive robot with a system volume covered
by an extent set must stay within the ellipsoidal safe set when a nominal unsafe controller tries
to drive it outside. This paper proposes controller frameworks to guarantee safety of the system
including its volume under such situations, without introducing unnecessary conservatism by
shirking the safe set, something that a classical CBF solution would have do. The image is
from a Robotarium [15] implementation of the framework introduced in this paper, which we

also describe in Section

As a motivating example, consider a differential drive robot (i.e., vehicle)
with a superellipsoidal extent set and ellipsoidal safe set as shown in Fig[l] The
robot including its extent set must stay within the safe set under the action of
a controller that tries to drive it outside the set. This is the main intuition for

Problem 1. We revisit this motivating example in Section

3.2. Extent-Compatible Control Barrier Function (Ec-CBF)

We now introduce extent-compatible control barrier functions (Ec-CBFs)
which are analogous to ZCBFs but guarantee that the entire extent set remains
within the safe set under the action of a suitable control input. For a ZCBF h,
the condition ensures that, as the system state approaches the boundary of
the safe set, a control action is available that limits the rate at which h decreases.
This ensures that i (z(¢)) remains nonnegative and the system remains safe. The
rate at which the barrier h is allowed to decrease is dictated by the extended
class K function « in . In implementations, the choice of « serves a practical
role in restricting how quickly the system is allowed to approach the safe set

boundary. To extend this idea to systems with extent, we introduce the following
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definition, which, informally, uses two extended class K functions to ensure that
the boundary of the extent set does not approach the boundary of the safe set

too quickly, thus ensuring safety.

Definition 2 (Extent-Compatible Control Barrier Function (Ec-CBF)). A con-
tinuously differentiable function h satisfying the regularity condition %h(y) #0
for all y € W such that h(y) = 0 is an extent-compatible control barrier func-
tion (Ec-CBF) for the system with extent function F if there exists locally
Lipschitz extended class K functions «; and as such that for all x € D with

E(x) C C and for all y € C, defining

_ 0E(z,y)

M(xvyvu) = o (f(x) + g(x)u) + O[l(E(fE,y)) + a2(h(y)) )

it holds that sup,cgm {M(x,y,u)} > 0.

Given an Ec-CBF h, for all x € D, define the set
U(x) ={u e R™ | M(x,y,u) >0 for all y € C}. (4)

Assuming that the extent of the system initially begins inside the safe region,
choosing a control input u(z) € U(z) at any given state x € D guarantees that

E(x(t)) C C for all t > 0, as formalized in the following theorem.

Theorem 1. Consider system with initial state x(0), an extent function E,
an Ec-CBF h with associated safe set C = {y € W | h(y) > 0} C W, and
U(z) as defined in {)). If E(x(0)) C C, then any continuous feedback controller
u: D — R™ such that u(z) € U(z) for all x € D guarantees that E(z(t)) C C
for allt > 0.

Proof. Suppose by contradiction that the assumptions of the theorem hold but
there exists a time ¢’ > 0 such that £(z(')) ¢ C, that is, the system is unsafe
at time t’. By the defininition of £ and C, this means there exists a point
y’" € W such that E(z(t'),y’) < 0 and h(y’) < 0. The first step of the proof is
to establish that, in fact, there exists a time 0 < ¢t < ¢ and a point y' € W
such that E(z(t),y") < 0 and h(y') = 0, d.e., y' is in the interior of the
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extent set at time t' and on the boundary of the safe set C. To see that this is
true, first, without loss of generality, we can assume E(z(t'),y’) < 0 because, if
instead E(z(t'),y’) = 0, then since a%E(x(t’), y') # 0 by the definition of extent
function, for small enough ¢, it holds that E(z(t'),y"”) < 0 and h(y"”) < 0 where
y' =y - 6(,;/,%E(ac(t'),y')7 and we could consider 3" instead of y’. Next, since
the system is assumed to be initialized in safe conditions with £(z(0)) C C, and
since trajectories are continuous, there must exist a time ¢* and a point y when
the system becomes unsafe, i.e., there exists 0 < t' < ¢ and y' € W such that
E(z(t"),y") <0 and h(y') = 0, as desired.

Now, let w(t) = E(x(t),y"), i.e., w(t) is the value of the extent function at
the point y over time. Since the system is assumed to be initially safe, it holds
that w(0) = E(x(0),y") > 0, and by construction, w(t") = E(x(t"),y") < 0.
But, for all £ > 0,

= —a(w(t)),

where the first inequality holds since h is an Ec-CBF and the second equality
follows because —az(h(y')) = 0.

Now, consider the initial value problem 7(t) = —a1(n(t)) with 1n(0) = w(0).
Note that 7(0) > 0 since w(0) > 0. The comparison lemma [16l Lemma 3.4
then implies w(t) > n(t) > 0 for all + > 0. But this contradicts that w(t) < 0.
Hence, E(x(t)) C C for all t > 0. O

Observe that when z is such that a point of the boundary of the extent set
is on the boundary of the safe set, the condition ensures that the control
input u makes the system stay in the extent-set and the functions a; and as
are used to make this control action smoother. The only feature of as used
in the proof of Theorem (1| is that a2(0) = 0. The additional properties on sy
imposed in Definition [2| are useful for practical implementation and exploited in

Theorem [3
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In contrast to traditional CBFs, Ec-CBFs are defined over the workspace
W and explicitly account for the system extent within the workspace via the
the condition sup,cpm{M(z,y,u)} > 0, which depends on the system extent
function E. Moreover, if the system extent changes (e.g., because a different
robot is used or a vehicle docks with a trailer), then only the system extent
function E need change, and the Ec-CBF h remains the same.

Next, we propose an optimization scheme for selecting inputs from the set
U(zx) to guarantee safety while minimally deviating from some prescribed nom-

inal controller.

4. Minimally Invasive Quadratic Program Controller

In the scenario where a system designer would like to employ some possibly
unsafe nominal feedback control policy k& : D — R™ on the system with
extent, we propose incorporating as a constraint at runtime to obtain a safe
controller as a minimally invasive quadratic program (QP) using a Ec-CBF,
similar to the technique proposed in [4] for ZCBFs. This procedure leads to a
control law which ensures that the extent set of the system is contained within
the safe set C for all ¢ > 0, given that £(x(0)) C C. In particular, we propose a
quadratic program solved for each x of the form

uqp(z) = argmin  [lu — k(z)]3. (5)
€U (z)

The above QP is minimally invasive in the sense that it guarantees safety
of the system including its extent, while following the nominal input k with
minimal deviation. However, for fixed x, U(z) is defined from and requires
a given inequality to hold for all y, leading to an infinite number of linear
constraints on u. In the remainder of this section, we present two approaches
that retain safety guarantees. The first one is an exact solution, but may not
necessarily be computationally efficient. The second one is an approximate

solution which still guarantees safety and is amenable for online implementation.

10
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4.1. Optimization Over Sum-of-Squares Polynomials

In the first approach, we recast as a sum-of-squares (SOS) optimization
problem in the independent variable y. Recall that x is the a priori fixed
current state of the system and y is a free variable denoting any point in the

workspace W.

Definition 3 (Sum-of-Squares (SOS) Polynomials). A polynomial s(y) is a
sum-of-squares polynomial if it can be written as s(y) = Zle pi(y)? for some
natural number ¢ where each p;(y) is a polynomial. Let X[y] denote the set of

all SOS polynomials. Note that if s(y) € X[y], then s(y) > 0 for all y € R™.

Theorem 2. Consider system with initial state x(0), an extent function
E, and an Ec-CBF h with associated safe set C = {y € W | h(y) > 0} C W.
Further assume E(xz,y) and aq(E(z,y)) are polynomial in y for any fived x and
that h(y) and az(h(y)) are polynomial in y. Let k : D — R be a continuous
nominal controller and suppose E(x(0)) C C. If the set

i) = {uw e r | 25 (10) + ) + an(Blo, ) + anlhio)-

s(y)h(y) € Ty] for some s(y) € Z[y]}

is non-empty for all x € D, then the solution x(t) of system with
u(x) = usos(w) := argmin [lu — k(z)|3 (6)
weU (x)

is such that E(x(t)) C C for allt > 0.

Proof. For each z, the optimization problem @ is feasible by hypothesis, and
the fact that u € U(z) implies

OE(z,y)

5y (@) +g(@)u) + ar(B(z,y)) + az(h(y)) — s(y)h(y) =0 (7)

for all y € R™, since the left hand side of the inequality is required to be an
SOS polynomial. Next, observe that s(y)h(y) > 0 for all y € C since s(y) is a
SOS polynomial, and for all points of the safe set, i.e., y € C, we have h(y) >0

11
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as per the definition of the safe set in Section Hence the requirement that
u € U(z) implies

OE(z,y)

5y (@) +g(2)u) + ar(E(z,y)) + az(h(y)) 2 0 (8)

for all y € C, i.e., u € U(z) as defined in . In addition, since for all € D,
the constraint in U(z) is convex in u, ||u/ is convex in u, and k is continuous in
x, using [13| Theorem 5], we conclude that the controller is continuous. From

Theorem [1} E(x(t)) C C for all t > 0. O

To implement the SOS controller in, e.g., SOSTOOLS [10], the degree of the
SOS decision polynomial s(y) in the constraint defining u (2) is fixed a priori.
In addition, the quadratic cost in @ is recast in epigraph form to obtain an
equivalent problem with linear cost and an additional semidefinite constraint via
Schur complement [17]; in particular, the initial formulation @ is equivalent to

usos(z) = argfnin[s Iilin 0,
uweU (x) €A(u,z)

with
1 U
A(u,z) =5 eR =0
ul 6+ 2k(x)Tu — k(z)Tk(z)

The above SOS approach allows us to adopt a tractable method to guarantee
safety for the system. However, this approach has two drawbacks. First, it
requires extent sets and safe sets to be defined by polynomial functions. Second,
with increasing system dimensionality, SOS programs are known to become
computationally difficult. Hence, we next propose a computationally efficient
approach that replaces the infinite number of linear constraints of with a

finite number of constraints induced by a finite number of points sampled on

the extent boundary.

4.2. A Sampling-Based Approach to Set Invariance with Extent

In this subsection, we propose an alternative relaxation of which retains

the computational advantages of the original QP formulation for ZCBFs. The

12
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intuition is to enforce the constraint in on the boundary of the extent set,
but only for a finite number of sampled points. To obtain a finite number of
sampled points, we discretize the boundary of the extent set 9€(x). The main
technical difficulty is ensuring that a barrier condition at each sample point
is sufficient to guarantee safety for the entire safe set. The following theorem
formally guarantees safety of this sampling approach by supposing a constraint
on the magnitude of the control input for each sampled point and utilizing
bounds of the Lipschitz constants obtained from the Ec-CBF h and the extent
function E to guarantee that the entire extent set boundary, and hence the

entire extent set, remains within the safe set.

Theorem 3. Consider system with initial state x(0), an extent function
E, and an Ec-CBF h with associated safe set C = {y € W | h(y) > 0} C W.
Further assume that the domain D and the workspace W are bounded, &(x) is
bounded for all x € D, let M > 0 be a bound on the magnitude of the control
input, and for some T > 0 let 0E,(x) C OE(x) be a finite set such that for all
y € 0&(x), it holds that mingeoe (o ¥ — yl| < 7/2. Additionally, let

: (9)

PE(x,y)
dxdy

0
A > sup ‘h
U 1|5y (y)

B> sup
2€D,yeW, [|lull<M

(f (@) + g(x)u))| - (10)

Consider the set

U(z) = {u eR™ | [|lul| < M and

OE(xz,y*)

o (f(z) +g(z)u) +~-h(y*) > (B+~yA)T

holds for all y* € 5‘57-(:8)} (11)

where v > 0 is a constant. Let k : D — R be a continuous nominal control
input. If for all x € D the set a(x) is non-empty and E(x(0)) C C, then the

solution x(t) to the system wWith U = Usgmpiea(x), where

Usampled(w) = arg min lu — k(z)|3, (12)
weld(z)

13



is such that E(x(t)) C C for all t > 0. Moreover, the controller usgmpiea(x) s

continuous with respect to x for all x € D.

Proof. Introduce the open set
— o *
B - U B%’ (y ) )
y*€0E, ()

where BZT, (y*) denotes an open ball with radius T centered around y*. Choose
€ > 0 such that for all z, £(z) = {y € W | |E(x,y)| < €} C B. Such a choice of
€ is possible due to part 3 of the definition of the extent function (Deﬁnition.
Clearly 0&, (x) C 0&(z) C E(x). From the mean value theorem, for all y € £(x)

and y* = argmingcye () |7 — y||, it follows that

h(y*) — h(y) < Ally* —yll, (13)

and

(aE(axg;y*) - 8Eéfc7 y)) (f(2) +g(2)u) < Blly* -y 1)

whenever ||u|| < M. Now, observe that ||y* — y|| < 37/4. Multiplying with
—~ and with —1 and then adding the inequalities yields

OE(z,y)

@) +g(@)u) +-h(y)

= %(ﬂx) +g(z)u) +7-hly") — (B +~A4)37/4

> (B+~A)T/4

for any u € U () where the last inequality follows from the definition of u ().

Choose aa(s) = s for all s > 0 and ay(s) = (B +~vA)7/(4e)s for all s < |e].
Then, for any u € U(z), we have M(xz,y,u) > 0 whenever |E(z,y)| < ¢ where
M is as in Definition [2l Moreover, it is straightforward to see that a; can be
chosen to be sufficiently large for s > |¢| so that M(z,y,u) > 0 for u € U(x)
also when |E(z,y)| > e. Thus, h is a Ec-CBF and usampleda(x) € U(z) for all
z € D. Since for all y* € &, (), in the definition of U/(z), the constraint

OE(z,y*)

pe (f(x) +g(x)u) + - h(y*) > (B+~4)T

14
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L» Z1,Y1 h(y) =l

Figure 2: Example of the different discretizations in Example E The black dot is the system
and the solid circle its extent. The four discretion points are with circles and the distances
with dashed circles. The dashed line show how close the discretizations points can be to the

barrier and still satisfy the inequality.

is convex in w, |lu|| is convex in u and k is continuous in z, using [13, Theorem
5], we conclude that the controller usampiea(2) is continuous. Thus, from Theo-
rem [1} the extent set £(x) is contained within the safe set for all ¢ > 0 and for
all z € D such that E(z(0)) C C; that is, £(z(t)) C C for all t > 0. O

The constants @ and are interpreted as upper bounds of the Lipschitz
constants for functions appearing in the definition of Ec-CBF. Whenever the
domain D and workspace W are bounded, as is usually the case in practice, such
constants will exist. Moreover, since the constants A and B could potentially
be large, the constant 7 must be chosen small enough so that u (z) is nonempty
and, as we show in the following example, choosing 7 to be large can result in

unwanted conservatism.

Example 1. Consider the system ¢ = u, where x = [xl xz}T € R? is the
system state and u € R? is a bounded control input such that |ul|, < M where
M =1. We take D =W = R? and E(z,y) = (z1 — y1)*> + (22 — y2)? — 1 and
encode the safety constraint with the safe function h(y) = —y;. As noted earlier,
although the safe set is not bounded in this example, forward completeness can
still be guaranteed due to bounded control input, and hence the presented results
still hold true in this setting. This problem setting is depicted in Fig.[2] We take
the upper bound of the Lipschitz constants as A = 1 and B = 2 satisfying @D
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and . Observe that for this specific choice of extent function, the constants
can be determined although the domain and workspace are unbounded. In
practice, systems operate in a compact domain, and hence, the constants A and
B exist and can be computed.

To demonstrate the conservatism with few sampled points, we consider a
sampling-based controller which uses four samples; that is, we take 9. (x) =
{(z1 £ 1/v2, 5 £ 1/V2), (21 £ 1/v/2, 22 F 1/3/2)}, such that 7 = 2¢/2 — V2.
The controller then has four constraints,

V3(—ur + u) f’y(:ﬂl - ﬁ) > (B +~A)T, (15)

V2(un £ uz) = (214 V2) 2 (B+74)r. (16)

In the instance that x; = 7(% + A)7, the only feasible solution is (u1,us) =
(=7v,0) with v < M, which will effectively steer the system away from the
barrier. Observe that - plays a key role in the behavior of the system. A higher
value of v will allow for the system to get closer to the barrier, but once the
system is close to the boundary, a more aggressive control action, i.e., uy = 7 is

applied.

Intuitively, the sampling-based technique essentially covers the boundary of
the extent set with balls around the discretized points, and ensures that the

balls do not ever cross over into the unsafe set, as is visualized in Fig

5. Experimental Results

In this section, we present a case stud of the proposed framework im-
plemented in the Robotarium testbed [15] on a differential drive robot with
dynamics

i1 =v-cos(¢), @y=uv-sin(¢), ¢=w,

2Source code for the implementation is available at

https://github.com/gtfactslab/ExtentCBF
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where 1 € R, 25 € R are the position coordinates of the robot, ¢ € [—m, )
is the orientation, and v € R and w € R are the linear velocity input and
angular velocity input. Define the system state by = = [ml 29 qs]T. The
Robotarium workspace is taken to be W = [-1.6,1.6] x [-1,1] € R? and the
system domain D is defined by x; € [-1.6,1.6], 25 € [-1,1], and ¢ € [-7,7),
that is, the domain D consists of the workspace W augmented with the robot’s
orientation. We consider an ellipsoidal safe set C = {y € R? | h(y) > 0} where
h(y) = 1 — yT Psatey with Piage = diag(172,0.872) € R?*2 and the extent set as

a fourth-order superellipse described by the extent function

E(z,y) = (5)*(A1 cos (¢) + Az sin (¢))"+

(10)*(=Ay sin (¢) + Agcos (¢))* —1, (17)

where A; = (x; —y;) for i =1, 2.

We take the nominal control as unem = {1 0,4} T, with a simulation hori-
zon of 1000 iterations. To highlight the benefit of the proposed method, we
also implement a classical CBF solution, where the controller uses a shrunken
safe set to account for the extent of the system. In implementation, the CBF
controller enforced the forward invariance of B(y) =1- ;z/Tfjsafcy7 where Piago =
diag(0.872,0.672), which is a subset of the true safe set C. We compare the tra-
jectories generated from the sampling-based approach, SOS approach and the
classical approach in Fig |3l For this particular choice of nominal control input,
the SOS controller makes slower progress along the desired trajectory; this is
because, once the robot gets closer to the safe set boundary, the safe input ve-
locities become small. For the sampling based controller, we take v = 0.06 and
considered 7 = 0.001, 7 = 0.0005, 7 = 0.0002, and 7 = 0.0001. The sampled
points along the boundary were then generated by parameterizing the boundary
and constructively finding the angle that gives a new sample point 7 away from
the previous one. The average time required to compute the control law for the
controllers is shown in Table Il

In Fig. 4] we plot the minimum value of the Ec-CBF evaluated over all
sampled points for cases in Table Observe that all the values are strictly
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Sample-based 7 = 0.001 Sample-based 7 = 0.0001

Classical CBF

—— Safe set
Smaller safe set for the traditional CBF
-----Robot’s trajectory

Figure 3: Trajectories for the sample-based controller with 7 = 0.001 and = = 0.0001, as
well as the SOS controller and the traditional CBF controller. The boundary of the safe set
in the workspace is shown in solid blue. The traditional CBF controller must use a smaller
safe set in the statespace to accommodate the system’s extent; the boundary of this smaller
set is shown in dotted red. The plots demonstrate that conservatism of the sampling-based
approach decreases as 7 decreases and the number of samples increases. Moreover, due to
the non-circular shape of the extent set, the traditional CBF controller is more conservate

compared to both the sample-based controller with 7 = 0.0001 and the SOS controller.
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Table 1: Average computation time for the controllers in the case study

T No. of Average Run Time
Samples  (in milliseconds)

0.001 1044 18

0.0005 2088 35

0.0002 5252 83

0.0001 9436 110
SOS controller - 2200
Classical CBF - 3.9

positive, thus implying that none of the sampled points have violated the safe
set. Also, observe that for 7 = 0.0005 or less, the value of h(y) is lower compared
to the classical CBF solution, which implies that the robot will be closer to the
boundary of the safe set.

The robot’s safe trajectory is influenced by the choice of 7, where a smaller
T requires more samples, as show in Table In Fig. we show how the
trajectories for the robot differ with 7 = 0.001 and 7 = 0.0001. As expected
and per the discussion in Example|l| we observe that there is larger conservatism
when lower number of samples are considered. In this case, the robot does not
venture close to the boundary of the safe set. However, with large number of
samples, we observer that the robot gets close to the boundary. Fig. [3] also
shows that both the sample based controller with 7 = 0.0001 and the SOS
controller allows the robot to get closer to the safe set’s boundary compared to
the classical CBF solution.

From the above discussion, we observe that using the sampling-based con-
troller results in a computationally efficient controller which guarantees safety,
albeit it can sometimes require a conservative amount of samples. To showcase

both of these facts, we implemente the sampling-based technique on the Rob-

3Video of the experiment available at https://youtu.be/WHI9Fknxc8o
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0 [ e R e R
0 5 10 15 20 25 30 35
Time
—  7=0.001 7 = 0.0005
7=20.0002 —— 7 =0.0001

—— Classical CBF

Figure 4: Minimum value of the Ec-CBF h(y) evaluated for 7 = 0.001, 7 = 0.0005, 7 = 0.0002,

and 7 = 0.0001 at the sampled points (i.e. for all y € €, (x)) on the boundary of the extent

set. Observe that all values for each case are strictly

positive, thus implying that none of the

sampled points cross into the unsafe region. For comparison, the classical CBF solution is

included that uses a smaller safe set. The classical solution is more conservative than almost

all of the sample-based solutions.
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Figure 5: Overhead images from the implementation on the Robotarium test-bed. Each of
the sub-figures indicate the trajectory of the robot generated over the course of the imple-
mentation. Observe that although the nominal controller tries to push the robot outside the
safe set, the sampling-based controller ensures that the robot state and its extent stay

within the safe set.

otarium testbed. Snapshots of the experiment are shown in Fig[5] In particular,
we considered a setting where the 7-value in eq. was 10 times smaller than
what it should be according to Theorem As can be seen, the trajectory of
the robot is such that safety of the system volume is guaranteed over the period
of the entire experiment. It can also be seen in Fig[5] that robot is allowed to
get closer to the boundary of the safe set, compared to a classical CBF solution
that would have required the robot to stay inside the set bounded by the inner

circle.

6. Concluding Remarks

This paper presents a barrier function-based method for ensuring the safe
control of a control-affine dynamical system that incorporates its physical vol-
ume, i.e., its extent. The first proposed controller design relies on a sum-of-
squares optimization program. The sum-of-squares approach is conceptually ap-
pealing and does not require knowledge of, e.g., explicit bounds of the Lipschitz
constants, however, sum-of-squares programs can be computationally difficult.
Therefore, a sampling method is proposed as an alternative. This alternative
controller is shown to retain the guarantee on safety of the system but can be

more conservative than the sum-of-squares approach. Simulation and robotic
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implementation results are also provided. As part of future work, for systems

with high relative degree, an interesting direction is to extend our framework

using a methodology similar to that used to extend barrier functions to high

relative degree systems [18§].
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