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Abstract

Tournaments are orientations of the complete graph. The directed Ramsey
number R(k) is the minimum number of vertices a tournament must have to be
guaranteed to contain a transitive subtournament of size k, which we denote by
TT k. We include a computer-assisted proof of a conjecture by Sanchez-Flores
[9] that all TT 6-free tournaments on 24 and 25 vertices are subtournaments of
ST 27, the unique largest TT 6-free tournament. We also classify all TT 6-free
tournaments on 23 vertices. We use these results, combined with assistance
from a SAT solver, to obtain the following improved bounds on R(7): 34 
R(7)  47.
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1 Introduction and Basic Definitions

A tournament is an orientation of a complete graph, or equivalently a directed
graph D with no self-loops such that, for all pairs of distinct vertices u and v,
exactly one of the edges uv or vu is in D. Intuitively, a tournament of order
n represents the results of a round-robin tournament between n teams, where
the existence of edge uv means team u beat team v in their head-to-head
match. The exclusivity of uv and vu means that if team u beats team v, team
v doesn’t beat team u, and the inclusion of one of those edges reflects the
fact that in a round-robin tournament, each team plays each other team. The
non-existence of self-loops translates to the fact that no team plays itself.

A tournament is transitive if, for all vertices u, v, and w, the existence of
edges uv and vw implies the existence of edge uw. The outneighborhood, or set
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of outneighbors, of a vertex u is the set of vertices v such that u ! v, while the
inneighborhood of a vertex u is the set of vertices {v | v ! u}. The definition
of a tournament ensures that the inneighborhood and outneighborhood of any
vertex in a tournament are disjoint, and their union includes all other vertices
in the tournament.

A tournament is regular if all vertices have the same number of outneigh-
bors. Equivalently, this means all vertices have the same number of inneigh-
bors, and these numbers are equal (since each edge creates one outneighbor
and one inneighbor). In a round-robin tournament, this corresponds to the
case where every team has the same win-loss record, which further implies
that each team won exactly half of their games. Note that this can only hap-
pen if the total number of vertices is odd; for a team to win exactly half their
games, there must be an even number of other teams, thus the total number
of teams is odd.

A tournament is doubly regular if it is regular and any pair (a, b) of vertices
has the same number of common outneighbors. These conditions imply that
for any vertex u, its in- and out-neighborhoods are equal-sized regular tour-
naments. Without loss of generality, assume those neighborhoods are of size
2k+1, then the total number of vertices is 2(2k+1)+1 = 4k+3. Thus, doubly
regular tournaments can only exist when the number of vertices is congruent
to 3 mod 4.

A good reference for more definitions and basic properties of tournaments
is [7].

2 Background

The directed Ramsey number R(k) is the smallest integer n such that all
tournaments on n vertices contain a transitive subtournament of size k.

Directed Ramsey numbers were first introduced by Erdős and Moser [3].
In particular, they show that k  2 log2(R(k)) + 1 and also note that k �
log2(R(k)) + 1. In particular, this means R(k) grows roughly exponentially
with respect to k, with multiplier somewhere between

p
2 and 2. The precise

limit of that multiplier is not known, but there are known bounds on small
directed Ramsey numbers:

– R(2) = 2
– R(3) = 4
– R(4) = 8
– R(5) = 14
– R(6) = 28 [8]
– 32  R(7)  53 [5, 9]

It is also known that, for k  7, the TT k-free tournaments of ordersR(k)�1
and R(k)�2 are unique up to isomorphism. Following the notation of Sanchez-
Flores [8, 9], we refer to such tournaments as STn, where n is the number of
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vertices in the tournament. For example, ST 3 is the unique TT 3-free tourna-
ment on 3 vertices, which is the 3-cycle.

As a side note, ST 3,ST 7, and ST 27 are the tournaments generated by
quadratic residues on the appropriately-sized finite-fields (Sanchez-Flores refers
to such tournaments as Galois tournaments). Galois tournaments exist for
tournament sizes n where n ⌘ 3 mod 4 and n is a prime power; hence, ST 13 is
not a Galois tournament. While Galois tournaments seem like good candidates
for near-maximal Ramsey-good tournaments, it’s worth noting that the Galois
tournaments on 47, 43, and even 31 vertices all contain TT 7.

In this paper, we seek to improve the bounds on R(7). We approach this
problem, particularly the upper bound, in two steps: We first limit the set
of tournaments that could possibly exist by using knowledge of smaller Ram-
sey numbers. We then set up the remaining cases as a Boolean satisfiability
problem, which can be solved with state-of-the-art solvers.

2.1 Boolean Satisfiability (SAT) Solvers

The problem of finding a tournament on n vertices free of TT ks can be con-
verted into a Boolean satisfiability problem. Doing so allows us to use a state-
of-the-art SAT solver to show the existence of transitive tournaments. We used
CaDiCaL1 developed by Biere [1] during our experiments.

CaDiCaL, like many SAT solvers, requires that the problem be stated in
conjunctive normal form (CNF). Our encodings use Boolean variables for each
directed edge (where true means the edge points from the lower-index vertex to
the higher-index vertex, for instance). From here, there are a few di↵erent ways
to preclude the existence of a TT k. A naive approach would be to consider all
ordered combinations of k vertices, negate all the edges that would create the
corresponding TT k, and require that one of those negated edges exist in the
tournament; this prevents that particular TT k. This encoding is very large
and can thus only be used for small graphs or graphs for which most edges are
set.

Example 1 Consider a tournament with three vertices: u, v, and w. For each
pair of vertices (u, v), we introduce a single Boolean variable that denotes the
direction of the edge. For example, if the Boolean variable uv is true, then
there is an edge from u to v, while if it is false, then there is an edge from v

to u. Preventing a transitive tournament of size 3 among u, v, and w can be
achieved by the following six clauses (all six transitive tournaments of three
vertices) with uv denoting the negation of uv:

(uv _ uw _ vw) ^ (uv _ uw _ vw) ^ (uv _ uw _ vw) ^
(uv _ uw _ vw) ^ (vw _ uw _ vw) ^ (vw _ uw _ vw)

1Commit 92d72896c49b30ad2d50c8e1061ca0681cd23e60 of
https://github.com/arminbiere/cadical

https://github.com/arminbiere/cadical
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We experimented with two alternative encodings. The first one is compact
and uses auxiliary variables corresponding to the existence of a 3-cycle. For
every triple of vertices u, v, and w, we introduce a variable c{u,v,w} that is
true if and only if the edges between u, v, and w form a directed cycle. From
there, we need only require that for any unordered set of k vertices, one of the�k
3

�
possible 3-cycles exists. This leads to substantially smaller encoding. For

large graphs with few to no edges given, this encoding is the most e�cient one
to solve.

Example 2 Consider a graph with four vertices: u, v, w, and z. Instead of
preventing a transitive tournament, we can enforce a directed cycle of size 3.
We introduce a new Boolean variable uvw that, if true, enforces a directed
cycle between the u, v, and w (in some order). The clauses that encode this
constraint are:

(uvw _ uv _ uw) ^ (uvw _ uv _ vw) ^ (uvw _ uw _ vw)2

We can do something similar for the triples uvz, uwz, and vwz. In order
to prevent a transitive tournament of size 4, we need to add the following
additional clause: (uvw _ uvz _ uwz _ vwz).

The final encoding that we experimented with is similar to the first one,
but reduces the encoding by self-subsuming resolution [2]. Self-subsuming res-
olution works as follows: Given two clauses C _x and D_x such that C ✓ D,
we can reduce D _ x to D. This is a variant of the classical resolution rule,
which would derive C _D. Since C ✓ D, C _D is logically equivalent to D.
Self-subsuming resolution is surprisingly e↵ective on directed Ramsey formu-
las and is able to reduce the first encoding by roughly 70% on most instances
that we used in our experiments.

Example 3 Continuing Example 1: The six clauses that prevent a transitive
tournament of size 3 can be reduced to three clauses using self-subsuming
resolution. The first two clauses, (uv _ uw _ vw) and (uv _ uw _ vw), can be
reduced to (uv _ uw), the second two clauses to (uv _ vw), and the last two
clauses to (uv_vw). These clauses can alternatively be thought of as requiring
that at least one edge leaves u, v, and w respectively. This is a reduction of 50%
in the number of clauses and a reduction of 67% in the number of literals. The
reduction in the number of clauses increases for larger transitive tournaments.

Even after self-subsuming resolution and removing of subsumed clauses,
this encoding is still larger compared to the cycle-based encoding. However,
the final encoding was superior in most experiments. The main reason for the
improved performance is likely that the final encoding is arc-consistent [4]:
any implication that can be made on a high-level representation, can be made

2The first clause says that either there’s not a cycle, or that some vertex leaves u (meaning u

isn’t the last vertex in a transitive tournament). The second and third clauses are analogous
for v and w. If u, v, and w make up a transitive tournament, one of them is the last vertex;
if not, they form a cycle.
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by unit propagation (the main reasoning in a SAT solver). Arc-consistency is
very important in SAT solvers. In Example 3, if we know that literal uv is
false, then unit propagation in the final encoding will deduce that variable uw
is true and vw is false. Note that there is no unit propagation on both other
encodings.

3 Cataloging TT6-Free Tournaments on 24 and 25 Vertices

3.1 Overview

Sanchez-Flores conjectured [9] that the only TT 6-free tournaments on 24 and
25 vertices are those that appear as subtournaments of ST 27. He notes in his
paper that this conjecture is false for 23 vertices; a counterexample can be
formed by taking the circulant tournament of order 23 induced by the set of
quadratic residues mod 23. These quadratic residues are the set

QR23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}

To create the circulant tournament mentioned, label the vertex set with
{1, . . . , 23}, and have uv be an edge if v � u 2 QR23 mod 23. Since 23 is
congruent to 3 mod 4, quadratic reciprocity tells us that �1 is not a quadratic
residue. On the other hand, 23 is prime, so Euler’s criterion tells us that there
are exactly n�1

2 non-zero quadratic residues. This means for all x 2 {1, . . . , 23},
exactly one of x and �x is a quadratic residue, which is exactly the property
we need for this procedure to give us a tournament. (We’ll catalog 23-vertex
TT 6-free tournaments more in a later section.)

In addition to being interesting on its own, proving Sanchez-Flores’s con-
jecture would make it easier to limit the search space of TT 7-free tournaments
of sizes near 50, potentially allowing us to further strengthen the upper bound
on directed R(7) using the techniques from the last section. We will proceed
to do exactly that.

Since ST 27 is edge-transitive (meaning for any edges e1 and e2, there’s
an automorphism that maps e1 to e2), its 25-vertex subtournaments all fall
into a single isomorphism class; such tournaments can be obtained by deleting
any two vertices. The 24-vertex subtournaments are more interesting. One can
easily generate two isomorphism classes of such subtournaments by deleting
any two vertices u and v, and then a third vertex that either formed a cycle
or a TT 3 with u and v. But we found (by deleting two fixed vertices, then
looping over all remaining vertices, deleting them each in turn, and cataloging
the results), that there are actually 5 isomorphism classes of 24-vertex sub-
tournaments of ST 27. One of these classes is the single tournament created by
deleting the unique third vertex w that splits the tournament into 8 disjoint
3-cycles. (Sanchez-Flores proves existence and uniqueness of such a vertex,
which is part of his proof that ST 27 is unique up to isomorphism [8].) The
other isomorphism classes correspond to all four combinations of whether the
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Fig. 1 This is a visual of the partition of T into A, B, C, and D

deleted vertex x formed a cycle with u and v and whether the deleted vertex
is an outneighbor of w.

3.2 Limiting the Search Space

We now generate all TT 6-free 24-vertex tournaments. From there, 25-vertex
tournaments are easy, since any TT 6-free 25-vertex tournament extends some
TT 6-free 24-vertex tournament.

Let T be a TT 6-free 24-vertex tournament. Without loss of generality, we
choose two arbitrary vertices u and v from T such that u ! v, and partition
the remaining vertices into the following sets, which we’ll call blocks:

– Let A(u, v) be the set of vertices w with u ! w and v ! w.
– Let B(u, v) be the set of w with u ! w ! v

– Let C(u, v) be the set of w with w ! u and w ! v

– Let D(u, v) be the set of w with v ! w ! u.

We can now reason about the possible sizes and structures of the blocks: By
adding vertices u and v, we can extend a transitive subtournament in block A,
B, or C to a transitive subtournament of size two larger in T . This means A,
B, and C must be TT 4-free, which forces |A|, |B|, |C|  7 because R(4) = 8.

We’ll now use a cycle counting argument to limit the values of |D| that we
need to check: We’ll find the largest possible number of 3-cycles, determine
the average number of cycles on each edge, and only check D block sizes up
to that value.

For an arbitrary tournament T , the number of transitive tournaments of
size 3 is just

P
t2T

�d(t)
2

�
, where t loops over all vertices of T , and d(t) is the

number of outneighbors of vertex t. This holds because each TT 3 consists of
exactly one vertex of degree 2, while 3-cycles (the only other size-3 tournament)
contain no vertices of degree 2. So by counting the number of ways to choose 3
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vertices from T with the first one dominating the other two, we exactly count
the number of TT 3’s.

Since
�x
2

�
= x(x � 1)/2 = 1

2 (x
2 � x) and the sum of the d(t)s is constant

(namely
P

t2T d(t) =
�n
2

�
for a tournament on n vertices, since each edge

contains exactly one vertex that points to another), the number of TT 3s is
minimized when T is as regular as possible, and if T is regular, this minimum
is n(n � 1)(n � 3)/8. Since

�n
3

�
� number of TT 3’s = number of 3-cycles, we

compute that the maximum number of 3-cycles in T is:

✓
n

3

◆
� n(n� 1)(n� 3)

8
=

n(n� 1)(n� 2)

6
� n(n� 1)(n� 3)

8

=
4n(n� 1)(n� 2)� 3n(n� 1)(n� 3)

24

=
n(n� 1)(4(n� 2)� 3(n� 3))

24

=
n(n+ 1)(n� 1)

24

In this particular case, where n = 24 (and in particular, n is even), T
cannot be regular, so we start by making the outdegrees as equal as possible.
The average outdegree is 11.5, so we take half the vertices to have outdegree
11, and the other half to have outdegree 12. We first compute the number of
TT 3’s:

number of TT 3’s = 12

✓
12

2

◆
+ 12

✓
11

2

◆

=
(12)(12)(11) + (12)(11)(10)

2
= 1452

The total number of 3-vertex subtournaments is just

✓
24

3

◆
=

(24)(23)(22)

6
= 2024

So the maximal number of 3-cycles is 2024� 1452 = 572. Each cycle contains
3 edges, so the average number of cycles on a given edge is

(572)(3)/(number of edges) = (572)(3)/

✓
24

2

◆

=
(572)(3)(2)

(24)(23)

=
572

92
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which is between 6 and 7. Since this average is over edges, and selecting
an edge is equivalent to selecting the pair of vertices u ! v, we can select
this edge such that the number of cycles is at most the average. Since the
number of cycles is exactly the number of vertices in the D block, we need
only consider decompositions where |D|  6.

We can also improve our bounds on |A|, |B|, and |C| by considering the
in and out neighborhoods of vertices u and v, noting that we can extend a
transitive subtournament in one of those neighborhoods by one vertex to get a
transitive subtournament of T . In particular, this means these neighborhoods
have size at most 13. It is easy to check that if a given neighborhood is of size
at least 12, it cannot contain ST 7 as a subtournament (since ST 12 and ST 13

do not contain ST 7).

We now rule out the case where A, B, or C has size 7. Assume for the
sake of contradiction that |A| = 7. A [ B [ {v} forms the outneighborhood
of u, and contains an ST 7, thus has size at most 11. This means |B|  3.
Similarly, A [ D is the outneighborhood of v, so |D|  4. Since |C|  7, we
have that |A| + |B| + |C| + |D|  7 + 3 + 7 + 4 = 21, which is impossible
because the full tournament (including u and v) has 24 vertices, which implies
|A| + |B| + |C| + |D| = 22. A similar argument (looking at inneighborhoods
of u and v) rules out |C| = 7. Finally, if |B| = 7, we use the outneighborhood
of u and the inneighborhood of v to show that |A|, |C|  3 and deduce that
|A|+ |B|+ |C|+ |D|  3 + 7 + 3 + 6 = 19, which is still too small.

We now have 4 integers, each at most 6, with sum 22. The only ways for
this to happen is if one of the numbers is 4 and the other three are 6, or if
two of the numbers are 5 and the other two are 6. Moreover, A, B, and C are
TT 4-free, and D is TT 5-free.

One final trick to reduce the number of cases is to consider what happens
when we reverse all the edges of T . We can relabel u as v and v as u, and then
consider how the labels of A, B, C, and D change. Vertices in D still form 3-
cycles with u and v, and vertices in B are still the middle vertex of TT 3s, but
vertices in A are now in the common inneighborhood of u and v, while vertices
in C are in their common outneighborhood. Thus, by relabeling C as A and
A as C, we get a new decomposition of T with all the edge directions flipped.
Since flipping all the edges preserves whether a given set of vertices forms a
transitive tournament (it simply reverses the order of such a tournament), we
can without loss of generality assume |A| � |C| assuming we also catalog the
results of flipping edges of any valid tournaments obtained.

Note that flipping all the edges of ST 27 produces a 27-vertex tournament
with no TT 6s, so that edge-flipped tournament must also be ST 27. This means
if we only see subtournaments of ST 27, we don’t even care about edge-flipping
them, since edge-flipped subtournaments of ST 27 are subtournaments of the
edge-flipped ST 27, which are still just subtournaments of ST 27.

Based on the above discussion, the relevant cases to test are:
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A 6 6 6 5 6 6 6
B 6 5 6 6 4 5 6
C 6 6 5 5 6 5 4
D 4 5 5 6 6 6 6

3.3 Searching for Valid Tournaments

We can now check these cases with brute-force computer search. We used
Matlab for ease of debugging and visualization, and we implemented a cus-
tom constraint-propagation routine to identify impossible edge-combinations
faster. Isomorphism checking was done by representing our tournaments as
digraph objects and using Matlab’s isisomorphic function. Our constraint-
propagation routine looks for recently-changed size-6 subtournaments with
only a single unknown edge, and checks whether either edge direction would
form a TT 6. If only one edge direction avoids the TT 6, that edge direction
is used, and the constraint propagation repeats. If both edge directions would
cause a TT 6, the current edge assignment is impossible, so we can stop early.
This code is available on our GitHub repository3.

It’s worth noting that using CaDiCaL for this problem would require re-
running the search every time a solution is found, adding blocking clauses
each time to prevent finding known solutions solution (or isomorphic copies
of them), until the SAT solver ultimately determines that no further solutions
exist. That said, our approach isn’t particularly fast either; it’s possible there
are more e�cient ways to solve this problem.

The case when |D| = 4 is easy. |A| = |B| = |C| = 6, so A [ B and B [ C

must be ST 12. Given that, we can (in a few hours on a laptop) determine via
brute-force search that there is, up to isomorphism, only one TT 6-free way to
form T\D, and that by adding D we can form any of the 5 subtournaments
of ST 27 and nothing else.

The other cases involve a longer search, with more free variables and fewer
constraints. To speed up the process, for each set of search parameters we first
find all ways to connect A and B and all ways to connect B and C. We then
combine all compatible AB and BC blocks to get all possible ABC blocks.
Finally, we add in D at the end, and find all ways to fill in all edges between
D and each possible ABC block. We include u and v at all points in this
process to further limit the search space. Unfortunately, u and v don’t limit D
that much, which is why we add D at the end and hope there aren’t too many
cases left to consider. We only check for isomorphisms at the end of the search,
since an isomorphism between subtournaments may involve vertices moving
between the A,B, or C blocks, and the information about which vertex is in
which block needs to be preserved until the end of the search.

Unsurprisingly, cases where |D| is large end up being the slowest, since
there are more edges to fill in during the last step, and fewer constraints to
do it with. Cases where |D| = 5 finish in about 12 hours on a laptop. We

3https://github.com/neimandavid/Directed-Ramsey
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estimated that the case [5, 6, 5, 6] would take about 10 days to do on the
laptop; it finished in about 3.5 days on a cluster of computers administered
by the Carnegie Mellon math department.

The remaining three cases are much slower. To get a further speedup, we
parallelized the search, allowing multiple cores of the computer to each consider
a subset of the ABC blocks. Using a worker pool size of 16, we were able to
finish the [6, 5, 5, 6] case in about 2 days, and the [6, 6, 4, 6] case in about 4
days. The longest case was the [6, 4, 6, 6] case, which took about a week to
complete. Most of this time was spent computing the ABC block, since there
are about 250 ways to glue an ST 6 to a 4-vertex tournament, and pairs of these
combinations had to be checked. It turns out that this reduces down to only
about 225 valid ABC blocks, which again only lead to the five subtournaments
of ST 27. So all 24-vertex TT 6-free tournaments are subtournaments of ST 27.

It is easy to verify via computer program that all of those 24-vertex TT 6-
free tournaments only extend in a TT 6-free way to other subtournaments of
ST 27.4 Since ST 27 is edge-transitive, it has a unique 25-vertex subtournament,
obtained by deleting any two vertices. This subtournament, which we’ll call
ST 25, is thus the only TT 6-free 25-vertex tournament.

4 Cataloguing TT6-Free 23-Vertex Tournaments

As noted by Sanchez-Flores [9], there exist 23-vertex TT 6-free tournaments
that are not contained in ST 27. Using a combination of the above results, we
determine that there are (up to isomorphism) exactly three such tournaments,
all of which are doubly-regular.

We can use a similar argument to bound the block sizes here as we did
in the 24-vertex case. A similar cycle-counting argument, which we’ll use to
bound the size of the D block, gives:

minimum number of TT 3’s = 23

✓
11

2

◆

= (23)(11)(5)

= (115)(11) = 1256

and thus maximum number of cycles is
�23
3

�
�1256 = (23)(11)(7)�(23)(11)(5) =

(23)(22) = 506. In this case, the average number of cycles on a single edge is
at most

(506)(3)/number of edges = (506)(3)/

✓
23

2

◆

= (23)(22)(6)/23/11 = 6

4For example, one way to check this is by calling our bruteForceEdges helper function on
the appropriate partial adjacency matrices.
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and so we only need to consider cases where |D|  6. This leaves us the
following cases to check:

A 5 5 6 6 6 6 6 6 7
B 5 6 4 5 5 6 6 6 3
C 5 5 6 5 6 4 5 6 7
D 6 5 5 5 4 5 4 3 4

Since the maximum average number of cycles is exactly 6, in the [5, 5, 5, 6]
case we need only consider doubly-regular tournaments, since in a non-doubly-
regular tournament we can choose u ! v to make |D| strictly less than average.
McKay maintains a database of interesting combinatorial objects, including
a complete list of doubly-regular 23-vertex tournaments [6], so checking this
case takes seconds. 3 of the 37 candidate tournaments are TT 6-free. We claim
all other TT 6-free tournaments on 23 vertices are subtournaments of ST 27.

Most of the other cases were checked in the same way as the 24-vertex
cases, using Matlab code to fill in combinations of edges, and propagating
constraints to eliminate cases early. The notable exception was the [7, 3, 7, 4]
case. This case takes a significant amount of time to check using the Mat-
lab code. However, in a few minutes, CaDiCaL is able to determine that no
tournament with A, B, and C blocks of those sizes (there’s no need to even
consider the D block) along with the vertices u and v, leads to an unsatisfiable
result. Disappointingly, reducing any of these sizes by 1 results in a satisfiable
configuration, which, combined with the slowness of the Matlab code, will
make it much more time-consuming to catalog all of the 22-vertex TT 6-free
tournaments.

5 Improved Bounds on R(7)

Even with our SAT representation, the space of all non-identical tournaments
is too large to search with no further restrictions. However, by fixing some
edges, we can make certain problems tractable and derive better bounds for
R(7).

5.1 Lower Bound: R(7) > 33

Using CaDiCaL, we’ve been able to find several TT 7-free tournaments on 33
vertices (the largest previously known was on 31 vertices), increasing the lower
bound on R(7). One structure that works for this is creating a vertex with
inneighborhood ST 25 and outneighborhood 7 generic vertices (we refer to this
structure as ST 25 extended through a pivot to 7 generic vertices). However,
when we increased the outneighborhood to 8 generic vertices, CaDiCaL ran
for days without reaching an answer either way. A di↵erent 33-vertex TT 7-
free tournament, with possibly interesting structure, is shown in Figure 2. Our
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0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1
0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1
0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1
1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0
0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0
1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0
1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1
0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1
0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0
0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0
1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1
1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1
0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1
1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1
1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1
1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0
0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1
1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0
0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0
1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1
1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0
1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0
0 0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0

Fig. 2 This is a 33-vertex tournament free of TT7, proving that R(7) > 33

GitHub repository contains 84 33-vertex TT 7-free tournaments, representing
49 isomorphism classes. McKay has since used neighboring search techniques to
expand this to 5303 isomorphism classes [6]. In a recent paper, an additional
TT7-free tournament was found [?]. McKay used that tournament to find
another new one. So currently 5305 non-isomorphic TT7-free tournaments on
33 vertices are known. None of them extends to 34 vertices.

5.2 Upper Bound: R(7)  47

First, observe the following:

– R(6) = 28, so no indegree in a TT 7-free tournament can be larger than 27.
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– Reversing the directions of all edges in any tournament preserves TT 7s but
swaps in- and out-neighborhoods. So if a particular size of in-neighborhood
is impossible, that size of out-neighborhood is also impossible.

From here, our main tool to show the non-existence of a 47-vertex TT 7-
free tournament is using CaDiCaL to rule out di↵erent in- and outdegree
combinations. For all the following experiments, we used the encoding with
self-subsuming resolution described in section 2.1. In the following paragraphs,
we’ll show the following for TT 7-free tournaments:

– Indegree of at least 26 implies outdegree of at most 14 (thus no 47-vertex
TT 7-free tournament can have any indegrees of 26 or 27).

– Indegree of 25 implies outdegree of at most 19 (thus no 47-vertex TT 7-free
tournament can have any indegrees of 25)

– Indegree of 23 implies outdegree of at most 22 (thus no 47-vertex TT 7-free
tournament can have any indegrees of 23)

– Each vertex of a 47-vertex TT 7-free tournament must then have indegree
equal to 22 or 24. But this is impossible by a parity argument.

5.2.1 No indegree � 26

Using CaDiCaL, we found that connecting ST 26 through a pivot vertex to
TT 5 in a TT 7-free way is unsatisfiable. Since R(5) = 14, any tournament
containing a vertex with indegree � 26 and outdegree � 14 must contain
TT 7.

5.2.2 No indegree of 25

Our goal here is to find a set of tournaments, such at least one must be
present in any su�ciently large tournament, but such that ST 25 cannot extend
through a pivot to any of them in a TT 7-free way.

To start, consider the tournament on n vertices consisting of a TTn�3

and a 3-cycle, where the 3-cycle is in the outneighborhood of all vertices in
the TTn�3. Such a tournament trivially contains a TTn�1, but no TTn, and
we denote this tournament Hn. Analogously, define Gn as the tournament
on n vertices consisting of a TTn�5 and a 5-cycle, where the 5-cycle is in
the outneighborhood of all vertices in the TTn�5. The adjacency matrices for
TT 5, H5 and G6 are shown in Figure 3.

Now consider any 10-vertex tournament T . By the pigeonhole principle,
we can find a vertex v which contains 5 vertices, say N = {v1, v2, v3, v4, v5},
in its outneighborhood. Since the 5-cycle is the unique regular tournament on
5 vertices, if the subtournament with N is the unique regular one, then T has
G6 as a subtournament. Otherwise, again using the pigeonhole principle, v1
has without loss of generality NN = {v2, v3, v4} among its outneighbors. If
NN is a TT 3, then T contains a TT 5, and if NN is a 3-cycle, then T contains
H5. In any case, any tournament T on 10 or more vertices must contain either
TT 5, H5, or G6 as a subtournament.
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0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 0

0 1 1 1 1
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

0 1 1 1 1 1
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 1 0 0 0 1
0 1 1 0 0 0

Fig. 3 The left tournament is TT5. The middle tournament is H5, the tournament con-
sisting of a TT2 and a 3-cycle, where the 3-cycle is in the outneighborhood of all vertices
in the TT2. The right tournament is G6, the tournament consisting of a vertex with empty
inneighborhood and the 5-cycle as outneighborhood. Any 10-vertex tournament contains at
least one of these three tournaments as a subtournament.

0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

0 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 1 0 0 0 1
0 0 1 1 0 0 0

Fig. 4 From left to right: TT6, H6, and G7. Any 20-vertex tournament must contain one
of these three as a subtournament, and ST25 fails to extend through a pivot to any of these
in a TT7-free way

Any tournament on at least 20 vertices has a vertex with outdegree at least
10, by the pigeonhole principle. Together with the analysis of the previous
paragraph, this means that any tournament on at least 20 vertices contains
one of TT 6, H6, or G7 (see Figure 4). Extending through a pivot to TT 6 in
a TT 7-free way fails trivially, since the pivot and TT 6 together form a TT 7.
CaDiCaL finds that ST 25 also does not extend in a TT 7-free way through
a pivot to any of the other two tournaments, which means ST 25 cannot be
extended through a pivot in a TT 7-free way to any tournament of size at least
20.

5.2.3 No indegree of 23

As described in Section 4, there are two types of 23-vertex TT 6-free tour-
naments. There are 22 which are subtournaments of ST 25; there are also 3
doubly-regular tournaments. Again, our goal here is to find a large subtour-
nament of these 23-vertex tournaments, then use CaDiCaL to show that no
23-vertex tournament extends in a TT 7-free way through a pivot to that sub-
tournament.

We started with the subtournaments of ST 27. All 24-vertex TT 6-free tour-
naments can be formed by starting with ST 25 and deleting a vertex from one
of five classes of vertices. Deleting one vertex from each set yields a 20-vertex
tournament that, by construction, is a subtournament of any TT 6-free tour-
nament on 24 vertices. Considering 23-vertex subtournaments of ST 27, we
greedily deleted more vertices from this 20-vertex tournament until we found
a 15-vertex tournament contained in all those 23-vertex subtournaments. We
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0 0 1 1 1 1 1 1
1 0 0 0 1 0 1 1
0 1 0 0 1 1 0 1
0 1 1 0 0 1 1 0
0 0 0 1 0 1 0 1
0 1 0 0 0 0 1 1
0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0

Fig. 5 This is Y8, an 8-vertex tournament with few 3-cycles found in all TT6-free 23-vertex
tournaments

then greedily built up a 9-vertex subtournament of that 15-vertex tournament
that is also contained in all three 23-vertex TT 6-free doubly-regular tourna-
ments. Finally, we extracted the subtournaments of that 9-vertex tournament
of various sizes with the largest number of TT 3s, or equivalently the smallest
number of 3-cycles; we denote by Yn the n-vertex subtournament obtained in
this way.

Given the increased di�culty of working with larger tournaments and the
increased di�culty of finding TT 7-free tournaments on 32 vertices as com-
pared to 31 vertices 5, we decided to look at the 25 partial tournaments on 32
vertices consisting of a 23-vertex TT 6-free tournament (using the list obtained
in section 4) extended through a pivot to Y8.

We solved all 25 instances in parallel using a AWS m5d.16xlarge machine,
which has 64 virtual cores and 256GB of memory. Each instance was solved
using CaDiCaL running on a single virtual core. Figure 6 shows the runtime of
these 25 instances in hours together with the two non-trivial instances extend-
ing ST25. Note that the average runtime was about 8 days, while one instance
(23S-p-Y8) took about three weeks. The log files of the runs are available on
GitHub6. CaDiCaL finds that none of the 25 TT 6-free 23-vertex tournaments
extend through a pivot in a TT 7-free way to Y8 (see Figure 5). This shows
the impossibility of a TT 7-free tournament on 47 vertices possessing a vertex
of indegree 23.

5.2.4 Not all vertices can have indegree 22 or 24

In the previous parts of this section, we eliminated the possibility that any
vertex in a hypothetical 47-vertex TT 7-free tournament has indegree 23 or
� 25, and the edge-flipping argument eliminates indegrees of  21. So all
the vertices in such a tournament must have indegree either 22 or 24. In
particular, each indegree must be even, so the sum of the indegrees is also

5The previous lower bound for R(7) was 31 vertices; while we now know larger TT7-free
tournaments exist, they’re harder to find. So we hoped 32 vertices would be enough to get
unsatisfiability, without having to deal with the increased runtime of using all 33.

6https://github.com/neimandavid/Directed-Ramsey/tree/master/log23

https://github.com/neimandavid/Directed-Ramsey/tree/master/log23
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Fig. 6 The runtime of CaDiCaL (in hours) of the 27 non-trivial instances from sections
5.2.2 and 5.2.3 sorted by the runtime (hence the monotonic increasing curve)

even. But the sum of the indegrees must equal the number of edges. Any
47-vertex tournament has

�47
2

�
= 1081 edges, which is odd, a contradiction.

6 Future Work

It may be possible to catalog all TT 6-free tournaments with more than about
20 vertices, either using the techniques from cataloging the 23-vertex tourna-
ments, or by using CaDiCaL or another SAT solver, and adding clauses to
block anything isomorphic to each solution found. Note that while block sizes
of [7, 3, 7, 4] are impossible, reducing any of those sizes by 1 leads to a satisfi-
able problem, so we expect these cases to be significantly more di�cult than
the 23-vertex case. If we could create such a catalog, it could likely be used to
further reduce the upper bound on R(7).

On the other hand, we believe the lower bound can be increased as well.
From previous patterns of a unique largest Ramsey-good tournament (that
happens to be regular) and the existence of multiple 33-vertex TT 7-free tour-
naments, we expect that there exists at least one 35-vertex TT 7-free tourna-
ment. We’ve tried to get CaDiCaL to find such a tournament by starting with
17-vertex neighborhoods, but there are many TT 6-free tournaments on 17
vertices7, and it’s di�cult to guess which ones are likely to be neighborhoods
in a hypothetical regular 35-vertex tournament free of TT 7. Alternatively, we
might increase the lower bound by incidentally finding such a 35-vertex (or
larger) TT 7-free tournament while attempting to further reduce the upper
bound.

7based on recent unpublished work by McKay, probably between about 106 and 1010 - it’s
big enough that even generating a complete list of them would be hard
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