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Abstract— Implicit neural networks (INNs) are a class of
learning models that use implicit algebraic equations as layers
and have been shown to exhibit several notable benefits over
traditional feedforward neural networks (FFNNs). In this paper,
we use interval reachability analysis to study robustness of INNs
and compare them with FFNNs. We first introduce the notion
of tight inclusion function and use it to provide the tightest
rectangular over-approximation of the neural network’s input-
output map. We also show that tight inclusion functions lead to
sharper robustness guarantees than the well-studied robustness
measures of Lipschitz constants. Like exact Lipschitz constants,
tight inclusions functions are computationally challenging to
obtain, and thus we develop a framework based upon mixed
monotonicity and contraction theory to estimate the tight
inclusion functions for INNs. We show that our approach
performs at least as well as, and generally better than, state-of-
the-art interval-bound propagation methods for INNs. Finally,
we design a novel optimization problem for training robust
INNs and we provide empirical evidence that suitably-trained
INNs can be more robust than comparably-trained FFNNs.

I. INTRODUCTION

Implicit neural networks (INNs) are a class of implicit
learning models where the hidden layers are replaced with
implicit equations [1], [2], [3]. Compared to their explicit
counterparts, INNs are known to have advantages including
(i) being more suitable for some problems such as con-
strained optimization problems [1] (ii) being more memory
efficient while maintaining comparable accuracy [2] (iii)
allowing for new architecture possibilities [3] (vi) showing
improved training due to fewer vanishing and exploding gra-
dients [4]. Despite their benefits, INNs can suffer from well-
posedness issues and convergence instabilities. Additionally,
their input-output behavior may suffer from robustness issues
and adversarial perturbations; indeed, such robustness vul-
nerabilities are a well-studied and major issue in traditional
deep neural networks as well [5].

Problem statement and motivations: Obtaining provable
robustness guarantees for learning algorithms has been a
major goal in the machine learning literature [6], [7]. For
feedforward neural networks (FFNNSs), four well-established
methods for producing robustness guarantees include (i)
Lipschitz bound approaches, (ii) interval-bound propagation
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(IBP) methods, (iii) convex-relaxation approaches, and (iv)
approaches based on Satisfiability Modulo Theories (SMT).
Lipschitz constants of neural networks are coarse but rigor-
ous measures for their input-output robustness. While it has
been shown that computing the exact Lipschitz constant of a
neural network is NP-hard [8], several efficient methods for
providing sharp estimates of Lipschitz bounds are proposed
in the literature [9]. IBP methods use interval analysis to
provide box over-approximations of the reachable set of
neural networks. These methods have been successfully
used to perform formal verification [10] and to train robust
FFNNs [11], [12]. Convex-relaxation approaches are based
on relaxations of nonlinear activation functions using either
linear [13] or quadratic constraints [14]. Finally, the SMT-
based methods generalize the existing formal verification
techniques for robustness analysis of neural networks [15].

For robustness guarantees of INNs, several works provide
estimates of their Lipschitz constants [16], [17], [18]. How-
ever, global Lipschitz bounds do not provide information
about the local sensitivity of the networks. The paper [13]
proposes an iterative IBP approach for reachability analysis
and training of INNs. However, convergence of this iteration
requires strong conditions which limit the expressivity of
the resulting implicit models. In [19], a method based on
semidefinite programming is proposed for robustness analy-
sis of INNs. Unfortunately, this approach is computationally
intensive and cannot be implemented in training.

Most works on INNs focus on comparing their repre-
sentation power [3] or their memory efficiency [2] with
traditional deep neural networks. While recent empirical
evidence indicate that appropriately-trained INNs can be
significantly more robust than deep feedforward models [16],
there are very few works in the literature that rigorously
compare robustness of INNs with FFNNs. In this paper, we
aim to address two main challenges regarding robustness of
neural networks: (i) designing algorithms to train provably
robust INNs, and (ii) appropriately comparing the robustness
of INNs with the robustness of their explicit counterparts.

Contributions: In this paper, we use interval reachabil-
ity analysis to study robustness of INNs. We first introduce
the notion of tight inclusion function associated to the
INN that gives the tightest rectangular over-approximation
for the input-output behavior of the INN. We show that
tight inclusion functions are sharper than any robustness
guarantees based on local Lipschitz bounds. Similar to
Lipschitz constants, computing the tight inclusion function is
computationally challenging. Instead, using mixed monotone
systems theory and contraction theory, we provide computa-



tionally efficient estimates of the tight inclusion functions
of INNs. We use two different interpretations of implicit
neural networks to compare our approach with the IBP
approach for FFNNs. We show that our mixed monotone
contracting approach is the natural extension of IBP methods
to INNs and performs at least as well as, and generally
better than, IBP methods naively applied to INNs. Lastly,
we provide an algorithm to efficiently implement our mixed
monotone contracting approach in the training optimization
problem to design robust INNs. In numerical experiments,
we compare the performance of INNs and FFNNs with
a comparable number of parameters and demonstrate that
suitably-trained INNs have improved certified and empirical
robustness compared to their feedforward counterparts, even
when trained with IBP. In the conference paper [20], we
focus on verifying robustness of INNs. In contrast, in this
paper, we provide an efficient means for training robust
INNs, compare theoretical robustness guarantees for INNs to
FFNNs, extend [20, Theorem 1] and provide the proof for
it, and present an empirical study of training for robustness.

II. MATHEMATICAL PRELIMINARY

For z,y,z € R", we write z < y if ; < y; for
all i+ € {1,...,n} and z € [x,y] if ¢ < z < y. For
n € RZ,, we define the diagonal matrix [n] € R™*”

by [ = m;, for every i € {1,...,n} and the diag-
onally weighted {..-norm by ||z||oc (-1 = max; |z:|/n;,
the diagonally weighted /..-matrix measure is defined by
foo -1 (A) = maxie(1, ny Ais + 22,4 7| Asj|. For any
matrix A € R"*", the spectral radius of A is denoted by
p(A) and the elementwise absolute value of A is denoted by
|A| € RL;™. For two matrices A, B, let A® B denote their
Kronecker product. Given a matrix B € R™*™  we denote
the non-negative part of B by [B]" := max(B,0) and the
nonpositive part of B by [B]~ := min(B,0). The Metzler
and non-Metzler parts of a square matrix A € R"*" are
denoted by [A]M?! and | A|M?, respectively, where

([ATM)i5 = {

and | A|M# .= A—[A]M? The subset 7" C R?" is defined
by 7" := {(x,7) € R* | # < 7}. Given a map f : R" —
R™, asetid C R", and p € [1, 0], the £,-Lipschitz constant
of f on U is the smallest Lipg(f) € R>g such that || f(z) —
FWllp < LipZ(f)Hac — yl|p, for all z,y € U. Given a map
f:R™ - R™ and « € [0, 1], the a-average map is defined
by fo(z) = (1 — @)z + af(x), for every x € R™.
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III. INCLUSION FUNCTIONS

Given a mapping f, an £,,-box over-approximation of the
image of f is attainable via an inclusion function.
Definition 3.1 (Inclusion function): Let f : R”™ — R? be
a mapping. Then F = [i : T — R27 is an inclusion
function for f, if, for every z <y < 7,
() F(y,y) > F(z,7) and F(y,y) < F(z,7);

(i) E(z,2) = F(z,2) = f().

Moreover, the inclusion function F for f is called tight, if
G

(iii) for every inclusion function G = [E} :TT — R of

f, we have

G(z,7) <F(z,7), F(z,7) >G(x,7), forallz <7
If F is an inclusion function for f, then it is easy to see that,

f([z,3]) € [E(2,2), F(z,2)],

Given a map f : R™ — RY, one can use [21, Theorem
1] to compute the tight inclusion function, component-wise.
Indeed, for every i € {1,...,n}, one can show that:

for all x < 7. (D

Fi(z,Z) = max f;(z) (2)

z€[z,7]

Fi(z,2) = min_f;(2),
z€[x,7]
The next Theorem studies the connection between the local
Lipschitz constants and the tight inclusion functions.
Theorem 3.2 (Inclusion function vs. Lipschitz constant):
Let f : R™ — R? be a continuous mapping and
F = % : 77 — R?? be the tight inclusion function
for f. Then, for every x < T, we have

IF(z. %) — F(2,%)||0o < Lip&™ (f)]l2 — F|oo-

Proof: Let i € {1,...,k} be such that ||F(z,7) —
F(2,7)|sc = |Fi(z,7)—F;(z,7)|. Note that since f
is continuous and the box [z,7] is compact, there
exist *,§* € [z,7] such that max,c,z fi(y) =
fi(n*),minyerp 7 fily) = fi(§*). This implies that
IF(@.7) — F@, Dl = Ifin*) — £ile)] < £ —
Fo)llee < LipE [l — n*llos < LiDZ™ (f) 2 — 7]loc-

|

Remark 3.3 (Tight inclusion functions): Theorem 3.2
shows that a tight inclusion function for y = f(z) will
provide a tighter over-approximation of the image of f
than is attainable from local Lipschitz constants of f.
In general, finding tight inclusion functions using (2) is
not computationally tractable. This motivates developing
efficient methods for estimating the tight inclusion function.

IV. IMPLICIT NEURAL NETWORKS

We consider the implicit neural network

z=0(Wz+Ux+b) = N(z,z),
y=Cz+c, 3)

where z € R"™ is the hidden variable, x € R” is the input,
y € RYis the output, W € R"*", U € R"*", and C € RI*"™
are the weight matrices and b € R™ and ¢ € RY are bias
vectors. Moreover, o is a diagonal activation function (e.g.,
ReLU) defined by o(z1,...,2,) = (01(21)s- ., 0n(20))7,
where for every ¢ € {1,...,n}, the activation function o; :
R — R satisfies 0 < w < 1foral oz # y €
R. Compared to traditional neural networks, INNs replace
the layers with a fixed-point equation. This change in the
structure is known to allow for new architecture possibilities
and provide alternative approaches to deep modeling.



Generalized architecture: Notably, FFNNs can be con-
sidered as special cases of INNs [3]. Consider the FFNN

2 =Wzt 4 b)) = FN; (2" Y,  ie{l,...,k},
y=C2"+c 4)
where zp = x € R" is the input. For every i € {1,...,k},

2t € R, W; € R%-1X" and b; € R™-1 are the weights,
the biases, and the hidden variables in the i-th layer of the
network, respectively. Finally, y € RY is the output, C' and
c are the output layer’s weight matrix and bias vector. The
FFNN (4) is equivalent to the following INN

z2=0(W™Nz + U™Ng 4b) = IFN(z, z),

where z = [zg,...,21]T, b= [bg,...,b1]T, and WN UN,

and C™ are defined as follows:

0 Wy 0 -0 0

0O 0 Wk --- O 0
wiN = |: : . : UN= | :

0O O 0 - WA 0

0O O 0 -0 Wo
cN=[c 00 - 0].

Using this perspective, implicit neural networks generalize
FFNNs by allowing arbitrary interconnections between lay-
ers leading to full weight matrices W, U, and C.

Alternative deep modeling: By replacing the notion of
layer with an algebraic equation, implicit neural networks
provide a novel perspective toward deep modeling. Consider
the class of FFNN where weights and biases are equal for
each layer (i.e., the network is weight-tied) and the input is
injected to each layer given by

A=Wt +Uz+0b), ie{l,... k},

y=Cz +c (6)
where 20 = x. While weight-tying may appear restric-
tive, it is usually considered as a form of regularization
that stabilizes training and significantly reduces the model
size [2]. If the depth of the network increases, i.e., k — oo
and the iteration (6) converges, then the weight-tied input-
injected neural network (6) is equivalent to the implicit neural
network (3). Using this perspective, INNs provide a depth-
independent alternative to deep FFNNs.

Suppose that, for every input x € R", the implicit neural

network (3) has a unique fixed point z*(z) € R™. Then, the
input-output map f : R"” — R? is given by

f(@) =y =Cz"(z) +c (7

In the next section, our goal is to provide estimates for the
tight inclusion function of the input-output map f.

V. REACHABILITY ANALYSIS OF IMPLICIT NEURAL
NETWORKS

In this section, we use mixed monotone system theory
to present a framework for estimating the tight inclusion
function for the input-output map of INNs. Given an implicit
neural network (3) and input bounds x < T € R", we first
introduce the embedding map N : R?" x R?" — R" by

NE(§72,£73) = U(’VW]MZIg_F U/‘VJMZIE
+ Utz + [U]"Z +b).

Using the embedding map NY, we define the embedded
implicit neural network associated to (3) by

=izl Y-l - [ijé

The embedded INN (8) can be considered as an INN with the
box input [z, Z] and the box output [y, 7]. In the next theorem,
we use the embedded system (8) to obtain an inclusion
function for the input-output map (7).

Theorem 5.1 (Inclusion function via embedded network):

88

Consider the implicit neural network (3) and its
associated embedded implicit neural network (8).
Suppose that there exists n € RZ; such that

o€ (0,a* ;= [1 —mingeqr ., (Wii)-]'], the following
statements hold:

Poo,m—1 (W) < 1. For every z < x < T, and every

: : : 2] [NE(F 2R aE)
(i) the iterations [zk 1 } = [NE G2t 7x)
with respect to the norm || -ﬂw I, -1 and converge to

the unique fixed-point [z*] of the embedded INN (8);

} are contracting

(i) the iterations zK*1 = N,(z*, ) are contracting with
respect to the norm || - ||oo}[n]71 and converges to the
unique fixed point z* € [z*,Z*] of the INN (3);

(iii) the map FN : 7" — R29 defined by

Fa,7) =[O 2" +[C] 2" +c
Flz,7) = [C]*Z* +[C] 2" +¢ )

is an inclusion function for f defined in (7).

Proof: Regarding part (i), we define 0 = I, ® o, the

Mzl Mzl—
map G : R*" — R*" by G(z,%) = HmMCﬁ%M‘E} and

the matrices D = Hg}j %g};} and w = [z,7]T. Then define

8 : R2" — R2" gg follows

5 70) = el

L x)] = 5(G(2,%) + Dw+ I, ®b).
T,z

The assumptions on each scalar activation function imply
that (i) & : R?® — R?" is non-expansive with respect to
-1l == Il lloo, 5[~ and (ii) for every p,q € R, there
exists 6; € [0,1] such that o;(p) — 0;(q) = 0;(p — ¢) or in
the matrix form 5(p)—35(q) = ©(p—q) where © € R*x2"



is a diagonal matrix with diagonal elements 6; € [0, 1] and
P, q € R%", As a result, for every y1,y2 € R?", we have

=[(1 = a)(y1 — y2) +aO(G(y1) — G(y2))||

< sup [|(1 = a)lon +a®@DG(y)|llly1 — vl
yeR2n

where the inequality holds by the mean value theorem. Then,
for every o € (0, [1 — min; inf egen (ODG(y))s] ],
| I2n -+ (=12, + ©DG(y))||
=14+ Cfhoo, I @[n) 1 ( — Iy, + @DG(y))
=1+ a( =1+ foo e[y (ODG()))
<1+ a( =1+ fioo om-1 (DG(y))T)
< 1— a(l — ,uoo,[n]fl(W)Jr) < ].,
where the first equality holds by [17, Lemma 7(i)], the
second equality holds by translation property of matrix mea-
sures, the third inequality holds by [17, Lemma 8(i)], and the

fourth inequality holds by the definition of matrix measure.
Moreover, since 6; € [0,1], we have 0,(DG);; > (DG);

i

for every 7 € {1,...,2n}. This means that
inf (©DG(y))i; = inf (DGi(y))” = (Wi) ™.
yER2™ yER2"

This implies that, for every o € (0, o],

16 (21, u) = G5 (22, u)|
< (1= a1l = prog, -1 (W) 7)) |1 — 2|

Since 1—a (1= fog, -1 (W)T) < 1, 65(-, w) is a contraction
mapping with respect to ||+ ||, 7, @[y -1 for every a € (0, ]
It is easy to see that 5¢ and &° have the identical fixed-
points, for every « € [0, 1]. Therefore the iterations in part (i)
converge to the unique fixed point of the embedded INN (8).
Regarding part (ii), the proof follows by applying the same
argument as in the proof of part (i) and using o (W z+Uxz+b)
instead of 5°(2,%,z,7). Now, we show that z* < 2* < Z*.

. .. .. 0 . . .
We choose the initial condition {%0} for the iterations in
z

part (i) and choose an initial condition z° € R™ satisfying
20 < 20 < 20 for the iterations in part (ii). We prove by
induction that, for every k € Z>o, we have 2k < 2k < 3R
Suppose that this claim is true for k € {1,...,m} and we
show that this claim is true for ¥ = m + 1. We first define
p = [WMeym | Melzm 4 [U)J Yz + [U]"T + b and
q=W2z™+Ux +b. Then we have
2= = (1 - af) (@™ - 2") +a(a(p) — a(q)
— ((1 _ Oé*)ln +a*@|'W"le) (gm _ Zm)
+ Ot*@LWJMZl(Em o zm)
+a*O[U (z — x) + a*O[U] (T — ),
where the non-negative diagonal matrix © = diag(6;) € R"
is defined as follows: for every i € {1,...,n}, 6; € [0,1] is

such that o;(p;) — 0:(q;) = 6;(p; — q;). Moreover, we know
that ©|W |M?! < 0,,4,, and, for every i € {1,...,n},

(1—a*)+a ;W > (1—a*)+a*W,; > 0.

This implies that (1 — a*)I, + «*O[W M2 > 0,,,,.
Additionally, we have O[U]* > 0,,«, and O[U]~ < Oy,
Therefore, using the induction assumption, we get z™+! —
zm+1 < 0,,. Similarly, one can show that z™+! — zm+1
0,,. As a consequence, z* = limy_, 2k < limg_y o0 27
2* < limp_o 2" = Z*. This proves part (ii). The proof of
part (iii) follows easily from parts (i) and (ii) and by checking
the properties of inclusion functions from Definition 3.1. B
Remark 5.2 (Mixed monotone contracting approach):
Theorem 5.1 can be interpreted as a dynamical system
approach to study robustness of INNs. Indeed, the a-average
iteration in part (ii) is the forward Euler discretization of
the dynamical system % = —z + N(z, ). The convergence
of the iterations is due to the contraction property of the
dynamical system and the estimate for the inclusion function
is due to the mixed monotonicity of the dynamical system
associated with the embedded INN [20].

I IA

VI. FEEDFORWARD VS. IMPLICIT NEURAL NETWORKS

In this section, we compare the robust training framework
developed in Sections (V) and (VII) with the IBP approach
developed in [11]. Consider a k-layer FFNN with input-
output map f(z) =: y defined by (4). For every i €
{1,...,k}, following [11], [12], we can obtain layer-wise
upper and lower bounds for the hidden variables as follows:

2= FNF (2,2 = o (W] 20 + W] 72 + by),
2= FNP (', 2) = o (Wil 2" + (W3] 72" + by).

By applying this bounding technique recursively, one can

obtain the upper bound ¥ and lower bound y for the output
of the FENN. The IBP inclusion function FFN = [g:} :

T" — R24 for the input-output map f is then defined by:

=FN
FVa,7)=y, F (2.7)=7, (10)

In the next two subsections, we use the two perspective gen-
eralized architecture and alternative deep modeling toward
INNSs, to establish connections between the IBP approach
in [11] and our mixed monotone contracting approach.

A. Generalized architecture

By considering finite-depth FFNNs as a special case of
implicit neural networks, one can show that our mixed
monotone contracting approach is a generalization of the IBP
approach in [11] to INNs.

Theorem 6.1 (Embedded feedforward neural networks):
Consider the FFNN (4) with the associated implicit neural
network (5). The following statements hold:

. . . _ FNE(z,2)
(i) foreveryie{1,...,k}, the function (z,%)— [ NE(z) }

is a tight inclusion function for the ith layer evaluation
map FN;(2) := o(W;z + b;);
(i) there exists n € RZ such that fi. ;-1 (W) < 1.
If F'*N is the inclusion function obtained from (5) using
mixed monotone contracting approach and F™N is the in-
clusion function (10) obtained using IBP approach, then
@iii) F'PN(z,7) = F"N(z, %), for every z <7 € R".



The proof of Theorem 6.1(ii) and (iii) is based on choosing
[n]~! = diag(671,...,67™) for § > O sufficiently small and
then applying Theorem 5.1.

B. Alternative deep modeling

By separating the notion of depth from the layer-wise
evaluation, our mixed monotone contracting approach can
be used to estimate the reachable sets of deep weight-tied
FFNNs. For the weight-tied FFNN (6), we define

WFNE (2,2,2,7) = o((W] 2+ (W] Z
+ Ul Tz + [U)"Z +0b).

By replacing FNiE with WFN? in (10), we the IBP inclusion
function FWFN . 77 — R29,

Theorem 6.2 (Weight-tied infinite-layer neural networks):
Suppose that p(|W|) < 1 and let € RZ, be the right Perron
eignvector of |W|. Then for the weight-tied FFNN (6),

N z* w* * — n
(1) lim;_ s LZ = [w*} for some w* < w* € R™;
(ii) lim; oo 2* = w* for some w* € [w*,w*];
Moreover, for the implicit neural network (3),
(iii) Noo,[n]*l(W) <1
If FVFN s the inclusion function by the IBP approach as
k — oo and FN is the inclusion function from (3), then
(iv) for every x < T € R", EN@,T) > EWFN@, T), and
=N, _J. T—WFN, _
Fi(z,z) <F " (z2,7)
The proof of Theorem 6.2(iii) is based on the inequality
Poo, -1 (W) < p(IW]) < 1 and the proof of Theo-
rem 6.2(iv) follows from [W]+ < [W M2,

VII. TRAINING ROBUST IMPLICIT NEURAL NETWORKS
A. Certified adversarial robustness for classification tasks

We say an INN is certifiably robust for input z if its
prediction at x is verifiably constant within a given ¢, ball
around z. We refer to [20] for a rigorous definition of certi-
fied adversarial robustness. We use the embedded INN (8) to
obtain a sufficient condition for certified robustness. Given a
robustness radius ¢ > 0, for every input z € R", we define
xz =z —€l,,x =z + €l,. Following [12, Eq. 3] and [20],
for each input 2’ € [z, 7], we define the relative classifier
variable, m*(z’) € R? by

m® (') = f(a")ily — f(2'), (11)

where 7 is the correct label of . Note that m*(z’),; > 0 for
all j # i if and only if =’ is labeled the same as x by the
neural network. Therefore, we write m*(a’) = T f(z') =
T*Cz*(a') + T*c, for suitable specification matrix 7% €
{—1,0,1}9%9 defined via the linear transformation (11).
Moreover, if there exists 7 € RZ so that pio ;-1 (W) < 1,
then we can use Theorem 5.1 to define

m®(z,7) = [T*C)" 2" (2, %) + [T°C) " z*(z,7) + T"c.

Moreover, min;,;(m®(x,T); > 0 is a sufficient condition
for certified adversarial robustness of the INN [20].

B. Training optimization problem

We aim to design optimization problems to train a neural
network which is robust to input perturbations with /.-
norm smaller than some e. Let £ be the cross-entropy loss
function and assume that {(Z',7")}¥, is a set of IV labeled
data points used for training. For every [ € {1,...,N},
we define the following upper and the lower bounds on the
input z by 2! = 7! — €l, and T = Z' + €1,. We use
the robust optimization framework [7] for designing robust
neural networks. Our objective is to minimize the robust loss
function Zl]il max, ¢, 711 L(f(Z'),7') on the training data.
Using [6, Theorem 2], for the cross-entropy loss, and for
m! :=m?® (z!,7") and every | € {1,..., N},

L(f@),7') < L(-m',7),

As pointed out in [11] for FFNNs, using the loss function
L(—m!,7') in the training can lead to convergence instability
and difficulty in training. To improve the stability of the train-
ing, following [11], we instead use a convex combination of
the empirical risk loss and the robust loss. Therefore, for
T :=T% we get the following training problem:

for all = € [z!,7].

N
S (- KL T+ sL(-m!, ),
’ =1

2 NE(2!, 2, 2!, 7)

[ = [NE(zl,zl,xl,xl)} ; (12)
m! = [T'C] 2 4+ [T'C) 7 + Tle, 28 =N(Z, 7,
yl =Cl+ c, Moo7[n]—1(W) <.

S

where k € [0,1] and v € (—o0, 1) are hyperparameters.

VIII. NUMERICAL EXPERIMENTS

In this section we provide an experimental comparison
between the robustness of FFNNs and INNs trained with
and without IBP and mixed monotonicity, respectively'.

Experimental setup: We consider the MNIST dataset,
which contains 70000 28 x 28 pixel images of handwritten
digits. For training, pixels are normalized into the range
[0, 1]. All INNs have n = 100 neurons with ReLU activation,
while we consider five-layer FFNNs (784 — 100 — 75 —
50 — 40 — 25 — 10) with ReLU activation.

Each model was trained for 40 epochs using the Adam
optimizer. INNs that were trained using mixed monotonicity
and FFNNs that were trained using IBP have €y = 0.1
and Kpom = 0.75. From epochs 1 to 10, x and € are set to
0 so the models undergo regular (nonrobust) training. From
epochs 11 to 20, € and ~ are linearly increased such that at
epoch 20, € = €gt and K = Kpom. Regarding training INNs,
we follow the non-Euclidean monotone operator framework
described in [17]. We impose MOC7[T]]—1(W) < 0 for some
n € RY,.

10 FFNNs and 10 INNs were trained; 5 of each were
trained using IBP or mixed monotonicity (for feedforwad and
implicit, respectively) and 5 of each were trained without

ICode to reproduce the experiments is available at https://github.
com/davydovalexander/robust—inn—mm.
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Fig. 1: Performance comparison on the MNIST test data between INNs trained with and without mixed monotonicity (MM) and 5-layer
FFNNs trained with and without IBP. The INNs have 89710 trainable parameters and FFNNs have 93200 trainable parameters. The
left plot shows the certified robust accuracy of the models computed using either MM or IBP while the right plot shows the empirical
robustness of the models against a PGD attack. In each plot, dark lines correspond to the mean accuracy across 5 neural networks while
light envelopes around the dark lines correspond to one standard deviation.

any robust optimization (i.e., €y = 0). Figure 1 provides
plots of certified adversarial robustness via the corresponding
interval reachability technique and the empirically-observed
robustness against a projected gradient descent (PGD) attack.
Evaluation summary: Regarding certified robustness, at
an {,, perturbation radius of 0.1, we observe that INNs
trained using mixed monotonicity had, on average, an ac-
curacy of 83.13%, while FFNNs trained using IBP had, on
average an accuracy of 79.26%. We additionally observe that
at the cost of a few percentage points in clean accuracy,
both INNs and FFNNSs trained robustly vastly outperform
non-robustly trained models in both certified and empirical
robustness. For example, at an /., perturbation radius of
0.1, INNs trained without mixed monotonicity have an
empirical accuracy of 8.04%, while INNs trained with mixed
monotonicity have an accuracy of 85.84%, indicating an
order of magnitude improvement in empirical robustness.

IX. CONCLUSION

We develop a computationally efficient algorithm for
training robust INNs. Moreover, we provide theoretical and
empirical evidence in support of the following claims: (i)
robustly-trained INNs are more robust than comparably-
trained FFNNSs, (ii) inclusion functions provide tighter es-
timates than Lipschitz constants, (iii) robustly-trained net-
works enjoy much stronger robustness properties than their
non-robustly trained counterparts.
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