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Abstract—Electric power systems and the companies and
customers that interact with them are experiencing increasing
levels of uncertainty due to factors such as renewable energy
generation, market liberalization, and climate change. This raises
the important question of how to make optimal decisions under
uncertainty. This paper aims to provide an overview of existing
methods for modeling and optimization of problems affected
by uncertainty, targeted at researchers with a familiarity with
power systems and optimization. We also review some important
applications of optimization under uncertainty in power systems
and provide an outlook to future directions of research.

Index Terms—Stochastic optimization, robust optimization,
chance-constrained optimization, electric power systems.

I. INTRODUCTION

In electric power systems, optimization is used for a mul-
titude of tasks, ranging from real-time operation to long-
term planning. To make optimal decisions, system operators,
generation companies, and consumers rely on a variety of
input data for determining parameters in the formulation of a
mathematical optimization model that supports their decision-
making. Examples of such parameters include forecasts of
load and renewable energy, knowledge about future electricity
prices, and long-term climate change trends. Unfortunately,
many of these parameters are uncertain. For example, forecast-
ing of load and renewable energy generation is impacted by
weather forecast uncertainty, and electricity prices are affected
by both variations in load and renewable energy generation as
well as by the actions of other participants in the electricity
market. Future climate change trends are hard to predict
because we lack knowledge of how emissions will evolve and
how these translate into impacts on the grid.

Although we do not yet know the exact values of these
uncertain parameters, we still have to make decisions now.
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For example, utilities and system operators have to decide
which generation units to commit during day-ahead planning,
before the exact supply of renewable energy is known. The
question of how to make optimal decisions in the presence
of uncertainty gives rise to the field of optimization under
uncertainty, which includes stochastic optimization, chance-
constrained optimization, robust optimization, and distribu-
tionally robust optimization.

In electric power systems, the interest in optimization under
uncertainty accelerated rapidly over the past two decades due
to the advent of large-scale renewable generation. The pres-
ence of renewable energy has drastically increased uncertainty
in power systems, with significant impacts on power system
operations, electricity markets, and long-term planning. At
the same time, methods for optimization under uncertainty
have also undergone rapid developments. Importantly, im-
provements in modeling and solution algorithms have made
optimization under uncertainty easier to apply and better suited
for scaling to realistic system sizes.

This paper provides an introduction to modeling and opti-
mization under uncertainty for an electric power systems audi-
ence along with a review of certain state-of-the-art examples of
recent power systems applications. We also discuss remaining
challenges and important future directions to motivate research
in these areas. One particular group we hope may benefit from
this paper is that of graduate students whose research focuses
on either electric power systems or optimization and who have
some level of familiarity with both areas.

The goal of the paper is not to provide a tutorial or in-depth
explanation of any particular method. Instead, we discuss
key characteristics as well as advantages and disadvantages
of a range of different optimization methods and modeling
techniques. Our aim is to introduce our readers to different
ways in which we can model and solve an optimization
problem under uncertainty, along with sufficient information
for judging which approach may be most suitable for their
setting. This exposition is supported by references for detailed
information on specific methods.

The remainder of the paper is organized in three parts.
First, we provide a brief overview of optimization under
uncertainty, including a generic problem setup and a discussion
of uncertainty modeling in Section II, an overview of different
ways to formulate optimization problems under uncertainty in
Section III, and discussions regarding tractable reformulations
and solution algorithms in Section IV as well as methods for
evaluating solution quality in Section V. Second, we review
several important and emerging optimization problems under
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uncertainty in power systems operation. Applications include
security-constrained optimal power flow in Section VI, chance-
constrained optimal power flow in Section VII, stochastic
unit commitment in Section IX, a discussion on power flow
modeling in Section XI, stochastic dual dynamic programming
in Section XII, consumer energy procurement in Section XIII,
and transmission expansion planning in Section X. Finally, we
provide a discussion and outlook on existing challenges and
promising directions in Section XIV.

Part I: Overview of Optimization under Uncertainty

II. MODELING CONSIDERATIONS

A. Notation

In the following, we provide a general overview and some
generic examples of our notation (defined in more detail
below). We use bold fonts to denote vectors of decision
variables x, y, parameters a, ξ, and functions g(·), h(·). We
use normal fonts and subscripts xi, hj(·) to refer to individual
entries of these vectors. Scalar functions f(·) and variables q
are denoted with normal fonts.

The vector of uncertain parameters in our problem is
denoted by ξ. This parameter may be described as a random
variable, which is to be distinguished from a decision variable.
We will refer to a specific realization of the uncertain param-
eter ξ as a scenario s and a set of many scenarios as a sample
S . The parameter values and decision variables associated with
scenario s are denoted by bold subscript s, e.g., ξs and ys.
We also use a number of common mathematical symbols and
operators, such as the expectation of random variables.

B. Problem Set-Up

To set up our subsequent discussions, we start from a
general formulation of a two-stage optimization problem with
uncertain parameters ξ. Two-stage optimization problems can
be used to represent many problems that are relevant to power
systems, with examples including security-constrained optimal
power flow (the first stage optimizes operations prior to any
contingency and the second stage represents post-contingency
operations) and reserve dimensioning (the first stage decisions
regard the amount of reserves to procure, while the second
stage determines how the reserves are activated to balance the
system). Such models can be formulated as follows:

min
x,yξ

fF(x) +Rcost

[
fS(x,yξ, ξ)

]
(1a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (1b)

Rviol

[
hS(x,yξ, ξ) = 0

gS(x,yξ, ξ) ≤ 0

]
. (1c)

The challenge of this problem, whose parameters and con-
straints are defined in more detail below, is that we do not
know the value of the uncertain parameters ξ. To obtain
a well-defined problem, we introduce risk operators Rcost[·]
and Rviol[·] that quantify the risk associated with different
realizations of ξ. The risk operator Rcost[·], represents the risk

of excessive costs, while the risk operator Rviol[·] measures
the risk of constraint violations. More precise definitions of
those risk operators will be provided in Section III.

In this problem, the first-stage decisions represented by
decision variables x, also referred to as here-and-now deci-
sions, have to be decided before the value of ξ is known. The
second-stage decision variables yξ, also referred to as wait-
and-see decisions, are taken in response to the realization of
the uncertain parameters ξ. We use subscript yξ to highlight
the fact that these decisions are taken after the values of the
uncertain parameters ξ are known. The first- and second-stage
decisions x and yξ must be chosen such that they minimize
the sum of the first-stage cost fF(x) and the second-stage cost
Rcost

[
fS(x,yξ, ξ)

]
and satisfy both the first-stage constraints

(1b) and the second-stage constraints (1c). In the second-
stage constraint functions hS, gS, we include the uncertain
parameters ξ as an input argument to explicitly highlight
that the function values depend on the realization of ξ, as is
common in parts of the stochastic programming literature [1],
[2]. However, it is worth emphasizing that ξ is a parameter of
the function, not a decision variable.

To obtain well-defined, tractable formulations for (1), we
have to define and evaluate the risk operators Rcost[·] and
Rviol[·], giving rise to a range of different formulations includ-
ing stochastic optimization, distributionally robust optimiza-
tion, robust optimization, and chance-constrained optimiza-
tion. The choice of formulation depends on what knowledge
is available about the uncertain parameters ξ at the time of
decision-making and how we would model the impacts of
uncertain parameters ξ on our problem. Specific problem for-
mulations and associated solution algorithms will be described
in much more detail below.

We note that the above formulation is only one example of
a problem with uncertain parameters, and there exist others.
Another important class of problems is multi-stage stochastic
problems, where uncertainty is revealed in multiple steps,
such as throughout several hours of the day or across several
years. In this situation, we may have the ability to update our
wait-and-see decisions yξ each time new information about ξ
is revealed, while still accounting for the fact that we do
not know what future realizations will look like. Important
examples of multi-stage stochastic programming problems
include unit commitment (where the first-stage variables are
the on/off statuses of generators and the generation dispatch
is adapted in several stages throughout the day) or long-term
planning problems (where decisions on which transmission
infrastructure to build need to account for a longer time
horizon where changes to the plans can be made at several
points in time). Multi-stage stochastic optimization problems
pose significant additional challenges relative to the two-stage
formulation (1). For the simplicity of discussion, the first part
of this paper will focus primarily on two-stage optimization,
but will also provide some discussion and references for
further reading on multi-stage problems where applicable.
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C. Common Uncertainty Sources

There are many different sources of uncertainty in power
system optimization problems that can be captured by the
uncertain parameters ξ. Some examples include:

• Renewable energy generation, where ξ can represent
either the amount of power provided by solar or wind
generators, a deviation from a forecasted value, or an
uncertain upper bound on the total generation available.

• Component outages, i.e., whether or not a transmission
line or a generator is experiencing a failure, where ξ can
represent whether or not a certain outage has occurred.

• Price of electricity, where ξ can represent the price a
consumer has to pay or a producer receives for their
electricity.

• Precipitation, where ξ may represent the water inflow to
a hydropower reservoir.

• Ambient conditions, where ξ represents, e.g., uncertainty
regarding the future temperature that may impact the total
load or generation capacities.

• Occurrence of extreme weather, where ξ may represent
the path of a hurricane or the location of a wildfire
ignition.

An important distinction between different uncertainty
sources is whether the uncertainty is continuous or discrete.
Uncertain parameters that can take on any value in a range
(e.g., renewable generation, load demands, and prices) are well
represented as continuous random variables with a continuous
probability distribution, typically centered around a forecast
value. These variables can take on an infinite number of
possible values, which is referred to as infinite support. For
instance, normally distributed random variables belong to
this group. We note that such continuous random variables
can still have bounded support, i.e., they may be limited
to a finite range. A uniformly distributed random variable
has infinite, but bounded support. Uncertain parameters that
represent discrete events (e.g., component outages and wildfire
ignitions) are represented as discrete random variables with an
associated discrete probability distribution. If there is a finite
number of possible realizations of those variables, we refer to
them as having finite support.

Furthermore, it is worth noting that the probability dis-
tribution and the best way to represent a source of uncer-
tainty can change depending on the considered time scale.
For example, short-term variations in renewable generation
may be well represented by a Gaussian distribution, while a
long-term distribution for a renewable energy plant typically
follows a Weibull distribution. In long-term planning, it may
be necessary to focus more on extreme scenarios to assess
system adequacy rather than the full distribution. In addition
to varying with the considered time scale, the characterization
of uncertainty can also depend on who is the decision maker.
For example, one generation company does not know the bids
of other generation companies and perceive those as being
uncertain, but all bids are known and deterministic for the
system operator.

D. Uncertainty Propagation

The impacts of variations in the uncertain parameters ξ
will propagate through our model and impact the second-
stage cost Rcost

[
fS(x,yξ, ξ)

]
as well as constraints (1c). For

example, generators that participate in balancing the system
as the renewable generation fluctuates may need to produce
more or less power, thus impacting the system cost. Further,
fluctuations in renewable generation will cause power flows
and voltage magnitudes to change as well, leading to possible
constraint violations. Modeling these effects can be very
challenging as it requires the simultaneous consideration of
multiple uncertainty sources and how they combine.

It is thus helpful to make a distinction between input
uncertainty, i.e., the uncertain parameters that are the source of
variability represented by ξ such as renewable energy genera-
tion, and the output uncertainty, i.e., the quantities represented
by fS(x,yξ, ξ), h

S(x,yξ, ξ), and gS(x,yξ, ξ) such as power
generation, power flows, etc. Often times, it is comparatively
simpler to quantify or forecast the input uncertainty ξ, e.g.,
through historical data or probabilistic forecasting methods.
However, even if we have a perfect estimate of the uncer-
tainty from each source, it can be challenging to determine
how the uncertainty from many different sources combines
and propagates. This is true even for linear models, and
uncertainty propagation is even more challenging for models
that incorporate non-linear equality constraints, such as the
alternating current (AC) power flow equations. When choosing
an uncertainty representation, we need to consider methods
that allow us to accurately represent both the input uncertainty
ξ and the output uncertainty fS(x,yξ, ξ), g

S(x,yξ, ξ), and
hS(x,yξξ).

E. Uncertainty Representation

The choice of uncertainty representation is often constrained
by practical limitations on access to uncertainty data. When
determining what kind of representation to use, we need to
determine 1) what we know about the probability distribution
of the uncertain parameters ξ, 2) who has (or can get) access
to uncertainty data, and 3) how much data we can expect
to access (e.g., will there be limited or unlimited access to
scenarios?). Depending on the answers to these questions (as
well as questions related to the model formulation and solution
method which will be discussed in Sections III and IV), there
are different ways in which we can represent the uncertain
parameters in an optimization problem. Fig. 1 illustrates a
two-dimensional uncertainty distribution and some common
uncertainty representations, which are further discussed below.

Certainty Equivalent: While it may seem trivial, a com-
mon approach to dealing with uncertainty is to simply replace
the uncertain parameters ξ by a single best guess. This gives
rise to the so-called certainty equivalent problem. A common
choice is to replace the uncertain parameters by their expected
values (also referred to as the mean) µ = EP [ξ], where
EP [·] is the expectation operator with respect to the probability
distribution P of the uncertain parameters ξ. Alternatively, it
is possible to consider the mode of the distribution m, which
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Figure 1: Examples of uncertainty representations for a two-
dimensional vector ξ = {ξ1, ξ2} of uncertain parameters. (a) Original
uncertainty distribution, with the mean µ = {µ1, µ2}, mode m =
{m1,m2}, and level sets marked. (b) Illustration of distributional
robustness for the scalar random variable ξ1, including (partial)
knowledge of the first and second moments (top) and metrics that
limit the distance from a known distribution (bottom). (c) Example
of randomly drawn, i.i.d. samples where each sample has probability
1/N . (d) Example probability distribution represented through sam-
ples on a grid, each with an assigned probability πs. (e) Example
of an elliptical robust uncertainty set. (f) Example of a polyhedral
uncertainty set.

represents the most likely realization (note that m ̸= µ for
general distributions). The expected value and mode of the
distribution is shown in red and orange in Fig. 1 (a).

In many practical applications, solving the certainty equiva-
lent problem may yield good results and is often significantly
easier than formulating and solving an optimization problem
under uncertainty. This case can therefore provide an important

benchmark to determine whether using a more complex rep-
resentation is worthwhile. Furthermore, recent research have
suggested that the performance of a certainty equivalent model
can be improved by designing the point forecast with the
decision making problem in mind, essentially integrating the
forecasting and optimization step [3]–[5].

Perfect Information Model: Another option is to solve a
perfect information model, which assumes that we are able
to perfectly forecast ξ. This model replaces the uncertain
parameters ξ by their actual realizations, thus providing the
best possible solution we can get. In general, this is not a
realistic model (in particular, if we were able to perfectly
forecast ξ, we would no longer need to consider (1) to
be an optimization problem under uncertainty). Nevertheless,
the perfect information model can still provide a helpful
benchmark for our problem, as it represents the best possible
solution for our problem.

Probability Distribution: In certain special cases, it is
possible to work directly with the probability distribution of ξ.
For example, assume that ξ follows a multivariate normal
distribution and appears linearly in our problem. In this case,
all other quantities can be interpreted as a weighted linear
combinations of ξ, and will also follow a normal distribution.
Another example is if ξ has finite support (i.e., a discrete
distribution with a finite number of possible outcomes) and the
probability associated with each outcome is known, in which
case we can investigate each realization separately.

Distributionally Robust Representation: We frequently
may not have access to the true probability distribution P
of our uncertain parameters ξ. This may be because the distri-
bution is unknown, or because it is numerically intractable to
work directly with the distribution. Instead, we may identify
a family of distributions that the uncertain parameters ξ
may belong to, with the size of the family representing the
underlying ambiguity of the uncertain parameters. We typically
refer to this family of distributions as the ambiguity set
A. A distributionally robust representation of the uncertain
parameters considers all distributions P ∈ A as possible
distributions. There are two main types of ambiguity sets that
have been widely used in the literature, namely moment-based
and metric-based ambiguity sets, as illustrated in Fig. 1 (b).
Both sets can be built upon empirical (historical) data; thus, a
distributionally robust representation of the uncertainty might
be seen as a data-driven model.

The moment-based approaches estimate the moment infor-
mation, e.g., mean (the first-order moment) and covariance
(the second-order moment), from the empirical data and build
an ambiguity set containing all distributions with the same
moments [6], [7]. One can enlarge the resulting ambiguity
set (to be more ambiguity averse) by allowing the values
of moments to be inexact, i.e., by adding more distributions
whose moments are close but not necessarily identical to those
estimated from the empirical data [8]. In contrast, one can
shrink the ambiguity set (to be less ambiguity averse) by
limiting the distributions that are included in the set, e.g., by
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adding unimodality constraints that exclude all distributions
with more than one spike [9]–[11].

The metric-based approaches exploit probabilistic distance
metrics (mainly Wasserstein distance [12], which measures the
distance of two given distributions) and include any distri-
bution in the ambiguity set whose distance to the empirical
one is less than or equal to a given positive value [13]. This
value allows the user to adjust its ambiguity aversion, such
that assigning a higher value results in a larger ambiguity set
and therefore a more conservative solution, and vice versa.

Independent Identically Distributed Samples: In many
situations, we may have access to scenarios that represent
possible realizations (arising from, e.g., historical data or
probabilistic forecasts). If we assume that these samples ξs
are independent and identically distributed (i.i.d.), each sce-
nario ξs represents one realization of the uncertain parameters,
and all scenarios have the same probability of occurrence 1/N .
If there is a higher probability that the uncertain parameter ξ
takes on values in a certain range, this will be reflected via
more realizations ξs in that range, as shown in Fig. 1 (c).
Thus, a benefit of using i.i.d. samples is that we do not need to
explicitly model the distribution or make (possibly restrictive)
choices in how to discretize the distribution and assign values
to individual realizations. The use of i.i.d. samples is a purely
data-driven method, though it requires the access to a (possibly
large) set of representative scenarios.

A drawback of using i.i.d. scenarios is that an accurate
representation of the probability distribution may require con-
sideration of a large number of samples N . Furthermore, i.i.d.
data is obtained using random sampling, and if we draw a
new sample set S , we may obtain a different solution to our
optimization problem. As a result, not only the input data,
but also the solution is random. Finally, it can be hard to
obtain samples that are truly i.i.d.. For example, historical
data obtained from a time series is typically not i.i.d. as
the uncertainty realization in one time step is often not
independent of the uncertainty realization in the next time step.

Discretized Probability Distribution: Another way to
represent a probability distribution is to discretize it into a
set of samples ξs with explicitly assigned probabilities πs.
Fig. 1 (d) shows an example of a distribution that has been
discretized with values on an equidistant grid1. The key
difference between a discretized distribution and using i.i.d.
samples is that the scenarios and associated probabilities in
the discretized case are designed to reflect the underlying
distribution as closely as possible. This can reduce the number
of samples compared with the i.i.d. case, but the number of
required scenarios may still grow quickly with the dimension
of the vector ξ. Furthermore, the accuracy of this approach
depends on our ability to create a discretization with scenarios
and probabilities that accurately represents the underlying
distribution.

1We note that the use of an equidistant grid is only for illustrative purposes,
as in reality it is common to use techniques such as clustering to design the
set of uncertainty scenarios.

Robust Uncertainty Set: In certain situations, we may
not have access to sufficient data in order to estimate the
distribution of ξ or may simply desire to ensure that our
solutions are safe across a range of possible realizations.
In this case, we define ξ as any realization within a given
uncertainty set Ξ. The uncertainty set Ξ can be represented
using a set of scenarios ξs, which may include all possible
realizations if ξ has finite support or be a set of scenarios
that approximates a continuous distribution. Another option
for representing the uncertainty set Ξ is to allow continuous
variations of ξ but constrain these variations to lie within
a predetermined set. Common representations of uncertainty
sets include elliptical sets [14] (illustrated in Fig. 1 (e)), box-
constrained sets, budgeted uncertainty sets [15], and more
general polyhedral sets, typically generated using data-driven
methods [16]. In some cases, the uncertainty set may be chosen
to truly represent all possible realizations of ξ, such as if the
probability distribution has bounded support (i.e., ξ can only
vary within finite bounds). In other cases, the uncertainty set
may be defined to contain a certain probability mass or (in
practical settings) to simply contain all realizations of ξ which
we would like to safeguard our solution against.

An important aspect of using a robust uncertainty repre-
sentation is that we disregard variations in the probability of
occurrence for different realizations of ξ within the uncertainty
set. It is therefore worth noting that a larger uncertainty set
which contains more realizations of ξ leads to a safer, but also
more costly solution.

Although there are important distinctions between these
different ways of representing uncertainty, they are also closely
related. For example, if we know the probability distribution
of the underlying uncertainty, we may choose to generate i.i.d.
scenarios from this distribution instead of directly representing
the distribution in our problem. Alternatively, if we have
access to many scenarios, we can estimate the probability
distribution from this data or use this data to define an
uncertainty set. Furthermore, distributionally robust methods
leverage combinations of probability distributions, scenarios,
and uncertainty sets. It is also worth noting that obtaining
or generating realistic scenarios for the uncertain parameters
ξ can be a significant challenge. This is particularly true if
the entries of ξ are not independent random variables, but
have complicated dependencies that are not well described
using linear correlation (and may require, e.g., the use of
copulas [17]. For instance, if the uncertain random variables
are time series, multivariate time series models can be used to
generate samples that are correlated in time and space.

III. OPTIMIZATION UNDER UNCERTAINTY

As discussed above, the presence of uncertain parameters
ξ implies that a given choice of first-stage decisions x may
give rise to a range of different outcomes in the second
stage. When optimizing under uncertainty, we therefore have
to decide how we both measure and manage the risk associ-
ated with this range of second-stage outcomes, i.e., how we
define the risk operators Rcost[·] and Rviol[·] in (1). In the
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Two-stage stochastic optimization

Robust optimization

Distributionally robust optimization

Risk neutral

Risk averse

Expected    
cost

VaR! 	

Variance

CVaR! 	

Expected cost 

Conditional value at risk

First-stage Second-stage

Worst-case 
expected cost 

Worst-case cost 

Ambiguity set 𝒜
with multiple 
distributions

Uncertainty set Ξ

Constraint satisfaction under uncertainty

Chance constraint

Robust constraint

Distributionally robust chance constraint

Less than 𝜖" probability 
mass above 0

Worst-case probability 
mass less than 𝜖"

No constraint violations 
for any 𝜉 ∈ Ξ

Probability of constraint satisfaction

Worst-case probability of 
constraint satisfaction

Worst-case constraint value

<latexit sha1_base64="wC3cwLsAyMdOBRYLZcuIUQ6jCM0="></latexit>

min
x,y⇠

fF(x) + EP

⇥
fS(x,y⇠, ⇠)

⇤

<latexit sha1_base64="khqRqQAOJhFTqc4WQBUvvLNEJFw="></latexit>

min
x,y⇠

fF(x) + CVaR↵

⇥
fS(x,y⇠, ⇠)

⇤
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Figure 2: An overview of formulations for power system optimiza-
tion under uncertainty.

following, we discuss some common formulations of opti-
mization problems under uncertainty and associated metrics
of risk. We first discuss formulations that explicitly consider
the impact of uncertainty on cost, specifically risk-neutral
and risk-averse versions of two-stage stochastic optimization
problems, distributionally robust formulations, and robust min-
max formulations. We then discuss formulations that focus on
providing guarantees of constraint satisfaction despite different
realizations of ξ, including chance constraints, distributionally
robust constraints, and robust constraints. An overview of the
different types of optimization problems under uncertainty is
given in Fig. 2.

A. Risk-Neutral Two-Stage Stochastic Optimization

A common formulation of two-stage optimization problems
minimizes the total expected cost. The first-stage cost fF(x)
is known (i.e., deterministic) and the second-stage cost is
expressed as the expected value of fS(x,yξ, ξ), giving rise
to the following formulation:

min
x,yξ

fF(x) + EP

[
fS(x,yξ, ξ)

]
(2a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (2b)

hS(x,yξ, ξ) = 0, (2c)

gS(x,yξ, ξ) ≤ 0. (2d)

This formulation is called a risk-neutral formulation, as it
treats costs above and below the expected value equally. Note
that the formulation assumes that second-stage constraints
(2c), (2d) are enforced for all realizations ξ for the chosen
solution x, yξ.

It is important to note that the risk-neutral formulation
above is generally not the same as the certainty equivalent
problem, which reduces the stochastic optimization problem to
a deterministic problem by replacing ξ with its expected value
EP [ξ]. Specifically, EP

[
fS(x,yξ, ξ)

]
̸= fS(x,yξ,EP[ξ]).

B. Risk-Averse Two-Stage Stochastic Optimization

The risk-neutral formulation of the two-stage stochastic
optimization problem which minimizes the expected cost may
not always be desirable, as certain unfavorable outcomes can
have a disproportionately large impact, e.g., a large loss could
harm future prospects of a company or a large blackout
can cause unacceptably high societal costs [18]. Problem
formulations that specifically focus on limiting negative im-
pacts of uncertainty realizations are referred to as risk-averse
formulations. We briefly describe a few common risk metrics:

• Standard Deviation: One classical way of limiting risk
is to restrict the variance of the cost (or profit). In this
framework, originally developed for financial portfolio
selection [19], a larger variance is considered to be more
risky and thus undesirable. The goal is to choose a
solution that minimizes both the expected value and the
variance of the cost. This multi-objective problem can
be expressed as a trade-off in the objective function,
or minimize the expected cost subject to a variance
constraint or vice versa (i.e., minimize variance subject to
a constraint on cost). A problem with this approach is that
limiting the standard deviation also limits the possibility
of getting better-than-expected outcomes (i.e., lower cost
or higher profit).

• Value-at-Risk: Another common risk metric is Value-at-
Risk with probability level ϵ (VaRϵ), which bounds the
largest cost that will occur with more than ϵ probability.
This metric is mathematically defined as the 1−ϵ-quantile
of the cost function fS(x,yξ, ξ). While VaRϵ is widely
used as a risk metric in finance, a common criticism of
VaRϵ is that it does not provide any information about the
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size of costs beyond the (1−ϵ) quantile, i.e., it counts how
many times the cost exceeds the threshold, not by how
much. Furthermore, VaRϵ is non-convex in general and
does not satisfy the properties of a coherent risk measure
(i.e., it is not sub-additive) [20].

• Conditional Value-at-Risk: The Conditional-Value-at-
Risk (CVaR1−ϵ), also referred to as the Expected Short-
fall, is a convex and coherent risk measure [20] which
mitigates some of these drawbacks of VaR. Specifically,
CVaR1−ϵ is defined as the expected value of all realiza-
tions of a random variable above the 1 − ϵ quantile and
is more convenient for optimization due to its convexity
properties that enable numerically efficient reformulations
[21], [22]. In general, CVaRϵ represents an upper bound
(which is frequently loose) on VaRϵ, i.e., CVaRϵ ≥ VaRϵ.

The above risk metrics can be used to formulate a risk-
averse version of the two-stage stochastic optimization prob-
lem where the expected value in the objective function (2a) is
either replaced by or combined with the standard deviation,
VaR1−ϵ, or CVaR1−ϵ. It is worth noting that such risk-
averse formulations focus on limiting cost in the tail of the
distribution, i.e., avoiding a large cost in a small number of
scenarios, at the expense of a higher expected cost.

C. Distributionally Robust Optimization

In an ambiguous environment where the probability dis-
tribution is not known, distributionally robust optimization
can be used to minimize the expected cost associated with
the worst-case distribution within the ambiguity set. Since
the worst-case expected cost depends both on our solution
x, y and the probability distribution of ξ, it is not possible
to determine the worst-case solution a priori (i.e., before
we solve the optimization problem). Instead, distributionally
robust optimization methods endogenously identify the worst-
case distribution within the ambiguity set and minimize the
expected cost for this worst-case distribution. This problem
can be defined as

min
x,yξ

fF(x) + max
P∈A

EP

[
fS(x,yξ, ξ)

]
(3a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (3b)

hS(x,yξ, ξ) = 0, (3c)

gS(x,yξ, ξ) ≤ 0, (3d)

where the objective function (3a) determines the worst-case
distribution P among all pre-defined distributions within the
ambiguity set A and minimizes the expected cost against such
a worst-case distribution. For distributionally robust problems,
we note that a larger ambiguity set results in a more conser-
vative dispatch, and vice versa.

D. Robust Optimization

In some situations, we may not have access to sufficient data
in order to determine the distribution of ξ or we may face a
situation where an undesirable outcome is truly catastrophic
(e.g., a company goes bankrupt or we experience a total

system blackout). In this situation, it might be desirable to
limit the impact of the worst-case outcomes, regardless of how
(un)likely they are. Formulations that minimize the worst-case
cost across all possible realizations within the uncertainty set
give rise to robust optimization problems.

The min-max formulation of a robust optimization problem
minimizes the combination of the first-stage and worst-case
second-stage costs, defined as the maximum cost over the
uncertainty set ξ ∈ Ξ, i.e.,

min
x,yξ

fF(x) + max
ξ∈Ξ

[
fS(x,yξ, ξ)

]
(4a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (4b)

hS(x,yξ, ξ) = 0, (4c)

gS(x,yξ, ξ) ≤ 0. (4d)

It is worth noting that problems of the form (4) often
assume relatively complete recourse, i.e., that for any feasible
choice of the first-stage decision variables x and uncertainty
realization ξ there exists a choice of y that satisfies the
second-stage constraints (4c), (4d). For example, relatively
complete recourse for linearized direct current (DC) power
flow constraints can be ensured by allowing load shedding
and renewable energy curtailment while also setting generator
lower bounds to zero. Under these conditions, (4c), (4d) are
often only explicitly enforced for a small set of scenarios,
including the worst-case one. However, it is important to
be aware that not all problems satisfy relatively complete
recourse. In particular, it can be challenging to guarantee that
there exists a feasible solution to a set of non-linear equality
constraints (such as the AC power flow constraints) across a
range of realizations for ξ.

E. Limiting Risk of Constraint Violations

Many optimization problems under uncertainty aim to iden-
tify first- and second-stage variables x and yξ that explicitly
limit the risk of constraint violations, represented in (1) with
the risk operatorRviol[·]. We discuss three common methods to
limit risk of constraint violations, namely chance-constrained,
distributionally robust, and robust constraint satisfaction.

1) Chance-Constrained Optimization: Chance constraints,
also commonly referred to as probabilistic constraints, require
that the constraints are satisfied with a minimum probability
of 1 − α. We can distinguish between two main types of
chance-constrained problems. A problem with single chance
constraints enforces that the individual violation probability
of each constraint i should not exceed ϵi:

Pξ

(
hS
j (x,yξ, ξ) = 0

)
≥ 1− ϵj ∀ j = 1, ...,m (5a)

Pξ

(
gSi (x,yξ, ξ) ≤ 0

)
≥ 1− ϵi ∀ i = 1, ..., n. (5b)

A joint chance constraint requires that the joint violation
probability, i.e., the probability that any of the constraints is
violated, should not exceed ϵ:

Pξ

(
hS(x,yξ, ξ) = 0

gS(x,yξ, ξ) ≤ 0

)
≥ 1− ϵ. (6)
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The use of single versus joint chance constraints is a modeling
choice, i.e., it is not necessarily that one choice is better or
worse than the other. While single chance constraints may
allow a user to control the risk associated with individual
constraints, a joint chance constraint provides stronger security
guarantees for the overall system.

It is worthwhile to note that we have included equality
constraints hS

i (x,yξ, ξ) = 0 among the chance constraints in
(5) and (6). Enforcing equality constraints is very important to
the optimization of the electric grid, where equality constraints
are used to represent the physical operation of the system.
For example, it is necessary to ensure that the power system
always remains balanced (i.e., the sum of all power injections
minus the network losses exactly equals zero) despite possible
variations in load demands and renewable generation. If such
basic physical conditions are not satisfied, the mathematical
model may no longer be valid2. As a result, it is common to
use a very low violation probability for the equality constraints
(or enforce the equality constraints as robust constraints, as
further described below).

One common criticism of chance constraints (which are
closely related to the VaRϵ risk measure) is that they limit
only the probability of constraint violation, not the size of
the violation. Furthermore, chance constraints are generally
non-convex and can be challenging to solve. There exists
several convex approximations of chance constraints in the
literature, most notably the CVaR approximation [22]–[24].
This approximation is a conservative approximation of the
chance constraint, but also has the added feature of limiting the
size of a violation. The chance constraint can be interpreted
as the product between the probability distribution of the
constraint function gSi (x,yξ, ξ) and a step-function that goes
from zero to one at the limit. This step function records the
probability of violation, but does not distinguish between small
and large violations. In contrast, a CVaR constraint can be
interpreted as the product between the probability distribution
and a piecewise linear function with slope one above the
limit. This linear function measures the size of the violation
rather than the probability of violation. We note that it is also
possible to leverage more general risk functions, which have
been referred to as weighted chance constraints [25].

2) Distributionally Robust Chance Constraints: If the prob-
ability distribution of ξ is unknown, we may choose to limit
risk by enforcing distributionally robust chance constraints.
The distributionally robust form of a single chance constraint
is given by

min
P∈A

P
(
hS
i (x,yξ, ξ) = 0

)
≥ 1− ϵi, (7a)

min
P∈A

P
(
gS
j (x,yξ, ξ) ≤ 0

)
≥ 1− ϵj , (7b)

whereas the distributionally robust form of a joint chance
constraint can be stated as

2For example, if a the AC power flow equations are not satisfied, it may
indicate system instability and the steady-state model is no longer valid. In this
case, the values of decision variables representing quantities such as voltage
variables or power flows no longer have a physical meaning.

min
P∈A

Pξ

(
hS(x,yξ, ξ) = 0
gS(x,yξ, ξ) ≤ 0

)
≥ 1− ϵ. (8)

Here, the probability that each individual constraint
hS(x,yξ, ξ) = 0 and gS(x,yξ, ξ) ≤ 0 hold under the
worst-case distribution P ∈ A should be greater than or
equal to 1 − ϵ. Note that the worst-case distribution P in
the distributionally robust chance constraint (7) (8) is not
necessarily identical to the worst-case distribution in the
objective function (3a), and that the worst-case distribution
can also differ between constraints.

3) Robust Feasibility Satisfaction: A third option to guar-
antee constraint satisfaction across a range of possible uncer-
tainty realizations ξ is to enforce robust feasibility constraints,
which explicitly guarantee feasibility of the constraints for all
uncertainty realizations ξ ∈ Ξ, i.e.

hS(x,yξ, ξ) = 0, ∀ξ ∈ Ξ, (9a)

gS(x,yξ, ξ) ≤ 0, ∀ξ ∈ Ξ. (9b)

Many problems with robust constraints only include first-
stage variables x, and the goal is to identify decisions that
remain safe regardless of the realization ξ. Robust optimization
problems that include recourse actions in response to the
uncertainty realization ξ are referred to as adaptive robust
optimization problems.

IV. TRACTABLE APPROXIMATIONS
AND SOLUTION ALGORITHMS

Evaluating risk measures such as expected second-stage cost
or the probability of constraint violations as a function of the
decision variables x, yξ is generally theoretically and numer-
ically challenging. As a result, most optimization problems
under uncertainty are difficult to solve. In this section, we
discuss some common reformulations and solution algorithms
for solving these problems.

A. Obtaining Finite-Dimensional Problem Formulations

In most stochastic programming problems, there tends to be
a very large (or possibly infinite) number of decision variables
and constraints. For instance, a continuous distribution for ξ
implies that the problem is infinite dimensional, i.e., we have
an infinite number of possible realizations of ξ, giving rise to
an infinite number of second-stage variables yξ and second-
stage constraints. Before attempting to solve the problem,
we therefore have to find a finite-dimensional representation.
This is typically achieved either by representing the uncertain
parameters through samples (either i.i.d. samples or samples
representing a discretized distribution) or by parameterizing
the second-stage responses as a function of the uncertainty,
also referred to as a recourse policy.

Replace ξ with Samples: One of the most common ways
to reduce a stochastic programming formulation to a finite-
dimensional problem is to replace the random variable ξ by
a finite set of sample realizations ξs, s ∈ S . This allows us
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to define second-stage variables ys and corresponding second-
stage constraints for each realization s, giving rise to a finite-
dimensional problem. This is usually a good modeling choice
for problems where the decision maker is allowed to optimize
their decision yξ once ξ is known (e.g., a unit commitment
problem where the generation dispatch is optimized to meet
realized demand).

These sampled realizations ξs are used to obtain estimates
of the objective function and constraints that involve the
uncertain parameters. Typically, using a larger number of
samples allows for a more accurate problem representation, but
also increases the complexity of the problem as we introduce
a new set of second-stage decision variables ys and second-
stage constraints for each sample. One way of coping with the
large scale of the problem is to carefully select scenarios so as
to reduce problem size while concisely capturing the diversity
of uncertainty that the system faces. Scenario selection and
scenario reduction methods based on the transportation metric
have been proposed by [26] and extended by [27], and have
found applications in power systems [28], [29]. Although these
methods originate from sound theoretical foundations, their
generalization to cases of multi-dimensional uncertainty (e.g.,
multi-area wind production) or composite uncertainty (i.e.,
the Cartesian product of forecast errors and contingencies)
which is inherent to power systems applications is not straight-
forward. These drawbacks have motivated scenario selection
methods inspired by importance sampling [30] as well as
methods that explicitly consider the impact of scenarios on
costs [29]. The trade-off between the number of scenarios that
are input to a model and the accuracy of the solution that can
be obtained has also been studied in the literature [31].

Recourse Policies: Another common option is to approx-
imate yξ as a function of ξ, where the function parameters
are first-stage decision variables. This kind of function is
commonly referred to as a recourse policy, a control policy,
or a decision rule. It is typically a good modeling choice
in problems where the decision maker has limited ability to
optimize the recourse decisions yξ, either because they have to
react very quickly (e.g., to balance the system during a power
imbalance) or cannot communicate decisions in real time (e.g.,
due to communication bandwidth issues).

Affine Recourse Policy: An affine recourse policy (also
referred to as a linear decision rule) [32], [33] expresses the
second-stage response as a linear function of the uncertainty
realization, i.e.,

y(ξ) = y(1)ξ + y(0). (10)

The coefficients y(1) and y(0) are first-stage variables to be
determined before the realization of uncertainty.

More General Recourse Policies: While affine policies are
by far the most common (and usually most tractable) policies,
they can be generalized. For example, it is possible to con-
sider non-linear dependencies on the uncertain parameter ξ
by extending the vector of uncertain parameters to contain
additional parameters that represent non-linear dependencies
on ξ, e.g., sin(ξi). It is also possible to consider piece-wise

linear policies [25], [34] or more general policies including
polynomials [35] and truncated distributions [36].

With a recourse policy, we reduce the number of decision
variables to a finite number of first-stage decision variables.
However, we also need to obtain a tractable reformulation of
the second-stage constraints. One possibility is to leverage
recourse policies in combination with sampled realizations
of ξs. Compared with a sample-based formulation that in-
troduces one decision variable ys for each scenario, the
use of an (affine) recourse policy may reduce computational
complexity. In some cases, the use of a parameterized recourse
policy in combination with samples may even be required
by the solution method (e.g., the scenario approach, further
discussed below, requires a fixed number of decision variables
to determine the number of samples needed). In addition
to using samples, there are several other methods to reduce
the number of second-stage constraints to a finite number.
Such methods will be further discussed below, particularly in
the context of chance-constrained, distributionally robust, and
robust optimization.

B. Reformulations and Solution Algorithms for Risk-Neutral
Two-Stage Stochastic Programs

The main challenge in solving risk-neutral problems is to
accurately represent the expected second-stage cost. Although
similar challenges arise in other problems that involve ex-
pectations, such as in the evaluation of CVaR, we frame the
discussion in this section around risk-neutral problems only.

For risk-neutral two-stage stochastic problems in the form
of (2), it is common to leverage a sample average approxima-
tion to represent the expected second-stage cost, i.e.,

EP

[
fS(x,yξ, ξ)

]
≈

∑

s∈S
πsf

S(x,ys, ξs), (11)

where ξs represents the realization of the uncertain param-
eters ξ in scenario s and πs is the associated probability
of occurrence. It is worthwhile to note that the accuracy of
the sample average approximation (11) depends on several
factors, including the number of samples that is used and the
distribution of ξ. However, solution algorithms for two-stage
stochastic optimization problems, such as the ones described
below, generally assume that the approximation (11) is an
accurate representation of the expected cost. An assessment of
the true expected cost is often obtained through a posteriori
evaluation, as described in Section V.

Although it is possible to solve (2) directly by replacing the
second-stage cost by the approximation (11) and introducing
copies of the second-stage variables and constraints for each
sample ξs, risk-neutral formulations typically require many
samples to accurately estimate the expected cost. As a result,
the problem quickly escalates to a size that becomes too large
to solve directly, motivating a variety of alternative solution
techniques.
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Figure 3: Examples of subgradients of the function f(x). Where
f(x) is non-differentiable, there is more than one subgradient.

1) Decomposition Strategies: We proceed to discuss the
general concept of decomposition, as well as two specific
methods by which this concept is leveraged in stochastic
programs: Lagrange relaxation and cutting plane methods.

Decomposition: Even with a relatively modest number of
scenarios, the extensive form of the problem (which includes
variables and constraints for each scenario) is challenging to
solve directly. As a result, solution methods for stochastic
optimization problems typically rely on decomposition al-
gorithms which split the problem by scenario to formulate
smaller, easier-to-solve subproblems. Although the number of
subproblems may be large, solving them individually typically
requires significantly less effort than solving the combined
problem, with the added benefit that they can often be solved in
parallel. By carefully combining information from the smaller
subproblems, these methods iteratively approach the optimal
solution to the original problem.

Lagrange relaxation: The idea of Lagrange relaxation is
to relax complicating constraints in a large-scale problem and
tackle the dual problem for which we have access to geometric
information, such as the subgradient of the dual function.
A subgradient is a generalization of a gradient for a non-
differentiable function. For a function f(x), the vector q is
a subgradient of f(x) at x1 if the following holds true

f(x) ≥ f(x1) + qT (x− x1) . (12)

An illustrative example of subgradients is provided in Fig. 3.
Note that if f(x) is differentiable at x, the subgradient is
simply a gradient. If f(x) is convex, the subgradient is a global
underestimator of the function.

The subgradient method is similar to gradient descent in
that it seeks for the next best solution in the direction of the
subgradient. However, it is not guaranteed that the solution
is monotonously improving across iterations, which makes it
necessary to keep track of the best known solution and can
make it challenging to assess convergence.

Cutting planes: A cutting plane method is an approximation
techniques whereby a convex (or concave) function is outer
approximated by supporting hyperplanes, referred to as cutting
planes, which approximate the function from below (or above,
in the case of concave functions). Supporting hyperplanes
are closely related to the subgradients of a function; in fact,
(12) describes a supporting hyperplane of f(x). The benefit
of using cutting planes to approximate a function f(x) is
that the approximation can be built iteratively. Cutting plane

methods selectively add new cutting planes to improve the
approximation at each iteration until we reach the desired
solution accuracy. Approximations with cutting planes are an
important part of many algorithms for solving stochastic two-
stage and multi-stage optimization problems.

2) Decomposition Algorithms: We next review a few
common solution methods which leverage one or more of
the above concepts. These include Benders decomposition,
stochastic dual dynamic programming, dual decomposition,
and progressive hedging.

Benders Decomposition: Benders decomposition solves the
first-stage problem with an iteratively refined approximation
of the expected second-stage cost until an optimal first-stage
solution is obtained. The key observation that is leveraged by
Benders decomposition is that two-stage stochastic program-
ming problems tend to have (or can be formulated to have)
a complicating-variable structure [37]. In such problems, if
some variables (the complicating ones) of the problem are
fixed to given values, the problem decomposes by scenario,
making it easier to solve. In the two-stage stochastic pro-
gramming problem (13) below, the complicating (coupling)
variables are the first-stage variables x that prevent a decom-
position by scenario:

min
x,ys∀s∈S

fF(x) +
∑

s∈S
πsf

S(x,ys, ξs) (13a)

s. t. hF(x) = 0, gF(x) ≤ 0, (13b)

hS(x,ys, ξs) = 0, ∀ s ∈ S, (13c)

gS(x,ys, ξs) ≤ 0, ∀ s ∈ S. (13d)

We note that problem (13) is equivalent to

min
x

fF(x) + α(x) (14a)

s. t. hF(x) = 0, gF(x) ≤ 0, (14b)

where the function α(x) represents the second-stage cost and
is given by

α(x) = min
ys∀s∈S

∑

s∈S
πsf

S(x,ys, ξs) (14c)

s. t. hS(x,ys, ξs) = 0, ∀ s ∈ S, (14d)

gS(x,ys, ξs) ≤ 0, ∀ s ∈ S. (14e)

The convexity properties of the function α(x) are critical for
the derivation and convergence of the Benders decomposition
algorithm. Specifically, if α(x) is convex or if it has a convex
hull, it can be outer approximated by cutting planes3. In this
case, Benders’ algorithm converges to an optimal solution.
Otherwise, it generally does not. Many practical two-stage
stochastic programming problems that appear in power system
applications give rise to convex functions α(x).

Considering problem (14) and assuming that the function
α(x) has the desired convexity properties, Benders decompo-
sition works as follows. An initial feasible solution of first-

3This holds true in general for problems where hS(x,ys, ξs) = Ax+Bys

and gS(x,ys, ξs) = −b(x) + c(ys) where b(x) is convex in x.
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stage variables, x(ν), is obtained by solving the initial master
problem:

min
x,α

fF(x) + α (15a)

s. t. hF(x) = 0, gF(x) ≤ 0 (15b)

α ≥ αdown (15c)

where αdown is a lower bound on the expected second-stage
cost α that can be easily obtained in most applications. If
the original two-stage stochastic programing problem (13) is
well-posed, the initial master problem (15) is always feasible.

Given the initial feasible solution x(ν), the second-stage
subproblem is formulated as:

min
ys,∀s∈S

∑

s∈S
πsf

S(x,ys, ξs) (16a)

s. t. hS(x,ys, ξs) = 0, ∀s ∈ S, (16b)

gS(x,ys, ξs) ≤ 0, ∀s ∈ S, (16c)

x = x(ν) : λ(ν). (16d)

The solution of subproblem (16) provides y
(ν)
s , ∀s ∈ S and

sensitivities λ(ν). We note that subproblem (16) decomposes
by scenario, which makes it drastically easier to solve. For
the sake of simplicity, we assume that the subproblem (16)
satisfies relatively complete recourse, i.e., is always feasible.

The solution of problem (16), and particularly the sensi-
tivities λ(ν), allow formulating a refined master problem as
follows:

min
x,α

fF(x) + α (17a)

s. t. hF(x) = 0, gF(x) ≤ 0, (17b)

α ≥ αdown, (17c)

α ≥
∑

s∈S
πsf

S(x(ν),y(ν)
s , ξs) + (λ(ν))⊤(x− x(ν)).

(17d)

Here, (17d) is referred to as a Benders cut, which approximates
the function α(x) from below. Solving the refined problem
(17) provides new values for the first-stage variables, x(ν+1),
and a new value for α, i.e., α(ν+1). If the original two-
stage stochastic programing problem (13) is well-posed, the
master problem (17) is always feasible. We note that problem
(17) is generally the computational bottleneck of the Benders
decomposition algorithm.

The Benders cuts of expression (17d) are referred to as op-
timality cuts. If the problem does not satisfy relative complete
recourse, it is possible that the subproblems are not feasible.
In this case, we need to generate feasibility cuts by using the
extreme rays of the subproblem, which an optimization solver
can provide as certificates of subproblem infeasibility. Alter-
natively, we can reformulate the subproblems by introducing
slack variables that are penalized in the objective in order to
guarantee relatively complete recourse.

Benders decomposition provides an upper and lower bound
on the objective function at each iteration (ν), which can be
used to assess convergence.

Upper bound (UB): Since subproblem (16) is a further
constrained version of the original problem (13) (variables
x are fixed), we can use the optimal objective value of the
subproblem (16) to compute an upper bound of the optimal
objective value of the original problem (13), i.e.,

UB(ν) = fF(x(ν)) +
∑

s∈S
πsf

S(x(ν),y(ν)
s ). (18)

Lower bound (LB): The constraints (17d) approximate the
true second-stage cost α(x) from below. Therefore, problem
(17) is a relaxation of problem (13), which allows deriving a
lower bound of the optimal value of the objective function of
problem (13), i.e.,

LB(ν) = fF(x(ν+1)) + α(ν+1). (19)

These upper and lower bounds can be used to devise a conver-
gence and termination criterion, giving rise to the following
algorithm:

(0) Set ν = 1, solve the initial master problem (15)
and obtain x(ν).

(1) Given x(ν), solve subproblem (16) to ob-
tain y

(ν)
s , ∀s ∈ S , and sensitivities λ(ν). Com-

pute upper bound (18), UB(ν) = fF(x(ν)) +∑
s∈S πsf

S(x(ν),y
(ν)
s , ξs).

(2) Given y
(ν)
s , ∀s ∈ S , and sensitivities λ(ν),

solve master problem (17) and compute x(ν+1) and
α(ν+1). Compute the lower bound (19), LB(ν) =
fF(x(ν+1)) + α(ν+1) .

(3) If UB(ν+1)−LB(ν+1) ≤ ϵ, where ϵ is a convergence
tolerance, stop. Otherwise set ν ← ν+1 and continue
in Step 1.

Benders decomposition is directly applicable, for example,
to the stochastic network-constrained unit commitment prob-
lem. If the commitment (binary) variables of a stochastic
network-constrained unit commitment problem are fixed to
given binary values, the problem decomposes by scenario (note
that only commitment variables couple operation scenarios),
and each scenario subproblem is continuous and generally easy
to solve.

Stochastic dual dynamic programming (SDDP): SDDP
is a method for solving multi-stage stochastic linear programs
[38], [39], which can be generalized to address stochastic
convex programs [40]. It blends cutting plane techniques with
Monte Carlo simulation in order to tackle the multi-stage
generalization of two-stage stochastic linear programs.

The typical structure of a problem that is amenable to
resolution by SDDP is as follows [2]: (i) decisions are made
at a given time stage, (ii) there exists a set of linear constraints
that couple the decision variables of the current time stage to
the decisions of the previous time stage, and (iii) the decisions
of the current time stage obey linear constraints that depend
on uncertain input parameters (note that a discretization of the
uncertain parameters is needed). There are various specific
assumptions that enable the more structured resolution of
the problem, e.g., right-hand side uncertainty and the serial
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independence of uncertain parameters [41], although more
general uncertainty structures can be handled as well [42].
Generalizations of the method have been proposed, e.g., to
stochastic mixed-integer programming [43] as well as risk-
averse formulations [44].

The algorithm is typically iterating between forward passes
and backward passes. The backward passes approximate the
convex expected cost-to-go functions (i.e., the expected cost of
future problem stages) with an increasing degree of precision
using cutting planes. The forward passes try to identify the
optimal policy by sampling uncertainty over the horizon of
the problem. For more details on how to solve such problems,
we refer the reader to [2].

The probabilistic nature of the algorithm poses non-trivial
questions of selecting convergence criteria appropriately [45].
Although the algorithm is guaranteed finite convergence in the
linear case [46], specific instances can pose serious challenges
in terms of narrowing down optimality gaps [44]. Methods
for accelerating the basic algorithm include regularization
techniques [47] as well as cut selection techniques [48]–
[50]. The algorithm is highly amenable to parallel computing
[39]. This has inspired numerous parallelization schemes along
both forward and backward passes [40], [51]–[54] in order to
further accelerate the basic scheme. There exist various open-
source packages that implement the algorithm, including in
Matlab and Julia [40]. Despite these improvements, the SDDP
algorithm remains computationally complex and a topic of
active research.

Dual Decomposition: In Benders Decomposition and
SDDP, we derive an increasingly accurate description of future
cost using cutting planes. In contrast, dual decomposition
splits the problem into subproblem by introducing scenario-
dependent copies of the first-stage variables and relax the
requirement that all copies have the same value. This enables
decomposition of the problem by scenario. The key idea
behind the solution algorithm is to share information between
the subproblems to obtain consensus regarding the optimal
value of the first-stage variables.

In dual decomposition, we first create a scenario-dependent
copies xs of the first-stage variable x and introduce an explicit
constraint xs − x = 0 for every scenario. This constraint is
referred to as a non-anticipativity constraint, as it ensures
that the scenario-dependent variables xs have to be chosen
without knowledge (i.e., anticipation) of the scenario-specific
uncertainty realization ξs. Model (2) can then be expressed
equivalently as follows:

min
x,xs,ys ∀s∈S

fF(x) +
∑
s∈S

πsf
S(x,ys, ξs) (20a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (20b)

hS(xs,ys, ξs) = 0, ∀s ∈ S, (20c)

gS(xs,ys, ξs) ≤ 0, ∀s ∈ S, (20d)
x− xs = 0 : λs ∀s ∈ S. (20e)

In this problem, the variable vector λs represents the dual
multipliers associated with the constraints (20e) for scenario s.
While the introduction of the variables xs is redundant from
a modeling perspective, the benefit of the above formulation
is that scenario-specific second-stage constraints (20c) and
(20d) have been isolated from the first-stage constraints (20b).
Thus, (20e) is the only complicating (coupling) constraint that
links the first and second stages. This allows us to apply dual
decomposition.

Dual decomposition [55] is based on Lagrangian relaxation,
a common decomposition method which is applicable in a
much broader family of problems than stochastic programming
[56]. We define a Lagrangian relaxation of (20), where we
remove the constraints (20e) and instead penalize the violation
as λ⊤

s (x− xs) in the objective function, giving rise to the
following problem:

min
x,xs,ys ∀s∈S

fF(x) +
∑
s∈S

πsf
S(x,ys, ξs) + λ⊤

s (x− xs) (21a)

s.t.

hF(x) = 0, gF(x) ≤ 0, (21b)

hS(xs,ys, ξs) = 0, ∀s ∈ S, (21c)

gS(xs,ys, ξs) ≤ 0, ∀s ∈ S. (21d)

For this problem, we define the following dual function,

ϕ(λ) = ϕ1(λ) +
∑

s∈S

πsϕs(λs). (22)

where λ represents the collection of λs for all s ∈ S . The
function ϕ1(λ) can be defined as follows,

ϕ1(λ) = min
x

fF(x) +
∑
s∈S

πsλ
⊤
s x (23a)

s.t. hF(x) = 0, gF(x) ≤ 0, (23b)

while functions ϕs(λs) for all s ∈ S are given by

ϕs(λs) = min
xs,ys

∑
s∈S

(fS(ys)− λ⊤
s xs) (24a)

s.t.

hS(xs,ys, ξs) = 0, (24b)

gS(xs,ys, ξs) ≤ 0. (24c)

For a given set of multipliers λ, we can now decompose the
problem by stage and scenario, i.e., we can compute ϕ(λ) by
solving the problem ϕ1(λ) and the |S| subproblems ϕs(λs)
independently. We next focus on obtaining a solution by solv-
ing the dual problem, which amounts to maximizing the dual
function ϕ(λ) over λ. The dual function is concave, giving
rise to a convex, but non-differentiable maximization problem.
There exist a variety of solution algorithms ranging from basic
subgradient algorithms to cutting plane methods, trust region
methods, level methods, and several other schemes [57], [58].

Any feasible solution to the dual problem provides a lower
bound on the relaxed problem (21), and thus also a lower
bound on the original problem (20). As we approach the
dual function optimum, the duality gap of the problem, which
quantifies the lack of consensus regarding the values of the
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first-stage variables xs, starts decreasing. Problem-specific
feasibility recovery heuristics can then be used to recover
feasible solutions to the original problem (20) at every iteration
of the algorithm [59], providing upper bounds on the objective
value. Using the upper and lower bounds, we can measure the
optimality gap and decide when to terminate. Vanilla subgra-
dient algorithms, which may exhibit unstable behavior, can be
further enhanced by replicating scenario-specific constraints
in the subproblem which computes ϕ1(λ). These techniques
have been used successfully for solving large-scale stochastic
unit commitment problems [30], [31], [59].

Progressive Hedging: An alternative approach for decom-
posing the problem is to consider an augmented Lagrangian of
the original problem [55], which amounts to adding a penalty
term (ρ/2)||x − xs||2 to the objective. With this term, the
problem becomes non-separable, i.e., we cannot directly split
it up by scenarios. There are however known algorithms, called
proximal algorithms [60], [61], which maintain separability
while improving the stability of the decomposition. The pro-
gressive hedging algorithm is essentially a proximal method
applied to two-stage stochastic programs. The algorithm uses
only scenario-dependent first-stage variables, and decomposes
the problem by scenario while using a quadratic term to
penalize a lack of consensus among scenarios. Concretely, the
subproblem that is being solved at every iteration for every
scenario s ∈ S is:

min
xs,ys

πsf
F(xs) + πsf

S(ys)

+ λ⊤
s (xs − x̄) +

ρ

2
∥xs − x̄∥2 (25a)

s.t.

hF(xs) = 0, gF(xs) ≤ 0, (25b)

hS(xs,ys, ξs) = 0, ∀s ∈ S, (25c)

gS(xs,ys, ξs) ≤ 0, ∀s ∈ S, (25d)

where x̄ =
∑

s∈S πsxs is the average first-stage decision. The
overall algorithm can be described as follows [62]:

0) Define some non-anticipative x0, some initial multiplier
λ0, a penalty parameter ρ > 0, and a tolerance κ. Set
k = 0. Go to step 1.

1) Solve problem (25) for each scenario s ∈ S with λk to
obtain a solution (xs,ys).

2) Compute the average first-stage decision x̄(k+1) and let
λ
(k+1)
s = λ

(k)
s + ρ(xs − x̄(k+1)).

3) If |x̄(k+1) − x̄(k)| ≤ κ and |λ(k+1)
s − λ

(k)
s | ≤ κ, then

stop. Otherwise, let k = k + 1 and go to step 1.
The choice of the parameter ρ is especially crucial for the per-
formance of the algorithm [55]. The method has been applied
successfully to the stochastic unit commitment problem [63].

C. Solution Methods for Robust Optimization Problems

When solving robust optimization problems of the form
(4) (or with robust constraints of the form (9)), the main
challenge is that we have to identify the realization of ξ
within the uncertainty set that gives rise to the worst-case cost
(or worst-case constraint violation). Which realization is the

worst does, however, depend on our decision variables x and
yξ and thus cannot be determined a priori. Instead, solution
algorithms for robust optimization problems aim to identify
the worst-case realization as part of the solution process.
We next explain one one of the most common methods for
addressing two-stage robust problems, namely column-and-
constraint generation (CCG). We also briefly discuss methods
for robust constraint satisfaction.

Column-and-Constraint Generation: CCG is also known
as a primal cut algorithm and is similar to Benders De-
composition in that we iteratively update a master problem.
However, while Benders Decomposition adds constraints that
reflect the cost of all possible realizations, the CCG iteratively
adds new scenarios with corresponding sets of constraints and
variables that represent the worst-case conditions. The overall
idea is that robust optimization problems (4) may require
only a few scenarios to fully reconstruct the optimal solution.
Thus, it is not necessary to include all scenarios contained
in the uncertainty set (which could be potentially infinite for
continuous uncertainty sets).

To identify the worst-case scenarios, the CCG algorithm
exploits a master-adversarial problem framework. Specifically,
the CCG problem creates a tractable master problem in order
to identify a candidate solution of the first-stage variables xk.
This typically involves relaxing the original problem (4) to
only consider a small sample set Sk ⊂ S,

min
x,ys

fF(x) + η (26a)

s.t.

η ≥ fS(x,ys, ξs), ∀s ∈ Sk, (26b)

hF(x) = 0, gF(x) ≤ 0, (26c)

hS(x,ys, ξs) = 0, ∀s ∈ Sk, (26d)

gS(x,ys, ξs) ≤ 0, ∀s ∈ Sk. (26e)

An adversarial problem, also called oracle subproblem or
just subproblem, is designed to check if the candidate first-
stage solution x(k) is inducing a new worst-case (adversarial)
scenario of the subproblem. If this is the case, the scenario
set used in the master problem for the next iteration S(k+1)

is updated to include the new worst-case scenario ξs with
corresponding second-stage variables ys and constraints.

Note that, for linear robust programs with relatively com-
plete recourse, the relaxed master problem (26) always pro-
vides a lower bound for the original problem, while the worst-
case cost of the subproblem provides an upper bound. Thus,
the CCG algorithm provides an optimality gap along the
iterative process, and eventually, it provides a global solution
with convergence guarantees [64].

Robust Constraint Satisfaction: For problems with robust
constraints of the form (9), there exist several classes of
problems which can be efficiently represented and solved. In
general, the key idea of ensuring robust constraint satisfaction
is to find a way to identify the worst-case realizations of the
uncertainty set and enforce constraints for those realizations.
For some classes of problems, such as linear problems with
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elliptical or polyhedral uncertainty sets, it is possible to
directly enforce constraints that guarantee robust constraint
satisfaction. For other classes of problems, it may be nec-
essary to consider a constraint generation procedure (similar
to the one above) where we iterate between solving a master
problem and identifying and adding constraints for the worst-
case realizations. We refer interested readers to [65] for an
introduction and overview.

D. Reformulations and Solution Approaches for Chance
Constraints

The main challenge in solving chance-constrained (and
distributionally robust chance-constrained) problems is effi-
ciently evaluating (or upper bounding) the violation prob-
abilities involved in single (5) and joint (6) chance con-
straints. In this section, we focus on the different ways in
which chance-constrained problems can be reformulated into
tractable deterministic optimization problems. We focus less
on discussing the solution algorithms themselves since the
reformulated problems can often be solved using standard
solvers. However, scalability to large problems often requires
the development of special purpose algorithms or may leverage
solution algorithms related to the ones described above for risk
neutral or robust optimization problems.

Approximating joint chance constraints with single
chance constraints: Single chance constraints consider the
violation probability of each constraint in isolation and thus fo-
cus on the scalar probability distribution of a single constraint
function. Problems with single chance constraints are typically
more straightforward to solve than problems with joint chance
constraints, where the correlation and trade-offs of violations
across different constraints (with possibly complicated joint
probability distributions) become important. As a result, some
publications seek to enforce a joint chance-constraint through
the use of single chance constraints. A simple way to achieve
this, known in the literature as Bonferroni approximation, is to
split the acceptable joint violation probability ϵJ equally across
all n constraints and enforce single chance constraint with
probability ϵS = ϵJ/n. However, this method typically leads
to very conservative results with lower-than-required violation
probabilities and a higher cost. This is primarily due to the
fact that (i) not all constraints will experience violations and
thus will not be “using” their allotted violation probability,
and (ii) this method double counts violations in situations
where several constraints are violated simultaneously. There
exist several methods in the literature that aim to mitigate these
drawbacks, for example through iterative risk allocation [66],
estimating the joint violation probability of different con-
straints [67], and using chance-constraint tuning [68]. How-
ever, these methods often remain computationally demanding
and may yield sub-optimal results.

Sample Average Approximation: A common method to
solve optimization problems with chance constraints is to
use a sample average approximation [69], which enforces the
desired violation probability empirically based on a set of
samples. The key idea is to replace ξ by a set of samples

s ∈ S and allow for constraint violations in ϵ percent of
the samples (e.g., if we have 100 equiprobable samples and
desire a violation probability ϵ ≤ 0.05, the sample average
approximation would allow violations for 5 samples). This
formulation has the appealing properties that it (i) can solve
joint chance constraints and (ii) allows a lot of flexibility in the
modeling of the second stage (e.g., it is possible to introduce
new decision variables ys for each considered realization).
However, the classic formulation of the problem [69] uses
integer variables to represent whether or not a particular
sample is among the violated ones, thus limiting the number
of samples that can be considered.

A variety of methods have been proposed to remedy this
lack of scalability, which is rooted in the non-convexity of the
chance constraint. Methods for obtaining upper bounds on the
problem include the conservative CVaR approximation [70]
or, more recently, the ALSO-X algorithm [71], [72] which has
been shown to be a tighter convex approximation than CVaR.
Approximation methods based on non-linear programming,
which creates a smoothed, differentiable version of the step
function, include [73] and [74].

An important challenge of the sample average approxima-
tion is that the number of considered samples may be too small
to rigorously guarantee that the chance constraint is satisfied.
Specifically, the empirically observed violation probability
(i.e., the percentage of samples that are violated) may be
different from the true violation probability since the chosen
set of samples may not accurately represent the underlying
distribution. It is possible to introduce an a posteriori test
to assess whether a solution satisfies a desired violation
probability [69]; however, it is challenging to know how to
improve the solution if it fails to pass the test [68].

Scenario Approach: The scenario approach [75] is another
sample-based method for solving joint chance constraints,
which is primarily applied to convex optimization problems.
It does not make any assumptions about the underlying dis-
tribution, except for the availability of N i.i.d. samples of ξ,
where the value of N depends on the number of decision
variables in the problem. The main difference between the
sample average approximation and the scenario approach is
that the scenario approach enforces the constraints for all
the samples (i.e., it is targeting a 0% empirical violation
probability). Note that although the number of samples needed
can be very large for large problems, it is typically easier
to solve a problem with the scenario approach than with
sample average approximation. This is because enforcing all
constraints does not require consideration of binary variables.
Another benefit of the scenario approach is that it provides
a priori probabilistic guarantees on solution performance, i.e.,
this approach guarantees that the true violation probability of
the joint chance constraint is below ϵ.

However, the scenario approach also tends to give conserva-
tive results in power system problems [33], [76]. Specifically,
by requiring constraint satisfaction for all samples, it tends
to be very sensitive to the worst-case samples ξs within the
sample set and typically finds solutions that have a much lower
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violation probability than the acceptable violation probabil-
ity ϵ. As a result, the scenario approach may fail to find a
feasible solution even for problems where one exists. It is also
interesting that the scenario approach has a curiously adver-
sarial relationship to data. Where other approaches tend to find
better solutions when more data and thus information about
the underlying distribution becomes available, the solutions
obtained with the scenario approach can only become more
conservative if more samples are added as each sample adds
another set of constraints that need to be satisfied.

Another drawback of the scenario approach is that it can-
not handle scenario-dependent second-stage variables ys, but
requires the use of a recourse policy to represent second-stage
decisions. This is because the required number of scenarios
N depends on the number of decision variables. As a result,
introducing new variables for each scenario would also require
us to update the number of scenarios. Furthermore, the original
scenario approach only applies to convex problems. This is
partially remedied by [77], which uses the scenario approach
to define a robust uncertainty set, and by [78], which provides
a posteriori guarantees for non-convex problems.

Moment-based Reformulations: A common method for
reformulating single chance constraints into a tractable form
is to use a moment-based reformulation. This method typically
relies on affine recourse policies in order to express the
reaction to uncertainty, and uses the first and second moments
(i.e., the mean and standard deviation) of gSi (x,yξ, ξ) to
represent (5) as

µS
i (x,yξ, ξ) + ρ(1− ϵ)σS

i (x,yξ, ξ) ≤ 0, (27)

where µS
i (x,yξ, ξ) and σS

i (x,yξ, ξ) indicate the mean and
standard deviation of gSi (x,yξ, ξ), respectively. In (27), the
function ρ(1−ϵ) represents our knowledge and/or assumptions
regarding the distribution of gSi (x,yξ, ξ), which is related to,
but not the same as, the distribution of ξ. When evaluated for
our chosen ϵ, the function ρ(1−ϵ) is a constant input parameter
to our model. Generally, a smaller violation probability ϵ
will lead to a larger value of ρ(1 − ϵ). Note that since the
standard deviation σS

i (x,yξ, ξ) is always positive, a larger
value of ρ(1 − ϵ) indicates that the constraint becomes more
conservative.

We next discuss several options for defining the function
ρ(1 − ϵ). If ξ follows a multivariate normal distribution and
gSi (x,yξ, ξ) is an affine function of ξ, then gSi (x,yξ, ξ) will
be normally distributed with mean (29) and standard devia-
tion (30), respectively. In this case, by choosing ρ(1−ϵ) as the
inverse cumulative distribution function of the standard normal
distribution evaluated at 1−ϵ, the moment-based reformulation
(27) is exact (i.e., it allows the violation probability to reach,
but not exceed ϵ and provides the least conservative value of
ρ(1 − ϵ)). However, the assumption of a normal distribution
may be overly restrictive in most practical applications. To
address such cases, it is possible to define ρ(1−ϵ) to guarantee
the satisfaction for a family of possible distributions, giving
rise to distributionally robust chance constraints. While still
maintaining the same tractable form as in (27), we can define

ρ(1− ϵ) to guarantee security for all distributions which share
the same moments [79] or add additional assumptions such
as symmetry or unimodality [9]. Examples of several such
reformulations for an optimal power flow problem are given
in [10]. Alternatively, it is possible to use data to tune ρ(1−ϵ)
to achieve the desired performance guarantees [68]. Other
methods to handle more general cases of distributionally robust
chance constraints are discussed below.

The moment-based reformulation (27) holds for general dis-
tributions and constraint functions gSi (x,yξ, ξ). In the general
case, it can be challenging to evaluate the mean and standard
deviation of the constraint functions, though methods such as
polynomial chaos expansion can be applied [80]. However, if
gSi (x,yξ, ξ) is an affine function of ξ, i.e.,

gSi (x,yξ, ξ) = a(x,y)ξ + b(x,y), (28)

we can express the mean and standard deviation as

µS
i (x,yξ, ξ) = a(x,y)µξ + b(x,y), (29)

σS
i (x,yξ, ξ) =

√
a(x,y)Σξa(x,y)⊤, (30)

where µξ and Σξ represent the mean vector and the covariance
matrix of ξ, respectively. We note that the above equations
hold for any distribution of ξ, as long as µξ and Σξ are
finite. Furthermore, if the coefficients a(x,y) are linear in the
decision variables x and y, then mean (29) is a linear function
and the standard deviation σS

i (x,yξ, ξ) is a second-order cone.
In this case, the reformulated constraints (27) are second-order
cone constraints, which are convex and give rise to scalable
and efficiently solvable optimization problems [81].

E. Reformulations of Problems with Distributionally Robust
Objective or Constraints

A common approach for solving distributionally robust
optimization problems is to use affine recourse policies, as de-
scribed above in Section IV-A. Using these policies in the dis-
tributionally robust optimization problem (3), the worst-case
expected cost max

P∈A
EP

[
fS(x,yξ, ξ)

]
in the objective function

is reformulated as max
P∈A

EP

[
fS(y(1)ξ + y(0))

]
, where the

parameters y(1), y(0) are first-stage variables shared among
all scenarios. If the ambiguity set A is represented using the
moment-based approach, where we assume that the values of
the mean and covariance are exactly known, the min-max ob-
jective function (3a) can be straightforwardly reformulated as a
standard objective function, which minimizes a quadratic term
excluding ξ [82]. If the ambiguity setA is represented using an
approach based on the Wasserstein metric, the objective func-
tion reformulation requires a more complicated mathematical
procedure, as thoroughly explained in [83] (Theorem 4.2). For
more information on distributionally robust optimization, we
refer the reader to [84] and [85].

In the case of a distributionally robust chance constraint with
affine policies min

P∈A
P
(
gS(x,y(1)ξ + y(0), ξ) ≤ 0

)
≥ 1 − ϵ,

a common approach is to conservatively approximate it by a
distributionally robust CVaR constraint, i.e.,
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max
P∈A

CVaRϵ
P

(
gS(x,y(1)ξ + y(0), ξ)

)
≤ 0, (31a)

where

CVaRϵ
P

(
gS(x,y(1)ξ + y(0), ξ)

)
=

min
θ
{θ + 1

ϵ
EP [g

S(x,y(1)ξ + y(0), ξ)− θ]+}, (31b)

where [·]+ = max(0, ·). This is a conservative approximation
since the CVaR accounts for the violation magnitude and may
eventually enforce the constraint with a higher probability than
the one imposed in the original distributionally robust chance
constraint. Nonetheless, the distributionally robust CVaR con-
straint guarantees the satisfaction of the original distribution-
ally robust chance constraint. In the case where the first two
moments (mean and standard deviation) are known exactly, but
no other information is known, this reformulation is exact. We
refer the reader to [7] for further details on reformulating the
resulting max-min problem obtained by substituting the CVaR
definition (31b) in (31a).

F. Probabilistic and Robust Equality Constraints

A particular challenge for problems that arise in many power
systems settings (e.g., problems with power flow constraints)
is to consider probabilistic equality constraints, such as

Pξ

(
hS
j (x,yξ, ξ) = 0

)
≥ 1− αj . (32)

In power system optimization problems, the equality con-
straints hS

j (x,yξ, ξ) = 0 typically represent the physical laws
that underpin the operation of the electric power system, such
as the power flow equations. A violation of these constraints
thus indicates that the physical laws which govern the entire
model are violated and, as a result, all other values that are
derived from those equations (e.g., power flows, voltages, and
load served) cannot be trusted. A possible way to circumvent
this problem is to enforce the equality constraints as robust
constraints, i.e., enforce (9a) instead of (5a). In the case of
linear constraints, the equality constraints can be used to
substitute state variables (e.g., in DC power flow, we can use
the nodal power balance constraints to substitute the voltage
angle variables [33]) and enforce conditions on the system
recourse (e.g., choose the parameters of an affine recourse
policy to ensure that the system remains balanced at all times).
In the case of non-linear equality constraints (such as the AC
power flow constraints), the representation of equality con-
straints is more involved. Existing approaches include the use
of polynomial chaos expansion to represent the propagation of
uncertainty through the non-linear system of constraints [86]
and the derivation of robust inner approximations [87]. We
discuss the challenges of formulating tractable versions of
these constraints for linear DC and non-linear AC power flow
constraints in Section XI.

V. EVALUATION OF SOLUTION QUALITY

In many problems under uncertainty, solution quality may
be limited due to assumptions and model approximations (e.g.,
assumptions regarding the distribution of ξ, limited numbers of
scenarios s ∈ S , and the use of linear approximations for non-
linear constraints). An ex-post out-of-sample simulation is the
most common approach to evaluate the quality of a solution,
irrespective of the approach that has been used for decision-
making under uncertainty, e.g., stochastic programming, robust
optimization, chance-constrained optimization, distributionally
robust optimization, etc.

For given sources of uncertainty ξ, consider N samples
obtained from a probabilistic forecast or empirical observa-
tions, with each sample representing a potential realization
of ξ. Arbitrarily split these samples into two separate sets of
samples, each with M and K samples, such that M+K = N
and K > M . We may use the former set with M samples to
provide scenarios in stochastic programming, build an uncer-
tainty set in robust optimization, or construct a moment- or
metric-based ambiguity set in distributionally robust chance-
constrained optimization. This set with M samples is widely
referred to as the seen or training set. Building on this set,
in the so-called in-sample simulation, we solve the underlying
problem, e.g., the two-stage stochastic program (2), the distri-
butionally robust problem (3), the robust problem (4), or any
of the formulations with probabilistic or robust constraints, in
order to obtain the in-sample value for the objective function
and a solution for the decision variables. For example, this
value in the case of the two-stage stochastic program (2) is
fF(x∗)+EP

[
fS(x∗,y∗

ξ, ξ)
]
, where x∗ and y∗

ξ are the optimal
values obtained for the first- and the second-stage variables,
according to the M samples used in the training set. Denote
this in-sample value of the objective function as κins.

Now, we fix the value of the first-stage variables to that
achieved in the in-sample simulation, i.e., x∗, and deterministi-
cally solve the second-stage problem K times, each time using
a sample that has not been used in the in-sample simulation.
Hence, the set of K samples is called the unseen or testing set.
To ensure a valid evaluation, it is typical to use K ≫M . For
each unseen sample ξi, we solve the following deterministic
problem:

min
y

fS(x∗,y, ξi) (33a)

s.t.

hS(x∗,y, ξi) = 0, (33b)

gS(x∗,y, ξi) ≤ 0. (33c)

We can now obtain the out-of-sample value of the objective
function, denoted as κoos, by summing up the first-stage
value fF(x∗) achieved from the in-sample simulation and
the average second-stage value, i.e., the average value of the
objective function (33a) obtained over the K solutions to the
deterministic problem (33).

The difference between κins and κoos is a metric for the
solution quality. A comparatively large difference indicates
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a lower-quality solution, implying that the training set with
M samples has not been sufficient to properly represent the
underlying uncertainty. Therefore, the training set should be
improved either by increasing the number of samples and/or
by selecting more representative samples.

One may also exploit the out-of-sample simulation to com-
pare the performance of different approaches discussed for
decision-making under uncertainty and to benchmark against
deterministic models such as the perfect information model
or the certainty equivalent. The difference in solution quality
between the stochastic model and the perfect information
model is typically referred to as the Expected Value of Perfect
Information (EVPI) since it measures the benefit of having
access to the true value of ξ. The difference in solution quality
between the stochastic model and the certainty equivalent
models is referred to as the Value of Stochastic Solution
(VSS), and measures the benefit of considering ξ as uncertain
parameters rather than a fixed forecast. For more information,
we refer to the reader to Section 2.6 of [88].

In addition, since the out-of-sample evaluation involves
a sequence of simpler optimization problems (i.e., one for
each scenario), we may choose to include more detailed
constraints (such as an AC power flow approximation instead
of a DC approximation). This can allow us to assess whether
the approximation of the constraints significantly impacts the
solution quality.

Part II: Existing and Emerging Applications of
Power System Optimization under Uncertainty

In the following, we present a selection of established and
emerging applications of decision making under uncertainty in
electric power systems. The list is not meant to be exhaustive,
but was selected to provide examples different problem formu-
lations and solution methods. The applications primarily focus
on power system operations and planning, taking the perspec-
tive of a transmission system operator. We have also included
some applications that discuss the perspective of a hydro-
power generation company (who need to decide on a bidding
strategy or generation schedule) or energy consumers (who
need to identify a strategy for energy procurement). However,
these examples are not as comprehensive as the coverage of the
system operator perspective, and we acknowledge that there is
a large part of relevant literature on electricity markets, energy
trading and load management that is not covered in this paper.

The sections are loosely related to each other, and can be
read either from beginning to end or as stand-alone sections
that provide an introduction to individual applications. To help
guide the reader in identifying the sections that are most
relevant to them, we provide a brief overview of the content in
this second part of the paper. This content is also summarized
in Table I.

Section VI discusses security-constrained optimal power
flow, which focuses on securing the system against uncertainty
arising from component outages. This problem is traditionally
formulated as a robust optimization problem, where constraints

are enforced for all component outages in a predefined set
(e.g., all N − 1 situations). Section VII discusses the question
of securing the system against variability and uncertainty
arising from renewable energy generation, focusing on chance-
constrained optimal power flow. This also includes Section
VII-B on distributionally robust formulations. Section VIII dis-
cusses chance constraints in the context of multi-area reserve
scheduling. Section IX extends the discussion of transmission
system operations to day-ahead unit commitment, which in-
cludes discrete variables to represent the on/off status of gener-
ators and focuses on two-stage stochastic programming formu-
lations. Section X discusses the consideration of uncertainty in
the context of long-term transmission expansion planning. The
sources of uncertainty in long-term planning are different than
in short-term planning as the considered time horizon stretches
across multiple years or decades, requiring quantification of
long-term uncertainty such as load growth, fuel prices, or
climate change projections. Section XI is dedicated to a more
detailed discussion of common choices and implications of
different power flow formulations, which is a common thread
in the above applications. In Section XII, we discuss planning
for hydro-thermal power systems, where a main source of
uncertainty is the inflow of water to hydropower reservoirs.
Finally, Section XIII discusses the question of procuring
energy for a large consumer, discussing uncertainty associated
with price and contract options.

VI. SECURITY-CONSTRAINED OPTIMAL POWER FLOW

Contingencies due to transmission line, transformer, and
generator failures can result in large-scale blackouts. Shortly
after the optimal power flow problem was first formulated
by Carpentier [89], a major blackout in the Northeastern
United States and Ontario, Canada in 1965 motivated system
operators to explicitly consider contingencies in operational
planning. Uncertainty and risk arising from contingencies is
traditionally managed by enforcing constraints on the post-
contingency operating conditions, resulting in the so-called
Security-Constrained Optimal Power Flow (SCOPF) problem.
The SCOPF problem was first proposed in [90] and continues
to receive significant attention due to remaining computational
challenges [91]–[93] and the evolving ability to assess the risk
and mitigate the impact of contingencies [94]–[97]. Contingen-
cies are discrete events with a certain probability of occurring
(individually or in combination). Due to the consideration of
potential future contingency events, SCOPF is, at heart, an
optimization problem under uncertainty.

The traditional form of the SCOPF problem seeks to identify
an operating point which ensures that the system can continue
to operate without significant disruption despite experienc-
ing any contingency included in the so-called contingency
list [98]. Contingency lists typically include the failure of
any individual component as specified by the N − 1 security
criterion, but are also frequently expanded to incorporate other
events that are considered likely (i.e., have a sufficiently high
probability of occurring). Likely contingencies may include,
e.g., common mode failures [99] or multiple simultaneous
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TABLE I: Overview of applications and their main characteristics
Application Problem type Main uncertainty Uncertainty Goal of the Optimization Reformulations/

(time scale) source(s) representation problem formulation solution methods
Security- Power system Contingencies Robust Guarantee Robust constraint Algorithms for
constrained operations (finite set of discrete uncertainty set post-contingency satisfaction robust optimization
optimal power (day-ahead events) with selected constraint satisfaction
flow to real-time) contingencies for all contingencies
Chance- Power system Renewable energy Probability Limit probability of Chance-constrained Various
constrained operations (continuous variations distribution, constraint violations optimization reformulations
optimal power (day-ahead in generation) moments, or
flow to real-time) scenarios
Distributionally Power system Renewable energy Family of Limit the worst-case Distributionally Moment-based or
robust optimal operations (continuous variations probability cost (or violation robust optimization metric-based
power flow (day-ahead in generation) distributions probability) among reformulations

to real-time) family of distributions
Multi-area Power system Total power Probability Limit probability Chance-constrained Analytic or
reserve operations imbalance distributions, of running out optimization scenario-based
dimensioning (months) quantiles of reserves
Stochastic unit Power system Renewable energy Scenarios Minimize expected Two-stage stochastic Algorithms for
commitment operations and contingencies cost of operations optimization two-stage stochastic

(day-ahead) optimization
Transmission Power system Long-term uncertainty Scenarios Minimize expected Two- or multi-stage Variety of
expansion long-term (e.g., climate change, capital cost (CAPEX) stochastic algorithms
planning planning technology trends) and and operational cost programming

(decades) short-term uncertainty (OPEX)
(renewable generation)

Choice of Any problem Renewable energy Focused on Model Chance-constrained, Convex restrictions,
power flow with power flow (continuous variations continuous propagation distributionally polynomial chaos
formulation constraints in generation) uncertainty of uncertainty robust, robust expansion, others
Planning for Generation Reservoir inflows, Scenarios Optimal generation Multi-stage Stochastic
hydro-thermal planning future energy prices schedule and stochastic dual dynamic
power systems (yearly) “value of water” programming programming
Energy Consumer Future energy prices Scenarios Minimize expected Two-stage stochastic Algorithms for
procurement perspective cost of energy across optimization two-stage stochastic

(months) multiple markets optimization

failures in situations where external circumstances such as,
e.g., severe weather or terrorist threats increase the probability
of such contingencies [100], [101]. The question of which
contingencies to include can be understood as the problem of
defining an uncertainty set for a robust optimization problem.

While the traditional form of this problem assumes a
preventive approach where system set-points are determined to
keep the system safe if any of the contingencies occurs [102],
the SCOPF problem can also be formulated to allow for post-
contingency control actions (often referred to as corrective or
remedial actions) that are taken in response to a specific con-
tingency [103]. Thus, the security-constrained optimal power
flow problem is equivalent to an (adaptive) robust optimization
problem where the set of considered contingencies represent
the uncertainty set. The post-contingency control actions, if
included, represent the adaptive recourse actions. It is worth
noting that this uncertainty set has finite support, i.e., it
consists of a finite number of possible realizations, and the
problem can thus be solved by enforcing constraints for each
contingency in the specified set. Although the SCOPF problem
is often not explicitly characterized as a robust optimization
problem, many of the methods that are used to solve the
SCOPF, including contingency screening [104], [105] and
methods to iteratively build a set of constraints representing
worst-case post-contingency operating conditions with load
and generation uncertainty [106], [107], are similar to tech-
niques used to solve other robust optimization problems.

Recently, there has been an increasing interest in rethinking
whether the traditional SCOPF model is the most appropriate
way to mitigate the risk of contingencies. In particular, the
definition of a contingency list relies on a vaguely defined
notion of “likely contingencies” and the SCOPF problem
ensures that no constraint violations will occur due to any
contingency on this list. This, on the one hand, can lead
to significant resources being spent on mitigating the effects
of contingencies that are not particularly dangerous, such as
cascading events that do not lead to load loss and only impact
a few transmission elements. In such cases, ensuring N − 1
security may not always be socio-economically desirable. On
the other hand, defining the list of N − 1 events based on the
likelihood of occurrence may leave out potentially important
low-probability, high-impact events, such as common-mode
failures (i.e., multiple failures due to a single cause) that could
cause a large-scale blackout. A more comprehensive approach
for mitigating the risk of contingencies explicitly considers
both the probability and the impact of contingencies. One
line of research develops risk functions that describe the risk
of post-contingency component overloads [94]. Extensions of
this work on risk functions allow the risk to be controlled by
FACTS devices [108] and accounted for price formation [109].
Other extensions generalize this work to consider uncertainties
in the cost and availability of remedial actions [96]. The
inclusion of risk functions make the problem harder to solve,
motivating the need for solution algorithms based on relax-
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ation and decomposition [110]. Other researchers take a more
ambitious view and aim to simulate actual load shed following
a contingency [111]. This is challenging because it might
require simulating multiple cascading steps, which has been
addressed in [111] by only considering events that significantly
contribute to system risk. A related set of works challenge the
idea that preventive and corrective control are equally secure
by explicitly modeling the probability and impact of corrective
action failures [112]–[114].

Although risk-based approaches promise a more compre-
hensive view of system security, there are several significant
challenges that remain. For example, risk-based approaches
can cause the complexity of the problem to explode, making
the development of scalable solution algorithms challenging.
Furthermore, the additional input data to the problem (i.e., the
probability of contingencies and the impact of load shed) is
more challenging to obtain, and requires careful consideration
as it may significantly impact the results.

VII. CHANCE-CONSTRAINED OPTIMAL POWER FLOW

Chance-constrained optimal power flow problems consider
the problem of how to dispatch generators in day-to-day
operations while ensuring that system constraints will be
satisfied with a specified probability despite uncertainty in load
and renewable generation. Choosing an acceptable violation
probability is perceived as an intuitive and transparent way
of determining a probabilistic security level by transmission
operators [115], and this practice also aligns well with estab-
lished industry practice for reserve dimensioning [116], [117]
and the definition of reliability margins in European market
coupling [118].

The problem has been formulated both with or without
consideration of contingencies. The simultaneous considera-
tion of chance constraints and (robust) security constraints
to secure the system against both renewable variability and
contingencies is necessary to ensure system security in prac-
tical operations. When security constraints are included, the
violation probability does not represent the probability of an
actual, physical system overload (such as the overload of a
transmission line), but rather the probability of violation of
the N − 1 security constraints. The physical overload would
only be realized if the chance-constraint violation happens
simultaneously with the contingency. However, many countries
regulate transmission system operation to always ensure N−1
security. As such, the chance constraint violation probability
could be interpreted as the probability of complying with such
regulations without further control action.

The uncertainty from renewable energy impacts both gen-
eration and transmission constraints. The generators must
reserve some capacity to be able to balance the system as
renewable generation varies, and transmission capacity has to
be limited to accommodate changes in power flow as power
injections from both renewable and conventional generators
vary. The reduction in available generation and transmission
capacity can be understood as an uncertainty margin [119], i.e.,
a security margin against uncertainty. While early papers on

chance-constrained optimal power flow tended to leave system
balancing to the slack bus [120], Vrakopoulou et al. [121]
proposed modeling these adjustments via an affine control
policy which uses participation factors to distribute the power
imbalance across several generators in the system. This model
is very close to practical operation in the electric grid as it
mimics the use of automatic generation control and has since
been widely adopted. The participation factors can be treated
as known parameters, based, e.g., on the total generation ca-
pacity of individual generators [119] or they can be optimized
as part of the problem [81]. The affine control policy can be
extended to consider that generators may react differently to
wind power plants in different locations, thus providing better
ability to manage congestion and transmission constraints
[122], [123]. A significant benefit of the affine control policy
is that it is easy to implement the control policy in real-time
operations. Furthermore, the use of an affine control policy
allows us to reformulate the chance-constrained optimal power
flow problem with a single chance constraint on generators
and transmission lines as a second-order cone program using
a moment-based reformulation [81], which reduces to a linear
program in the case of fixed participation factors [124]. With
the integration of unit commitment and N − 1 constraints
[125], the same problem becomes an mixed-integer second-
order cone problem that can be solved using a modified
Benders decomposition algorithm. Alternatively, using the
scenario approach, we can reformulate the chance-constrained
OPF with affine control policies and joint chance constraints
as a linear program, though the formulation becomes bi-linear
if generator outages are considered as part of the constraints
[121]. Others have solved the joint chance constrained optimal
power flow using a sample average approach, leveraging either
non-linear programming [73] or a combination of constraint
screening and bound tightening based on tight valid inequal-
ities [126] to obtain a scalable formulation. Many successful
solution algorithms [81], [125], [127] take advantage of the
fact that only a few of the power flow constraints in the optimal
power flow problem are binding (i.e., there are only a few
transmission lines that are congested).

A. More Complex Controls and Recourse Policies

Although the affine control policy is an accurate and appro-
priate model for small power imbalances, it is not realistic
if the imbalances are large. In these cases, it is necessary
to consider more general generation control policies, which
include saturation of reserve capacity (i.e., that generators
will stop contributing reserves when they reach maximum
capacity [128]), integration of tertiary reserve activation [25],
and curtailment of wind power generation above a certain
threshold [36]. Furthermore, using generators for balancing
and congestion management is only one option. Several other
options for mitigating the impact of uncertainty on the system
have been proposed in the context of chance-constrained
optimal power flow, including demand-side management with
thermostatically controlled loads [129], [130] and electric
vehicle charging [131]. Other lines of work have proposed
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changing the settings of phase-shifting transformers or HVDC
lines [127], [132], [133] to better control power flows and
implementing dynamic line rating [134]. Some methods also
consider chance-constrained optimal power flow as part of
multi-energy system models, such as natural gas [135] and
water distribution systems [136].

B. Distributionally Robust Formulations

The papers on chance-constrained optimal power flow
mentioned above consider a range of different reformula-
tion strategies. To highlight the use of distributionally robust
formulations, we provide a brief review. Reference [137]
develops a distributionally robust optimal power flow that is
robust to ambiguity in the first and second moment and pro-
poses a solution approach based on cutting planes. Reference
[138] develops a distributionally robust optimal power flow
problem with dynamic line rating, exploring both moment-
based and Wasserstein metric-based approaches. The resulting
model, after reformulations, is a convex conic program. Ref-
erence [139] develops a moment-based distributionally robust
optimal power flow problem, accounting for uncertain renew-
able power generation as well as uncertain reserve provided
by flexible loads. Under different schemes and reformulations,
the resulting model is either a semidefinite or a second-order
cone program. A similar model is developed in [140] for radial
distribution systems, where a distribution system operator
optimizes grid operation taking into account uncertain power
injections from distributed energy resources. A Wasserstein
distributionally robust optimal power flow model with uncer-
tain renewable power supply is proposed in [141]. Reference
[142] proposes a similar model but considers joint chance con-
straints. In addition, [143] proposes a similar model to [141]
that accounts for an approximate model of the AC power flow
equations. Reference [144] develops a multi-stage Wasserstein
distributionally robust optimal power flow problem. Finally,
[145] proposes a Wasserstein distributionally robust optimal
power flow problem with an exact reformulation. There has
also been recent work on reducing the size of the considered
ambiguity set by considering conditional covariate information
[146].

VIII. MULTI-AREA RESERVE DIMENSIONING

To make up for situations where renewable generators
provide less power than expected, generators need to carry
sufficient reserve capacity. The dimensioning (also referred to
as sizing) of reserve is the problem of determining how much
reserve capacity the system needs while accounting for the size
of uncertain disturbances (e.g., forecast errors in renewable
generation and load demands) as well as line and generator
contingencies, i.e., composite uncertainty [30], [147].

Bottom-up reserve sizing models trade off the economic
costs of committing and operating reserves against the relia-
bility that these reserves afford. Recent European legislation,
in particular article 157 of the System Operation Guideline
(SOGL) [148], as well as established industry practice [116],
[117] motivate reserve sizing methodologies on the basis of

probabilistic criteria. In the absence of network constraints,
the problem of reserve sizing amounts to estimating quantiles
of capacity shortfall [149]–[152].

In the presence of network constraints, the problem can
be cast as a chance-constrained optimization [121], [153].
The first-stage decisions amount to the allocation of reserve
capacity in different areas and to different generators. In
the second stage, the power imbalance is revealed and the
reserves are activated with the goal of balancing the system
while respecting network constraints. The objective function
minimizes the total amount of reserve capacity that the system
carries. Probabilistic constraints can be represented using bi-
nary variables that indicate whether a scenario corresponds to
reliable operation or not, in the spirit of [154]. The formulation
bears similarities to formulations for reserve deliverability in
US market clearing models [155]–[159] as well as reserve
dimensioning in chance-constrained optimal power flow [121],
[127], [160].

IX. STOCHASTIC UNIT COMMITMENT

The stochastic unit commitment problem aims to determine
the optimal day-ahead commitment of generators in order to
operate the system at minimum expected cost. This prob-
lem considers both the fixed cost of committing generators
and the variable cost of dispatching them based on realized
uncertainty. The problem is typically formulated as a two-
stage stochastic program, with the earliest such formulations
proposed by [161] and [162] in the mid-1990s. The problem
recently experienced a significant resurgence in interest as
a means of quantifying the impact of renewable resource
integration on power system operating costs [163], [164] and
reserve requirements [165], [166]. Apart from its use as a
policy analysis tool, the model has also been applied as an
ideal benchmark for market products such as flexiramp [167].
The ambition of using the model as an operational tool in
the context of security-constrained unit commitment [168] has
been tamed by the complex input and heavy computational re-
quirements and the fact that alternative formulations are better
suited to the conservative nature of system operations [169].

The stochastic unit commitment problem is typically for-
mulated as a two-stage decision making problem under uncer-
tainty. In the first stage, units are committed, and then uncer-
tainty is revealed in the form of realized forecast errors and
equipment (generator and line) outages. In the second stage,
the system is allowed to react by dispatching generators in or-
der to balance the system while respecting network constraints
[30], [170]. The model has also been used for generating a
policy in rolling simulations [163], [164]. Alternatives that
account for uncertainty include robust unit commitment [169],
[171], adaptive robust optimization [172] as well as hybrid
[173] and chance-constrained [125] formulations.

The stochastic programming formulation amounts to a large-
scale mixed-integer stochastic program. A typical approach for
solving this problem relaxes the non-anticipativity constraints
and then applies Lagrange relaxation combined with feasible
recovery heuristics [30]. This process can be parallelized, in
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either synchronous [31] or asynchronous [59] settings. Al-
ternative dual-based methods have been employed, including
augmented Lagrangian methods [162] and progressive hedging
[62], [161], [174], which is a specific instance of proximal
methods [61]. Benders decomposition [175], and more gener-
ally bundle methods [176], have also been employed. The ap-
plication of stochastic dual dynamic programming to a multi-
stage version of the problem has also been proposed [43].

X. TRANSMISSION EXPANSION PLANNING

The Transmission Expansion Planning (TEP) problem aims
to determine the best transmission lines and other equipment to
add to a high-voltage power grid in order to support its future
operation. The TEP problem accounts for the CAPEX (capital
expenditure) of projects related to new transmission lines, the
updates of existing ones, and other equipment upgrades, as
well as the OPEX (operational expenditures) related to the
daily operation of the power grid for the lifetime of these
projects [177]. While the CAPEX is often relatively easy
to compute due to the proximity to the actual investments,
the OPEX is subject to many stochastic factors such as the
price of fuels, the availability of hydrological resources, the
cost of storage technology, and investments in new generation
capacity. The stochastic nature of the TEP problem is one of
the main sources of modeling and computational complexity.

1) Problem structure: The canonical mathematical repre-
sentation of the TEP problem is usually defined as a central-
ized decision-making problem under uncertainty [177]. The
simplest and most common formulation is a two-stage stochas-
tic program, where the first stage represents the investment
decisions, x, while the second stage represents the operational
decisions, yξ, for the final network configuration in a target
year. The multi-stage stochastic version of the TEP problem,
also known as the dynamic TEP problem [178], has also been
extensively addressed in the TEP literature. In this framework,
the decisions are optimized for a horizon of N stages, where
uncertainty realizations are revealed along each stage.

Conceptually, the TEP problem can be represented as:

min
x,yξ

CAPEX(x) + E
[
OPEX(x,yξ, ξ)

]
(34a)

s.t.: Investment restrictions (x) (34b)
Network flow equations (x,yξ, ξ) (34c)
Network capacity limits (x,yξ, ξ) (34d)
Generator limits (yξ, ξ) (34e)

Here, the main TEP constraints consist of restrictions on
investment projects such as budget limitations or available
projects and technologies for investment. Power flow equations
are used to model the physical operation for the final grid
configuration. The most common approach is using a DC
approximation of the power flow equations (see Section XI-2
below) to leverage the scalability of linear models. Limits
related to transmission lines and generation capacity are also
part of the usual TEP constraints.

The transmission grid is the backbone of the infrastructure
for delivering power from multiple generation sources, which

forms an important part of all modern societies. As a result,
the TEP problem reflects not only technical aspects of grid
operation, but also energy policy and broader priorities of the
society around the grid. Thus, drivers for optimal grid updates
are not only economic efficiency, i.e., minimal CAPEX and
OPEX. The TEP problem typically captures, via constraints or
penalization terms in the objective function, issues such as (i)
renewable target commitments [179], (ii) operational reliability
such as N − 1 security criteria [179], (iii) climate-aware
planning [180], (iv) new generation expansion capacity [181],
and (v) incentives and policies [182], among others.

These additional drivers become particularly important in
grids where zero or near-zero marginal cost generation takes
a larger share of the total demand such that the energy cost
alone could be insufficient for providing the right signals for
the new network infrastructure updates.

2) Uncertainty modeling: There are many uncertainty
sources for the TEP problem. Considering these uncertain-
ties is essential for obtaining consistent TEP solutions. It
is crucial to distinguish between two types of uncertainty
components [183], [184].

First, the long-term component unfolds over many years,
e.g., new renewable capacity investments, demand growth,
availability of hydro resources, climate variability, etc. This
uncertainty is realized only once during the project lifetime
(i.e., we will only observe one realization of this uncertainty).
The long-term component of uncertainty is a fundamental part
of the standard analysis used in existing power systems such
WECC, ERCOT, CAISO, and the UK National Grid. It is part
of the what-if analysis (also known as scenario analysis) of
long-term visions of the future portrayed by stakeholders.

Second, the short-term component, e.g., wind production,
yearly demand, fuel price, etc., accounts for the variability of
stochastic input parameters and is expected to be observed as
a large number of realizations that impact OPEX. In many
situations, the short-term component can be conditional on
the long-term component, such as climate change and renew-
able resource availability [184]. The short-term component is
more commonly considered in the academic environment to
represent the infinite or large number of possible stochastic
operational states we may find in the future.

The larger the range of scenarios for representing uncertain
parameters, the better the approximation of the estimated
expected OPEX. However, using a large number of scenarios
for representing uncertainty could compromise computational
tractability.

3) State-of-the-art: During the last three decades, there
have been significant contributions to the modeling, uncer-
tainty characterization, and solution methodologies for TEP
problems [185]. Early models based on a transshipment formu-
lation of power flow, i.e., neglecting Kirchhoff’s voltage law
and using forecast peak demand, were sufficient for conven-
tional power grids with a large mix of dispatchable generators.
The decarbonization of the power grid has boosted an increase
in renewable generation, the introduction of new business
models considering the demand side, and new distributed
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generation resources, among others. This new panorama makes
uncertainty characterization and mathematical frameworks im-
portant, but challenging for network planners. We refer to
the monographs [177], [186], surveys [185], [187], and other
literature [183] for further details on TEP modeling under
uncertainty.

While advances in the TEP problem modeling and formula-
tion has brought a deeper understanding and new insights, this
complexity has increased the computational burden of TEP
models. This increases the complexity of already large- or
very-large-scale optimization models under uncertainty, mak-
ing computational tractability one of the principal challenges
for further improvements. This requires the development of
advanced solution methodologies using ad hoc algorithms
supported by standard methods such as Benders decomposi-
tion, column-and-constraint generation, progressive hedging,
and stochastic dual dynamic programming, among others.
Aggregation methods [188] are used to reduce the size of
TEP mathematical models by grouping similar objects, like
network nodes, generating units, or RES profiles, into a single
entity. While this leads to a loss of information and reduces
modeling accuracy, the computational benefits are significant
enough to compensate for the degradation in accuracy.

XI. CHOICE OF POWER FLOW FORMULATION

When optimizing system operations in the presence of
power injection uncertainty (e.g., stochastic load demands
and renewable generation), one must characterize how this
uncertainty propagates through the power system to produce
uncertainty regarding quantities such as voltages and trans-
mission line flows (which must be kept within bounds). With
this information, we can formulate optimization problems that
limit the potentially negative impacts from uncertainties.

The propagation of uncertainties in power injections to
uncertainties in voltages and power flows is dictated by the
power flow equations. The choice of power flow formulation
(i.e., whether we use the full non-linear AC power flow
equations, a linearized version, a convex relaxation, or a
convex restriction) significantly impacts the complexity of
the problem. We review next some of the challenges and
solution approaches associated with using different power flow
formulations in the context of power injection uncertainty.

1) Non-Linear AC Power Flow: The non-linear AC power
flow equations relate the active and reactive power injections to
the voltages phasors for each bus i ∈ N , where N denotes the
set of buses. There are many different ways of representing the
AC power flow equations [189]. If we choose polar coordinates
for the voltage phasors at bus i, Vi∠θi, the AC power flow
equations are

Pi = Vi

∑

k∈N
Vk (Gik cos (θi − θk) +Bik sin (θi − θk)) ,

(35a)

Qi = Vi

∑

k∈N
Vk (Gik sin (θi − θk)−Bik cos (θi − θk)) ,

(35b)

where Y = G + jB is the network admittance matrix and
Pi + jQi is the complex power injection at bus i ∈ N .

The non-linearity of the AC power flow equations gives
rise to non-convex and possibly disconnected feasible re-
gions [190], resulting in many optimization problems being
NP-Hard [191], [192] from a theoretical perspective. Note,
however, that despite lacking guarantees, recent benchmarking
of local solvers such as Ipopt [193] indicate that they tend to
often find solutions that are globally optimal [194]. Further-
more, the non-linearity of the power flow equations makes
uncertainty quantification difficult. Even if the probability
distribution of the power injections is known, the non-linearity
of the AC power flow equations makes it highly non-trivial to
compute probability distributions of voltage magnitudes and
line flows. In particular, the non-linear relationships in the
AC power flow equations do not preserve the form of the
probability distributions even for Gaussian distributions (e.g.,
Gaussian distributions of power injections generally lead to
non-Gaussian distributions of line flows). Computing moments
such as the mean and standard deviation of a line flow,
which is straightforward with linear equations, is numerically
challenging. Moreover, the implicit nature of the AC power
flow equations precludes an explicit representation of voltage
magnitudes, line flows, etc. in terms of uncertain power
injections, thus introducing non-linear equality constraints
involving uncertainties into the formulation.

Polynomial Chaos Expansion (PCE) methods provide a
promising approach for addressing these challenges. PCE
methods propagate uncertainty distributions through non-linear
equations by decomposing onto a set of non-linear basis
functions, resulting in a hierarchy of increasingly accurate,
but more computationally challenging problems. PCE was first
applied to power flow problems [86], [195] and then to chance-
constrained optimal power flow problems [80], with modeling,
computational, and other improvements subsequently devel-
oped in [35], [196]–[198]. Despite these improvements, PCE
methods remain computationally challenging.

Uncertainty propagation with the non-linear AC power
flow equations is further complicated by the fact that these
equations may have no solutions [199], [200] or have multiple
solutions [201] for a given set of power injections. The lack
of an AC power flow solution implies that there is no steady-
state operating point for this set of power injections, indicating
an imminent threat of instability and voltage collapse [202],
[203]. It is difficult to assess which (if any) uncertainty realiza-
tions will result in power flow insolvability. Many approaches
ignore this issue and assume (implicitly or explicitly) that
the AC power flow equations will remain solvable for all
uncertainty realizations as long as they hold for a nominal
operating point, e.g., [76], [204]–[207]. Other approaches
seek to identify worst-case operating conditions (i.e., the
realizations that lead to the largest constraint violations) [106],
[208] or bound the worst-case impacts of uncertainty [209],
[210], but do so under the assumption that the AC power flow
equations are solvable for every uncertainty realization. Thus,
these methods are unable to identify (unstable) uncertainty
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realizations for which there exists no AC power flow solution.
It is also not known how PCE would perform (i.e., how
accurate the results would be) if applied to problems that are
close to voltage instability.

Researchers have made progress in addressing these chal-
lenges for certain classes of robust optimal power flow prob-
lems, including systems with generators or controllable loads
at every bus [211] and, using theory from [212], three-phase
radial networks representing distribution systems [213]. More
recently, progress on this topic in [87] considers general
system models by leveraging so-called convex restrictions, i.e.,
convex inner approximations of the AC feasible region [214],
[215]. By solving problems which guarantee that all uncer-
tainty realizations are contained within a convex restriction,
these approaches guarantee power flow solvability and can also
be formulated to incorporate operational constraints such as
power flow limits and bounds on voltage variables [87], [216].
We also note that some sample-based approaches provide
a posterori probabilistic guarantees for feasibility with respect
to the non-linear AC power flow equations [217], [218].

Although there may be multiple solutions to the power flow
equations, there is often a single “high-voltage” solution (i.e.,
there is a single solution where voltage magnitudes at every
bus are within normal operating ranges). However, this is not
always the case [219], particularly in systems with high pen-
etrations of distributed energy resources [220]. Furthermore,
many algorithms for optimization under uncertainty, e.g., [76],
[204]–[206], allow for violations of voltage constraints for
a small number of realizations, meaning that the solution
algorithms may find undesirable low-voltage solutions. The
question of how to handle the multiple solutions that may arise
has not yet been solved and is not even frequently considered.

2) Linearized Power Flow Formulations: An alternative
approach is to use a linearized version of the power flow
equations. For instance, the commonly used DC power flow
approximation [221] employs assumptions typical of lightly
loaded transmission networks (small angle differences, near-
nominal voltages, and a lossless system) to simplify the AC
power flow equations to a linear formulation:

Pi =
∑

k∈N
Bik (θi − θk) . (36)

Many stochastic optimization formulations use the DC power
flow approximation to provide rigorous solution methodolo-
gies with quality guarantees regarding the approximated prob-
lem, e.g., [68], [81], [121], [124], [222], [223]. However,
while suitable for many applications, the DC power flow
approximation can induce significant errors in the solutions
to certain problems [224]–[230]. Quality guarantees for an
operating point obtained via the DC power flow approximation
do not ensure feasibility or optimality with respect to problems
using the AC power flow equations.

To ameliorate these issues, researchers have developed many
other power flow linearizations (see [189] for a comprehensive
review) and applied them to optimal power flow under uncer-
tainty. Examples include the first-order Taylor approximation

[205] around the solution to a deterministic problem where
the random variables are replaced by their means [205] as
well as linearizations tailored for distribution systems [231].
The approach in [76] uses the full AC power flow equations
for the nominal operating point, but models the impact of
uncertainty using an iteratively updated first-order Taylor
expansion (implicitly assuming that the uncertainty is small).

3) Convex Relaxations: A convex relaxation encloses a
non-convex feasible region within a larger convex region
using carefully formulated constraints that are less restric-
tive than the non-linear AC power flow equations. There
exist many different convex relaxations, usually based on
semidefinite programming (SDP) [232]–[234] and second-
order cone programming (SOCP) [235], [236], with many
variants [189]. Convex relaxations give rigorous guarantees on
solution quality (i.e., upper or lower bounds on the objective
value and infeasibility certificates) and, if the optimal solution
to the convex relaxation happens to be feasible for the original
problem, they also provide the globally optimal solution.

To bypass challenges associated with non-convexities from
the AC power flow equations, many researchers have leveraged
convex relaxations in stochastic optimal power flow problems.
Some approaches directly replace the non-linear power flow
equations with a relaxation to obtain a convex formulation that
is suitable for standard techniques, e.g., methods for chance-
constrained optimization using various reformulations [237],
[238] and scenario-based methods [239]. Other approaches
repeatedly solve relaxations within iterative algorithms for
robust optimal power flow problems. Specifically, the approach
in [208] uses relaxations to compute candidates for worst-
case operating points. Additionally, the approach in [209] uses
relaxations to bound the worst-case impacts of uncertainty
with respect to the inequality constraints to provide guarantees
with respect to inequality constraint satisfaction.

Significant research efforts have focused on assessing when
convex relaxations yield globally optimal solutions to optimal
power flow problems [189], [240]. However, it is worth noting
that these results rely on both the tightness of the relaxation
itself (i.e., how closely the relaxation approximates the true
non-convex feasible space) and the objective function (which
determines in which part of the feasible space we require
tightness). In optimal power flow problems under uncertainty,
where we are interested in feasibility and optimality not for
a single operating point but a range of uncertain operating
conditions, it is less clear whether we can expect that the
relaxations are tight for all uncertainty realizations. Accord-
ingly, the solution to a relaxed stochastic or robust optimal
power flow problem may not be feasible with respect to the
AC power flow equations. Likewise, the worst-case uncertainty
realizations computed via a convex relaxation may not actually
be the worst-case uncertainty realizations for the original
problem. Thus, similar to power flow linearizations, guarantees
of solution quality obtained using a relaxation may not apply
to the original (non-relaxed) problem and care must be taken
in their interpretation.
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XII. PLANNING FOR HYDRO-THERMAL POWER SYSTEMS

The key source of uncertainty in hydropower planning is the
inflow of water, which determines current and future ability
to produce power. Given that the inflow of water carries
strong seasonal patterns that are correlated with snow melt
and rainy seasons, it is important to consider the use of
water on a yearly horizon. Across this horizon, the realized
water inflows as well as decisions on how much power to
produce can be updated on a regular basis. This naturally
gives rise to multi-stage stochastic programming problems,
with the most common algorithm being stochastic dual dy-
namic programming (SDDP). Pioneered by Pereira in the late
1980s [38], [39], SDDP has become the go-to methodology
for medium- and long-term planning in hydro-thermal systems
for numerous countries [52], [241]. In these hydro-thermal
planning models, the key question planners face is whether
to “spend” the water in the reservoir to generate power at
the current point in time, or whether to save it for later. The
dual SDDP solutions provide very useful information on the
so-called “value of water” which describes the future value
of keeping the water in the reservoir. These dual solutions
are as useful (if not more) as the primal solutions, which
represent the target level of stored energy in hydro reservoirs.
SDDP has recently found applications in other areas, including
day-ahead bidding of pumped-hydro plants [50], natural gas
storage valuation [242], dairy farm operations [243], short-
term operational planning in power systems [244], as well as
distribution grid restoration [245].

XIII. ENERGY PROCUREMENT FOR A LARGE CONSUMER

We next consider a large industrial electric energy consumer
whose electricity bill amounts for a significant part of its
total production cost. Examples of such consumers include an
aluminum production company, an air liquefying corporation,
and an electrical foundry. This large consumer is concerned
with both its electricity cost and the variability of this cost.
Seeking minimum expected electricity cost with limited cost
variability, the consumer obtains its electricity from three
sources, namely, by signing long-term contracts, buying in the
spot market, and self-producing.

The long-term contracts that can be signed by the consumer
to procure its electricity requirements include both forward
contracts and options. A forward contract allows the consumer
to buy electricity at a fixed price, thus eliminating price
volatility. An option allows, for a fee, the consumer to decide
at a later time (with reduced uncertainty) whether or not to
use a forward contract to buy electricity. The spot market
(day-ahead and real-time markets) allows the consumer to buy
electricity, at the risk of facing potentially volatile prices. Self-
producing is possible when the consumer owns a generation
facility that can cover a portion of its electricity consumption.
This facility may also be used for trading, i.e., to sell its
generation in the spot market if the price is high enough
(provided that the consumer’s demand is satisfied).

We consider an electricity procurement problem which
involves three sources of uncertainty, (i) the electricity price

in the spot market (both day ahead and real time), (ii) the
consumer demand, and (iii) the fuel cost of the self-production
facility. The spot price uncertainty is typically significantly
larger than the uncertainties pertaining to either consumer
demand or fuel cost. The problem faced by the consumer in
a specific period of time (for example, on an hourly basis
for several months into the future) consists of determining
which forward contracts or options to sign and the subsequent
energy procurement strategy for any possible realization of
the uncertainty. The objective is to minimize the expected
cost of electricity throughout the procurement horizon while
controlling the variability of such cost using a risk metric.

Describing the uncertainty via scenarios s ∈ S , the procure-
ment problem can be formulated as the two-stage stochastic
programming problem below (note that multi-stage versions
can also be easily formulated):

min
x;ys,zs,∀ω

fF(x) + βEP

[
fS(y, z, ξ)

]

+ (1− β)Rcost

[
fS(y, z, ξ)

]
(37a)

s.t. hF(x) = 0, gF(x) ≤ 0, (37b)

hS(ys, zs, ξs) = 0, ∀s ∈ S, (37c)

gS(ys, zs, ξs) ≤ 0, ∀s ∈ S. (37d)

We note that the time (every hour of the procurement horizon
spanning, e.g., the following three months) is implicitly repre-
sented in the above formulation. The variable vector x of first-
stage variables represents contracting decisions spanning the
procurement horizon, while variable vectors ys and zs are spot
trading decisions and self-production decisions, respectively,
per scenario ξs and throughout the procurement horizon. In
this problem, the first-stage cost fF(x) is the contracting
cost (not affected by uncertainty), while the second-stage
cost fS(ys, zs) is the spot market and self-production cost
(a random variable). The parameter β is used to manage
the tradeoff between expected cost and the risk of losses
(0 ≤ β ≤ 1). Eqs. (37b) are contracting constraints, while
(37c), (37d) are demand-supply (and risk-related) constraints.
For a given β, weighting expected cost and cost variability, the
solution of the two-stage stochastic programming problem (37)
provides the optimal contracting strategy, x∗, the optimal
spot market involvement, y∗

s , ∀s ∈ S , and the optimal self-
production, z∗s , ∀s ∈ S .

For further reading, a seminal work on electricity pro-
curement for large consumers with risk control is [246].
Among a significant number of relevant contributions by
different research communities, [247] explores similar models
and analyses to those in [246], but using a broader energy
context and an analytical focus. Finally, [248] carries out a
real-world insightful case study using a multi-stage stochastic
programming model.

Part III: Summary, Conclusions, and Outlook
XIV. SUMMARY AND CONCLUSIONS

In this paper, we have provided an overview of methods for
modeling and solving optimization problems under uncertainty
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arising in the context of electric power systems, with the goal
of providing a summary and suggestions for further reading to
researchers who are interested in applying optimization under
uncertainty in their own work. The first part of the paper de-
scribes some of the most commonly used modeling techniques
and algorithms. The second part of the paper reviews several
applications. In this section, we offer overarching insights and
an outlook towards future research directions.

An important aspect of power system optimization under
uncertainty is that modeling and solution algorithms go hand
in hand. How we choose to model and represent risk impacts
which solution algorithm is going to be most successful at
obtaining a solution with reasonable time and computational
complexity. Conversely, our modeling choices (in particular,
the approximations we choose to apply) are often impacted
by the need to obtain a computationally tractable problem.
As a result, when modeling and solving optimization prob-
lems under uncertainty, we often encounter inherent trade-
offs between solution quality (e.g., how optimal a solution
is in terms of first-stage and expected second-stage cost?),
providing probabilistic guarantees (e.g., how accurately are
we able to model risk and probability of violations?) and
computational tractability (e.g., how quickly can we solve
the problem? Do we need a supercomputer or is a laptop
enough?). How we choose to manage the trade-offs among
these different aspects will vary by application and will also
depend on how we choose to model and solve the problem.
Solution evaluation is vitally important in these applications,
as it can help us understand which modeling assumptions
are reasonable (i.e., can be applied without deteriorating the
quality of the decisions made by the model) and where we
should invest more time and effort to improve our results. As
the saying goes: “All models are wrong, but some are useful”.

XV. OUTLOOK AND FUTURE DIRECTIONS

To conclude, we discuss several common observations and
provide an outlook to challenges that we believe constitute
important directions for future research.

1) Time scales of renewable energy uncertainty: Across all
the applications, one of the primary drivers of uncertainty
is the availability and variability in power generation from
renewable energy sources. Uncertainty from wind and solar
power is frequently considered at a shorter time-scale, whereas
hydro-power uncertainty typically considers seasonal variabil-
ity in precipitation. Given the rapid adoption of wind and
solar power and the decline in other sources of generation
capacity, it is becoming increasingly important to consider
the seasonal and yearly variations in wind and solar power
availability and how they correlate with load. Considering
larger time horizons increases the complexity of solving the
problems and also raises several important modeling questions.
For example, how do we represent the risk and uncertainty
associated with prolonged periods with lower wind and solar
output such as the wind droughts in Europe in October 2021?
How does wind and solar correlate with extreme weather to
exaggerate or mitigate the impacts of corresponding changes in

load, such as the correlation between very cold weather with
low wind predicted for both Europe and the United States?
Do we need the same or different risk metrics in situations
with oversupply of renewable energy (California in Spring)
and potential scarcity (California in Summer)?

These questions affect models ranging from short-term
operations, which deal with the current scarcity or oversupply
of power, to long-term planning, which need to consider how
these correlations may be impacted by climate change.

2) High-impact, low-probability events: There are several
emerging drivers of uncertainty in electric power systems.
There is significant uncertainty associated with the impacts
of climate change on the grid. Accordingly, there is in-
creasing interest in modeling and mitigating the impacts of
extreme weather, such as heatwaves, cold spells, hurricanes,
and increased wildfire risk, both in operations and long-term
planning. At the same time, increasing reliance on electricity
for transportation, heating, and cooling also implies that the
impacts of power outages and thereby the risk associated with
them is changing, motivating the development of models that
integrate technical aspects with the societal context around grid
operation. Emerging examples include models that integrate
information about hurricane evacuation orders or data on
wildfire risk into emergency dispatching models. Accurately
modeling the impacts of extreme weather events also requires
considering new source of common mode outages (e.g., a cold
wave that impacts both electricity and natural gas systems) and
how to model (and weigh) the impacts of high-impact, low-
probability events.

3) Interdependent systems: In some cases, risk can propa-
gate between the electric grid and adjacent systems, including
interactions with the natural gas system, water supply systems,
cyber-physical layers of system operations, large-scale electric
vehicle charging, and large-scale computing infrastructure.
The need to characterize this uncertainty and mitigate asso-
ciated risks while maintaining practically plausible models of
reasonable complexity is a significant challenge.

In some situations, optimization under uncertainty, which
inherently accounts for the fact that some information is
unknown, can provide important tools for managing coupled
system operations with limited exchange of information.

From a market design perspective, some assets might be
able to provide services for improving the stability of the entire
system against the systemic risk and, in the extreme case,
against potential cascading failures. It is of interest to explore
whether the current market products, e.g., ancillary services,
sufficiently remunerate those assets for their services and, if
not, whether new market products are necessary.

4) Scalability: Across all applications and methods, one
of the principal challenges is computational scalability. Scal-
ability limits the fidelity of our models, including how many
scenarios we are able to include, how we choose to represent
our recourse actions, what type of power flow model we
choose (which impacts the detail in which we are able to
represent the system operating state), which emerging tech-
nologies we are able to represent in the model, how many
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decision variables we can include, and the length of time-
horizons that we are able to resolve. Significant ongoing
advances in computer hardware and optimization algorithms
have offered many new possibilities. Although these general
advances continually increase the range of tractable problems,
the structure specific to power system problems (such as the
sparsity of the power flow equations or the fact that only a
few transmission lines tend to be congested) provides oppor-
tunities to develop special-purpose algorithms that exploit this
structure, often in combination with standard methods such
as cutting plane algorithms, column-and-constraint generation,
and stochastic dual dynamic programming, among others.
Developing such algorithms is an important avenue for future
research that requires an interdisciplinary understanding of
both power systems and optimization.

5) Formulating and solving uncertain distributed optimiza-
tion problems: The rapid growth of distributed energy re-
sources motivates the application of distributed optimization
algorithms where multiple computing agents representing dif-
ferent portions of the a power system cooperatively solve op-
timization problems. In distributed optimization, agents iterate
between solving local subproblems and exchanging informa-
tion regarding the values of shared variables at the agents’
interconnections. With some limited exceptions such as [196],
the existing literature on distributed optimization for power
systems primarily focuses on deterministic problems [249].
However, many practical applications of distributed optimiza-
tion algorithms will likely require consideration of uncertainty.
There are a number of related open questions, including what
information regarding the uncertainties should be shared with
neighboring agents (e.g., samples of uncertainty realizations,
probability distributions, or uncertainty sets), how to effi-
ciently use this information within distributed optimization
algorithms, and how to design incentives so that the agents
accurately report this information.

6) Pricing of risk and uncertainty: The consideration of
risk and uncertainty in system operations tend to increase the
nominal cost of operation. Furthermore, adverse realizations
of the uncertain parameters may lead to very high opera-
tional cost. The question of how to share this increased cost
among market participants remains an important question in
the design of energy markets. Some methods for decision-
making under uncertainty, e.g., robust and distributionally
robust optimization, may require complicated formulations,
leading to non-linear problems or the addition of auxiliary
integer variables. This may complicate deriving efficient and
equilibrium-supporting market-clearing prices using dual vari-
ables and is an important avenue for further research.

This list of research directions for power systems under
uncertainty is intended to illustrate some potential future direc-
tions and is inherently non-exhaustive. We nevertheless hope
it will serve as an inspiration for our readers and that they will
use the material in this paper on the modeling, formulation,
and solution of optimization problems under uncertainty to
identify their own problems and research directions.
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[42] N. Löhndorf and A. Shapiro, “Modeling time-dependent randomness
in stochastic dual dynamic programming,” European Journal of Oper-
ational Research, vol. 273, no. 2, pp. 650–661, 2019.

[43] J. Zou, S. Ahmed, and X. A. Sun, “Stochastic dual dynamic integer
programming,” Mathematical Programming, vol. 175, no. 1, pp. 461–
502, 2019.

[44] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares, “Risk
neutral and risk averse stochastic dual dynamic programming method,”
European Journal of Operational Research, vol. 224, pp. 375–391,
2013.

[45] A. Shapiro, “Analysis of stochastic dual dynamic programming
method,” European Journal of Operational Research, vol. 209, pp. 63–
72, 2011.

[46] A. B. Philpott and Z. Guan, “On the convergence of stochastic dual
dynamic programming and related methods,” Operations Research
Letters, vol. 36, no. 4, pp. 450–455, 2008.

[47] T. Asamov and W. B. Powell, “Regularized decomposition of high-
dimensional multistage stochastic programs with markov uncertainty,”
SIAM Journal on Optimization, vol. 28, no. 1, pp. 575–595, 2018.

[48] V. L. D. Matos, A. B. Philpott, and E. C. Finardi, “Improving the
performance of stochastic dual dynamic programming,” Journal of
Computational and Applied Mathematics, vol. 290, pp. 196–208, 2015.

[49] V. Guigues, “Dual dynamic programing with cut selection: Conver-
gence proof and numerical experiments,” European Journal of Opera-
tional Research, vol. 258, no. 1, pp. 47–57, 2017.

[50] N. Löhndorf, D. Wozabal, and S. Minner, “Optimizing trading de-
cisions for hydro storage systems using approximate dual dynamic
programming,” Operations Research, vol. 61, no. 4, pp. 810–823, 2013.

[51] E. L. da Silva and E. C. Finardi, “Parallel processing applied to the
planning of hydrothermal systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 8, pp. 721–729, 2003.

[52] R. J. Pinto, C. Borges, and M. E. P. Maceira, “An efficient parallel
algorithm for large scale hydrothermal system operation planning,”
IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4888–4896,
2013.

[53] F. D. Machado, A. L. Diniz, C. L. Borges, and L. C. Brandao, “Asyn-
chronous parallel stochastic dual dynamic programming applied to
hydrothermal generation planning,” Electric Power Systems Research,
vol. 191, p. 106907, 2021.
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[86] T. Mühlpfordt, T. Faulwasser, and V. Hagenmeyer, “Solving stochastic
AC power flow via polynomial chaos expansion,” in IEEE Conference
on Control Applications (CCA), 2016, pp. 70–76.

[87] D. Lee, K. Turitsyn, D. K. Molzahn, and L. Roald, “Robust AC optimal
power flow with convex restriction,” IEEE Transactions on Power
Systems, vol. 36, no. 6, pp. 4953–4966, November 2021.

[88] A. J. Conejo, M. Carrión, J. M. Morales et al., Decision Making Under
Uncertainty in Electricity Markets. Springer, 2010, vol. 1.

[89] J. L. Carpentier, “Contribution a l’etude du dispatching économic,” in
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