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ABSTRACT: Coastal trapped waves (CTWs) transport energy along coastlines and drive coastal currents and upwelling.
CTW modes are nonorthogonal when frequency is treated as the eigenvalue, preventing the separation of modal energy fluxes
and quantification of longshore topographic scattering. Here, CTW modes are shown to be orthogonal with respect to energy
flux (but not energy) when the longshore wavenumber is the eigenvalue. The modal evolution equation is a simple harmonic
oscillator forced by longshore bathymetric variability, where downstream distance is treated like time. The energy equation
includes an expression for modal topographic scattering. The eigenvalue problem is carefully discretized to produce numerically
orthogonal modes, allowing CTW amplitudes, energy fluxes, and generation to be precisely quantified in numerical simulations.
First, a spatially uniform K; longshore velocity is applied to a continental slope with a Gaussian bump in the coastline. Mode-1
CTW generation increases quadratically with the amplitude of the bump and is maximum when the bump’s length of coastline
matches the natural wavelength of the CTW mode, as predicted by theory. Next, a realistic K; barotropic tide is applied to the
Oregon coast. The forcing generates mode-1 and mode-2 CTWs with energy fluxes of 6 and 2 MW, respectively, which are
much smaller than the 80 MW of M, internal-tide generation in this region. CTWs also produce 1-cm sea surface displacements
along the coast, potentially complicating the interpretation of future satellite altimetry. Prospects and challenges for quantifying
the global geography of CTWs are discussed.

KEYWORDS: Coastal flows; Inertia-gravity waves; Internal waves; Kelvin waves; Topographic effects; Waves, oceanic;
Tides

1. Introduction The general theory of CTWs unifies the results of numer-
ous piecemeal studies that describe a zoo of waves in various
idealized settings [e.g., see the phylogenetic tree in Wang and
Mooers (1976)]. Stokes (1846) identified “edge waves” in a
nonrotating fluid with a sloping bottom. These waves are
trapped by refraction and can propagate in either direction; they
are analogous to total internal reflection in optics (LeBlond and
Mysak 1978). Thomson (1879) identified “Kelvin waves” in a
rotating fluid with a flat bottom and vertical wall. These waves
propagate with the coastal wall on their right in the Northern
Hemisphere. Robinson (1964) identified “continental shelf
waves” in an unstratified, rotating fluid with a sloping bottom.
These waves are subinertial, trapped by conservation of relative
vorticity, and propagate with the coast on their right in the
Northern Hemisphere. Since they have the same restoring force
as Rossby waves and can occur on slopes away from coastlines,
they are also called barotropic “topographic Rossby waves”
(Rhines 1970; Cushman-Roisin and Beckers 2011). Like tradi-
tional Rossby waves, continental shelf waves have local maxima
in their dispersion curves so that long (short) waves produce
energy flux in the direction (opposite direction) of phase prop-
agation. Huthnance (1975) demonstrated that an unstratified,
rotating fluid with a sloping bottom and coastal boundary per-
mits (i) a set of superinertial edge waves propagating in both
directions, (ii) a Kelvin wave, and (iii) a set of subinertial con-
tinental shelf waves that propagate with the coast on their
right. Stratification transforms continental shelf waves into
CTWs and produces two major modifications: (i) the waves
become “bottom-trapped waves” over small slopes (Rhines
1970; Wang and Mooers 1976; Huthnance 1978) and (ii) the
Corresponding author: Samuel M. Kelly, smkelly@d.umn.edu dispersion curves monotonically increase, eliminating short

Wind and tides generate coastal trapped waves (CTWs) that
redistribute energy, create sea surface height (SSH) anomalies,
and produce ecologically important coastal currents and upwell-
ing (Mysak 1980; Allen 1980; Brink 1991). CTWs are generated
and scatter due to variability in longshore bathymetry and lose
energy through small-scale processes (Brink and Allen 1978;
Power et al. 1989; Brink 2006) and interactions with mean flows
(Narayanan and Webster 1987; Yankovsky and Chapman 1995,
1996). The global energy balance for CTWs, including their role
in ocean mixing, is largely unknown (Musgrave 2022). We are
unaware of any global power estimates for wind-driven CTWs
and have found only one global study on trapped K; internal
tides; Falahat and Nycander (2015) estimated 2 GW of trapped
(subinertial) K; internal-tide generation, much smaller than the
83 GW they estimated for freely propagating K, tides. Here, we
establish a framework for quantifying CTW amplitudes, energy
fluxes, and generation that may facilitate further global estimates.

Accurate CTW models are critical for predicting the amplitude
and phase of upwelling events and coastal SSH anomalies. The
Surface Water Ocean Topography (SWOT) satellite (to be
launched in November 2022) will have a 100-km-wide altimeter
swath and a 21-day repeat orbit (Carrere et al. 2021). Between
each orbit, background stratification and tidal CTW modes can
evolve, leading to nonstationary tidal SSH signals that are badly
aliased by the orbit and will contaminate observations of meso-
scale SSH. Here, we derive evolution equations for CTW modes
that may help predict and filter nonstationary tidal CTWs.
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waves with energy fluxes in the direction opposite phase prop-
agation (Wang and Mooers 1976; Chapman 1983).

CTW dynamics have often been formulated as an eigenvalue
problem with a prescribed longshore wavenumber, pressure
eigenvectors, and frequency eigenvalues (Wang and Mooers
1976; Huthnance 1978; Brink 1991). Musgrave (2019) highlights
two difficulties with this formulation: (i) each mode is a combina-
tion of barotropic and baroclinic motions (see also LeBlond and
Mysak 1978), so vertical averaging does not separate large-scale
Kelvin waves from shorter CTWs, and (ii) the modes are not
orthogonal except in the long-wave (nondispersive) limit (see
also Wang and Mooers 1976; Huthnance 1978; Brink 1989),
preventing energy fluxes associated with dispersive CTW from
being objectively isolated and quantified. This difficulty is circum-
vented by treating the longshore wavenumber as the eigenvalue
(section 2; Webster and Holland 1987; Johnson and Rodney
2011).

Here, we develop and apply a framework for quantifying
CTW energy fluxes and generation in realistic settings, with
the caveats of neglecting nonlinear effects, mean—flow interac-
tions, and spatially variable inertial frequency. In sections 2a
and 2b, we derive the orthogonality relations for CTW modes
and present modal evolution and energy equations. In section
2c, we link our results to previous work. The discrete form of
the eigenvalue problem is described in section 3a, and general
circulation model configurations are described in section 3b.
We then quantify CTW generation in simulations of baro-
tropic tidal flow past an idealized coastal bump (section 4a)
and on the Oregon coast (section 4b). Section 5 summarizes
the results.

2. Theory
a. CTW modes

This study examines small-amplitude perturbations from a
quiescent rest state with constant inertial frequency. The restric-
tion to small amplitudes precludes nonlinear processes like
wave steepening and eddy formation (Rodney and Johnson
2014). The restriction to a quiescent rest state eliminates inter-
actions between CTWs and mean flows, which have been
shown to have major effects on CTW generation, propagation,
and dissipation (Narayanan and Webster 1987; Yankovsky
and Chapman 1995, 1996). The restriction to constant inertial
frequency eliminates the possibility of offshore propagating
Rossby waves. The inviscid, unforced, f-plane, Boussinesq,
hydrostatic equations of motion in Cartesian coordinates
are

du—fu=—ap, (1a)

du+ fu=—dp, (1b)

0= —9,p+0b, (1c)

a,b + wN* =0, (1d)
dut+avtaw=0, (1e)
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FIG. 1. The idealized-bump bathymetry with annotated axes (x, y,
and z) and parameters (W and L).

where x, y, and z are the longshore, cross-shore, and vertical
coordinates, respectively (Fig. 1); u, v, and w are velocities;
p is reduced pressure (the perturbation from hydrostatic pressure
divided by a reference density po); b is the buoyancy perturba-
tion; and f and N are the inertial and buoyancy frequencies,
respectively. An evolution equation for pressure is formed by
combining the vertical momentum, buoyancy, and continuity
equations (e.g., Kelly 2019)

-1
a,z(ﬁ azp) = —0u—duv ?2)

The boundary conditions are no-normal flow at the coast,
coastal trapping (offshore decay as y — =), a linear free surface,
and a kinematic flow deflection at the bottom boundary,

v=0 at y=0, (3a)
u,u,p >0 as y— o, (3b)
am=w= _ﬁ ap at z=0, (3¢0)
—w H=w= 12 a.p at z=—H, (3d)

respectively, where m is the surface displacement, H(x, y) is
the depth, and the pressure conditions are derived by
substituting b = 9.p in (1d). The surface boundary condition
can be integrated in time to produce = —d_p/N* at z = 0 and
the hydrostatic balance yields the useful relation p = gn at z = 0.

Coastal trapped waves oscillate in ¢ and x, so it is useful to Fou-
rier transform the equations of motion and their boundary condi-
tions in one of these dimensions. Historically, the decomposition
has been performed in the x direction to yield a known longshore
wavenumber, £. In this case, the coastal-trapped modes have ei-
genfrequencies w, and eigenvectors that are nonorthogonal
(Wang and Mooers 1976; Brink 1989; Musgrave 2019). Here, we
Fourier transform in time to yield a known frequency w and
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eigenwavenumbers k,. Solving the problem with a known
frequency is convenient for narrowband processes, like subiner-
tial tides, but inconvenient for broadband processes, like wind-
driven CTWs, because in the latter case the CTW problem
must be solved at every frequency in the forcing spectrum. The
frequency formulation is also natural for linear scattering prob-
lems where the incident wave has a known frequency and only
scatters to other modes at that frequency. For a finite length re-
cord, t € [0, T), the Fourier series is

%

u(x,y,z,t) = Z u,(x,y,z) exp (—iw,t), 4)
with complex Fourier coefficients
1 T
u, (x,y,z) = TJ u(x,y,z,1) exp (io t)dt, (5)
0

with Fourier frequencies w, = am/T.

At any frequency of interest, the evolution Egs. (1a), (1b),
and (2), can be written in operator form for a given set of
Fourier coefficients u,, v,, and p,:

—Mo x = —iKx, (6)

where X(x, y, 2) = [ta(X. y. 2). iva(x. y. 2). pa(x. y. 2)]" because
X is a column vector and the operators are

- 0
00 1 o o
- —
M={0 0 0| and k=| T © y )
L 0o 0 o, waz(ﬁaz)

o a0 . .
{Xm’Kxn} - {me’xn} = JO J‘*H {um(wun —ﬁvn) - iv’;"(_fun

_ I: ﬁ)H {(wu,*n + ﬁvj,,)u” - (—fl,

o ) o0
. * * w * *
- L LH [zay(v,rpn + puu,) T m(azpmazpn — azpnazpm)]dzdy — L (pm

o0 0
L iay[LH(vfnpn + p,v,)dz

+ L [wg(nfnnn = m,m,) + id, H(y,p,,

y=00

0.

0
I (iy,p, + iv,p,)dz
_H =0

The Coriolis and kinetic energy terms cancel immediately. In
the second equality, integration by parts shows that baroclinic
potential energy cancels (recall d.p, = b,). In the third
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The second component of x is multiplied by i so that the
operators are entirely real, which indicates that the across-slope
velocity v of a given CTW is in quadrature with the pressure p
and alongshore velocity «. The vertical boundary conditions for
the Fourier coefficients are

-1

n, = N ap, at z= 0, (8a)
iw
—v,0,H = N2 9Pa at z = —H. (8b)

Hereafter, all variables are Fourier coefficients, so we drop
the a subscript to simplify notation. Subscripts will instead refer
to mode numbers.

Next, we try a solution of the form x(x,y,z) = x,(y,z)
exp (ik,x) to produce a generalized eigenvalue problem

k,Mx, = 9)

Kx,,

where the alongshore wavenumber k,, is the eigenvalue. The
eigenvectors (modes, x,,) are orthogonal because K is self-
adjoint (Hermitian) with respect to the inner product

o 0
(XX} = L J_H(y) xgl*xndzdy, (10)

where the * is a complex conjugate. The proof that K is self-
adjoint is illuminating:

+ wiv, — ayp”) + P

. —d.p
d, i, + wéz(#)

}dza'y

—opt
=0y, + waz(%)]p”}dzdy

z=0
)

.k #* .
wiv, = 4 p,,)iv, +

_wd_p,

N2

* wazp n
N2

dy
z=-H

dy

z=-H

o)y

(1)

equality, Liebniz’s rule and the fundamental theorem of cal-
culus show that barotropic potential energy cancels and the de-
flection of cross-shore energy flux at the sloping bottom is
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balanced by the vertical energy flux at the bottom. The coastal
and offshore boundary conditions on v, ensure that the final
equality is zero, making K self-adjoint. Note that K would also be
self-adjoint with a rigid-lid boundary condition (i.e., 9.p, = 0 at
z = 0) and/or no-normal flow at an impermeable offshore
boundary (e.g., v, = 0aty = ymax)-

The modes x,, are orthogonal because K is self-adjoint,

{xm,Kxn} — {me,xn} = {xm,k"Mxn} — {kmem,xn},

0=~ k)| [ ip, + phanaca,
0 J-H

so that for nondegenerate (unique) eigenvalues and modes
with nonzero energy flux, one may normalize x,, as

pO{Mxm, xn} = po{xm, Mxn}

()
= POJO J H(ufnPn + pu)dzdy = 8, (W),
(13)

where §,,, is the Kronecker delta. The M is a metric tensor
that scales the inner product so that it (i) sums quantities with
consistent dimensions and (ii) returns the longshore inte-
grated energy flux. The normalization is chosen so that each
mode produces 1 W of alongshore energy flux. This normali-
zation follows Brink’s (1989) convention that a mode with
constant amplitude should conserve longshore energy flux
even if parameters such as f and H vary along the coast (see
section 2c).

The solution properties of generalized eigenvalue problems
are more complicated than those of standard eigenvalue prob-
lems. Equation (9) has real and imaginary eigenvalues, which
correspond to propagating and evanescent waves. Since
K and M are self-adjoint, it can be proven that modes with
real k, have nonzero energy flux {x,, Mx,} # 0 with the same
sign as k,, (Parlett 1980). It can also be proven that modes
with real k, can be normalized so that they are entirely real.
Thus, u, = u,, p, = p,,, and v, = —v,. Solutions with imagi-
nary eigenvalues are nonpropagating (evanescent) and
have zero longshore energy flux {x,, Mx,} = 0 (see also
Webster 1985), so all longshore energy flux must be repre-
sented by CTW modes with real k,. Numerical calculations in
section 4 support this statement (i.e., 99.99% of energy flux is ex-
plained by the first five modes), although we have not derived
a completeness theorem.

b. Modal evolution and energy equations

An arbitrary flow with frequency w can be written

x(x,y,2)e " = 37 x (v, 2;X)A,,(x) exp [i(k,x — wt)] + residual,
n=0

(14)

where k,, and x,, are real, and the “residual” is the component
of the flow that produces no longshore energy flux (e.g., a local,
evanescent response to a cross-slope obstruction). The temporal
oscillation term is superfluous because it appears on both sides

Brought to you by UNIV OF MINN LIBRARIES | Unauthenticated | Downloaded 08/12/22 08:25 PM UTC

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 52

of (14), but it is included to emphasize that A,, is a complex har-
monic amplitude for waves at the specified Fourier frequency
(w would be w,, had we not dropped the Fourier subscripts).

The semicolon in (14) is used to emphasize that x,, has a para-
metric dependence on x because it can be computed for different
bathymetric profiles along a coast. At each location, the CTW
modes provide an orthogonal basis for the longshore energy flux.
When the modes change shape due to a change in the waveguide
(coastline), the change of basis “scatters” energy flux from one
mode to another. This representation is known as the “reference
waveguide method” and has been previously applied to acou-
stic wave and internal-tide propagation (see, e.g., Lahaye and
Llewellyn Smith 2020). The method requires no assumptions
about the length scale or smoothness of longshore variability.
However, the method can obscure the physical interpretation of
CTWs because a CTW amplitude might evolve over a bump
not because the underlying waveform changed, but because of
changes in the modes used to represent the waveform.

The modal amplitude is

A0 = {x,0,20,Mx(x,y, 2)}/(m?s7),  (15)

where we must divide by 1 m? s> to make A,, dimensionless
because the modes, x,,, and inner product, (10), are dimensional.
Projecting (6) onto the nth mode yields

{xn,Maxx} = {xn,in},

6x{xn,Mx} - {axxn,Mx} = i{Kxn,ZAmxm + residual},

m

a,A, — {Ma,x,, x}

ikn{Mxn,ZAmxm + residual},
m

9 A, —ik,A, = {Mox, x}, (16)
where the residual in (14) is orthogonal to x,, and the modal
forcing (i.e., coupling) is F,, = {Md,x,, x}. Multiplication of
(16) by (9, + ik,,) yields

a A, + kA, = (9, +ik)F

. 17
the equation for a forced harmonic oscillator. The CTW
amplitude evolves downstream the way the angle of a pendulum
evolves in time. Longshore bumps act like external forces, so
large resonant responses occur where topographic wavenumbers
match CTW wavenumbers.

A time-averaged modal energy equation is obtained by
multiplying (16) by pyA,, and taking the real part

9,F, = C,(Wm™) (18)
where
Fo= 114 P M
n El n| pO{ X”,X”
1 P «
=5l [ i+ wpyazy W) (9)
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FIG. 2. Oregon and idealized stratification. The vertical mode-1

eigenspeeds (not CTW speeds) are 2.2 and 3 m s~ ', respectively
(Kelly 2016).

is the longshore energy flux in the nth mode and the double
integral evaluates to 1 W [see (13)]. The expression for inter-
modal energy transfer due to topographic scattering is

C, = Re[pOAZ{Maxxn,x}]

= Re

EPOAnJ‘O KH(uaxpn + Paxun)dZdY}, (20)

which depends on the total u and p fields and the longshore
gradient of the modes d,x,. While C,, is a generic expression

S A I «. [—9.P,
{Xm,EXn} —{Ex,.x,} = EJ() J_H uu, + v,v, +p,o, A2
1P| . : —a.p,

_ EJ;) JLH [umu” + Y, U, + BZ( ]\;2 m)Pn

RV .
=3, 7Hﬁ(0,pmazpn—

1 xl * *
= EJ; Z(pmwn + men)

because when 9, # 0 the vertical energy flux at the bottom
must be balanced by a cross-shore energy flux, which is not in-
cluded in the energy operator. Since the phase between
modes m and n oscillates along the coast, one might try to
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for topographic scattering, we refer to it as to “CTW gener-
ation” in this study because we only analyze simulations
that generate CTWs from an oscillating barotropic current
that approximates a mode-0 Kelvin wave.

Energy transfers between two specific modes could be quan-
tified if # and p in (20) were expanded as a sum of CTWs.
Unfortunately, the expansions are incomplete because of the
residual in (14), which is not necessarily orthogonal to 9,Xx,,.
Physically, the residual is the sum of the evanescent modes,
which describe the flow adjustment to a topographic bump that
does not project onto CTWs. Yankovsky and Chapman (1995)
discuss evanescent modes in numerical simulations and empha-
size that they are as relevant for predicting coastal circulation
as propagating CTWs (see also simulations by Wilkin and
Chapman 1987, 1990).

c. Connection to previous results

Webster and Holland (1987) and Johnson and Rodney
(2011) derived CTW modes from a quadratic eigenvalue
problem for pressure with a longshore wavenumber as the
eigenvalue. They transformed this problem into a regular
eigenvalue problem through several nonobvious substitu-
tions and showed that the modes were orthogonal. Webster
and Holland (1987) derived an evolution equation similar
to (16) that included wind forcing but not topographic scattering.
Our orthogonality condition appears to be equivalent to these
previous studies, except that the origin and physical interpreta-
tion are more apparent.

Using the procedures in section 2a, it is straightforward to
show that the energy operator

10 0
E _1lo 1 0 @1)
2 -1
0 0 afoto)
is not self-adjoint
dzdy
dzdy
. v 0P, apn |
T R
dy, (22)

z=-H

eliminate the cross term by averaging over the beat distance.
In this case, longshore-averaged energy is orthogonal for each
mode, as noted by Huthnance (1978). In practice, this averaging
is unfeasible because several modes may be present, including
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FIG. 3. Pressure, longshore velocity, and wavelengths for CTW modes 0, 1, and 2 in the idealized simulation.
For plotting purposes, the modes have been renormalized to produce a 1-cm maximum surface displacement
[m = pn(z = 0)/(pog)].- Mode 0 is approximately constant, and the values are listed.

evanescent modes, making it impossible to define a correct beat
distance.

The procedures in section 2a also confirm that the long-wave
approximation produces CTWs that are orthogonal even when
w is treated as the eigenvalue. Assuming o << f, one can neglect
the time derivative in (1b) and write the equations of motion

1 ’ 1<’
aMxn = K’x), (23)

where ¢, = w/k is an eigenspeed, so either k or w can be
regarded as the eigenvalue. The modified eigenvector is
X), = [y, iv/ o, p,,]T, where v, can be recovered after determin-
ing w. The M operator is defined in (7) and

1 —f 0
K = -f 0 :aly , (24)
0 az(ﬁaz)

which is self-adjoint, so the modes are orthogonal according
to (13), as before.

Previously, orthogonality conditions were derived from a
pressure equation and stated in terms of pressure alone (e.g.,
Wang and Mooers 1976; Brink 1989). The orthogonality con-
dition here can also be stated solely in terms of pressure by
expressing longshore velocity in terms of pressure
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:faypn — wk,p,

u, =, 25)
and substituting the expression into (13) to produce
0 o
[ Cupeo+ | 0,100y
w [* 0 o — 2
+ (k,, + k")fjo J_Hpmpndzdy = ( ! )6mn, (26)

where Liebniz’s rule has been used. The long-wave approxi-
mation u,, = d,p,/f, simplifies the orthogonality condition to

Ji{ PPy —odz + L 3 HPup .- ydy = = £8,,, (27)

which is standard in the literature (e.g., Brink 1989) and also
consistent with assuming w << fin (26).

3. Numerical methods
a. The discrete eigenvalue problem

Only u,, and p,, are needed to determine CTW amplitudes
and energy fluxes. Using the polarization relations to elimi-
nate v, reduces the eigenvalue problem (9) to
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FIG. 4. (a) A snapshot of surface displacement in an MITgem simulation with a Gaussian
coastline bump (L = 250 km and W = 30 km) reveals (i) a large-scale pressure gradient due to
barotropic flow around the bump and (ii) the generation of mode-1 CTWs (4; = 325 km) at the
bump, which propagate to the right. The depth-contour interval is 1 km. Cross-shore snapshots
of (b) p and (c) u downstream of the bump (at x = 200 km) are consistent with a mode-1 CTW
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(cf. Fig. 3).
Min =c, Kin, (28) Asa resul.t, the .identity matrices in (29) are replaced with bidiag-
onal matrices with values of 1/2.
with ¢, = @/kp, Kn = [ttn, palf]¥, and operators The boundary condition v, = 0 at the coast is expressed

u, = d,p,/f using (1b). The continuous problem is self-adjoint in

M= [0 1} and (29) a semi-infinite domain, but our numerical domain requires an
1 0p offshore boundary condition. The simplest way to code a self-
adjoint offshore boundary condition is to specify a vertical

o’ 1 s wall. This choice permits spurious numerical offshore Kelvin

K = RN Y (30) waves. These waves are orthogonal to the CTWs of interest
o? - ’ and are easily identified by their negative wave speeds. Both

a o +al2%s
y w U %\TN2 %

The results in section 2 still apply to this system, but (28) is
easier to solve numerically than (9).

The discretized version of (30) is carefully constructed so
that the matrices are self-adjoint and the CTW modes are
numerically orthogonal. The u,, and p,, are solved on a staggered
C-grid with uniform Ay and Az. The u, nodes are placed at the
onshore and offshore boundaries of each cell and the p,, nodes
are placed in the center. The staggered grid allows the 9, opera-
tor to be centered in the momentum and pressure equations;
however, the staggered grid also requires u,, to be averaged to
the center of each cell when computing longshore energy flux.
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u, and p,, are specified at the middepth of each cell, so vertical
derivatives are calculated using centered differences. This vertical
grid naturally allows the specification of free surface or rigid-lid
boundary conditions (see Kelly 2016). The bottom is considered
locally flat in each grid cell, so the bottom boundary condition is
w,, = 0, which is equivalent to d_p,/f = 0. Finally, the w,(y, z)
and p,(y, z) fields are changed from 2D matrices to 1D vectors
by listing their values from the coast to the outer wall at each
depth, starting at the surface and moving down. The resulting
eigenvectors have length 2N,N, + N_, where the extra N,
accounts for the u, node at the outer boundary.

The numerical solver is written in MATLAB and searches
for waves propagating along the coast and the outer wall,
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FIG. 5. As in Fig. 4a, but surface displacement is decomposed into mode-0 forcing, which
includes (a) both the left- and right-going Kelvin waves, (b) the mode-1 CTW, and (c) the
evanescent residual. Surface displacements due to higher-mode CTWs are too small to see

on the color scale.

which are distinguished by the sign of ¢,. The solver finds the
fastest waves in both directions, using the shallow water wave
speed as a first guess. In practice, the modes are numerically
orthogonal so that when m # n the discrete version of (13) is
on the order of 107'°,

Johnson and Rodney (2011) present a more sophisticated
method for solving the CTW eigenvalue problem with the long-
shore wavenumber as an eigenvalue. They elegantly solve the
numerical problem in a semi-infinite domain using Laguerre
functions, which automatically decay offshore. This technique
avoids the problem of specifying an artificial offshore boundary.
In general, their spectral method is likely more efficient, accurate,
and robust than the finite-difference method used here. How-
ever, we employ a simple finite-difference method because it can
be solved on the native computation grid of our general circula-
tion model simulations, ensuring the modes are numerically or-
thogonal in the domain of interest.

b. The general circulation model

The MIT general circulation model (MITgem; Marshall et al.
1997) is used to simulate CTW generation at idealized coastal
bumps and along the Oregon coast. For both types of experiments,
grid spacing in the region of interest is 2000 m X 2000 m X 50 m
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in the x, y, and z directions, respectively. The idealized simula-
tions have a 16-h inertial period and constant stratification
N = 3m/3000 s™!, so that the vertical mode-1 eigenspeed is
exactly 3 m s~ ! for H = 3 km, similar to much of the World
Ocean (e.g., Rainville and Pinkel 2006). Horizontally uniform
stratification on the Oregon slope (Fig. 2) is computed from the
World Ocean Atlas (WOA; Locarnini et al. 2010; Antonov et al.
2010) and has a mode-1 eigenspeed of about 2.2 m s~ (Kelly
2016). The spatially uniform inertial period is 17.4 h, which
corresponds to 43.5°N. In both simulations, a K; (24-h period)
barotropic tidal flow generates CTWs as it flows around long-
shore bumps. We analyze pressure and longshore velocity from
each simulation during the 10th tidal cycle, when the CTWs have
reached an approximate steady state. Horizontal and vertical
numerical viscosities of 107" and 1072 m? s™, respectively,
stabilize the model.

The idealized-bump simulations have a high-resolution
domain of 600 km X 300 km X 3 km in the longshore, cross-
shore, and vertical directions. An additional 100 nodes extend
the longshore domain by several thousand kilometers using a
telescoping grid that ends with a grid spacing of 2000 km. The
domain is periodic in the longshore direction, but CTWs gen-
erated by the bump do not reenter the domain of interest in
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FIG. 6. (a) In the idealized simulation, CTW amplitudes grow over
the bump (see Fig. 4) and remain large downstream (to the right).
(b) Energy flux increases over the bump before slowly decreasing
though numerical dissipation as the waves propagate to the right.
Mode-2 energy flux is about 3% of mode-1 energy flux. (c) Mode-1
energy flux divergence is explained by mode-1 generation over the
bump.

10 tidal cycles because of the telescoping grid. An oscillating
body force generates a spatially uniform 10 cm s~ ! longshore
barotropic current, which projects onto the mode-0 (Kelvin)
waves propagating along the coast and offshore boundary.
This current subsequently generates CTWs as it flows around
a coastal bump. The continental slope bathymetry is

y - yslope)}’ (1)

Habyss B Hshelf

H(y) = Hg o + 1+ tanh(
Ywidth

where H,uyss = 3 km is the depth of the abyssal plain,
Hgpei = 300 m is the shelf depth, and ygope = 50 km is the
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center of the slope. The width of the slope is 2myyiqn = 307 km.
The continental slope is shifted to H(y — yg) to produce a
coastal bump, where y, is a Gaussian curve centered at x = 0,

(|

The terms W and L are the amplitude (width) and length of
the bump, respectively (Fig. 1). This bathymetry was chosen
because the mode shapes are identical everywhere, although
shifted offshore, and the Gaussian coastline is compact in
both position and wavenumber space (i.e., the Fourier trans-
form of a Gaussian is another Gaussian).

The Oregon domain extends from 124° to 127.5°W and from
41° to 46°N, roughly the region studied by Osborne et al.
(2014). The simulation uses realistic bathymetry (Smith and
Sandwell 1997) at the coast but has a perfectly flat 3-km abyssal
plain to eliminate “noise” due to bottom-trapped modes at
small offshore seamounts. Barotropic K; velocities from the
TPXO08.0 atlas (Egbert 1997) force the simulation at the north
and south boundaries. A 50-km sponge at the north and south
boundaries attenuates any radiating waves. To ensure the numer-
ical CTW modes exactly correspond to the simulation, the off-
shore boundary is treated as a vertical wall. Excluding forcing at
the offshore boundary slightly reduces the accuracy of the baro-
tropic K; tides in the simulation but does not qualitatively alter
the generation of CTWs (not shown). Importantly, the vertical
wall at the offshore boundary ensures that the Kelvin wave forc-
ing can be accurately removed because it is numerically orthogo-
nal to the CTW modes.

After completing the simulations, # and p are Fourier trans-
formed in time to obtain the K, (diurnal) Fourier coefficients.
Then we solve (28) on the exact/native MITgem grid to obtain
a set of numerically orthogonal CTW modes. The modal am-
plitudes and energy fluxes are determined by (15) and (19).
CTW generation (20) is approximated

yo(x) = Wexp (32)

Py [+ 1; £ ‘:l )J JO ( Pn Py Uy Uy )
~ 0(Z2Zn— “'n +
C, Re{ ( . u p dzdy

Po *+ * = 0
~ 0 (AT + A
Red (a0 + 4, )L LH

[(up;; + pu)}) — (up, + pu, )]dzdy}

Py g *— + -
53 — + -
Re{4Ax A, A, )A,; — A, )}

N A - |4y
Po—"4ax

where u and p are evaluated at the face of each cell (i.e., the u
nodes on the C grid) and the plus and minus superscripts are
values at the centers of the adjacent cells (i.e., the p nodes on
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(33)

the MITgem C grid). The generation term can be interpreted as
the difference in modal energy flux when u and p are projected
onto the CTW modes to the left and right of each cell face.
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FIG. 7. When W = 30 km, mode-1 integrated CTW generation
peaks for a bump with L = 250 km and a coastline length equal to
the mode-1 wavelength (4; = 325 km). Mode-2 and mode-3 inte-
grated CTW generation are maximum at the narrowest bump,
which is a one-grid-cell-wide knife barrier in the simulation.

Since both sets of modes resolve the net energy flux, total gen-
eration is zero (ie., ¥,_,C, = 0) and topographic scattering
only redistributes energy between modes.

4. Applications
a. Generation by a Gaussian bump

The first three CTW modes over the idealized continental
slope (31) have wavelengths of 13533, 325, and 135 km. Mode
0 is a Kelvin wave that is nearly barotropic, and modes 1 and
2 are labeled by the number of zeros in p, and u, (Fig. 3).
Both modes 1 and 2 have significant barotropic components
on the shelf, but are more baroclinic over the slope. Modes 1
and 2 are strongly influenced by the combined effects of rota-
tion, stratification, and bottom slope.

The oscillating longshore velocity past a coastal bump with
L = 250 km generates mode-1 CTWs (4; = 325 km) that propa-
gate with the coast on their right (Fig. 4). These results are quali-
tatively similar to the subinertial simulations presented by Dale
et al. (2001). Projecting the flow onto modes explains 99.99%
of the total energy flux and separates the prescribed forcing from
the locally generated CTWs and evanescent residual (Fig. 5).
The evanescent residual differs from the propagating waves be-
cause it is localized around the bump and has a zero contour that
is tilted with respect to the coastline and isobaths. The longshore
velocity forcing projects onto both left and right going mode-0
waves (the left going wave travels along the offshore wall), which
have individual energy fluxes of +1500 MW, but mostly cancel
to produce a net energy flux of —100 MW. The mode-1 and
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the dashed line has a slope of 0.3 (MW km™?).

mode-2 amplitudes grow over the bump and remain large toward
positive x (to the right; Fig. 6a). The real and imaginary parts of
the mode-1 and mode-2 amplitudes (not shown) oscillate with
wavelengths of 1; = 325 km and 7, = 135 km, respectively, as
predicted by theory. The mode-1 and mode-2 energy fluxes are
about 3 MW and 0.1 MW, respectively (Fig. 6b). Unexplained
(residual) energy flux is about 0.1 MW at the bump and
0.01 MW away from the bump. The mode-1 flux divergence is
almost perfectly balanced by generation over the bump (33),
with peak values of about 30 W m ™! coastline (Fig. 6c). The
accuracy and precision of the modal decomposition in this sim-
ulation suggests that the CTWs produced by the MITgcm are
consistent with the theory presented in section 2.

When W = 30 km, mode-1 longshore-integrated CTW
generation is maximum for Gaussian bumps with L = 250 km
(Fig. 7). One might expect maximum integrated CTW genera-
tion when L equals the resonant wavelength (1; = 325 km) be-
cause the downstream evolution of A, is described by a
simple-harmonic oscillator (16). However, the resonance con-
dition is better predicted by the bump’s length of coastline,
which is equal to 322 km when L = 250 km (Fig. 7). Modes 2
and 3 do not indicate a resonant peak when the length of coast-
line is near their wavelengths, A, = 135 km and 23 = 82 km. In-
stead, they are maximum when the bump is narrowest (i.e., a
knife-edge barrier in the simulation). We did not investigate the
lack of mode-2 and mode-3 resonance, but a plausible explana-
tion is that the prescribed currents primarily produce mode-1
vertical displacements as they flow around the idealized bump.
We hypothesize that mode-2 or mode-3 resonance requires a
more complicated slope and bump.

When L = 250 km, the integrated CTW generation increases
quadratically with W (Fig. 8), indicating that A,, increases linearly
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FIG. 9. Asin Fig. 3, but for Oregon bathymetry and stratification at 43.5°N.

with W. The linear dependence of A, is predictable from (16)
because the forcing is linearly related to 9,x,, which is linearly
related to W, at least for small changes in W. The slower increase
in mode-1 generation at large W can be explained by the
increased length of coastline, which reduces resonance in (16).

b. Generation on the Oregon coast

CTW modes on the Oregon coast resemble those of the ideal-
ized simulations, except they have slightly shorter wavelengths
(Fig. 9). The amplitude of the longshore K; barotropic current in
the Oregon coast simulation is similar to that of TPXO8.0
(Figs. 10a,b) and the simulations presented by Osborne et al.
(2014). We also find that CTWs contribute to the longshore
barotropic current on the shelf at 43.5°N (Fig. 10c), as pre-
dicted by Osborne et al.’s (2014) analysis of CTW dispersion
relations. Note that modes 1-3 have a larger velocity ampli-
tude than the total velocity because modes 1-3 are out of phase
with mode 0, so they interfere destructively. The energetic
CTWs also produce a 1 cm surface displacement along the
coast, which may complicate coastal estimates of SSH obtained
from the upcoming SWOT altimeter.

The mode-1 CTW amplitude is generally larger than the
mode-2 amplitude (Fig. 11a), so that mode-1 energy flux is
3-8 MW and mode-2 energy flux is 0-4 MW (Fig. 11b).
There are few published estimates of CTW energy fluxes,
but Crawford (1984) observed a 50 MW continental shelf
wave offshore of Vancouver Island at 49°N. Although the
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comparison is inexact, these studies suggest O(1 — 100) MW K,
CTW energy fluxes in the eastern North Pacific.

Mode-1 and 2 CTW generation on the Oregon coast is
around 100 W m ™! coastline and exhibits both positive and nega-
tive generation regions with no obvious hotspots (Fig. 11c). Like
any forced harmonic oscillator, instantaneous power may be pos-
itive or negative depending on whether the forcing is in or out of
phase with the oscillator, so averaging is required to identify net
energy transfer. The largely offsetting regions of positive and
negative generation near 42.5°N may be associated with a coastal
bump that is much shorter than the CTW wavelengths (1, = 258
km and 4, = 125 km).

5. Summary

CTW modes are orthogonal according to (13) when the long-
shore wavenumber is treated as the eigenvalue. A similar orthog-
onality condition was derived by Webster and Holland (1987)
and Johnson and Rodney (2011). In contrast, most previous stud-
ies have treated frequency as the eigenvalue and derived nonor-
thogonal modes (e.g., Wang and Mooers 1976; Huthnance 1978;
Brink 1989). In the long-wave limit, CTW modes are orthogo-
nal when either wavenumber or frequency is the eigenvalue
(section 2c). In all cases, the orthogonal quantity is the local
longshore energy flux, not energy.

Projecting the equations of motion (1) onto the nth CTW
mode yields the modal amplitude evolution equation (16),
which is a forced harmonic oscillator where downstream
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distance is treated like time. Modal forcing occurs when
9,X, # 0 because the modes change shape due to longshore var-
iability in bathymetry or stratification. The modal evolution
equation has an energy equation (18) that equates energy-flux
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FIG. 11. Mode-1 and mode-2 (a) CTW amplitude, (b) energy
flux, and (c) generation from the Oregon simulation. The differ-
ence between modal generation and flux divergence [C, — V - F;
dashed lines in (c)] can be interpreted as dissipation and has a
significantly smaller magnitude than the generation terms [solid
lines in (c)].
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divergence with topographic scattering (although we only
examine generation).

The modal theory (section 2) and the numerical method for
determining CTW modes (section 3a) form a “toolbox” for pre-
cisely diagnosing CTW amplitudes, energy fluxes, and generation
in numerical simulations. First, a set of numerically orthogonal
CTW modes are obtained on the native simulation grid by solv-
ing (28). Then, modal amplitudes and energy fluxes are obtained
by numerically computing (15) and (19). We quantified CTW
generation by a longshore K; barotropic current flowing past a
coastal bump. CTW generation is maximum when the bump’s
length of coastline matches the CTW wavelength, and increases
quadratically with the amplitude of the bump, W. Both results
are predicted from the modal evolution Eq. (16).

We also diagnosed CTWs on the Oregon coast. Amplitudes
were large in the locations predicted by Osborne et al. (2014), al-
though mode-1 and mode-2 CTW fluxes were only O(1-10)
MW, which is much less than the 80 MW of M, internal-tide gen-
eration in this region (Osborne et al. 2011). Our results support
the findings of Falahat and Nycander (2015), which indicate that
trapped internal tides play a much lesser role in ocean mixing
than freely propagating internal tides.

Widespread diagnosis of CTW generation in regional and
global numerical simulations requires a way to deal with
large-scale coastal curvature. This may require computing
CTW modes on a grid that is nonnative to the simulation,
which may compromise the numerical orthogonality of the
modes. Precise orthogonality is critical because Kelvin wave
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energy fluxes are often several orders of magnitude larger than
mode-1 and mode-2 CTW energy fluxes, so even minor errors
in the Kelvin wave amplitude may swamp CTW estimates. The
radius of curvature must also be included in estimates of 9,x,,.

An attractive alternative to analyzing regional or global simu-
lations is to calculate modal amplitudes directly from the modal
amplitude evolution equations (16). If the full fields u and p
could be written as the sum of CTW modes, then the forcing
terms in (16) could be computed using a modal matching tech-
nique. Wilkin and Chapman (1987) employed this method to es-
timate continental shelf wave scattering, but a short time later
Middleton and Wright (1988) obtained erroneous solutions in
some parameter regimes and concluded “there is some basic
problem with either the assumed physics or the variety of mode
matching solution techniques tried.” We hypothesize that locally
generated evanescent modes [the “residual” in (14)] must be
included in the matching procedure, and these modes obey a
separate set of evolution equations that are missing in the pre-
sent analysis.

CTWs dissipate through intermodal scattering (Webster
1987), bottom drag (Brink 2006), and interactions with mean
flows (Narayanan and Webster 1987). The modal amplitude
equations (16) include scattering, but the energy transfer between
two specific modes, C,,,,,, can only be obtained if x is expanded in
(20) using (14), making total conversion C, = 3,,,Cp,, (like scat-
tering between vertical modes; Kelly et al. 2012). This expansion
is hindered by the evanescent residual, which appears to mediate
scattering. It may also be possible to extend the present toolbox
to include orthogonal modes and/or modal amplitude equations
that incorporate drag and mean-flow effects, although such an
extension is nontrivial.
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