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ABSTRACT

Idier et al. [IEEE Trans. Comput. Imaging 4(1), 2018] propose a
method which achieves superresolution in the microscopy setting
by leveraging random speckle illumination and knowledge about
statistical second order moments for the illumination patterns and
model noise. This is achieved without any assumptions on the spar-
sity of the imaged object. In this paper, we show that their tech-
nique can be extended to photoacoustic tomography. We propose a
simple algorithm for doing the reconstruction which only requires
a small number of linear algebra steps. It is therefore much faster
than the iterative method used by Idier et al. We also propose a new
representation of the imaged object based on Dirac delta expansion
functions.

Index Terms— Photoacoustic tomography (PAT), medical
imaging, superresolution imaging, blind speckle illumination, sec-
ond order statistics

1. INTRODUCTION

Photoacoustic tomography (PAT) is a technique which detects op-
tical contrast acoustically. As photons travel through an absorb-
ing medium like tissue, most, if not all the light is converted into
heat. This causes a temperature increase which induces a pressure
increase through thermo-elastic expansion. This pressure then dis-
sipates through the tissue as a wideband acoustic signal. An ul-
trasound transducer array records these signals which can be used
to form an image. This method has found several uses, as one of
the key advantages of PAT over purely optical methods is the in-
crease in imaging depth within tissue since acoustic signals scatter
less than light. A review of PAT imaging methods can be found in
[1]. In the particular imaging method that is the focus of this paper,
the illumination is generally a diffuse beam, and a single ultrasound
transducer or a transducer array is scanned to obtain an image. This
is illustrated in Fig. 1. The resolution is limited by the focal volume
of the transducer which is at least two orders of magnitude greater
than the wavelength of light. This resolution limit decreases as the
imaging depth increases. For this reason, there is a need for tech-
niques that can improve the imaging capability at increased depths.

When light enters a scattering medium like tissue, the photons
are scattered from their initial paths and form random speckle pat-
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Figure 1: The PAT setting with different speckle illuminations.

terns [2]. By leveraging the recordings generated by many such
random illumination patterns, the resolution can be improved in
both microscopy and PAT [3, 4, 5, 6, 7]. Our paper is inspired by
the work done by Idier et al. [8] in the microscopy setting. They
demonstrate that random speckle illumination and the second order
moments of the speckle and noise can be used to improve resolution
in certain regimes—without any assumptions on the sparsity of the
imaged object. In particular, they show that decreasing the size of
the speckle patterns can lead to improved resolution.

We make the following contributions in this paper:

• We provide evidence that the ideas in [8] can be extended to
PAT, and that random speckle illumination combined with sec-
ond order moment information can lead to enhanced resolution
in PAT.

• We represent the imaged object using Dirac delta expansion
functions. This representation allows us to use a coarser tempo-
ral discretization than e.g. spherical expansion functions, lead-
ing to faster computation and less memory usage.

• We propose a simple algorithm for recovering the object from
the empirical transducer recording covariance matrix. Unlike
the iterative algorithm in [8], our method requires a small num-
ber of simple linear algebra steps and therefore runs much
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faster (minutes instead of hours).

2. RELATED WORK

In numerous recent works in PAT, the conventional resolution lim-
its are surpassed via methods using speckle illumination [9, 3,
4, 5, 10], SOFI [11] inspired fluctuation imaging [12, 13, 14],
and localization-based methods [15, 16]. The class of methods
[9, 3, 4, 5, 10] that has taken inspiration from blind structured illu-
mination microscopy [6, 7] has achieved a resolution improvement
by a factor of two. These techniques illuminate the sample with un-
known speckle patterns instead of a uniform beam. This has the ef-
fect of frequency shifting the acoustic signals into a frequency band
which is detectable by the transducer. Thus, the grain size of the
speckle and the transducer properties have a significant impact on
the achievable resolution. Previous approaches [3, 5] estimate the
object as the solution to a regularized optimization problem, solved
via iterative methods. The regularizer is chosen to take advantage of
the fact that the object is usually sparse. There has been other work
[17] that also uses second order speckle information. In this purely
optical method, the illumination patterns are initially estimated af-
ter calculating a widefield low-resolution image. The covariance of
these recovered patterns are then used to reconstruct a covariance
image which estimates the object.

Many optical imaging techniques extend to PAT but there are
key differences, for example PAT has a non-uniform point response
unlike in optical microscopy, hence the resolution is different along
the axial and lateral directions. In addition to this, the point re-
sponse is uniform only within a small region of the imaging aper-
ture and it is desirable to have a general forward model that takes
this into account, in contrast to optical microscopy where a point
spread function can be defined for the entire field of view.

3. RECONSTRUCTION VIA SECOND ORDER MOMENTS

Let ρ ∈ R
N be a vector representing the object we are trying to

reconstruct. For example, on a two-dimensional grid of size n × n
we have N = n2. Moreover, let e ∈ R

N be a vector describing the
speckle pattern illuminating the object. In the microscopy setting in
[8], the recorded image y can be modeled as

y = h ∗ (ρ� e) + ε, (1)

where h is a point spread function (PSF), ε is noise, ∗ denotes con-
volution, and � denotes Hadamard (pointwise) product.

In this paper, we consider a PAT setup with M transducers,
each recording a time series consisting of T time points for each
of K different random speckle patterns. The recorded signal for a
given speckle pattern e may now be modeled as

y = A(ρ� e) + ε = ARe+ ε, (2)

where R
def
= diag(ρ), y ∈ R

TM contains the length T time se-
ries recording for each transducer concatenated into a single vector,
ε ∈ R

TM is a random noise vector, and A ∈ R
TM×N is a lin-

ear operator. The form of A depends on how the imaged object is
represented. A can either be derived analytically from the photoa-
coustic wave equation and properties of the transducers [18, 19] or
empirically by observing the recorded signal from a known point
absorber [20, 14]. We use a variant of the forward operator derived
in [19] which we describe in Section 3.1. However, our reconstruc-
tion method should work well with any reasonable forward model.

The goal of the reconstruction problem is to recover ρ. Let
y(1), . . . ,y(K) denote recorded signals corresponding to K differ-
ent speckle patterns. A standard assumption is that the speckle pat-
tern intensity, on average, is the same for each point of the object
and that the noise is centered around zero. Mathematically, these
assumptions can be written as E[en] = μ for each n ∈ {1, . . . , N}
where μ is some fixed number, and E[ε] = 0. Under these assump-

tions, ȳ
def
= K−1 ∑K

k=1 y
(k) ≈ Aρ if the number of speckles K is

sufficiently large. One may then estimate ρ by solving the following
least squares problem:

ρ̂1 = argmin
ρ∈RN

‖Aρ− ȳ‖2 + λ‖ρ‖2. (3)

The subscript on ρ̂1 indicates that this estimate uses assumptions on
the mean, or first order moment, of the speckles and noise. Similar
assumptions are made in e.g. [6, 5]. The added Tikhonov regularizer
is necessary since the inversion is ill-posed.

Similarly to [8], we make the the additional assumption that we

know the speckle covariance matrix Γe
def
= E[(e−μe)(e−μe)

�],
where μe

def
= E[e], and the noise covariance matrix Γε

def
= E[εε�]

(recall that E[ε] = 0). This amounts to an assumption on the second
order moments. Additionally, we assume that the random speckle
pattern e and the noise ε are independent. It is then easy to show
that the signal covariance matrix Γy satisfies

Γy
def
= E[(y − μy)(y − μy)

�] = ARΓeRA� + Γε, (4)

where μy
def
= E[y]. We compute the empirical covariance matrix

Γ̂y via

Γ̂y =
1

K

K∑
k=1

y(k)y(k)� − μ̂yμ̂
�
y , μ̂y =

1

K

K∑
k=1

y(k). (5)

After replacing the unknown Γy in (4) with Γ̂y , we “solve” that
equation for R which contains the sought object ρ on the diagonal.
Recovering R from (4) is a nontrivial problem. Idier et al. [8] pro-
pose using an iterative nonlinear conjugate gradient (CG) method to
do this. It requires inverting an estimate of Γy which costs O(N3)
per iteration. Nonlinear CG methods usually require hundreds of
iterations, which makes the method very expensive. In Section 3.2,
we provide details on our simple noniterative method for estimating
R from (4) which costs O(N3) in total. It only requires basic linear
algebra computations which are easy to implement.

3.1. The forward operator model

For the forward operator A, we use a variant of the discrete-to-
discrete operator proposed in [19] which incorporates a model for
the acousto-electric impulse response (EIR) of ultrasound transduc-
ers. We use the EIR model in equation (6) of [21]. Applying A
naı̈vely to a vector costs O(TMN) operations. However, A can
be split into two parts, A = AEIRA0, where A0 gives the trans-
ducer recordings without the EIR and AEIR then applies a con-
volution with the EIR [19]. The benefit of this approach is that
A0 usually is sparse and AEIR can be applied implicitly in time
O(TM log(TM)) by using the FFT and the convolution theorem.

Our operator differs from that in [19] in the choice of expansion
functions used to represent the object. We may represent an object
f : R3 → R on grid points {x(n)}Nn=1 ⊂ R

3 via

f(x) ≈ f̂(x)
def
=

N∑
n=1

ρnφn(x), (6)
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where {φn}Nn=1 is a family of expansion functions and ρ =
(ρn)

N
n=1 is a vector of coefficients. Wang et al. [19] choose each

φn to be a spherical expansion function centered at x(n). We found
that this choice works poorly when A is split up into two separate
operators A = AEIRA0. The reason is that the “N” shaped sig-
nal that results after computing A0ρ require a very fine temporal
grid (i.e., large T ) for accurate representation. To address this, we

instead use expansion functions φn(x)
def
= δ(x− x(n)). Define

s(x, t)
def
=

β

4πCp

N∑
n=1

ρn
‖x− x(n)‖δ

(
t− ‖x− x(n)‖

c0

)
, (7)

where β is the thermal coefficient of volume expansion, Cp is the
specific heat capacity of the medium at constant pressure, and c0
is the speed of sound in the object and background medium. The

signal generated at position x by the approximation f̂ in (6) at time
t when φn(x) = δ(x − x(n)) is then ∂s(x, t)/∂t. Convolving
with the EIR and using properties of the Dirac delta function, we

get EIR ∗(∂s/∂t) = EIR′ ∗s, where EIR′ def
= dEIR /dt. We

therefore split our forward operator into two parts A = AEIR′As

where As transforms a discretized object ρ to a discretized signal
and AEIR′ applies convolution with EIR′. As is sparse and AEIR′
can be applied implicitly via the FFT, so Aρ can be computed ef-
ficiently. Moreover, the representation Asρ performs well even on
relatively coarse temporal grids.

3.2. Reconstruction algorithm

Our reconstruction method is presented in Alg. 1. After subtracting
the noise covariance on line 1 and solving the systems on lines 2
and 3, M3 approximates RΓeR. After multiplying M3 on each
side by

√
Γe on line 4 and subsequently taking the square root in

line 5 (we discuss the symmetrization and projection steps below),
M5 approximates

√
ΓeR

√
Γe. After the two solves on lines 6 and

7, R̂ approximates R. Finally, on line 8 the diagonal ρ̂ estimating
ρ is extracted.

Algorithm 1: Efficient reconstruction of ρ̂ from (4)

Input: Estimate Γ̂y; known Γe, Γε, A; constants λ1, λ2

Output: Object estimate ρ̂

1 M1 = Γ̂y − Γε

2 M2 = argminM ‖AM −M1‖2F + λ1‖M‖2F
3 M3 = argminM ‖MA� −M2‖2F + λ1‖M‖2F
4 M4 =

√
ΓeM3

√
Γe

5 M5 =
√

proj
SN+

(sym(M4)) // Compute via (9)

6 M6 = argminM ‖√ΓeM −M5‖2F + λ2‖M‖2F
7 R̂ = argminM ‖M√

Γe −M6‖2F + λ2‖M‖2F
8 Set ρ̂ to diagonal of R̂
9 return ρ̂

Idier et al. [8] point out that since Γ̂y is an empirical covariance
matrix, it may not be positive semidefinite. Consequently, the ma-
trix M4 may not be positive semidefinite and its square root may
not exist. Idier et al. therefore propose using a Kullback–Leibler
divergence based dissimilarity measure between the empirical and
true distributions, and then find an estimate ρ̂ via a nonlinear CG
method. Additionally, due to the regularizers on lines 2 and 3, M4

may not be exactly symmetric. We propose a very simple solution
to address these challenges: We symmetrize and then project M4

onto the set of positive semidefinite N × N matrices before tak-
ing the square root on line 5. The symmetrization can be done via
sym(M4) = (M4+M�

4 )/2. Let SN and S
N
+ denote the symmet-

ric and positive semidefinite matrices of size N × N , respectively.
The projection operator proj

SN+
: SN → S

N
+ is defined as

proj
SN+

(M)
def
= min

M ′∈SN+

‖M ′ −M‖F. (8)

This projection is easy to compute via

proj
SN+

(M) = Qmax(Λ, 0)Q�, (9)

where M = QΛQ� is the eigendecomposition of M , and the
max(·, 0) operator is applied elementwise. The projection is the
same if spectral norm is used instead of Frobenius norm in (8); see
Section 8.1.1 of [22] for details. The matrix proj

SN+
(sym(M4)) is

positive semidefinite and therefore guaranteed to have a square root;
see Theorem 7.2.6 in [23] for details. In practice, we find that the
square root of M4 usually exists, in which case the symmetrization
and projection steps can be skipped.

We found that the Tikhonov regularization in lines 2, 3, 6 and
7 of Alg. 1 with a careful choice of λ1 and λ2 is essential for the
reconstruction. The regularization terms can easily be incorporated
into the design matrix. For example, the problem in line 2 can be
written as

M2 = argmin
M

∥∥∥∥
[

A√
λI

]
M −

[
M1

0

]∥∥∥∥
2

F

. (10)

If the problem in line 3 is transposed and rewritten in a similar fash-
ion, it will have the same design matrix. The leading order cost
of solving these problems is decomposing the design matrix (e.g.
via the QR decomposition; see Section 5.3.3 of [24] for details),
and this therefore only has to be done once for both lines. In fact,
since A remains fixed for a certain imaging setup, the decomposi-
tion only needs to be computed once for that setup. Similar cost
savings are possible for the lines 6 and 7. The leading order cost
of our algorithm is decomposing the design matrix in (10), which
costs O(max(TM,N)N2). If this has been done ahead of time
for the particular imaging setup, the leading order cost is reduced to
O(N3).

4. EXPERIMENTS

We run simulation experiments in Matlab in which we compare our
method to the first order reconstruction estimate ρ̂1 in (3) and to
time reversal image reconstruction in k-Wave [25] based on the av-
erage signal ȳ. The object we try to recover is the star-shaped object
of size 160 μm by 160 μm shown in Fig. 4 (a). In order to avoid in-
verse crime, we use different grids to represent the object when we
generate the data and when we do the reconstruction. For data gen-
eration we use a 101 by 101 grid (N = 1012) and for reconstruction
we use an 81 by 81 grid (N = 812). We use M = 64 transduc-
ers arranged in two different geometries shown in Fig. 2. In the
first geometry, the transducers are arranged into a square array po-
sitioned a distance 30 μm above the object. In the second geometry,
the transducers are positioned in a circle of radius 160 μm around
the object and in the same plane as the object. The transducers have
a center frequency f0 = 50 MHz and full width at half-maximum
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FWHM = 25 MHz. Fig. 2 shows examples of transducer record-
ings. The recordings are 199 ns long and discretized into T = 200
time points. In our simulations, we add i.i.d. Gaussian noise with
standard deviation equal to 1% of the maximum signal amplitude
to all recordings. Consequently, Γε is an identity matrix rescaled
by the noise variance. For each experiment we generate K = 1000
random speckles using a discretized variant of a speckle model from
[26]. From this model, we also compute the speckle covariance ma-
trix Γe. We use speckles of three different sizes in the experiments
to demonstrate how finer speckles lead to resolution improvement.
Examples of speckles of each size are given in Fig. 3. We choose
the parameters in (7) to correspond to an experiment in water.

Figure 2: Left: The two transducer geometries. Right: Examples of
recordings from four different transducers in the circular geometry.

(a) Size: 16.0 m (b) Size: 7.8 m (c) Size: 3.9 m

Figure 3: Examples of speckle patterns of different size.

Figs. 4 and 5 show the experiment results for the square and
circular transducer array geometries, respectively. Since both ρ̂1

and the time reversal solution are computed from the mean signal,
they are not impacted by the speckle size. In both figures, subplots
(b) and (c) show the reconstructions by time reversal in k-Wave and
via the first order method in (3), respectively. Subplots (d)–(f) show
how the resolution for reconstruction via Alg. 1 improves as the
speckle size is reduced. The speckle sizes are those specified in
Fig. 3. These experiments indicate that combining random speckle
illumination and second order statistics allows us to outperform the
first order methods. In particular, finer speckles allow us to recover
finer details. We found that using speckles finer than those shown
in Fig. 3 (c) did not lead to any further improvement in resolution.

Our algorithm also works well in the original microscopy set-
ting considered in [8], in which case A just represents convolution
with the PSF h in (1). Indeed, we are able to achieve the same re-
sults as in [8] by using our algorithm at a fraction of the cost. Due
to space constraints, we do not include those results here.

(a) Original (b) k-Wave recon.

(d) 2nd order recon. (e) 2nd order recon.

(c) 1st order recon.

(f) 2nd order recon.

Figure 4: Reconstruction with the square transducer array. (a) Orig-
inal object. (b) Reconstruction using time reversal in k-Wave. (c)
Object reconstructed via (3). (d)–(f) Object reconstructed using
Alg. 1 for the different speckle sizes illustrated in Fig. 3.

(a) Original (b) k-Wave recon.

(d) 2nd order recon. (e) 2nd order recon.

(c) 1st order recon.

(f) 2nd order recon.

Figure 5: Reconstruction with the circular transducer array. The
different subplot descriptions are the same as in Fig. 4.

5. CONCLUSION

We have shown in experiments that the ideas by Idier et al. [8] in
the microscopy setting can be extended to the more general PAT
setting. We also proposed a simple algorithm for computing the ob-
ject which is much faster to run and easier to implement than the
iterative method in [8]. Despite the speedup achieved by our algo-
rithm, it still remains quite expensive at a cost of O(N3) where N
is the number of pixels. Another factor that will impact the perfor-
mance of the method is how well we are able to model or estimate
the true speckle covariance Γe. Addressing these issues are an in-
teresting direction for future research. Other interesting directions
include trying to reconstruct three-dimensional objects, and modi-
fying Alg. 1 to leverage prior knowledge about object sparsity. It
may also be possible to combine least squares solves in Alg. 1 and
use e.g. LSQR [27] to achieve further speedups.
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